

 inside front cover

 [image:]

 [image:]

 Cloud Observability in Action

 Michael Hausenblas

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Ian Hough

 	
 Technical editor:

 	
 Jamie Riedesel

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Deirdre Blanchfield-Hiam

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Ernest Gabriel Bossi Carranza

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439597

 dedication

 To my family: my wife Anneliese; our kids Iannis, Ranya, Saphira; as well as Snoopy the dog and Charles the cat

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 End-to-end observability

 1.1 What is observability?

 1.2 Observability use cases

 1.3 Roles and goals

 1.4 Example microservices app

 1.5 Challenges and how observability helps

 Return on investment

 Signal correlation

 Portability

 2 Signal types

 2.1 Reference example

 2.2 Assessing instrumentation costs

 2.3 Logs

 Instrumentation

 Telemetry

 Costs and benefits

 Observability with logs

 2.4 Metrics

 Instrumentation

 Telemetry

 Costs and benefits

 Observability with metrics

 2.5 Traces

 Instrumentation

 Telemetry

 Costs and benefits

 Observability with traces

 2.6 Selecting signals

 3 Sources

 3.1 Selecting sources

 3.2 Compute-related sources

 Basics

 Containers

 Kubernetes

 Serverless compute

 3.3 Storage-related sources

 Relational databases and NoSQL data stores

 File systems and object stores

 3.4 Network-related sources

 Network interfaces

 Higher-level network sources

 3.5 Your code

 Instrumentation

 Proxy sources

 4 Agents and instrumentation

 4.1 Log routers

 Fluentd and Fluent Bit

 Other log routers

 4.2 Metrics collection

 Prometheus

 Other metrics agents

 4.3 OpenTelemetry

 Instrumentation

 Collector

 4.4 Other agents

 4.5 Selecting an agent

 Security for and of the agent

 Agent performance and resource usage

 Agent nonfunctional requirements

 5 Backend destinations

 5.1 Backend destination terminology

 5.2 Backend destinations for logs

 Cloud providers

 Open source log backends

 Commercial offerings for log backends

 5.3 Backend destinations for metrics

 Cloud providers

 Open source metrics backends

 Commercial offerings for metrics backends

 5.4 Backend destinations for traces

 Cloud providers

 Open source traces backends

 Commercial offerings for trace backends

 5.5 Columnar data stores

 5.6 Selecting backend destinations

 Costs

 Open standards

 Back pressure

 Cardinality and queries

 6 Frontend destinations

 6.1 Frontends

 Grafana

 Kibana and OpenSearch Dashboards

 Other open source frontends

 Cloud providers and commercial frontends

 6.2 All-in-ones

 CNCF Jaeger

 CNCF Pixie

 Zipkin

 Apache SkyWalking

 SigNoz

 Uptrace

 Commercial offerings

 6.3 Selecting frontends and all-in-ones

 7 Cloud operations

 7.1 Incident management

 Health and performance monitoring

 Handling the incident

 Learning from the incident after the fact

 7.2 Alerting

 Prometheus alerting

 Using Grafana for alerting

 Cloud providers

 7.3 Usage tracking

 Users

 Costs

 8 Distributed tracing

 8.1 Intro and terminology

 Motivational example

 Terminology

 Use cases

 8.2 Using distributed tracing in a microservices app

 Example app overview

 Implementing the example app

 The “happy path”

 Exploring a failure in the example app

 8.3 Practical considerations

 Sampling

 Observability tax

 Traces vs. metrics vs. logs

 9 Developer observability

 9.1 Continuous profiling

 The humble beginnings

 Common technologies

 Open source CP tooling

 Commercial continuous profiling offerings

 Using continuous profiling to assess continuous profiling

 9.2 Developer productivity

 Challenges

 Tooling

 9.3 Tooling considerations

 Symbolization

 Storing profiles

 Querying profiles

 Correlation

 Standards

 Using tooling in production

 10 Service level objectives

 10.1 The fundamentals of SLOs

 Types of services

 Service level indicator

 Service level objective

 Service level agreement

 10.2 Implementing SLOs

 High-level example

 Using Prometheus to implement SLOs

 Commercial SLO offerings

 10.3 Considerations

 11 Signal correlation

 11.1 Correlation fundamentals

 Correlation with OpenTelemetry

 Correlating traces

 Correlating metrics

 Correlating logs

 Correlating profiles

 11.2 Using Prometheus, Jaeger, and Grafana for correlation

 Metrics–traces correlation example setup

 Using metrics–traces correlation

 11.3 Signal correlation support in commercial offerings

 11.4 Considerations

 Early days

 Signals

 User experience

 Conclusion

 Appendix. A Kubernetes end-to-end example

 index

 front matter

 preface

 We truly live in exciting times! The rise of cloud-native technologies, starting some 10 years ago with Docker and Kubernetes, and the availability of cloud offerings that enable you to run large-scale applications based on a microservices architecture have changed the way we write and operate software.

