

 [image: cover]

Node.js in Action, Second Edition

 Alex Young, Bradley Meck, and Mike Cantelon

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Cynthia Kane
Review editor: Aleksandar Dragosavljević
Technical development editor: Stan Bice
Project editors: Kevin Sullivan, David Novak
Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Doug Warren
Typesetter and cover design: Marija Tudor

 ISBN 9781617292576

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Welcome to Node

 Chapter 1. Welcome to Node.js

 Chapter 2. Node programming fundamentals

 Chapter 3. What is a Node web application?

 2. Web development with Node

 Chapter 4. Front-end build systems

 Chapter 5. Server-side frameworks

 Chapter 6. Connect and Express in depth

 Chapter 7. Web application templating

 Chapter 8. Storing application data

 Chapter 9. Testing Node applications

 Chapter 10. Deploying Node applications and maintaining uptime

 3. Beyond web development

 Chapter 11. Writing command-line applications

 Chapter 12. Conquering the desktop with Electron

 Appendix A. Installing Node

 Appendix B. Automating the web with scraping

 Appendix C. Connect’s officially supported middleware

 Glossary

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Welcome to Node

 Chapter 1. Welcome to Node.js

 1.1. A typical Node web application

 1.1.1. Nonblocking I/O

 1.1.2. The event loop

 1.2. ES2015, Node, and V8

 1.2.1. Node and V8

 1.2.2. Working with feature groups

 1.2.3. Understanding Node’s release schedule

 1.3. Installing Node

 1.4. Node’s built-in tools

 1.4.1. npm

 1.4.2. The core modules

 1.4.3. The debugger

 1.5. The three main types of Node program

 1.5.1. Web applications

 1.5.2. Command-line tools and daemons

 1.5.3. Desktop applications

 1.5.4. Applications suited to Node

 1.6. Summary

 Chapter 2. Node programming fundamentals

 2.1. Organizing and reusing Node functionality

 2.2. Starting a new Node project

 2.2.1. Creating modules

 2.3. Fine-tuning module creation by using module.exports

 2.4. Reusing modules by using the node_modules folder

 2.5. Exploring caveats

 2.6. Using asynchronous programming techniques

 2.7. Handling one-off events with callbacks

 2.8. Handling repeating events with event emitters

 2.8.1. An example event emitter

 2.8.2. Responding to an event that should occur only once

 2.8.3. Creating event emitters: a publish/subscribe example

 2.8.4. Extending the event emitter: a file watcher example

 2.9. Challenges with asynchronous development

 2.10. Sequencing asynchronous logic

 2.11. When to use serial flow control

 2.12. Implementing serial flow control

 2.13. Implementing parallel flow control

 2.14. Using community tools

 2.15. Summary

 Chapter 3. What is a Node web application?

