

 [image: cover]

Elasticsearch in Action

 Radu Gheorghe, Matthew Lee Hinman, and Roy Russo

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Susan Conant
Technical development editor: David Pombal
Copyeditor: Linda Recktenwald
Proofreader: Melody Dolab
Technical proofreader: Valentin Crettaz
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291623

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1.

 Chapter 1. Introducing Elasticsearch

 Chapter 2. Diving into the functionality

 Chapter 3. Indexing, updating, and deleting data

 Chapter 4. Searching your data

 Chapter 5. Analyzing your data

 Chapter 6. Searching with relevancy

 Chapter 7. Exploring your data with aggregations

 Chapter 8. Relations among documents

 2.

 Chapter 9. Scaling out

 Chapter 10. Improving performance

 Chapter 11. Administering your cluster

 Appendix A. Working with geospatial data

 Appendix B. Plugins

 Appendix C. Highlighting

 Appendix D. Elasticsearch monitoring plugins

 Appendix E. Turning search upside down with the percolator

 Appendix F. Using suggesters for autocomplete and did-you-mean functionality

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1.

 Chapter 1. Introducing Elasticsearch

 1.1. Solving search problems with Elasticsearch

 1.1.1. Providing quick searches

 1.1.2. Ensuring relevant results

 1.1.3. Searching beyond exact matches

 1.2. Exploring typical Elasticsearch use cases

 1.2.1. Using Elasticsearch as the primary back end

 1.2.2. Adding Elasticsearch to an existing system

 1.2.3. Using Elasticsearch with existing tools

 1.2.4. Main Elasticsearch features

 1.2.5. Extending Lucene functionality

 1.2.6. Structuring your data in Elasticsearch

 1.2.7. Installing Java

 1.2.8. Downloading and starting Elasticsearch

 1.2.9. Verifying that it works

 1.3. Summary

 Chapter 2. Diving into the functionality

 2.1. Understanding the logical layout: documents, types, and indices

 2.1.1. Documents

 2.1.2. Types

 2.1.3. Indices

 2.2. Understanding the physical layout: nodes and shards

 2.2.1. Creating a cluster of one or more nodes

 2.2.2. Understanding primary and replica shards

 2.2.3. Distributing shards in a cluster

 2.2.4. Distributed indexing and searching

 2.3. Indexing new data

 2.3.1. Indexing a document with cURL

 2.3.2. Creating an index and mapping type

 2.3.3. Indexing documents from the code samples

 2.4. Searching for and retrieving data

 2.4.1. Where to search

 2.4.2. Contents of the reply

 2.4.3. How to search

 2.4.4. Getting documents by ID

 2.5. Configuring Elasticsearch

 2.5.1. Specifying a cluster name in elasticsearch.yml

 2.5.2. Specifying verbose logging via logging.yml

 2.5.3. Adjusting JVM settings

 2.6. Adding nodes to the cluster

 2.6.1. Starting a second node

 2.6.2. Adding additional nodes

 2.7. Summary

 Chapter 3. Indexing, updating, and deleting data

 3.1. Using mappings to define kinds of documents

 3.1.1. Retrieving and defining mappings

 3.1.2. Extending an existing mapping

 3.2. Core types for defining your own fields in documents

 3.2.1. String

 3.2.2. Numeric

 3.2.3. Date

 3.2.4. Boolean

 3.3. Arrays and multi-fields

 3.3.1. Arrays

 3.3.2. Multi-fields

 3.4. Using predefined fields

 3.4.1. Controlling how to store and search your documents

 3.4.2. Identifying your documents

 3.5. Updating existing documents

 3.5.1. Using the update API

 3.5.2. Implementing concurrency control through versioning

 3.6. Deleting data

 3.6.1. Deleting documents

 3.6.2. Deleting indices

 3.6.3. Closing indices

 3.6.4. Re-indexing sample documents

 3.7. Summary

 Chapter 4. Searching your data

 4.1. Structure of a search request

 4.1.1. Specifying a search scope

 4.1.2. Basic components of a search request

 4.1.3. Request body–based search request

 4.1.4. Understanding the structure of a response

 4.2. Introducing the query and filter DSL

 4.2.1. Match query and term filter

 4.2.2. Most used basic queries and filters

 4.2.3. Match query and term filter

 4.2.4. Phrase_prefix query

 4.3. Combining queries or compound queries

 4.3.1. bool query

 4.3.2. bool filter

 4.4. Beyond match and filter queries

 4.4.1. Range query and filter

 4.4.2. Prefix query and filter

 4.4.3. Wildcard query

 4.5. Querying for field existence with filters

 4.5.1. Exists filter

 4.5.2. Missing filter

 4.5.3. Transforming any query into a filter

 4.6. Choosing the best query for the job

 4.7. Summary

 Chapter 5. Analyzing your data

 5.1. What is analysis?

 5.1.1. Character filtering

 5.1.2. Breaking into tokens

 5.1.3. Token filtering

 5.1.4. Token indexing

 5.2. Using analyzers for your documents

 5.2.1. Adding analyzers when an index is created

 5.2.2. Adding analyzers to the Elasticsearch configuration

 5.2.3. Specifying the analyzer for a field in the mapping

 5.3. Analyzing text with the analyze API

 5.3.1. Selecting an analyzer

 5.3.2. Combining parts to create an impromptu analyzer

 5.3.3. Analyzing based on a field’s mapping

 5.3.4. Learning about indexed terms using the terms vectors API

 5.4. Analyzers, tokenizers, and token filters, oh my!

 5.4.1. Built-in analyzers

 5.4.2. Tokenization

 5.4.3. Token filters

 5.5. Ngrams, edge ngrams, and shingles

 5.5.1. 1-grams

 5.5.2. Bigrams

 5.5.3. Trigrams

 5.5.4. Setting min_gram and max_gram