 I had the luck and pleasure of being part of that journey, starting in the container space in 2015 and then working in the Kubernetes space until 2021. There was one aspect of cloud native that stood out to me: given the dynamics of containers and function-as-a-service, if you don’t have insights into what’s going on in your system and aren’t able to ask ad hoc questions about the state and trends, you’re effectively driving a car blindfolded. When I changed teams in AWS to focus on observability, OpenTelemetry had just been formed, and the space was quickly developing. Now, at the time of publication, it’s fair to say that observability has gone mainstream.

 One thing that I only realized in hindsight was that what drew me to the observability space, besides the open source nature of the ecosystem around the Cloud Native Computing Foundation (CNCF) project, was the fact that observability is essentially an application area of data engineering. It’s about generating, collecting, storing, and querying data, based on pipelines. Why do I point this out? Before I got into the world of containers, I spent more than a decade in data engineering, first in applied research and then in a start-up, where I got to apply the lessons learned, back in the “big data” days.

 When the opportunity came to share what I had learned in the past 20 years, both in the data engineering and cloud-native spaces, in the context of providing a hands-on guide for observability, it was clear to me that this is the right time and place. The basic idea was to cover the entire observability space, from where the data is generated to how it is collected and processed to how it is consumed by humans and software—all with the goal of understanding observability’s underlying principles and methods, using open source software for demonstration so that anyone interested in the topic can try it out themselves, without having to worry about costs.

 I hope this book serves as a reference and guide on your journey to introducing observability in your organization. It will have served its purpose if it helps you create solutions that enable your team to benefit from cloud-native offerings, without flying blind.

acknowledgments

 Writing a book is a long-term commitment, usually a year or longer. While this is not my first book, and I was able to apply lessons learned from the past experiences, it goes without saying that the outcome is something I didn’t achieve on my own, as a number of people helped shape and improve this book.

 To start, I’d like to thank my family, who supported and motivated me the entire time! Next, I’d like to say a big thank you to Ian Hough, my editor at Manning, for all your guidance (and patience). While I spent most of the time with Ian, there are several folks at Manning who helped make this book a reality, and I am grateful for everything you did: Malena Selic, Marina Matesic, Ivan Martinović, Rebecca Rinehart, Stjepan Jurekovic, Ana Romac, Susan Honeywell, Mike Stephens, and Marjan Bace. I also thank my project editor, Deirdre Blanchfield-Hiam; my copy editor, Christian Berk; my proofreader, Katie Tennant; and my technical proofreader, Ernest Gabriel Bossi Carranza.

 My stellar tech editor, Jamie Riedesel, deserves a huge shout-out! Jamie is a staff engineer at Dropbox with over twenty years of experience in IT. She influenced and shaped this book significantly, providing guidance on how to explain things, feedback on technical aspects, and motivation to try even harder. Thank you. But I’d also like to thank a number of folks who provided feedback on various chapters, sharing valuable insights: Frederic Branczyk, Matthias Loibl, Kit Merker; and Manning reviewers Adrian Buturuga, Alessandro Campeis, Bhavin Thaker, Bobby Lin, Borko Djurkovic, Chris Haggstrom, Clifford Thurber, Doyle Turner, Ernesto Bossi, Fernando Bernardino, Filipe Teixeira, Ganesh Swaminathan, Ian Bartholomew, Ioannis Atsonios, Jakub Warczarek, Jan Krueger, Jorge Ezequiel Bo, Juan Luis, Ken Finnigan, Kent Spiller, Kosmas Chatzimichalis, Maciej Drozdzowski, Madhav Ayyagari, Michael Bright, Michele Di Pede, Miguel Montalvo, Onofrei George, Pablo Chacin, Rahul Modpur, Rui Liu, Sander Zegveld, Sanjeev Jaiswal, Satadru Roy, Sebastian Czech, Stefan Turalski, Stephen Muss, Vivek Dhami, and Wesley Rolnick.

 Finally, thanks go to my awesome colleagues at AWS for their support and feedback as well as the open source communities of which I’ve been a part, especially in the context of CNCF. It has been an honor and a pleasure.

about this book

 Observability is the capability to continuously generate and discover actionable insights based on signals from the (cloud-native) system under observation, with the goal of influencing the system. We approach the topic from a return-on-investment perspective: we look at costs and benefits, from the sources to telemetry (including agents) to the signal destinations (backends), including time series data stores, such as Prometheus, and frontends, such as Grafana.

 Throughout the book, I use open source tooling, including, but not limited to, OpenTelemetry (collector), Prometheus, Loki, Jaeger, and Grafana to demonstrate the different concepts and enable you to experiment with them without any costs, other than your time.

