

 [image: cover]

 GWT in Practice

 Robert Cooper & Charles Collins

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2008 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed elemental chlorine-free

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Andy Carroll
Typesetters: Denis Dalinnik
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – VHG – 12 11 10 09 08

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting Started

 Chapter 1. Introducing GWT

 Chapter 2. A New Kind of Client

 Chapter 3. Communicating with the Server

 2. Task-specific Issues

 Chapter 4. Core Application Structure

 Chapter 5. Other Techniques for Talking to Servers

 Chapter 6. Integrating Legacy and Third-Party Ajax Libraries

 Chapter 7. Building, Packaging, and Deploying

 Chapter 8. Testing and Continuous Integration

 3. Fully Formed Applications

 Chapter 9. Java Enterprise Reinvented

 Chapter 10. Building the Storefront

 Chapter 11. Managing Application State

 Appendix A. Notable GWT Projects

 Appendix B. Quick Reference

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting Started

 Chapter 1. Introducing GWT

 1.1. Why GWT

 1.1.1. History

 1.1.2. Why Ajax matters

 1.1.3. Leveraging the web

 1.1.4. Tooling and testing

 1.1.5. A single code base

 1.1.6. Limitations

 1.2. What GWT includes

 1.2.1. GWT compiler

 1.2.2. User Interface layer

 1.2.3. Remote Procedure Calls

 1.2.4. Additional utilities

 1.2.5. GWT shell

 1.3. GWT basics

 1.3.1. Modules and inheritance

 1.3.2. Host pages

 1.3.3. Entry point classes

 1.4. Working with the GWT shell

 1.4.1. The logging console

 1.4.2. The hosted mode browser

 1.5. Understanding the GWT compiler

 1.5.1. JavaScript output style

 1.5.2. Additional compiler nuances

 1.5.3. The compiler lifecycle

 1.6. Summary

 Chapter 2. A New Kind of Client

 2.1. Basic project structure and components

 2.1.1. Generating a project

 2.1.2. The standard directory structure

 2.1.3. GWT starting point files

 2.1.4. Host pages

 2.1.5. Modules

 2.1.6. Entry points

 2.2. Design patterns and GWT

 2.2.1. MVC and GWT

 2.2.2. Creating a widget

 2.2.3. Communicating by observing events

 2.2.4. Operator strategy

 2.2.5. Controlling the action

 2.3. Styling a GWT component

 2.3.1. Providing a CSS file

 2.3.2. Connecting style names with Java

 2.4. Running a completed project

 2.4.1. Hosted mode and the GWT shell

 2.4.2. Web mode and the GWT compiler

 2.5. Summary

 Chapter 3. Communicating with the Server

 3.1. Making GWT Remote Procedure Calls

 3.1.1. Starting the HelloServer project

 3.1.2. Defining GWT serializable data

 3.1.3. Creating RPC services

 3.1.4. Expanding on RemoteServiceServlet

 3.1.5. Calling the server from the client

 3.1.6. Troubleshooting server communication

 3.2. The development server—Tomcat Lite

 3.2.1. The web.xml file

 3.2.2. The context.xml file

 3.3. Using an external development server

 3.4. Summary

 2. Task-specific Issues

 Chapter 4. Core Application Structure

 4.1. Building a model

 Problem

 Solution

 Discussion

 4.2. Building view components

 4.2.1. Extending widgets

 4.2.2. Extending composite

 4.2.3. Binding to the model with events

 4.3. The controller and service

 4.3.1. Creating a simple controller

 4.3.2. JPA-enabling the model

 4.3.3. Creating a JPA-enabled service

 4.4. Summary

 Chapter 5. Other Techniques for Talking to Servers

 5.1. Web development methods and security

 5.1.1. Dealing with browser security

 5.1.2. Understanding XMLHttpRequest

 5.1.3. Coding asynchronously

 5.1.4. Developing GWT applications in NetBeans

 5.2. Enabling REST and POX communications

 5.2.1. Making basic HTTP requests with GWT

 5.2.2. Making advanced HTTP requests with GWT

 5.2.3. Working with XML

 5.3. Understanding Java-to-JavaScript interaction

 5.3.1. Using GWT JavaDoc annotations to serialize collections

 5.3.2. Using JSON

 5.4. Creating a cross-domain SOAP client with Flash

 5.4.1. Using Flash as a SOAP client

 5.4.2. Setting a Flash security context

 5.4.3. Drawbacks and caveats

 5.5. Incorporating applets with GWT

 5.5.1. Using Java as a SOAP client

 5.5.2. Signing JARs for security bypass

 5.6. Streaming to the browser with Comet

 Problem

 Solution

 Discussion

 5.7. Summary

 Chapter 6. Integrating Legacy and Third-Party Ajax Libraries