 5.5.5. Edge ngrams

 5.5.6. Ngram settings

 5.5.7. Shingles

 5.6. Stemming

 5.6.1. Algorithmic stemming

 5.6.2. Stemming with dictionaries

 5.6.3. Overriding the stemming from a token filter

 5.7. Summary

 Chapter 6. Searching with relevancy

 6.1. How scoring works in Elasticsearch

 6.1.1. How scoring documents works

 6.1.2. Term frequency

 6.1.3. Inverse document frequency

 6.1.4. Lucene’s scoring formula

 6.2. Other scoring methods

 6.2.1. Okapi BM25

 6.3. Boosting

 6.3.1. Boosting at index time

 6.3.2. Boosting at query time

 6.3.3. Queries spanning multiple fields

 6.4. Understanding how a document was scored with explain

 6.4.1. Explaining why a document did not match

 6.5. Reducing scoring impact with query rescoring

 6.6. Custom scoring with function_score

 6.6.1. weight

 6.6.2. Combining scores

 6.6.3. field_value_factor

 6.6.4. Script

 6.6.5. random

 6.6.6. Decay functions

 6.6.7. Configuration options

 6.7. Tying it back together

 6.8. Sorting with scripts

 6.9. Field data detour

 6.9.1. The field data cache

 6.9.2. What field data is used for

 6.9.3. Managing field data

 6.10. Summary

 Chapter 7. Exploring your data with aggregations

 7.1. Understanding the anatomy of an aggregation

 7.1.1. Structure of an aggregation request

 7.1.2. Aggregations run on query results

 7.1.3. Filters and aggregations

 7.2. Metrics aggregations

 7.2.1. Statistics

 7.2.2. Advanced statistics

 7.2.3. Approximate statistics

 7.3. Multi-bucket aggregations

 7.3.1. Terms aggregations

 7.3.2. Range aggregations

 7.3.3. Histogram aggregations

 7.4. Nesting aggregations

 7.4.1. Nesting multi-bucket aggregations

 7.4.2. Nesting aggregations to get result grouping

 7.4.3. Using single-bucket aggregations

 7.5. Summary

 Chapter 8. Relations among documents

 8.1. Overview of options for defining relationships among documents

 8.1.1. Object type

 8.1.2. Nested type

 8.1.3. Parent-child relationships

 8.1.4. Denormalizing

 8.2. Having objects as field values

 8.2.1. Mapping and indexing objects

 8.2.2. Searching in objects

 8.3. Nested type: connecting nested documents

 8.3.1. Mapping and indexing nested documents

 8.3.2. Searches and aggregations on nested documents

 8.4. Parent-child relationships: connecting separate documents

 8.4.1. Indexing, updating, and deleting child documents

 8.4.2. Searching in parent and child documents

 8.5. Denormalizing: using redundant data connections

 8.5.1. Use cases for denormalizing

 8.5.2. Indexing, updating, and deleting denormalized data

 8.5.3. Querying denormalized data

 8.6. Application-side joins

 8.7. Summary

 2.

 Chapter 9. Scaling out

 9.1. Adding nodes to your Elasticsearch cluster

 9.1.1. Adding nodes to your cluster

 9.2. Discovering other Elasticsearch nodes

 9.2.1. Multicast discovery

 9.2.2. Unicast discovery

 9.2.3. Electing a master node and detecting faults

 9.2.4. Fault detection

 9.3. Removing nodes from a cluster

 9.3.1. Decommissioning nodes

 9.4. Upgrading Elasticsearch nodes

 9.4.1. Performing a rolling restart

 9.4.2. Minimizing recovery time for a restart

 9.5. Using the _cat API

 9.6. Scaling strategies

 9.6.1. Over-sharding

 9.6.2. Splitting data into indices and shards

 9.6.3. Maximizing throughput

 9.7. Aliases

 9.7.1. What is an alias, really?

 9.7.2. Alias creation

 9.8. Routing

 9.8.1. Why use routing?

 9.8.2. Routing strategies

 9.8.3. Using the _search_shards API to determine where a search is performed

 9.8.4. Configuring routing

 9.8.5. Combining routing with aliases

 9.9. Summary

 Chapter 10. Improving performance

 10.1. Grouping requests

 10.1.1. Bulk indexing, updating, and deleting

 10.1.2. Multisearch and multiget APIs

 10.2. Optimizing the handling of Lucene segments

 10.2.1. Refresh and flush thresholds

 10.2.2. Merges and merge policies

 10.2.3. Store and store throttling

 10.3. Making the best use of caches

 10.3.1. Filters and filter caches

 10.3.2. Shard query cache

 10.3.3. JVM heap and OS caches

 10.3.4. Keeping caches up with warmers

 10.4. Other performance tradeoffs

 10.4.1. Big indices or expensive searches

 10.4.2. Tuning scripts or not using them at all

 10.4.3. Trading network trips for less data and better distributed scoring

 10.4.4. Trading memory for better deep paging

 10.5. Summary

 Chapter 11. Administering your cluster

 11.1. Improving defaults

 11.1.1. Index templates

 11.1.2. Default mappings

 11.2. Allocation awareness

 11.2.1. Shard-based allocation

 11.2.2. Forced allocation awareness

 11.3. Monitoring for bottlenecks

 11.3.1. Checking cluster health

 11.3.2. CPU: slow logs, hot threads, and thread pools

 11.3.3. Memory: heap size, field, and filter caches

 11.3.4. OS caches

 11.3.5. Store throttling

 11.4. Backing up your data

 11.4.1. Snapshot API

 11.4.2. Backing up data to a shared file system

 11.4.3. Restoring from backups

 11.4.4. Using repository plugins

 11.5. Summary

 Appendix A. Working with geospatial data

 A.1. Points and distances between them

 A.2. Adding distance to your sort criteria

 A.2.1. Sorting by distance and other criteria at the same time

 A.3. Filter and aggregate based on distance

 Distance range filter

 Distance range aggregation

 A.4. Does a point belong to a shape?