 3.1. Understanding a Node web application’s structure

 3.1.1. Starting a new web app

 3.1.2. Comparing other platforms

 3.1.3. What’s next?

 3.2. Building a RESTful web service

 3.3. Adding a database

 3.3.1. Making your own model API

 3.3.2. Making articles readable and saving them for later

 3.4. Adding a user interface

 3.4.1. Supporting multiple formats

 3.4.2. Rendering templates

 3.4.3. Using npm for client-side dependencies

 3.5. Summary

 2. Web development with Node

 Chapter 4. Front-end build systems

 4.1. Understanding front-end development with Node

 4.2. Using npm to run scripts

 4.2.1. Creating custom npm scripts

 4.2.2. Configuring front-end build tools

 4.3. Providing automation with Gulp

 4.3.1. Adding Gulp to a project

 4.3.2. Creating and running Gulp tasks

 4.3.3. Watching for changes

 4.3.4. Using separate files for larger projects

 4.4. Building web apps with webpack

 4.4.1. Using bundles and plugins

 4.4.2. Configuring and running webpack

 4.4.3. Using webpack development server

 4.4.4. Loading CommonJS modules and assets

 4.5. Summary

 Chapter 5. Server-side frameworks

 5.1. Personas

 5.1.1. Phil: agency developer

 5.1.2. Nadine: open source developer

 5.1.3. Alice: product developer

 5.2. What is a framework?

 5.3. Koa

 5.3.1. Setting up

 5.3.2. Defining routes

 5.3.3. REST APIs

 5.3.4. Strengths

 5.3.5. Weaknesses

 5.4. Kraken

 5.4.1. Setting up

 5.4.2. Defining routes

 5.4.3. REST APIs

 5.4.4. Strengths

 5.4.5. Weaknesses

 5.5. hapi

 5.5.1. Setting up

 5.5.2. Defining routes

 5.5.3. Plugins

 5.5.4. REST APIs

 5.5.5. Strengths

 5.5.6. Weaknesses

 5.6. Sails.js

 5.6.1. Setting up

 5.6.2. Defining routes

 5.6.3. REST APIs

 5.6.4. Strengths

 5.6.5. Weaknesses

 5.7. DerbyJS

 5.7.1. Setting up

 5.7.2. Defining routes

 5.7.3. REST APIs

 5.7.4. Strengths

 5.7.5. Weaknesses

 5.8. Flatiron.js

 5.8.1. Setting up

 5.8.2. Defining routes

 5.8.3. REST APIs

 5.8.4. Strengths

 5.8.5. Weaknesses

 5.9. LoopBack

 5.9.1. Setting up

 5.9.2. Defining routes

 5.9.3. REST APIs

 5.9.4. Strengths

 5.9.5. Weaknesses

 5.10. Comparison

 5.10.1. HTTP servers and routes

 5.11. Writing modular code

 5.12. Persona choices

 5.13. Summary

 Chapter 6. Connect and Express in depth

 6.1. Connect

 6.1.1. Setting up a Connect application

 6.1.2. Understanding how Connect middleware works

 6.1.3. Combining middleware

 6.1.4. Ordering middleware

 6.1.5. Creating configurable middleware

 6.1.6. Using error-handling middleware

 6.2. Express

 6.2.1. Generating the application skeleton

 6.2.2. Configuring Express and your application

 6.2.3. Rendering views

 6.2.4. Express routing 101

 6.2.5. Authenticating users

 6.2.6. Registering new users

 6.2.7. Logging in registered users

 6.2.8. Working with user-loading middleware

 6.2.9. Creating a public REST API

 6.2.10. Enabling content negotiation

 6.3. Summary

 Chapter 7. Web application templating

 7.1. Using templating to keep code clean

 7.1.1. Templating in action

 7.1.2. Rendering HTML without a template

 7.2. Templating with Embedded JavaScript

 7.2.1. Creating a template

 7.2.2. Integrating EJS into your application

 7.2.3. Using EJS for client-side applications

 7.3. Using the Mustache templating language with Hogan

 7.3.1. Creating a template

 7.3.2. Using Mustache tags

 7.3.3. Fine-tuning Hogan

 7.4. Templating with Pug

 7.4.1. Pug basics

 7.4.2. Logic in Pug templates

 7.4.3. Organizing Pug templates

 7.5. Summary

 Chapter 8. Storing application data

 8.1. Relational databases

 8.2. PostgreSQL

 8.2.1. Performing installation and setup

 8.2.2. Creating the database

 8.2.3. Connecting to Postgres from Node

 8.2.4. Defining tables

 8.2.5. Inserting data

 8.2.6. Updating data

 8.2.7. Querying data

 8.3. Knex

 8.3.1. jQuery for databases

 8.3.2. Connecting and running queries with Knex

 8.3.3. Swapping the database back end

 8.3.4. Beware of leaky abstractions

 8.4. MySQL vs. PostgreSQL

 8.5. ACID guarantees

 8.5.1. Atomicity: transactions either succeed or fail in entirety

 8.5.2. Consistency: constraints are always enforced

 8.5.3. Isolation: concurrent transactions don’t interfere

 8.5.4. Durability: transactions are permanent

 8.6. NoSQL

 8.7. Distributed databases

 8.8. MongoDB

 8.8.1. Performing installation and setup

 8.8.2. Connecting to MongoDB

 8.8.3. Inserting documents

 8.8.4. Querying

 8.8.5. Using MongoDB identifiers

 8.8.6. Using replica sets

 8.8.7. Understanding write concerns

 8.9. Key/value stores

 8.10. Redis

 8.10.1. Performing installation and setup

 8.10.2. Performing initialization

 8.10.3. Working with key/value pairs

 8.10.4. Working with keys

 8.10.5. Encoding and data types

 8.10.6. Using hashes

 8.10.7. Using lists

 8.10.8. Using sets

 8.10.9. Providing pub/sub with channels

 8.10.10. Improving Redis performance

 8.11. Embedded databases

 8.12. LevelDB

 8.12.1. LevelUP and LevelDOWN

 8.12.2. Installation

 8.12.3. API overview

 8.12.4. Initialization

 8.12.5. Key/value encodings

 8.12.6. Reading and writing key/value pairs

 8.12.7. Pluggable back ends

 8.12.8. The modular database

 8.13. Serialization and deserialization are expensive

 8.14. In-browser storage

 8.14.1. Web storage: localStorage and sessionStorage

 8.14.2. Reading and writing values

 8.14.3. localForage

 8.14.4. Reading and writing

 8.15. Hosted storage

 8.15.1. Simple Storage Service

 8.16. Which database?

 8.17. Summary

 Chapter 9. Testing Node applications

 9.1. Unit testing

 9.1.1. The assert module

 9.1.2. Mocha

 9.1.3. Vows

 9.1.4. Chai

 9.1.5. Should.js

 9.1.6. Spies and stubs with Sinon.JS

 9.2. Functional testing