Who should read this book

 The book focuses primarily on developers, DevOps/site reliability engineers (SREs), who are working with cloud-native applications. It is meant for anyone interested in running cloud-native applications, be that in Kubernetes or using function-as-a-service offerings, such as AWS Lambda.

 Also, I believe that if you are a release manager, an IT architect, a security and network engineer, a tech lead, or a product manager in the cloud-native space, you can benefit from the book. The book can be used with any public cloud (I use AWS for several demonstrations, purely for the sake of familiarity) as well as with any cloud-native setup on-prem (e.g., Kubernetes in the data center).

How this book is organized

 The book has 11 chapters and an appendix with the following content:

 	
 Chapter 1 provides you with an end-to-end example and defines the terminology, from sources to agents to destinations. It also discusses use cases, roles, and challenges in the context of observability.

 	
 Chapter 2 discusses different telemetry signal types (logs, metrics, and traces), when to use which signal, how to collect signals, and the associated costs and benefits.

 	
 Chapter 3 covers signal sources, where telemetry is generated. We discuss the types of sources that exist and when to select which source, how you can gain actionable insights from selecting the right sources for a task, and how to deal with instrumenting code you own, including supply chain aspects.

 	
 Chapter 4 discusses different telemetry agents from log routers to OpenTelemetry. You will learn how to select and use agents, with an emphasis on what OpenTelemetry brings to the table for unified telemetry management.

 	
 Chapter 5 focuses on backend destinations for telemetry signals, acting as the source of truth. You will learn to use and select backends for logs, metrics, and traces, with deep dives into time series databases, like Prometheus, and column-oriented datastores, such as ClickHouse.

 	
 Chapter 6 discusses observability frontends as the place where you consume the telemetry signals. You will learn about pure frontends and all-in-ones as well as how to go about selecting them.

 	
 Chapter 7 covers an aspect of cloud-native solutions called cloud operations, including how to detect when something is not working the way that it should; react to abnormal behavior; and learn from previous mistakes. You will also learn about alerting, usage, and cost tracking.

 	
 Chapter 8 dives deep on distributed tracing and how it can help you understand and troubleshoot microservices.

 	
 Chapter 9 dives deep into observability for developers, covering continuous profiling and developer productivity tooling.

 	
 Chapter 10 discusses service level objectives, showing you how to use them to address the question of how satisfied the consumer of a service is.

 	
 Chapter 11 dives deep into signal correlation, addressing the challenge of a single telemetry signal type usually not being able to answer all of your observability questions and what you can do to address this challenge.

 	
 The appendix walks you through a complete end-to-end example, using OpenTelemetry, Prometheus, Jaeger, and Grafana.

 Chapters 2 through 6 provide the conceptual foundation, so if you’re entirely new to the observability space, I’d recommend working through those first. Chapters 7 through 11 focus on certain operational or development-related aspects of observability, capturing best practices, and you can read them out of order, if you prefer to do so.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/cloud-observability-in-action. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/cloud-observability-in-action, and from GitHub at https://github.com/mhausenblas/o11y-in-action.cloud/tree/main/code.

liveBook discussion forum

 Purchase of Cloud Observability in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/cloud-observability-in-action/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Online resources

 If you want to dive deeper into certain topics, check out the following online resources:

 	
 The further reading section of the book (https://o11y-in-action.cloud/further-reading/), which lists articles, books, and tooling

 	
 “Return on Investment Driven Observability” (https://arxiv.org/abs/2303.13402), a short article I published that discusses challenges that arise when rolling out observability in organizations and how you can, grounded in return on investment (ROI) analysis, address said challenges

 	
 The OpenTelemetry blog (https://opentelemetry.io/blog/)

about the author

 Michael Hausenblas works in the Amazon Web Services (AWS) open source observability service team, where he leads the OpenTelemetry activities. He has more than 20 years of experience in data engineering and cloud-native systems. Before AWS, Michael worked at Red Hat on Kubernetes, Mesosphere (now D2iQ) on Mesos and Kubernetes, MapR (now part of HPE) as chief data engineer, and spent more than a decade in applied research in the symbolic AI space.

about the cover illustration

 The figure on the cover of Cloud Observability in Action is “Cauchoise,” or “Woman from the Caux,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 End-to-end observability

 This chapter covers

 	
What we mean by observability

 	
Why observability matters

 	
An end-to-end example of observability

 	
Challenges of cloud-native systems and how observability can help

 In cloud-native environments, such as public cloud offerings like AWS or on-premises infrastructure (e.g., a Kubernetes cluster), one typically deals with many moving parts. These parts range from the infrastructure layer, including compute (e.g., VMs or containers) and databases, to the application code you own.