 A.4.2. Geohashes

 A.5. Shape intersections

 A.5.1. Indexing shapes

 A.5.2. Filtering overlapping shapes

 Appendix B. Plugins

 B.1. Working with plugins

 B.2. Installing plugins

 B.3. Accessing plugins

 B.4. Telling Elasticsearch to require certain plugins

 B.5. Removing or updating plugins

 Appendix C. Highlighting

 C.1. Highlighting basics

 C.1.1. What should be passed on to the user

 C.1.2. Too many fields contain highlighted terms

 C.2. Highlighting options

 C.2.1. Size, order, and number of fragments

 C.2.2. Highlighting tags and fragment encoding

 C.2.3. Highlight query

 C.3. Highlighter implementations

 C.3.1. Postings Highlighter

 C.3.2. Fast Vector Highlighter

 Appendix D. Elasticsearch monitoring plugins

 D.1. Bigdesk: visualize your cluster

 D.2. ElasticHQ: monitoring with management

 D.3. Head: advanced query building

 D.4. Kopf: snapshots, warmers, and percolators

 D.5. Marvel: fine-grained analysis

 D.6. Sematext SPM: the Swiss Army knife

 Appendix E. Turning search upside down with the percolator

 E.1. Percolator basics

 E.1.1. Define a mapping, register queries, then percolate documents

 E.1.2. Percolator under the hood

 E.2. Performance tips

 E.2.1. Options for requests and replies

 E.2.2. Separating and filtering percolator queries

 E.3. Functionality tricks

 E.3.1. Highlighting percolated documents

 E.3.2. Ranking matching queries

 E.3.3. Aggregations on matching query metadata

 Appendix F. Using suggesters for autocomplete and did-you-mean functionality

 F.1. Did-you-mean suggesters

 F.1.1. Term suggester

 F.1.2. Phrase suggester

 F.2. Autocomplete suggesters

 F.2.1. Completion Suggester

 F.2.2. Context Suggester

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 While writing this book, my objective was to provide you the information I needed when I started using Elasticsearch: what
 its main features are and how they work under the hood. To give you a better overview of this objective, let me tell you a
 more detailed story of how this book came to life.

 I first met Elasticsearch in 2011 while working on a project for centralizing logs. My colleague Mihai Sandu showed me Graylog,
 which used Elasticsearch for log search, and setting everything up was extremely easy. Two servers could handle all our logging
 needs at the time, but we expected the data volume to grow hundreds of times in about one year. And it did. On top of that,
 we had more and more complex analysis requirements, so we quickly found out that tuning and scaling the setup required a deep
 understanding of Elasticsearch and its features.

 There was no book to teach us that, so we had to learn the hard way: lots of experiments, lots of questions and answers to
 the mailing list. The upside was that I got to know a lot of nice people that posted there regularly. This is how I came to
 work at Sematext, where I could concentrate on Elasticsearch full-time, and this is why Manning asked me if I would be interested
 in writing about Elasticsearch.

 Of course I was. They warned me it was hard work, but told me that Lee Hinman was also interested, so we joined forces. With
 two authors, we thought it was going to be easy, especially as Lee and I really clicked and provided useful feedback to one
 another. Little did we know that it’s much easier to present features in the early chapters than to combine those features
 into best practices for various use cases in later chapters. Then, with feedback from our reviewers, we found that it’s even
 more work to fit everything together, so our pace became slower and slower. That’s when Roy Russo joined us and helped with
 that final push.

 After two and a half years of early mornings, late nights, and weekends, I can finally say we’re done. It was a tough experience,
 but a rich one as well. I would surely have loved to have this book in my hands four years ago, and I hope you’ll enjoy it,
 too.

 RADU GHEORGHE

Acknowledgments

 Many people provided their invaluable support to make this book possible:

 	Susan Conant, our development editor at Manning, who supported us in so many ways: by providing valuable feedback on draft
 chapters, helping to plan book and individual chapter structures, giving encouragement, advising us on upcoming steps, helping
 us overcome bumps in the road, and so on

 	Jettro Coenradie, our technical editor, who helped us review big chunks of the manuscript before it went to production and
 again helped with the final steps before the book went to press

 	Valentin Crettaz, who helped with his thorough technical proofread

 	Our Manning Early Access Program (MEAP) readers who posted so many helpful comments in the Author Online forum

 	The reviewers from the development process who provided such good feedback that I can’t even begin to imagine how the book
 would look without them: Achim Friedland, Alan McCann, Artur Nowak, Bhaskar Karambelkar, Daniel Beck, Gabriel Katenbaumn,
 Gianluca Rhigetto, Igor Motov, Jeelani Shaik, Joe Gallo, Konstantin Yakushev, Koray Güclü, Michael Schleichardt, Paul Stadig,
 Ray Lugo Jr., Sen Xu, and Tanguy Leroux

 RADU GHEORGHE

 I’d like to express my thanks in chronological order. To my colleagues from Avira: Mihai Sandu, Mihai Efrim, Martin Ahrens,
 Matthias Ollig and many others, for supporting me in learning about Elasticsearch and tolerating my not-always-successful
 experiments. To my colleagues from Sematext: Otis Gospodnetić, who supported me in learning and interacting with the community,
 and Rafał Kuć (aka Master Rafał) for his invaluable tips and tricks. Finally, I’d like to thank my family for supporting me
 in so many ways that I can barely scratch the surface here: my parents, Nicoleta and Mihai Gheorghe, and my in-laws, Maădaălina
 and Adrian Radu, for providing good food, quiet spaces, and the all-important moral support. My wife Alexandra, for being
 a real hero: she somehow managed to write her own stuff and still take care of everything in order for me to write. Last but
 not least, my son Andrei, now 6, for his understanding and his creative solutions on spending time together, like working
 on his own book next to me.

 LEE HINMAN

 First and foremost I’d like to give my sincerest thanks to my wife Delilah for encouraging me in this endeavor and for being
 my adventuring partner. You have given me so much support in this and so many other parts of my life. Thank you for continuing
 to encourage me throughout the birth of our daughter, Vera Ovelia. I’d also like to thank all of the people who have contributed
 to Elasticsearch. Without you, open source software would not be possible. I’m honored to contribute to such a wide-reaching
 and powerful piece of software.

 ROY RUSSO

 I would like to thank my daughters Olivia and Isabella, my son Jacob, and my wife Roberta, for standing beside me throughout
 my career and acting as a source of inspiration and motivation. You guys make the impossible possible with your support, love,
 and understanding.

About This Book

 Since it came out in 2010, Elasticsearch has become increasingly popular. It’s being used in a variety of setups, from product
 search—which is the traditional use case for a search engine—to real-time analytics of social media, application logs, and
 other flowing data. The strong points of Elasticsearch have always been its distributed model—which makes it scale out easily
 and efficiently—as well as its rich analytics functionality. All of this was built on top of the already established Apache
 Lucene search engine library. Lucene has evolved during this time as well, making it possible to process the same amount of
 data with less CPU, memory, and disk space.