 9.2.1. Selenium

 9.3. Dealing with failing tests

 9.3.1. Getting more-detailed logs

 9.3.2. Getting better stack traces

 9.4. Summary

 Chapter 10. Deploying Node applications and maintaining uptime

 10.1. Hosting Node applications

 10.1.1. Platform as a service

 10.1.2. Servers

 10.1.3. Containers

 10.2. Understanding deployment basics

 10.2.1. Deploying from a Git repository

 10.2.2. Keeping Node running

 10.3. Maximizing uptime and performance

 10.3.1. Maintaining uptime with Upstart

 10.3.2. The cluster API: taking advantage of multiple cores

 10.3.3. Hosting static files and proxying

 10.4. Summary

 3. Beyond web development

 Chapter 11. Writing command-line applications

 11.1. Understanding conventions and philosophy

 11.2. Introducing parse-json

 11.3. Using command-line arguments

 11.3.1. Parsing command-line arguments

 11.3.2. Validating arguments

 11.3.3. Passing stdin as a file

 11.4. Sharing command-line tools with npm

 11.5. Connecting scripts with pipes

 11.5.1. Piping data into parse-json

 11.5.2. Working with errors and exit codes

 11.5.3. Using pipes in Node

 11.5.4. Pipes and command execution order

 11.6. Interpreting real-world scripts

 11.7. Summary

 Chapter 12. Conquering the desktop with Electron

 12.1. Introducing Electron

 12.1.1. Electron’s stack

 12.1.2. Interface design

 12.2. Creating an Electron app

 12.3. Building a full desktop application

 12.3.1. Bootstrapping React and Babel

 12.3.2. Installing the dependencies

 12.3.3. Setting up webpack

 12.4. The React app

 12.4.1. Defining the Request component

 12.4.2. Defining the Response component

 12.4.3. Communicating between React components

 12.5. Builds and distribution

 12.5.1. Building with Electron Packager

 12.5.2. Packaging

 12.6. Summary

 Appendix A. Installing Node

 A.1. Installing Node by using an installer

 A.1.1. The macOS installer

 A.1.2. The Windows installer

 A.2. Using other ways to install Node

 A.2.1. Installing Node from source

 A.2.2. Installing Node with a package manager

 Appendix B. Automating the web with scraping

 B.1. Understanding web scraping

 B.1.1. Uses of web scraping

 B.1.2. Required tools

 B.2. Performing basic web scraping with cheerio

 B.3. Handling dynamic content with jsdom

 B.4. Making sense of raw data

 B.5. Summary

 Appendix C. Connect’s officially supported middleware

 C.1. Parsing cookies, request bodies, and query strings

 C.1.1. cookie-parser: parse HTTP cookies

 C.1.2. Parsing query strings

 C.1.3. body-parser: parse request bodies

 C.1.4. compression: compressing outgoing responses

 C.2. Implementing core web application functions

 C.2.1. morgan: log requests

 C.2.2. serve-favicon: address bar and bookmark icons

 C.2.3. method-override: fake HTTP methods

 C.2.4. vhost: virtual hosting

 C.2.5. express-session: session management

 C.3. Handling web application security

 C.3.1. basic-auth: HTTP Basic authentication

 C.3.2. csurf: cross-site request forgery protection

 C.3.3. errorhandler: displaying errors during development

 C.4. Serving static files

 C.4.1. serve-static: automatically serving files to the browser

 C.4.2. serve-index: generating directory listings

 Glossary

 Chapter 1

 Chapter 2

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Chapter 11

 Chapter 12

 Appendix A

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 From the first edition of Node.js in Action by Mike Cantelon, Marc Harter, T.J. Holowaychuk, and Nathan Rajlich.

 “The content ramps up nicely from basic to advanced.”

 From the Foreword by Isaac Z. Schlueter, Node.js Project Lead

 “The definitive guide to Node and the Node.js ecosystem.”

 Kevin Baister, 1KB Software Solutions

 “Superbly written with practical (and even funny) real-world examples.”

 Àlex Madurell, Polymedia SpA

 “Thoroughly enjoyable...will get you up and running very quickly.”

 Gary Ewan Park, Honeywell

 “An excellent resource written by the people behind the code.”

 Brian Falk, NodeLingo, GoChime

Preface

 Since the first edition of Node.js in Action, Node has merged with io.js and has dramatically changed its governance model. Node’s package manager has been spun off into
 a successful new company, npm, and technologies such as Babel and Electron have transformed the development landscape.

 And yet, not much has changed in Node’s core libraries. JavaScript itself has changed: most developers now use features from
 ES2015, so all of the original listings have been rewritten to take advantage of arrow functions, constants, and destructuring.
 Node’s libraries and built-in tools still look broadly similar to Node pre 4.x, though, so we’ve looked to the community for updates to this edition.

 To reflect the realities a Node developer now faces, we’ve restructured the book. There is less focus on Express and Connect,
 and more focus on a broader range of technologies. Everything you need to be a full-stack developer is here, including front-end
 build systems, choosing a web framework, working with databases in Node, writing tests, and deploying web apps.

 In addition to web development, we’ve included chapters on writing command-line applications and Electron desktop apps. This
 lets you take full advantage of your Node and JavaScript skills.

 Understanding Node and its ecosystem isn’t the only thing this book is about. Where possible, I’ve tried to add background
 details on what has influenced Node. Ideas such as Unix philosophy and using databases correctly and safely are covered alongside
 the usual Node and JavaScript topics. Hopefully, this gives you a broad enough picture of Node and JavaScript to seek out
 your own solutions to unique problems.