 Depending on your role and the environment, you may be responsible for any number of the pieces in the puzzle. Let’s have a look at a concrete example: consider a serverless Kubernetes environment in a cloud provider. In this case, both the Kubernetes control plane and the data plane (the worker nodes) are managed for you, which means you can focus on your application code in terms of operations.

 No matter what part you’re responsible for, you want to know what’s going on so that you can react to and, ideally, even proactively manage situations such as a sudden usage spike (because the marketing department launched a 25%-off campaign without telling you) or due to a third-party integration failing and impacting your application. The scope of components you own or can directly influence determines what you should be focusing on in terms of observability.

 The bottom line is that you don’t want to fly blind. What exactly this means in the context of cloud-native systems is what we will explore in this chapter in a hands-on manner. While it’s important to see things in action, as we progress, we will also try to capture the gist of the concepts via more formal means, including definitions.

 This book assumes you are familiar with cloud-native environments. In general, you would expect to find microservice architectures, a large number of relatively short-lived components working together to provide the functionality. This includes cloud provider services (I’m using AWS to demonstrate the ideas here); container technologies, including Docker and Kubernetes; and function-as-a-service (FaaS) offerings, especially AWS Lambda. In case you want to read up, here are some suggestions:

 	
 Kubernetes in Action, Second Edition, by Marko Lukša (Manning, 2020)

 	
 AWS Lambda in Action by Danilo Poccia (Manning, 2016)

 Further, I recommend Software Telemetry by Jamie Riedesel (Manning, 2021), which is complementary to this book and provides useful deep dives into certain observability aspects we won’t dive into in detail in this book.

 In this book, we focus on cloud-native environments. We mainly use open source observability tooling so that you can try out everything without licensing costs. However, it is important to understand that while we use open source tooling to show the concepts in action, they are universally applicable. That is, in a professional environment, you should always consider offloading parts or all of the tooling to the managed offerings your cloud provider of choice has or, equally, the offerings of observability vendors such as Datadog, Splunk, New Relic, Honeycomb, or Dynatrace. Before we get into cloud-native environments and what observability means in that context, let’s step back a bit and look at it from a conceptual level.

1.1 What is observability?

 What is observability, and why should you care? When we say observability, we mean trying to understand the internal system state via measuring data available to the outside. Typically, we do this to act upon it.

 Before we get to a more formal definition of observability, let’s review a few core concepts we will be using throughout the book:

 	
 System—Short for system under observation (SUO). This is the cloud-native platform (and applications running on it) you care about and are responsible for.

 	
 Signals—Information observable from the outside of a system. There are different signal types (the most common are logs, metrics, and traces), and they are generated by sources. Chapter 2 covers the signal types in detail.

 	
 Sources—Part of the infrastructure and application layer, such as a microservice, a device, a database, a message queue, or the operating system. They typically must be instrumented to emit signals. We will discuss sources in chapter 3.

 	
 Agents—Responsible for signal collection, processing, and routing. Chapter 4 is dedicated to agents and their usage.

 	
 Destinations—Where you consume signals, for different reasons and use cases. These include visualizations (e.g., dashboards), alerting, long-term storage (for regulatory purposes), and analytics (finding new usages for an app). We will dive deep into backend and frontend destinations in chapters 5 and 6, respectively.

 	
 Telemetry—The process of collecting signals from sources, routing or preprocessing via agents, and ingestion to destinations.

 Figure 1.1 provides you with a visual depiction of observability. The motivation is to gather signals from a system represented by a collection of sources via agents to destinations for consumption by either a human or an app, with the goal of understanding and influencing the system.

 [image:]

 Figure 1.1 Observability overview

 Observability represents, in essence, a feedback loop. A human user might, for example, restart a service based on the gathered information. In the case of an app, this could be a cluster autoscaler that adds worker nodes based on the system utilization measured.

 The most important aspect of observability is to provide actionable insights. Simply displaying an error message in a log line or having a dashboard with fancy graphics is not sufficient.

 Definition Observability is the capability to continuously generate and discover actionable insights based on signals from the system under observation, with the goal of influencing the system.

 The field of observability is growing and covering more and more domains, including developer observability (which we will cover in chapter 9) and data observability.

 But how do you know what signals are relevant, and how do you make the most out of them? Before we get to this topic, let’s first step back a bit to set the scene, have a look at common observability use cases, and define roles and tasks.

1.2 Observability use cases

 Observability is a means to an end. In other words, when you have a certain challenge or task at hand you want to address, observability supports you in achieving said task faster or managing said challenge more effectively. Let’s have a look at common use cases now and see what kind of requirements arise from them:

 	
 Understanding the impact of code changes—As a developer, you often add a new feature or fix bugs in your code base. How do you understand the impact of these code changes? What are the relevant data points you need to assess the (potentially negative) effects, such as slower execution or more resource usage?