 Elasticsearch in Action covers all the major features of Elasticsearch, from relevancy tuning by using different analyzers and query types to using
 aggregations for real-time analytics, as well as more “exotic” features, like geo-spatial search and document percolation.

 You’ll quickly find that Elasticsearch is easy to get started with. You can get your documents in, search them, build statistics,
 and even distribute and replicate your data onto multiple machines in a matter of hours. Default behavior and settings are
 very developer-friendly, making proof-of-concepts that much easier to build.

 Moving from prototypes to production is often more difficult, as you’ll bump into various functionality or performance limitations.
 That’s why we explain how each feature works under the hood, so you can tweak the right knobs in order to get good relevance
 out of your searches and good performance for both reads and writes to your cluster.

 What exactly are the features we’ll cover? Let’s look at the roadmap of this book for more details.

Roadmap

 Elasticsearch in Action is divided into two parts: “Core functionality” and “Advanced functionality.” We recommend reading chapters in order, as
 the functionality discussed in one chapter often depends on the concepts presented in previous chapters. Each chapter contains
 code listings and snippets you can follow if you prefer a hands-on approach, but it’s not necessary to have a laptop with
 you in order to learn the concepts and how Elasticsearch works.

 The first part explains the core features—how to model and index data so you can search and analyze it as your use case requires.
 By the end of it, you’ll understand the building blocks of Elasticsearch functionality:

 	
Chapter 1 gives an overview of what a search engine does in general and Elasticsearch’s features in particular. By the end of it you
 should know what kind of problems you can solve with Elasticsearch.

 	
Chapter 2 gets your feet wet regarding the major functionality: indexing documents, searching them, analyzing data via aggregations,
 and scaling out to multiple nodes.

 	
Chapter 3 covers the options you have while indexing, updating, and deleting your data. You’ll learn what kind of fields you can have
 in your documents, as well as what happens when you’re writing them.

 	In chapter 4 you’ll dive deeper into the realm of full-text search. You’ll discover the important types of queries and filters and learn
 how they work and when to use which.

 	
Chapter 5 explains how analysis breaks down the text from both documents and queries into the tokens used for searching. You’ll learn
 how to use different kinds of analyzers—as well as how to build your own—in order to fully utilize Elasticsearch’s full text
 search potential.

 	
Chapter 6 helps you complete your full text search skills by focusing on relevancy. You’ll learn about the factors affecting a document’s
 score and how to manipulate them using different scoring algorithms, boosting a particular query or field, or using values
 from the document itself—such as the number of likes or retweets—to boost the score.

 	
Chapter 7 shows how to use aggregations to perform real-time analytics. You’ll learn how to couple aggregations with queries and how
 to nest them in order to find the number of needles in the haystack . . . dropped by someone from Poland . . . two years ago.

 	
Chapter 8 deals with relational data, like bands and their albums. You’ll learn how to use Elasticsearch features—such as nested documents
 and parent-child relationships—as well as general NoSQL techniques (such as denormalizing or application-side joins) to index
 and search data that isn’t flat.

 The second part helps you get the core functionality out to production. In doing so, you’ll learn more about how each feature
 works, as well as its impact on performance and scalability:

 	
Chapter 9 deals with scaling out to multiple nodes. You’ll learn how to shard and replicate your indices—for example, by oversharding
 or using time-based indices—so that today’s design can cope with next year’s data.

 	In chapter 10 you’ll find tricks that will help you squeeze more performance out of your cluster. Along the way, you’ll learn how Elasticsearch
 uses caches and writes data to disk, as well as various trade-offs you can make to tweak Elasticsearch for your use case.

 	
Chapter 11 shows how to monitor and administer your cluster in production. We’ll cover the important metrics you should watch, how to
 back up and restore your data, and how to use shortcuts such as index templates and aliases.

 The book’s six appendixes cover features you should know about, but these features may not be relevant to some use cases.
 We hope that the term “appendix” doesn’t mislead you into thinking we cover these features superficially. As with the rest
 of the book, we’ll dive into the details of how each feature works under the hood:

 	
Appendix A is about geospatial search and aggregations.

 	
Appendix B shows how to manage Elasticsearch plugins.

 	In Appendix C you’ll learn about highlighting query terms in your search results.

 	
Appendix D introduces third-party monitoring tools that you may want to use in production to help you manage Elasticsearch.

 	
Appendix E explains how to use the Percolator in order to match few documents against many queries.

 	Finally, appendix F explains how to use different suggesters in order to implement did-you-mean and autocomplete functionality.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code for all the working examples in the book and instructions to run them are available at https://github.com/dakrone/elasticsearch-in-action. You can also download the code from the publisher’s website at www.manning.com/books/elasticsearch-in-action.

 The code snippets and the source code will work on Elasticsearch 1.5. They should work on all the versions of the 1.x branch.
 At the time of this writing, the roadmap for version 2.0 is becoming clearer, and it’s taken into account: we skipped features
 that will go away, such as configuration options on most predefined fields. In other places, such as filter caches, where
 1.x and 2.x simply behave differently, we specifically pointed this out in a callout.

Author Online

 Purchase of Elasticsearch in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access the Author Online forum and subscribe to it, point
 your web browser to www.manning.com/books/elasticsearch-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Elasticsearch in Action is captioned “A man from Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional costumes
 from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The
 illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core
 of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes
 finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and
 of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1.

 In this part, we will cover what Elasticsearch can do for you in terms of functionality. We’ll start with more general concepts
 in chapter 1, where we’ll explore how Elasticsearch is typically used as a search engine, and then move on to how to model, index, search,
 and analyze data efficiently. By the end of part 1, you’ll have a deep understanding of what Elasticsearch can offer from a functionality standpoint and how you can use it
 to solve your search and real-time analytics problems.

Chapter 1. Introducing Elasticsearch

 This chapter covers

 	Understanding search engines and the issues they address

 	How Elasticsearch fits in the context of search engines

 	Typical scenarios for Elasticsearch

 	Features Elasticsearch provides

 	Installing Elasticsearch

 We use search everywhere these days. And that’s a good thing, because search helps you finish tasks quickly and easily. Whether
 you’re buying something from an online shop or visiting a blog, you expect to have a search box somewhere to help you find
 what you’re looking for without scanning the entire website. Maybe it’s me, but when I (Radu) wake up in the morning, I wish
 I could enter the kitchen and type in “bowl” in a search box somewhere and have my favorite bowl highlighted.