 —ALEX YOUNG

Acknowledgments

 This book was built on the work of the previous authors and owes a great debt to their efforts: Mike Cantelon, Marc Harter,
 T.J. Holowaychuk, and Nathan Rajlich. This edition wouldn’t have been possible without the encouragement of the team at Manning.
 Cynthia Kane, my development editor, kept me focused during the long process of updating the original content. Without Doug
 Warren’s detailed technical proofread, this book and the sample code wouldn’t be half as good as it is. Finally, thanks to
 the many reviewers who provided feedback during the writing and development process: Austin King, Carl Hope, Chris Salch,
 Christopher Reed, Dale Francis, Hafiz Waheed ud din, Harinath Mallepally, Jeff Smith, Marc-Philippe Huget, Matthew Bertoni,
 Philippe Charrière, Randy Kamradt, Sander Rossel, Scott Dierbeck, and William Wheeler.

 —ALEX YOUNG

About this Book

 The first edition of Node.js in Action was about web development with a particular focus on the Connect and Express web frameworks. Node.js in Action, Second Edition has been updated to suit the changing requirements of Node development. You’ll learn about front-end build systems, popular
 Node web frameworks, and how to build a web application with Express from scratch. You’ll also learn how to create automated
 tests and deploy Node web applications.

 Node is being increasingly used for command-line developer tools and desktop applications with Electron, so you’ll find chapters
 dedicated to both of these areas.

 This book assumes you’re familiar with basic programming concepts. The first chapter provides an overview of JavaScript and
 ES2015 for those of you who haven’t yet discovered the joys of modern JavaScript.

Roadmap

 This book is organized into three parts.

 Part 1 provides an introduction to Node.js, teaching the fundamental techniques needed to develop with it. Chapter 1 explains the characteristics of JavaScript and Node and steps through example code. Chapter 2 guides you through fundamental Node.js programming concepts. Chapter 3 is a full tutorial on how to build a web application from scratch.

 Part 2, the largest section of the book, focuses on web application development. Chapter 4 dispels some of the mystery around front-end build systems: if you’ve ever had to use webpack or Gulp in a project but didn’t
 really understand it, this is the chapter for you. Chapter 5 reviews some of the most popular server-side frameworks available for Node, and chapter 6 goes into Connect and Express in more depth. Chapter 7 is dedicated to templating languages, which can improve your productivity when writing server-side code. Most web applications
 need a database, so chapter 8 covers the many types of databases that you can use with Node, from relational to NoSQL. Chapters 9 and 10 deal with testing and deployment, and this includes cloud deployment.

 Part 3 goes beyond web application development. Chapter 11 is about building command-line applications with Node so you can create developer-friendly text interfaces. If you’re excited
 about the prospect of building desktop apps such as Atom with Node, then take a look at chapter 12, which is all about Electron.

 We’ve also included three detailed appendixes. Appendix A has instructions on how to install Node for macOS and Windows. Appendix B is a detailed tutorial on web scraping, and appendix C reviews each of the officially supported middleware components for the Connect web framework.

Code conventions and downloads

 The code in this book follows common JavaScript conventions. Spaces, rather than tabs, are used for indentation. Lines longer
 than 80 characters are avoided. In many listings, the code is annotated to point out key concepts.

 A single statement per line is used and semicolons are added at the end of simple statements. For blocks of code, where one
 or more statements are enclosed in curly braces, the left curly brace is placed at the end of the opening line of the block.
 The right curly brace is indented so it’s vertically aligned with the opening line of the block.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/node-js-in-action-second-edition.

Book Forum

 Purchase of Node.js in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/node-js-in-action-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the Author

Alex Young

 Alex is a web developer based in London, England, and is the author of Node.js in Practice (Manning, 2014). Alex created the popular JavaScript blog DailyJS, and is currently employed by Sky as a senior developer
 for NOW TV. You can find him on GitHub (https://github.com/alexyoung) and Twitter as @alex_young.

Bradley Meck

 Bradley is a member of TC39 and part of the Node.js Foundation. When not working his time is spent working on tooling solutions
 for Javascript, gardening, and mentoring students. His work at GoDaddy comes after a long resume of using Node.js for other
 companies like NodeSource and Nodejitsu. While always eager to teach and explain, he tries to keep people motivated because
 learning is hard for him as well as for many others.

About the Cover Illustration

 The figure on the cover of Node.js in Action, Second Edition is captioned “Man about Town.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compendium
 of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of
 Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated
 from each other, people spoke different dialects and languages. Whether on city streets, in small towns, or in the countryside,
 it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region and class, so rich at the time, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural
 diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Welcome to Node

 Node is now a mature web development platform. In chapters 1 to 3, you’ll learn about Node’s main features, including how to use the core modules and npm. You’ll also see how Node uses modern
 JavaScript, and how to build a web application from scratch. After reading these chapters, you’ll have a solid understanding
 of what Node can do and of how to create your own projects.

Chapter 1. Welcome to Node.js

 This chapter covers

 	What is Node.js?