 	
 Understanding third-party dependencies—As a developer, you may use things that are outside of your control—for example, external APIs (payment, location services, etc.). How do you know they are available, healthy, and performing as they should?

 	
 Measuring user experience (UX)—As a developer, site reliability engineer (SRE), or operator, you want to make sure your app or service is responsive and reliable. How and where do you measure this?

 	
 Tracking health and performance—As an operator, you want to be able to understand the health of your service or app, which can include the overall uptime, the response time distribution, and the parties impacted by a partial or full outage (e.g., paying customers, free-tier users, or canary accounts).

 	
 Blast radius exploration—Just like health and UX, on a more fundamental level, you may wish to understand the blast radius for any of your direct apps or services and the underlying platform (e.g., a deployment running in a Kubernetes cluster). How can you tell whether an error is in your app or in the Kubernetes data plane or underlying VM?

 	
 Optimizing a service—As a developer, you want to carry out optimizations, including performance, resource usage, costs, and response time of your service. How can you measure these?

 	
 Increasing developer productivity—As a service owner or engineering manager, you’re interested in your developers being productive. Now, a set of big screens and a comfy gaming chair sure help with that, as well as a no-meeting Monday, Tuesday, and Friday. But how can you measure developer productivity around the code produced from a long-term (maintenance) perspective?

 	
 Auditing access and tracking compliance—As an operator, you want to keep track of who has access to different services and customer data, for example. How does your system capture both permissions and access, automatically allow you to alert on unauthorized access, and provide you with an audit trail in case of inspection (for regulatory purposes, let’s say)?

 This was just a very concise and compressed taste of potential observability use cases. If you would like to learn more about observability use cases, signals, and methods, I strongly encourage you to peruse the “Observability Whitepaper” (which I had the pleasure of contributing to; http://mng.bz/EQJO) by the Cloud Native Computing Foundation’s Technical Advisory Group for Observability or, more informally, CNCF TAG o11y. (The term o11y refers to observability).

 Observability vs. monitoring

 Is observability just a new buzzword for monitoring, or are these distinct concepts that relate to each other? When monitoring, you’re looking at the health of a system (e.g., your platform or a particular service). Observability is conceptually broader; while health is still relevant, it also considers changes in your system, such as what the impact of a code change is or what external dependencies contribute to (for example, the p90 of the response time of one of your services). Marketing terms aside, you can think of monitoring as shorthand for system health and performance-related observability, and that’s how I will treat it in this book.

 With some use cases under our belts, let’s move on to different roles within an organization. We’ll discuss their goals and tasks to more fully appreciate and understand how observability can assist different people on your team and in the wider organization.

1.3 Roles and goals

 Nowadays, building products is a team sport. Except in the case of a small tool, a variety of different job functions or roles typically work together to realize a software-based offering. The different roles involved in the software creation and operation process focus on different tasks along the application life cycle:

 	
 Developers—Developers write code, test and document it, and make artifacts, such as a container image, a binary, or a script (for interpreted languages, such as Python), available for deployment. Observability can help to more quickly iterate (finding bugs via logs and traces), optimize runtime behavior (identifying slow code paths via traces), and support operations (via metrics and logs).

 	
 Release and test engineers—A release engineer can own CI and/or CD pipelines and needs visibility into build, test, and deploy processes. In this context, some organizations have a dedicated tester (or QA tester) role that has similar requirements as those for release engineers.

 	
 DevOps roles—Some teams have DevOps roles, which are partially responsible for code, often own operations (are on call), and establish and enforce good practices. Similar considerations as with developers apply concerning observability, and in addition, metrics are typically useful for either dashboards or alerts. One notable DevOps role is an SRE, who coaches developers or supports other DevOps roles, helping them to meet certain operational goals (we will come back to that in the last chapter on SLOs and SLIs).

 	
 Infrastructure and platform operations—In environments that are not cloud native, these are usually called system administrators or sysadmins. They own the platform (IaaS or containers) and provide (self-service) access to the platform to developers and DevOps roles. They are usually interested in low-level signals, such as utilization of resources and cost-related signals.

 	
 Nonengineering roles—A product owner is often called a product (or project) manager and owns a feature, a service, or an entire application, depending on the scope and size. These roles usually focus on end user–facing indicators as well as performance and usability. Another nontechnical role is that of a business stakeholder. They represent the part of the organization that specifies the requirements and usually focuses on financial indicators, such as usage, revenue, or units sold. For this role, technical indicators are usually irrelevant. Table 1.1 shows example observability flows across the roles discussed in this section.