 We’ve also come to expect those search boxes to be smart. I don’t want to have to type the entire word “bowl;” I expect the
 search box to come up with suggestions, and I don’t want results and suggestions to come to me in random order. I want the search to be smart and give me the most relevant results first—to guess what I want, if that’s possible. For example,
 if I search for “laptop” from an online shop but have to scroll through laptop accessories before I get to a laptop, I’m likely
 to go somewhere else after the first page of results. And this need for relevant results and suggestions isn’t only because
 we’re in a hurry and spoiled with good search interfaces; it’s also because there’s increasingly more stuff to choose from.
 For example, a friend asked me to help her buy a new laptop. Typing “best laptop for my friend” in the search box of an online
 store that sells thousands of laptops wouldn’t be effective. Good keyword searching is often not enough; you need some statistics
 on the results so you can narrow them down to what the user is interested in. I narrowed down my laptop search by selecting
 the size of the screen, the price range, and so on, until I only had five or so laptops to choose from.

 Finally, there’s the matter of performance—because nobody wants to wait. I’ve seen websites where you search for something
 and get the results in few minutes. Minutes! For a search!

 If you want to provide search for your data, you’ll have to deal with all these issues: returning relevant search results,
 returning statistics, and doing all that quickly. This is where search engines like Elasticsearch come into play because they’re
 built to meet exactly those challenges. You can deploy a search engine on top of a relational database to create indices and
 speed up the SQL queries. Or you can index data from your NoSQL data store to add search capabilities there. You can do that
 with Elasticsearch, and it works well with document-oriented stores like MongoDB because data is represented in Elasticsearch
 as documents, too. Modern search engines like Elasticsearch also do a good job of storing your data so you can use it as a
 NoSQL data store with powerful search capabilities.

 Elasticsearch is open-source and distributed, and it’s built on top of Apache Lucene,[1] an open-source search engine library, which allows you to implement search functionality in your own Java application. Elasticsearch
 takes this Lucene function and extends it to make storing, indexing, and searching faster, easier, and, as the name suggests,
 elastic. Also, your application doesn’t need to be written in Java to work with Elasticsearch; you can send data over HTTP
 in JSON to index, search, and manage your Elasticsearch cluster.

 1

More information about Apache Lucene can be found at http://lucene.apache.org/core/.

 This chapter expounds on these searching and data features, and you’ll learn how to use them throughout this book. First,
 let’s take a closer look at the challenges search engines are typically confronted with and Elasticsearch’s approach to solving
 them.

1.1. Solving search problems with Elasticsearch

 To get a better idea of how Elasticsearch works, let’s look at an example. Imagine that you’re working on a website that hosts
 blogs and you want to let users search across the entire site for specific posts. Your first task is to implement keyword
 search. For example, if a user searches for “elections,” you’d better return all posts containing that word.

 A search engine will do that for you, but for a robust search feature, you need more than that: results need to come in quickly, and they need to be relevant. It’s also nice to
 provide features that help users search when they don’t know the exact words of what they’re looking for. Those features include
 detecting typos, providing suggestions, and breaking down results into categories.

 	

 Tip

 In this chapter you’ll get an overview of Elasticsearch’s features. If you want to get practical and jump to installing it,
 skip to section 1.5. You’ll find the installation procedure surprisingly easy. And you can always come back here for the high-level
 overview.

 	

 1.1.1. Providing quick searches

 If you have a huge number of posts on your site, searching through all of them for the word “elections” can take a long time,
 and you don’t want your users to wait. That’s where Elasticsearch helps because it uses Lucene, a high-performance search
 engine library, to index all your data by default.

 An index is a data structure which you create along with your data and which is meant to allow faster searches. You can add indices
 to fields in most databases, and there are several ways to do it. Lucene does it with inverted indexing, which means it creates a data structure where it keeps a list of where each word belongs. For example, if you need to search
 for blog posts by their tags, using inverted indexing might look like table 1.1.

 Table 1.1. Inverted index for blog tags

 	
 Raw data

 	
 Index data

 	Blog Post ID
 	Tags
 	Tags
 	Blog Post IDs

 	1
 	elections
 	elections
 	1,3

 	2
 	peace
 	peace
 	2,3,4

 	3
 	elections, peace
 	
 	

 	4
 	peace
 	
 	

 If you search for blog posts that have an elections tag, it’s much faster to look at the index rather than looking at each word of each blog post, because you only have to look
 at the place where the tag is elections, and you’ll get all the corresponding blog posts. This speed gain makes sense in the context of a search engine. In the real
 world, you’re rarely searching for only one word. For example, if you’re searching for “Elasticsearch in Action,” three-word
 lookups imply multiplying your speed gain by three. All this may seem a bit complex at this point, but we’ll clear up the details when we discuss indexing in chapter 3 and searching in chapter 4.

 An inverted index is appropriate for a search engine when it comes to relevance, too. For example, when you’re looking up
 a word like “peace,” not only will you see which document matches, but you’ll also get the number of matching documents for
 free. This is important because if a word occurs in most documents, it’s probably less relevant. Let’s say you search for
 “Elasticsearch in Action.” and a document contains the word “in”—along with a million other documents. At this point, you
 know that “in” is a common word, and the fact that this document matched doesn’t say much about how relevant it is to your
 search. In contrast, if it contains “Elasticsearch” along with a hundred others, you know you’re getting closer to relevant
 documents. But it’s not “you” who has to know you’re getting closer; Elasticsearch does that for you. You’ll learn all about
 tuning data and searches for relevancy in chapter 6.

 That said, the tradeoff for improved search performance and relevancy is that the index will take up disk space and adding
 new blog posts will be slower because you have to update the index after adding the data itself. On the upside, tuning can
 make Elasticsearch faster, both when it comes to indexing and searching. We’ll discuss tuning in great detail in chapter 10.

 1.1.2. Ensuring relevant results

 Then there’s the hard part: how do you make the blog posts that are about elections appear before the ones that merely contain
 the word election? With Elasticsearch, you have a few algorithms for calculating the relevancy score, which is used, by default, to sort the results.

 The relevancy score is a number assigned to each document that matches your search criteria and indicates how relevant the
 given document is to the criteria. For example, if a blog post contains “elections” more times than another, it’s more likely
 to be about elections. Figure 1.1 shows an example from DuckDuckGo.