 	Defining Node applications

 	The advantages of using Node

 	Asynchronous and nonblocking I/O

 Node.js is an asynchronous, event-driven JavaScript runtime that offers a powerful but concise standard library. It’s managed
 and supported by the Node.js Foundation, an industry consortium with an open governance model. Two actively supported versions
 of Node are available: Long-Term Support (LTS) and Current. If you want to learn more about how Node is managed, the official
 website has plenty of documentation (https://nodejs.org/).

 Since Node.js appeared in 2009, JavaScript has gone from a barely tolerated browser-centric language to one of the most important
 languages for all kinds of software development. This is partly due to the arrival of ECMAScript 2015, which solved several
 critical problems in previous versions of the language. Node uses Google’s V8 JavaScript engine that’s based on the sixth
 edition of the ECMAScript standard, which is sometimes called ES6 and abbreviated as ES2015. It’s also due to innovative technologies
 such as Node, React, and Electron, which allow Java-Script to be used everywhere: from the server to the browser, and in native
 mobile applications. Even big companies such as Microsoft are embracing JavaScript, and Microsoft has even contributed to the success
 of Node.

 In this chapter, you’ll learn more about Node, its event-driven nonblocking model, and some of the reasons that JavaScript
 has become a great general-purpose programming language. First, let’s look at a typical Node web application.

1.1. A typical Node web application

 One of the strengths of Node and JavaScript in general is their single-threaded programming model. Threads are a common source
 of bugs, and although some recent programming languages, including Go and Rust, have attempted to offer safer concurrency
 tools, Node retains the model used in the browser. In browser-based code, we write sequences of instructions that execute
 one at a time; code doesn’t execute in parallel. This doesn’t make sense for user interfaces, however: users don’t want to
 wait around for slow operations such as network or file access to finish. To get around this, browsers use events: when you
 click a button, an event fires, and a function runs that has previously been defined but not yet executed. This avoids some
 of the issues found in threaded programming, including resource deadlocks and race conditions.

 1.1.1. Nonblocking I/O

 What does this mean in the context of server-side programming? The situation is similar: I/O requests such as disk and network
 access are also comparatively slow, so we don’t want the runtime to block business logic from executing while reading files
 or sending messages over the network. To solve this, Node uses three techniques: events, asynchronous APIs, and nonblocking
 I/O. Nonblocking I/O is a low-level term from a Node programmer’s perspective. It means your program can make a request for a network resource
 while doing something else, and then, when the network operation has finished, a callback will run that handles the result.

 Figure 1.1 shows a typical Node web application that uses the web application library Express to handle the order flow for a shop. Browsers
 make requests to buy a product, and then the application checks the current stock inventory, creates an account for the user,
 emails the receipt, and sends back a JSON HTTP response. Concurrently, other things happen as well: an email receipt is sent,
 and a database is updated with the user’s details and order. The code itself is straightforward, imperative JavaScript, but
 the runtime behaves concurrently because it uses nonblocking I/O.

 Figure 1.1. Asynchronous and nonblocking components in a Node application

 [image:]

 In figure 1.1 the database is accessed over the network. In Node, that network access is nonblocking, because Node uses a library called
 libuv (http://libuv.org/) to provide access to the operating system’s nonblocking network calls. This is implemented differently in Linux, macOS,
 and Windows, but all you have to worry about is your friendly Java-Script database library. While you’re writing code such
 as db.insert(query, err => {}), Node is doing highly optimized, nonblocking networking underneath.

 Disk access is similar, but intriguingly not the same. When the email receipt is generated and the email template is read
 from the disk, libuv uses a thread pool to provide the illusion that a nonblocking call is being used. Managing a thread pool
 is no fun at all, but writing email.send('template.ejs', (err, html) => {}) is definitely much easier to understand.

 The real benefit to using asynchronous APIs with nonblocking I/O is that Node can do other things while these comparatively
 slow processes happen. Even though you have only a single-threaded, single-process Node web app running, it can handle more
 than one connection from potentially thousands of website visitors at any one time. To understand this, you need to look at
 the event loop.

 1.1.2. The event loop

 Now let’s zoom into a specific aspect of figure 1.1: responding to browser requests. In this application, Node’s built-in HTTP server library, which is a core module called
 http.Server, handles the request by using a combination of streams, events, and Node’s HTTP request parser, which is native
 code. This triggers a callback in your application to run, which has been added using the Express (https://expressjs.com/) web application library. The callback that runs causes a database query to run, and eventually the application responds with
 JSON using HTTP. This whole process uses a minimum of three nonblocking network calls: one for the request, one for the database,
 and another for the response. How does Node schedule all these nonblocking network operations? The answer is the event loop.
 Figure 1.2 shows how the event loop is used for these three network operations.

 Figure 1.2. The event loop

 [image:]

 The event loop runs one way (it’s a first-in, first-out queue) and goes through several phases. Figure 1.2 shows a simplified set of the important phases that run on each iteration of the loop. First, the timers execute, which are
 the timers scheduled with the JavaScript functions setTimeout and setInterval. Next, I/O callbacks run, so if any I/O has returned from one of the nonblocking network calls, this is where your callback
 is triggered. The poll phase is where new I/O events are retrieved, and then callbacks scheduled with setImmediate run at the end. This is a special case because it allows you to schedule a callback to run immediately after the current
 I/O callbacks already in the queue. This might sound abstract at this stage, but what you should take away is the idea that
 although Node is single-threaded, it does give you tools to write efficient and scalable code.