 Table 1.1 Example flows per role

 	
 Role

 	
 Example flow

 	
 Developer

 	
 Uses traces to figure out which microservice along the request path is slow

 	
 Developer

 	
 Uses continuous profiling to speed up the hot path of a microservice

 	
 DevOps

 	
 Receives an alert about a component being down and then uses metrics plotted in a dashboard to understand the alert in context

 	
 DevOps

 	
 Uses metrics to narrow down components causing high latency; then jumps to traces to drill into a specific request path; and then looks at logs of one microservice, serving on that request path for details (correlation)

 	
 SRE

 	
 Tracks goals and their fulfillment, advising developers via dashboards

 	
 Platform operator

 	
 Uses a cluster-level dashboard to track autoscaling over time

 	
 Release engineer

 	
 Uses a dashboard to monitor the build progress of a microservice artifact (e.g., a container image) to, for example, prevent performance regressions

 	
 Product manager

 	
 Uses a CD dashboard to monitor deployment progress of microservices

 	
 Business stakeholder

 	
 Uses a dashboard to track weekly revenue and SLA violations

 Let’s now have a look at a concrete example of a cloud-native system, the signal sources, and telemetry.

1.4 Example microservices app

 We will be using Weaveworks’s microservices application, Sock Shop (https://github.com/microservices-demo/microservices-demo), to explore observability. Figure 1.2 shows its overall architecture. The Sock Shop example app is a simple demo app built using different languages and frameworks (Spring Boot, Go kit, and Node.js) and is packaged using Open Container Initiative–compliant container images. This makes it widely usable from container orchestrators, such as Kubernetes, Docker Compose, and ECS, as well as in FaaSs, such as AWS Lambda. We will show the example app running in Kubernetes.

 [image:]

 Figure 1.2 The example microservices app we use for observability exploration

 Tip Throughout the book, you will find me using a didactical device to explain concepts along the boundaries of logs, metrics, and traces. This is purely to structure the content and make it easier for you to learn and find information. The practical reality is much messier, since projects and products have the tendency to expand their scopes; therefore, a clear-cut explanation, such as “This thing is for logs” or “Use XYZ for metrics,” is in most cases not applicable in the real world.

 To set up the example microservices app, you need a Kubernetes cluster. Then, follow the steps in the following listing.

 Listing 1.1 Local observability

 $ git clone https:/ /github.com/microservices-demo/microservices-demo.git &&
 \ cd microservices-demo/deploy/kubernetes/ ❶

$ kubectl create namespace sock-shop ❷

$ kubectl apply -f complete-demo.yaml ❸

$ kubectl -n sock-shop port-forward svc/front-end 8888:80 ❹

 ❶ Clones the example app repo and changes into the directory where the Kubernetes deployment YAML docs are located

 ❷ Creates a Kubernetes namespace that acts as a logical home for our app

 ❸ Creates all necessary Kubernetes resources (deployments, services, etc.) that together make up the app; if you want to keep an eye on it, waiting until all resources are ready, you can (in a different terminal session) use the watch kubectl -n sock-shop get deploy,pod,svc command.

 ❹ Once all pods are ready, you can make the frontend accessible on your local machine using the port-forward command.

 If you successfully set up the Sock Shop app, you can access the entry point (the front-end service) in your browser. Head over to http://localhost:8888, and you should see something akin to what is depicted in figure 1.3.

 [image:]

 Figure 1.3 Screenshot of the Sock Shop example microservices app frontend

 Next, you want to generate some traffic, so log in (in the right-hand upper corner) with the username user and the password password, and then add some items to your shopping cart. Now, what about observability? Let’s have a look at a concrete example end to end.

 The Sock Shop example app emits various signals. Let’s take a closer look at two signal types, logs and metrics, to explore what exactly is emitted and what would be necessary to introduce observability for a given role.

 In terms of the logs signal type, Sock Shop services emit a variety of logs. One example, looking at the orders service, is as follows (output edited to fit):

 $ kubectl logs deploy/orders
2021-10-25 14:33:10.649 INFO [bootstrap,,,] 7 --- [main] s.c.a.
AnnotationConfigApplicationContext : Refreshing org.springframework.context.
annotation.AnnotationConfigApplicationContext@51521cc1: startup date
[Mon Oct 25 14:33:10 GMT 2021]; root of context hierarchy
2021-10-25 14:33:16.838 INFO [bootstrap,,,] 7 --- [main] tratio
Delegate$BeanPostProcessorChecker : Bean 'configurationPropertiesRebinderAu
toConfiguration' of type [class org.springframework.cloud.autoconfigure.Con
figurationPropertiesRebinderAutoConfiguration$$EnhancerBySpringCGLIB$$b894f
39] is not eligible for getting processed by all BeanPostProcessors (for ex
ample: not eligible for auto-proxying)
...

 In this case, the source is the orders service, and the signal type is logs.