 Figure 1.1. More occurrences of the searched terms usually rank the document higher.

 [image:]

 By default, the algorithm used to calculate a document’s relevancy score is TF-IDF. We’ll discuss scoring and TF-IDF more in chapters 4 and 6, which are about searching and relevancy, but here’s the basic idea: TF-IDF stands for term frequency–inverse document frequency, which are the two factors that influence relevancy score.

 	
Term frequency— The more times the words you’re looking for appear in a document, the higher the score.

 	
Inverse document frequency— The weight of each word is higher if the word is uncommon across other documents.

 For example, if you’re looking for “bicycle race” on a cyclist’s blog, the word “bicycle” counts much less for the score than
 “race.” But the more times both words appear in a document, the higher that document’s score.

 In addition to choosing an algorithm, Elasticsearch provides many other built-in features to influence the relevancy score
 to suit your needs. For example, you can “boost” the score of a particular field, such as the title of a post, to be more
 important than the body. This gives higher scores to documents that match your search criteria in the title, compared to similar
 documents that match only the body. You can make exact matches count more than partial matches, and you can even use a script
 to add custom criteria to the way the score is calculated. For example, if you let users like posts, you can boost the score
 based on the number of likes, or you can make newer posts have higher scores than similar, older posts.

 Don’t worry about the mechanics of any of these features right now; we discuss relevancy in great detail in chapter 6. For now, let’s focus on what you can do with Elasticsearch and when you’d want to use those features.

 1.1.3. Searching beyond exact matches

 With Elasticsearch you have options to make your searches intuitive and go beyond exactly matching what the user types in.
 These options are handy when the user enters a typo or uses a synonym or a derived word different than what you’ve stored.
 They’re also handy when the user doesn’t know exactly what to search for in the first place.

Handling typos

 You can configure Elasticsearch to be tolerant of variations instead of looking for only exact matches. A fuzzy query can
 be used so a search for “bicycel” will match a blog post about bicycles. We explore fuzzy queries and other features that
 make your searches relevant in chapter 6.

Supporting derivatives

 You can also use analysis, covered in chapter 5, to make Elasticsearch understand that a blog with “bicycle” in its title should also match queries that mention “bicyclist”
 or “cycling.” You probably noticed that in figure 1.1, where “elections” matched “election” as well. You might have also noticed that matching terms are highlighted in bold. Elasticsearch can do that too—we’ll cover highlighting in appendix C.

Using statistics

 When users don’t know what to search for, you can help them in a number of ways. One way is to present statistics through
 aggregations, which we cover in chapter 7. Aggregations are a way to get counters from the results of your query, like how many topics fall into each category or the
 average number of likes and shares for each of those categories. Imagine that upon entering your blog, users see popular topics
 listed on the right-hand side. One topic may be cycling. Those interested in cycling would click that topic to narrow the
 results. Then, you might have another aggregation to separate cycling posts into “bicycle reviews,” “cycling events,” and
 so on.

Providing suggestions

 Once users start typing, you can help them discover popular searches and results. You can use suggestions to predict their
 searches as they type, as most search engines on the web do. You can also show popular results as they type, using special
 query types that match prefixes, wild cards, or regular expressions. In appendix F, we’ll also discuss suggesters, which are faster-than-normal queries for autocomplete and did-you-mean functionality.

 Now that we’ve discussed what high-level features Elasticsearch provides, let’s look at how those features are typically used
 in production.

1.2. Exploring typical Elasticsearch use cases

 We’ve already established that storing and indexing your data in Elasticsearch is a good way to provide quick and relevant
 results to your searches. But in the end, Elasticsearch is just a search engine, and you’ll never use it on its own. Like
 any other data store, you need a way to feed data into it, and you probably need to provide an interface for the users searching
 that data.

 To get an idea of how Elasticsearch might fit into a bigger system, let’s consider three typical scenarios:

 	
Elasticsearch as the primary back end for your website— As we discussed, you may have a website that allows people to write blog posts, but you also want the ability to search through
 the posts. You can use Elasticsearch to store all the data related to these posts and serve queries as well.

 	
Adding Elasticsearch to an existing system— You may be reading this book because you already have a system that’s crunching data and you want to add search. We’ll look
 at a couple of overall designs on how that might be done.

 	
Elasticsearch as the back end of a ready-made solution built around it— Because Elasticsearch is open-source and offers a straightforward HTTP interface, a big ecosystem supports it. For example,
 Elasticsearch is popular for centralizing logs; given the tools already available that can write to and read from Elasticsearch,
 other than configuring those tools to work the way you want, you don’t need to develop anything.

 Let’s take a closer look at each of these scenarios.

 1.2.1. Using Elasticsearch as the primary back end

 Traditionally, search engines are deployed on top of well-established data stores to provide fast and relevant search capability.
 That’s because historically search engines haven’t offered durable storage or other features that are often needed, such as
 statistics.

 Elasticsearch is one of those modern search engines that provide durable storage, statistics, and many other features you’ve
 come to expect from a data store. If you’re starting a new project, we recommend that you consider using Elasticsearch as
 the only data store to help keep your design as simple as possible. This might not work well for all use cases—for instance,
 when you have lots of updates—so you can also use Elasticsearch on top of another data store.

 	

 Note

 Like other NoSQL data stores, Elasticsearch doesn’t support transactions. In chapter 3, you’ll see how you can use versioning to manage concurrency, but if you need transactions, consider using another database
 as the “source of truth.” Also, regular backups are a good practice when you’re using a single data store. We’ll discuss backups
 in chapter 11.

 	

 Let’s return to the blog example: you can store newly written blog posts in Elasticsearch. Similarly, you can use Elasticsearch
 to retrieve, search, or do statistics through all that data, as shown in figure 1.2.

 Figure 1.2. Elasticsearch as the only back end storing and indexing all your data

 [image:]

 What happens if a server goes down? You can get fault tolerance by replicating your data to different servers. Many other
 features make Elasticsearch a tempting NoSQL data store. It can’t be great for everything, but you should weigh whether including
 another data store in your overall design is worth the extra complexity.

 1.2.2. Adding Elasticsearch to an existing system

 By itself, Elasticsearch may not always provide all the functionality you need from a data store. Some situations may require
 you to use Elasticsearch in addition to another data store.