 Over the last few pages, you might have noticed that the examples have been written using ES2015 arrow functions. Node supports
 many new JavaScript features, so before moving on, let’s look at what new language features you can use to write better code.

1.2. ES2015, Node, and V8

 If you’ve ever used JavaScript and been disheartened by the lack of classes and strange scoping rules, you’re in luck: Node
 has fixed most of these problems! You can now make classes, and using const and let (instead of var) fixes scoping issues. As of Node 6, you can use default function parameters, rest parameters, the spread operator, for...of loops, template strings, destructuring, generators, and more. A great summary of Node’s ES2015 support can be found at http://node.green.

 First, let’s look at classes. ES5 and earlier versions required the use of prototype objects to create class-like constructs:

 function User() {
 // constructor
}

User.prototype.method = function() {
 // Method
};

 With Node 6 and ES2015, you can now write the same code by using classes:

 class User {
 constructor() {}
 method() {}
}

 This uses less code and is a little easier to read. But there’s more: Node also supports subclassing, super, and static methods. For those versed in other languages, the adoption of class syntax makes Node more accessible than when
 we were stuck with ES5.

 Another important feature in Node 4 and above is the addition of const and let. In ES5, all variables were created with var. The problem with var is it defines variables in function or global scope, so you couldn’t define a block-level variable in an if statement, for loop, or other block.

 	

 Should I use const or let?

 When deciding whether to use const or let, you almost always want const. Because most of your code will use instances of your own classes, object literals, or values that don’t change, you can
 use const most of the time. Even instances of objects that have properties that change can be declared with const, because const means only that the reference is read-only, not that the value is immutable.

 	

 Node also has native promises and generators. Promises are supported by lots of libraries, allowing you to write asynchronous code with a fluent interface style. You’re probably
 familiar with fluent interfaces already: if you’ve ever used an API such as jQuery or even JavaScript arrays, you’ll have
 seen it. The following short example shows you how to chain calls to manipulate an array in JavaScript:

 [1, 2, 3]
 .map(n => n * 2)
 .filter(n => n > 3);

 Generators are used to give a synchronous programming style to asynchronous I/O. If you want to see a practical example of generators
 in Node, take a look at the Koa web application library (http://koajs.com/). If you use promises or other generators with Koa, you can yield on values rather than nesting callbacks.

 One other useful ES2015 feature in Node is template strings. In ES5, string literals didn’t support interpolation or multiple lines. Now by using the backtick symbol (`), you can insert values and span strings over several lines. This is useful when stubbing quick bits of HTML for web apps:

 this.body = `
 <div>
 <h1>Hello from Node</h1>
 <p>Welcome, ${user.name}!</p>
 </div>
`;

 In ES5, the previous example would have to be written like this:

 this.body = '\n';
this.body += '<div>\n';
this.body += ' <h1>Hello from Node</h1>\n';
this.body += ' <p>Welcome, ' + user.name + '</p>\n';
this.body += '<div>\n';

 The older style not only used more code but also made introducing bugs easy. The final big feature, which is of particular
 importance to Node programmers, is arrow functions. Arrow functions let you streamline syntax. For example, if you’re writing a callback that has a single argument and returns a value, you
 can write it with hardly any syntax at all:

 [1, 2, 3].map(v => v * 2);

 In Node we typically need two arguments, because the first argument to a callback is often an error object. In that case,
 you need to use parentheses around the arguments:

 const fs = require('fs');
fs.readFile('package.json',
 (err, text) => console.log('Length:', text.length)
);

 If you need to use more than one line in the function body, you need to use curly brackets. The value of arrow functions isn’t
 just in the streamlined syntax; it has to do with JavaScript scopes. In ES5 and before, defining functions inside other functions
 makes the this reference become the global object. Here’s an ES5-style class that suffers from a bug due to this issue:

 function User(id) {
// constructor
 this.id = id;
}

User.prototype.load = function() {
 var self = this;
 var query = 'SELECT * FROM users WHERE id = ?';
 sql.query(query, this.id, function(err, users) {
 self.name = users[0].name;
 });
};

 The line that assigns self.name can’t be written as this.name, because the function’s this will be the global object. A workaround used to be to assign a variable to this at the entry point to the parent function or method. But arrow functions are bound correctly. In ES2015, the previous example
 can be rewritten to be much more intuitive:

 class User {
 constructor(id) {
 this.id = id;
 }

 load() {
 const query = 'SELECT * FROM users WHERE id = ?';
 sql.query(query, this.id, (err, users) => {
 this.name = users[0].name;
 });
}
}

 Not only can you use const to better model the database query, but there’s also no need for the clumsy self variable. ES2015 has many other great features that make Node code more readable, but let’s look at what powers this in Node
 and how it relates to the nonblocking I/O features that you’ve already looked at.