 Note Nearly everyone uses logs (in contrast to metrics or even traces), yet there is much less standardization and interoperability going on in this signal type compared to others. While OpenTelemetry is, at the time of publication, stable for traces and almost stable for metrics, we’re still working in the community to achieve a similar level of coverage for logs.

 To make the logs actionable, for a developer to fix a bug, for example, we would need the following:

 	
 An agent (like Fluent Bit) to route the logs to a destination

 	
 A destination, such as OpenSearch or CloudWatch

 The services also expose metrics in the Prometheus exposition format (e.g., looking at the front-end service we forwarded to the local machine earlier). The following output is edited to fit:

 $ curl localhost:8888/metrics
HELP process_cpu_user_seconds_total Total user CPU time spent in seconds.
TYPE process_cpu_user_seconds_total counter
process_cpu_user_seconds_total 156.37216999999978
...

 In this case, the source is the front-end service, and the signal type is metrics.

 Note

 When talking with customers, I notice that many are facing the same challenge: feeling the need to collect and retain all metrics because “we might need them.” Try to prune as much as possible on ingest and check if metrics that land in destinations are actually used. These are some questions you can ask yourself about whether collecting a particular metric is necessary:

 	
 Is that metric used in an alert? Is it used in a dashboard?

 	
 Can you think of a use case where you could derive insights from the metric? Would an aggregate be sufficient?

 	
 Would a trace be a better choice here?

 To make the metrics actionable, for an SRE to assess indicators, for example, we would need the following:

 	
 An agent (e.g., Prometheus or OpenTelemetry collector) to scrape the metrics

 	
 A destination, such as Prometheus or, for long-term storage and federation, Cortex or Thanos

 For now, we will not consider traces, since they require a little bit more setup (both from the telemetry side and the destination), but in a nutshell, you can think of traces as providing an overview of the execution across services, including the duration and status of the service that successfully handled the request.

 We’ve had an initial exposure to logs and metrics now. Before we go deeper into cloud observability throughout the rest of this book, let’s finish this chapter by looking at the challenges you will need to keep in mind when dealing with cloud-native systems and how observability can help to address them.

1.5 Challenges and how observability helps

 Cloud-native environments and the apps running on them face several challenges. In this subsection, we discuss the most pressing of these and show how observability can help.

 In general (ignoring the details of the packaging and scheduling, such as a Kubernetes pod versus a Lambda function), cloud-native systems have the following characteristics:

 	
 They are distributed in nature. Most of the communication is not in process—and maybe not even on the same machine (e.g., using inter-process communication [IPC] mechanisms)—but takes place via the network.

 	
 Due to the distributed nature, not only the what but also the where is crucial. Think of a number of microservices along the request path serving a specific user. You want to be able to understand what’s going on end to end and also be able to drill down into each of the services.

 	
 The volatility of the services is higher compared to a monolith running on, say, a VM. Pods (and, with it, their IP addresses) come and go, new versions of a Lambda function might be pushed out every hour, and so on.

 Let’s now look at how observability can help address the challenges found in and with cloud-native systems. With cloud native systems, you don’t want to fly blind; having an automated way to collect all relevant signals and use them as input for decisions—that is, actionable insight—is the ideal.

1.5.1 Return on investment

 To understand the right level of investment (i.e., time and money) into observability, you need to know about the costs first:

 	
 Instrumentation costs—These include developers’ time, which is an ongoing cost.

 	
 Signal retention—These costs (e.g., log storage) can be one-off but usually fall under the pay-as-you-go model.

 	
 Overhead of agents and instrumentation—This manifests in compute and memory resource usage on top of what the service itself uses. Costs should be in the low single-digit range of CPU and RAM utilization. For example, the AWS OpenTelemetry Collector (http://mng.bz/N2J1) provides a report on the footprint across different signal types.

 	
 Network usage—Costs of this type, such as egress traffic, may be a significant cost driver for observability solutions.

 The return on the investment into observability is harder to calculate. Determining your return depends mainly on how clear the goals are. We will discuss the goals of different roles shortly. For example, you can measure the mean time to recovery (MTTR; https://www.atlassian.com/incident-management/kpis/common-metrics) for a given service before and after instrumentation. But there are also many human-related factors (e.g., on-call stress or work–life balance) that count toward the gain. You can read more about the topic in “Return on Investment Driven Observability” (https://arxiv.org/abs/2303.13402), a short paper I published on the topic.

1.5.2 Signal correlation

 Different signal types are usually good for different tasks. Also, a single signal type is typically unable to answer all the questions you might have. We will discuss signal correlation in detail in chapter 11; however, I’d like to provide you with a quick motivational example here.