 For example, transaction support and complex relationships are features that Elastic search doesn’t currently support, at
 least in version 1. If you need those features, consider using Elasticsearch along with a different data store.

 Or you may already have a complex system that works, but you want to add search. It might be risky to redesign the entire
 system for the sole purpose of using Elasticsearch alone (though you might want to do that over time). The safer approach
 is to add Elasticsearch to your system and make it work with your existing components.

 Either way, if you have two data stores, you’ll have to find a way to keep them synchronized. Depending on what your primary
 data store is and how your data is laid out, you can deploy an Elasticsearch plugin to keep the two entities synchronized,
 as illustrated in figure 1.3.

 Figure 1.3. Elasticsearch in the same system with another data store

 [image:]

 For example, suppose you have an online retail store with product information stored in an SQL database. You need fast and
 relevant searching, so you install Elasticsearch. To index the data, you need to deploy a synchronizing mechanism, which can
 be an Elasticsearch plugin or a custom service that you build. You’ll learn more about plugins in appendix B and about dealing with indexing and updating from your own application in chapter 3. This synchronizing mechanism could pull all the data corresponding to each product and index it in Elasticsearch, where
 each product is stored as a document.

 When a user types in search criteria on the web page, the storefront web application queries Elasticsearch for that criteria.
 Elasticsearch returns a number of product documents that match the criteria, sorted in the way you prefer. Sorting can be
 based on a relevance score that indicates how many times the words people searched for appear in each product, or anything
 stored in the product document, such as how recently the product was added, the average rating, or even a combination of those.

 Inserting or updating information can still be done on the “primary” SQL database, so you can use Elasticsearch solely for
 handling searches. It’s up to the synchronizing mechanism to keep Elasticsearch up to date with the latest changes.

 When you need to integrate Elasticsearch with other components, you can check for existing tools that may already do what
 you need. As we’ll explore in the next section, there’s a strong community building tools for Elasticsearch, and sometimes
 you don’t have to build any custom component.

 1.2.3. Using Elasticsearch with existing tools

 In some use cases, you don’t have to write a single line of code to get a job done with Elasticsearch. Many tools are available
 that work with Elasticsearch, so you don’t have to write yours from scratch.

 For example, say you want to deploy a large-scale logging framework to store, search, and analyze a large number of events.
 As shown in figure 1.4, to process logs and output to Elasticsearch, you can use logging tools such as Rsyslog (www.rsyslog.com), Logstash[2] (www.elastic.co/products/logstash), or Apache Flume (http://flume.apache.org). To search and analyze those logs in a visual interface, you can use Kibana (www.elastic.co/products/kibana).[3]

 2

Ryslog home page: www.rsyslog.com

 3

Kibana home page: www.elastic.co/products/kibana

 Figure 1.4. Elasticsearch in a system of logging tools that support Elasticsearch out of the box

 [image:]

 The fact that Elasticsearch is open-source—under the Apache 2 license, to be precise—isn’t the only reason that so many tools
 support it. Even though Elasticsearch is written in Java, there’s more than a Java API that lets you work with it. It also
 exposes a REST API, which any application can access, no matter the programming language it was written in.

 What’s more, the REST requests and replies are typically in JSON (JavaScript Object Notation) format. Typically, a REST request
 has its payload in JSON, and replies are also a JSON document.

 	

 JSON and YAML

 JSON is a format for expressing data structures. A JSON object typically contains keys and values, where values can be strings,
 numbers, true/false, null, another object, or an array. For more details about the JSON format, visit http://json.org/.

 JSON is easy for applications to parse and generate. YAML (YAML Ain’t Markup Language) is also supported for the same purpose.
 To activate YAML, add the format =yaml parameter to the HTTP request. For more details on YAML, visit http://yaml.org. Although JSON is typically used for HTTP communication, the configuration files are usually written in YAML. In this book
 we stick with the popular formats: JSON for LHTT communication and YAML for configuration.

 	

 For example, a log event might look like this when you index it in Elasticsearch:

 [image:]

 	

 Note

 Throughout this book, JSON field names are shown in blue and their values are in red to make the code easier to read.

 	

 A search request for log events with a value of first in the message field would look like this:

 [image:]

 Sending data and running queries by sending JSON objects over HTTP makes it easy for you to extend anything—from a syslog
 daemon like Rsyslog to a connecting framework like Apache ManifoldCF (http://manifoldcf.apache.org)—to interact with Elasticsearch. If you’re building a new application from scratch or want to add search to an existing application,
 the REST API is one of the features that makes Elasticsearch appealing. In the next section we’ll look at other such features.

 1.2.4. Main Elasticsearch features

 Elasticsearch allows you to easily access Lucene’s functionality for indexing and searching your data. On the indexing side,
 you have lots of options for how to process the text in them and how to store that processed text. When searching, you have
 many queries and filters to choose from. Elasticsearch exposes this functionality through the REST API, allowing you to structure
 queries in JSON and adjust most of the configuration though the same API.

 On top of what Lucene provides, Elasticsearch adds its own, higher-level functionality, from caching to real-time analytics.
 In chapter 7 you’ll learn how to do these analytics through aggregations, which can give you results like the most popular blog tags,
 the average popularity of a certain group of posts, and endless combinations such as the average popularity of posts for each
 tag.

 Another level of abstraction is the way you can organize documents: multiple indices can be searched separately or together,
 and you can put different types of documents within each index.

 Finally, Elasticsearch is, as the name suggests, elastic. It’s clustered by default—you call it a cluster even if you run
 it on a single server—and you can always add more servers to increase capacity or fault tolerance. Similarly, you can easily
 remove servers from the cluster to reduce costs if you have lower load.

 We’ll discuss all these features in great detail in the rest of the book—scaling, in particular, is addressed in chapter 9—but before that, let’s have a closer look and see how these features are useful.

 1.2.5. Extending Lucene functionality

 In many use cases, users search based on multiple criteria. For example, you can search for multiple words in multiple fields;
 some criteria would be mandatory and some would be optional. One of the most appreciated features of Elasticsearch is its
 well-structured REST API: you can structure your queries in JSON to combine different types of queries in many ways. We’ll
 show you how in chapter 4, and you’ll also see how you can use filters to include or exclude results in a cheap and cacheable way. Your JSON search
 can include both queries and filters, as well as aggregations, which generate statistics from matching documents.