 1.2.1. Node and V8

 Node is powered by the V8 JavaScript engine, which is developed by the Chromium project for Google Chrome. The notable feature
 of V8 is that it compiles directly to machine code, and it includes code-optimization features that help keep Node fast. In
 section 1.1.1, we talked about the other main native part of Node, libuv. That part handles I/O; V8 handles interpreting and running your
 JavaScript code. To use libuv with V8, you use a C++ binding layer. Figure 1.3 shows all of the separate software components that make up Node.

 Figure 1.3. Node’s software stack

 [image:]

 The specific JavaScript features that are available to Node therefore come down to what V8 supports. This support is managed
 through feature groups.

 1.2.2. Working with feature groups

 Node includes ES2015 features based on what V8 provides. Features are grouped under shipping, staged, and in progress. The shipping features are turned on by default, but staged and in progress can be enabled using command-line flags. If you
 want to use staged features, which are almost complete but not considered complete by the V8 team, then you can run Node with
 the --harmony flag. In-progress features, however, are less stable and are enabled with specific feature flags. Node’s documentation recommends
 querying the currently available in-progress features by grepping for in progress:

 node --v8-options | grep "in progress"

 The list will vary between Node releases. Node itself also has a versioning schedule that defines which APIs are available.

 1.2.3. Understanding Node’s release schedule

 Node releases are grouped into Long-Term Support (LTS), Current, and Nightly. LTS releases get 18 months of support and then
 12 months of maintenance support. Releases are made according to semantic versioning (SemVer). SemVer gives releases a major,
 minor, and patch version number. For example, 6.9.1 has a major version of 6, minor of 9, and patch of 1. Whenever you see
 a major version change for Node, it means some of the APIs may be incompatible with your projects, and you’ll need to retest
 them against this version of Node. Also, in Node release terminology, a major version increment means a new Current release
 has been cut. Nightly builds are automatically generated every 24 hours with the latest changes, but are typically used only
 for testing Node’s latest features.

 Which version you use depends on your project and organization. Some may prefer LTS because updates are less frequent: this
 might work well in larger enterprises that find it harder to manage frequent updates. But if you want the latest performance
 and feature improvements, Current is a better choice.

1.3. Installing Node

 The easiest way to install Node is to use the installer from https://nodejs.org. Install the latest Current version (version 6.5 at the time of this writing) by using the Mac or Windows installer. You
 can download the source yourself, or install it by using your operating system’s package manager. Debian, Ubuntu, Arch, Fedora,
 FreeBSD, Gentoo, and SUSE all have packages. There are also packages for Homebrew and Smart-OS. If your operating system doesn’t
 have a package, you can build from source.

 	

 Note

 Appendix A provides more details on installing Node.

 	

 The full list of packages is on Node’s website (https://nodejs.org/en/download/package-manager/), and the source is on GitHub (https://github.com/nodejs/node). Bookmarking the GitHub source is worthwhile in case you want to poke around in the source without downloading it.

 Once you’ve installed Node, you can try it out straight away by typing node -v in the terminal. This should print out the version of Node that you just downloaded and installed. Next, create a file called
 hello.js that looks like this:

 console.log("hello from Node");

 Save the file and run it by typing node hello.js. Congratulations—you’re now ready to start writing applications with Node!

 	

 Getting started quickly in Windows, Linux, and macOS

 If you’re fairly new to programming in general and you don’t yet have a preferred text editor, then a solid choice for Node
 is Visual Studio Code (https://code.visualstudio.com/). It’s made by Microsoft, but it’s open source and a free download, and supports Windows, Linux, and macOS.

 Some of the beginner-friendly features in Visual Studio Code include JavaScript syntax highlighting and Node core module completion,
 so your JavaScript will look clearer and you’ll be able to see lists of supported methods and objects as you type. You can
 also open a command-line interface where Node can be invoked just by typing Node. This is useful for running Node and npm commands. Windows users might prefer this to using cmd.exe. We tested the listings
 with Windows and Visual Studio Code, so you shouldn’t need anything special to run the examples.

 To get started, you can follow a Visual Studio Code Node.js tutorial (https://code.visualstudio.com/docs/runtimes/nodejs).

 	

 When you install Node, you also get some built-in tools. Node isn’t just the interpreter: it’s a whole suite of tools that
 form the Node platform. Let’s look in more detail at the tools that are bundled with Node.

1.4. Node’s built-in tools

 Node comes with a built-in package manager, the core JavaScript modules that support everything from file and network I/O
 to zlib compression, and a debugger. The npm package manager is a critical piece of this infrastructure, so let’s look at
 it in more detail.

 If you want to verify that Node has been installed correctly, you can run node -v and npm -v on the command-line. These commands show the version of Node and npm that you have installed.

 1.4.1. npm

 The npm command-line tool can be invoked by typing npm. You can use it to install packages from the central npm registry, but you can also use it to find and share your own open
 and closed source projects. Every npm package in the registry has a website that shows the readme file, author, and statistics
 about downloads.

 That doesn’t cover everything, though. npm is also npm, Inc.—the company that runs the npm service and that provides services
 used by commercial enterprises. This includes hosting private npm packages: you can pay a monthly fee to host your company’s
 source code so your JavaScript developers can easily install it with npm.