 Let’s say you are on call and get paged (in the middle of the night). You fire up your laptop and look at a Grafana dashboard linked in the alert you received. From the dashboard, which, say, plots Prometheus metrics, you can gather that certain services in your microservices app have an increased error rate in the past 20 minutes. You have a hunch that this may be related to the recent upgrade of a service. You use the trace ID from an exemplar (http://mng.bz/D4Jw) embedded in the Prometheus metrics as an entry point to have a closer look at the involved services, using the distributed tracing tool Jaeger. In Jaeger, you see the traces duration distribution and error codes and drill down into the logs of the service to verify your hypothesis.

 In this scenario, you correlated the different signal types (metric to traces to logs) and were able to confirm your hypothesis quickly and effectively. A simple form of correlation is a time-based one, which is something you get in many frontends, such as Grafana, without additional effort out of the box. This means you use a time period to query different backends to manually find signals that tell you the whole story.

1.5.3 Portability

 Avoid lock-in by choosing open standards and open source. This ensures you can use the same mechanisms and tooling in different environments (e.g., cloud providers or on-premises infrastructure) without having to change much of your setup. For example, if you instrument your applications using OpenTelemetry, then you can switch from one destination to another without having to change your application or agents.

Summary

 	
 Cloud-native systems, such as Kubernetes, produce a large volume of telemetry signals.

 	
 Sources of telemetry signals can be your code, APIs (e.g., an AWS service), a database, and so on.

 	
 The term telemetry refers to the process of collecting signals from sources, processing them via agents, and ingesting them into observability destinations, where they can be consumed by humans and machines.

 	
 In general, observability means getting actionable insights from signals to understand and influence the system under observation.

 	
 There are many use cases for observability, from reducing MTTR to cost optimizations to increasing developer productivity.

 	
 Observability is relevant to different roles (developers, DevOps, nontechnical roles, etc.) to perform their typical tasks.

 	
 We had a look at a concrete example setup of a cloud-native app (a containerized microservices app in Kubernetes), its signals, and what observability could mean in this context.

 	
 Challenges of cloud-native systems include their distributed nature and the volatility of the involved components.

 	
 Observability can help address the challenges found in cloud-native systems by allowing you not to fly blind.

 	
 It is important to understand the costs and return on investment of observability.

 	
 Signal correlation is important, as it enables you to combine different signal types to answer all questions you may have about a system.

2 Signal types

 This chapter covers

 	
What different signal types are

 	
When and how to use a certain signal type

 	
The costs and benefits of each signal type

 	
How to figure out which signals are relevant

 	
Determining signal baselines

 In the context of observability, signals play a central role: this is the intel we’re basing our decisions on. On a high level, we can differentiate between signals numerical in nature (e.g., the number of service invocations) and signals that carry textual payload that requires human interpretation (e.g., a log line).

 As discussed in chapter 1, the system under observation, or just system (e.g., a Kubernetes application or a serverless app based on Lambda functions), emits signals from various sources. You, as a human, or equally a piece of software, then use these signals to understand the system and make decisions to influence it. There is a one-to-many relation between the system and sources. Your system typically involves compute, storage, and network, each of these representing a signal source. We will cover the sources in detail in chapter 3.

 In terms of signals (and sources), we can differentiate between two cases:

 	
 Sources, such as code, that you own and can instrument yourself (that is, decide where and what kind of signals to emit).

 	
 Sources you don’t own, meaning any signals will be predefined. Your task is limited to selecting which signals to consume, in this case. This might be due to several reasons:

 	
 Code that is a dependency of your code (library, package, module, etc.).

 	
 The component’s source code is not available (e.g., a binary file).

 	
 The component only offers a (networked) API. Any managed service from your cloud provider of choice falls into this category.

OEBPS/OEBPS/Images/IFC.png
Source

v

Agent

A

Destination

Telemetry

OEBPS/OEBPS/Images/01-02.png
I ¥ } T I

H I H H |

; ! 1 ! !

i ! ! ! \

Javal.Net Core_{ Go_! Go_| Go_ ! Java L
émongo %Mmgo MysaL

RabbitMQ

Java

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg
Michael Hausenblas

/'. MANNING

OEBPS/OEBPS/Images/01-03.png
@

GEEON] oy 1000 sk, e sho ot Lo 1

.
WE LOVE SOCKS! BEST PRICES. 100% SATISFACTION
GUARANTEED
[—— Vi check o scks with s meneys
mammoths o keepa. They G ot bcaise sackartho e . | S
s humaas hd ot thi e of gt bt o e

HOT THIS WEEK

Fguaron
coturtu
s
s
™ Suparspot . Crossed
099 o 2
Pages Topcategores Whereto s oy ntoueh
j Vet
bt oo
vl

User section w

OEBPS/OEBPS/Images/01-01.png
Observability
by

Source

Agent

»| Destination

Telemetry

OEBPS/OEBPS/Images/Manning_copyright.png