 Through the same REST API you can read and change many settings (as you’ll see in chapter 11), as well as the way documents are indexed.

 	

 What about Apache Solr?

 If you’ve already heard about Lucene, you’ve probably also heard about Solr, which is an open-source, distributed search engine
 based on Lucene. In fact, Lucene and Solr merged as a single Apache project in 2010, so you might wonder how Elasticsearch
 compares with Solr.

 Both search engines provide similar functionality, and features evolve quickly with each new version. You can search the web
 for comparisons, but we recommend taking them with a grain of salt. Besides being tied to particular versions, which makes
 such comparisons obsolete in a matter of months, many of them are biased for various reasons.

 That said, a few historical facts help explain the origins of the two products. Solr was created in 2004 and Elasticsearch
 in 2010. When Elasticsearch came around, its distributed model, which is discussed later in this chapter, made it much easier
 to scale out than any of its competitors, which suggests the “elastic” part of the name. In the meantime, however, Solr added
 sharding with version 4.0, which makes the “distributed” argument debatable, like many other aspects.

 At the time of this writing, Elasticsearch and Solr each have features that the other one doesn’t, and choosing between them
 may come down to the specific functionality you need at a given point in time. For many use cases, the functionality you need
 is covered by both, and, as is often the case with competitors, choosing between them becomes a matter of taste. If you want
 to read more about Solr, we recommend Solr in Action by Trey Grainger and Timothy Potter (Manning, 2014).

 	

 When it comes to the way documents are indexed, one important aspect is analysis. Through analysis, the words from the text you’re indexing become terms in Elasticsearch. For example, if you index the text “bicycle race,”
 analysis may produce the terms “bicycle,” “race,” “cycling,” and “racing,” and when you search for any of those terms, the
 corresponding document is included in the results. The same analysis process applies when you search, as illustrated in figure 1.5. If you enter “bicycle race,” you probably don’t want to search for only the exact match. Maybe a document that contains
 both those words somewhere will do.

 Figure 1.5. Analysis breaks text into words, both when you’re indexing and when you’re searching.

 [image:]

 The default analyzer first breaks text into words by looking for common word separators, such as a space or a comma. Then
 it lowercases those words, so that “Bicycle Race” generates “bicycle” and “race.” There are many more analyzers, and you can
 also build your own. We’ll show you how in chapter 5.

 At this point you might want to know more about what’s in that “indexed data” box shown in figure 1.5 because it sounds quite vague. As we’ll discuss next, data is organized in documents. By default, Elasticsearch stores your
 documents as they are, and it also puts all the terms resulting from analysis into the inverted index to enable the all-important
 fast and relevant searches. We go into more detail about indexing and storing data in chapter 3. For now, let’s take a closer look at why Elasticsearch is document-oriented and how it groups documents in types and indices.

 1.2.6. Structuring your data in Elasticsearch

 Unlike a relational database, which stores data in records or rows, Elasticsearch stores data in documents. Yet, to some extent,
 the two concepts are similar. With rows in a table, you have columns, and for each column, each row has a value. With a document
 you have keys and values, in much the same way.

 The difference is that a document is more flexible than a row, mainly because—in Elasticsearch, at least—a document can be
 hierarchical. For example, in the same way you associate a key with a string value, such as "author":"Joe", a document can have an array of strings, such as "tags":["cycling", "bicycles"], or even key-value pairs, such as "author":{"first_name":"Joe", "last_name":"Smith"}. This flexibility is important because it encourages you to keep all the data that belongs to a logical entity in the same
 document, as opposed to keeping it in different rows in different tables. For example, the easiest (and probably fastest)
 way of storing blog articles is to keep all the data that belongs to a post in the same document. This way, searches are fast
 because you don’t need joins or any other relational work.

 If you have an SQL background, you might miss the ability to use joins. Unfortunately, they’re not supported, at least in
 version 1.76 installed. Once that’s in place, you’re typically only a download away from getting Elasticsearch ready to start.

 1.2.7. Installing Java

 If you don’t have a Java Runtime Environment (JRE) already, you’ll have to install it first. Any JRE should work, as long
 as it’s version 1.7 or later. Typically, you install the one from Oracle (www.java.com/en/download/index.jsp) or the open-source implementation, OpenJDK (http://download.java.net/openjdk/).

 	

 Troubleshooting “no Java found” errors

 With Elasticsearch, as with other Java applications, it might happen that you’ve downloaded and installed Java, but the application
 refuses to start, complaining that it can’t find Java.

 Elasticsearch’s script looks for Java in two places: the JAVA_HOME environment variable and the system path. To check if it’s in JAVA_HOME, use the env command on UNIX-like systems and the set command on Windows. To check if it’s in the system path, run the following command: % java -version.

 If it works, then Java is in your path. If it doesn’t, either configure JAVA_HOME or add the Java binary to your path. The Java binary is typically found wherever you installed Java (which should be JAVA_HOME), in the bin directory.

 	

 1.2.8. Downloading and starting Elasticsearch

 With Java set up, you need to get Elasticsearch and start it. Download the package that best fits your environment. The following
 package options are available from www.elastic.co/downloads/elasticsearch: Tar, ZIP, RPM, and DEB.

Any UNIX-like operating system

 If you’re running on Linux, Mac, or any other UNIX-like operating system, you can get Elasticsearch from the tar.gz package.
 Then you can unpack it and start Elasticsearch with the shell script from the archive:

 % tar zxf elasticsearch-*.tar.gz
% cd elasticsearch-*
% bin/elasticsearch

Homebrew package manager for OS X

 If you need an easier way to install Elasticsearch on your Mac, you can install Homebrew. Instructions for doing that can
 be found at http://brew.sh. With Homebrew installed, getting Elasticsearch is a matter of running the following command:

 % brew install elasticsearch

 Then you start it in a similar way to the tar.gz archive:

 % elasticsearch

ZIP package

 If you’re running on Windows, download the ZIP archive. Unpack it and then run elasticsearch.bat from the bin/ directory,
 much as you run Elasticsearch on UNIX:

OEBPS/01fig04_alt.jpg

OEBPS/012fig01_alt.jpg

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/common02.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/common01.jpg

OEBPS/012fig02_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/cover.jpg