 When installing packages with the npm install command, you have to decide whether you’re adding them to your current project
 or installing them globally. Globally installed packages are usually used for tools, typically programs you run on the command
 line. A good example of this is the gulp-cli package.

 To use npm, create a package.json file in a directory that will contain your Node project. The easiest way to create a package.json
 file is to use npm to do it for you. Type the following on the command line:

 mkdir example-project
cd example-project
npm init -y

 If you open package.json, you’ll see a simple JSON file that describes your project. If you now install a module from www.npmjs.com and use the --save option, npm will automatically update your package.json file. Try it out by typing npm install, or npm i for short:

 npm i --save express

 If you open your package.json file, you should see express added under the dependencies property. Also, if you look inside the node_modules folder, you’ll see an express directory. This contains the version of
 Express that you just installed. You can also install modules globally by using the --global option. You should use local modules as much as possible, but global modules can be useful for command-line tools that you
 want to use outside Node JavaScript code. An example of a command-line tool that’s installable with npm is ESLint (http://eslint.org/).

 When you’re starting out with Node, you’ll often use packages from npm. Node comes with lots of useful built-in libraries,
 which are known as the core modules. Let’s look at these in more detail.

 1.4.2. The core modules

 Node’s core modules are similar to other languages’ standard libraries; these are the tools you need to write server-side
 JavaScript. The JavaScript standards themselves don’t include anything for working with the network, or even file I/O as most
 server-side developers know it. Node has to add features for files and TCP/IP networking at a minimum to be a viable server-side
 language.

Filesystem

 Node ships with a filesystem library (fs, path), TCP clients and servers (net), HTTP (http and https), and domain name resolution
 (dns). There’s a useful assertion library that’s used mostly to write tests (assert), and an operating system library for
 querying information about the platform (os).

 Node also has libraries that are unique to Node. The events module is a small library for working with events, and it’s used
 as a basis for much of Node’s APIs. For example, the stream module uses the events module to provide abstract interfaces for
 working with streams of data. Because all data streams in Node use the same APIs, you can easily compose software components;
 if you have a file-stream reader, you can pipe it through a zlib transform that compresses the data, and then pipe it through
 a file-stream writer to write the data out to a file.

 The following listing shows how to use Node’s fs module to create read- and write-streams that can be piped through another
 stream (gzip) to transform the data—in this case, by compressing it.

 Listing 1.1. Using core modules and streams

 const fs = require('fs');
const zlib = require('zlib');
const gzip = zlib.createGzip();
const outStream = fs.createWriteStream('output.js.gz');

fs.createReadStream('./node-stream.js')
 .pipe(gzip)
 .pipe(outStream);

Networking

 For a while, we used to say that creating a simple HTTP server was Node’s true Hello World example. To build a server in Node,
 you just need to load the http module and give it a function. The function accepts two arguments: the incoming request and
 the outgoing response. The next listing shows an example you can run in your terminal.

 Listing 1.2. Hello World with Node’s http module

 const http = require('http');
const port = 8080;

const server = http.createServer((req, res) => {
 res.end('Hello, world.');
});

server.listen(port, () => {
 console.log('Server listening on: http://localhost:%s', port);
});

 Save listing 1.2 as hello.js and run it with node hello.js. If you visit http://localhost:8080, you should see the message from line 4.

 Node’s core modules are minimal but also powerful. You can often achieve a lot just by using these modules, without even installing
 anything from npm. For more on the core modules, refer to https://nodejs.org/api/.

 The final built-in tool is the debugger. The next section introduces Node’s debugger with an example.

 1.4.3. The debugger

 Node includes a debugger that supports single-stepping and a REPL (read-eval-print loop). The debugger works by talking to
 your program with a network protocol. To run your program with a debugger, use the debug argument at the command line. Let’s say you’re debugging listing 1.2:

 node debug hello.js

 Then you should see the following output:

 < Debugger listening on [::]:5858
connecting to 127.0.0.1:5858 ... ok
break in node-http.js:1
> 1 const http = require('http');
 2 const port = 8080;
 3

 Node has invoked your program and is debugging it by connecting on port 5858. At this point, you can type help to see the list of available commands, and then c to continue program execution. Node always starts the program in a break state, so you always need to continue execution before you can do anything else.

 You can make the debugger break by adding a debugger statement anywhere in your code. When the debugger statement is encountered, the debugger will halt, allowing you to issue commands. Imagine you’ve written a REST API that
 creates accounts for new users, and your user creation code doesn’t seem to be persisting the new user’s password hash to
 the database. You could add debugger to the save method in the User class, and then step over each instruction to see what happens.

 	

 Interactive debugging

 Node supports the Chrome Debugging Protocol. To debug a script using Chrome’s Developer Tools, use the --inspect flag when running a program:

 node --inspect --debug-brk

 This will make Node launch the debugger and break on the first line. It’ll print a URL to the console that you can open in
 Chrome so you can use Chrome’s built-in debugger. Chrome’s debugger lets you step through code line by line, and it shows
 the value in each variable and object. It’s a much better alternative to typing console.log