 6.1. A closer look at JSNI

 6.1.1. JSNI basics revisited

 6.1.2. Potential JSNI pitfalls

 6.1.3. Configuring IntelliJ IDEA

 6.2. Wrapping JavaScript libraries

 6.2.1. Creating a JavaScript module

 6.2.2. Creating wrapper classes

 6.2.3. Using the wrapped packages

 6.3. Managing GWT-JavaScript interaction

 6.3.1. Maintaining lookups

 6.3.2. Daisy-chaining Java listeners into JavaScript closures

 6.3.3. Maintaining listeners in Java

 6.3.4. Conversion between Java and JavaScript

 6.4. Wrapping JavaScript with GWT-API-Interop

 Problem

 Solution

 Discussion

 6.5. Summary

 Chapter 7. Building, Packaging, and Deploying

 7.1. Packaging GWT modules

 7.1.1. Building and packaging modules

 7.1.2. Sharing modules

 7.2. Building and deploying applications

 7.2.1. The client side

 7.2.2. The server side

 7.2.3. Manually building a WAR file

 7.3. Automating the build

 7.3.1. Extending the Ant build

 7.3.2. Using Maven

 7.4. Managing Tomcat Lite from the build

 Problem

 Solution

 Discussion

 7.5. Summary

 Chapter 8. Testing and Continuous Integration

 8.1. GWT testing

 8.1.1. Knowing what to test

 8.1.2. How GWT testing works

 8.1.3. Testing gotchas

 8.1.4. Basic GWT tests

 8.1.5. Testing outside of GWT

 8.2. Advanced testing concepts

 8.2.1. Benchmarking

 8.2.2. Remote testing

 8.2.3. Code coverage

 8.2.4. Coverage in an automated build

 8.3. Continuous integration

 8.3.1. Adding a GWT project to Hudson

 8.4. Summary

 3. Fully Formed Applications

 Chapter 9. Java Enterprise Reinvented

 9.1. Constructing two models

 9.2. Mapping to DTOs

 9.3. Wiring applications with Spring

 9.4. Constructing the client application

 9.4.1. The controller and global model

 9.4.2. The basic CRUD wrapper

 9.4.3. The BookEdit widget

 9.5. Summary

 Chapter 10. Building the Storefront

 10.1. Securing GWT applications

 10.2. Building a drag-and-drop system

 10.2.1. Enabling dragging

 10.2.2. Handling drops

 10.3. JSNI special effects

 10.4. Summary

 Chapter 11. Managing Application State

 11.1. Overview of the sample application

 11.2. Creating a basic messaging service

 11.3. Handling messages on the client and server

 11.3.1. Messages and CometEvents

 11.3.2. Streaming messages to the client

 11.3.3. Receiving images

 11.4. Recording and playing back conversations

 11.4.1. Capturing changes to the model layer

 11.4.2. Handling deep links

 11.4.3. When to use hyperlinks rather than history

 11.5. Dealing with state on the server side

 11.6. Adding a UI and cleaning up

 11.6.1. Displaying events

 11.6.2. Sending events

 11.6.3. Cleaning up

 11.7. Summary

 Appendix A. Notable GWT Projects

 GWT incubator

 GWT Google APIs

 GWTx

 GWT Tk

 GWT Widget Library

 GWT Server Library

 GWT Window Manager

 Bouwkamp GWT

 Rocket GWT

 GWT-Ext

 MyGWT

 GWT-Maven

 GWT4NB (NetBeans)

 Cypal Studio For GWT (Eclipse)

 GWT Studio (IDEA)

 Appendix B. Quick Reference

 Command-line tools (and options)

 GWTShell

 JUnitShell

 GWTCompiler

 ApplicationCreator

 ProjectCreator

 JUnitCreator

 I18NCreator

 Module descriptor elements

 Host page entries

 JRE library classes

 Serializable types

 UI components and properties

 Listener and source interfaces

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 At the Sun JavaOne conference in 2006, where GWT was first showcased, the lights immediately went on. I was in attendance,
 and I instantly understood, as did many others, what GWT creators Bruce Johnson and Joel Webber were showing the world. GWT
 was something different. It was not just another web framework at a Java conference but a new approach. An approach that embraced
 the treatment of JavaScript in the browser as the “assembly language” of the web, as Arno Puder of the XML11 project once
 put it, and that did so by starting from Java, in order to iron out some of the terrain of the browser landscape.

 I was excited about leveraging this new technology in the real world, and I brought it back to the company I worked for, where
 my longtime friend Charlie Collins also worked. There, in Atlanta, Georgia, where the GWT team is also based, we started cranking
 away on several GWT applications, some tools to help support our development (such as GWT-Maven), and a framework approach
 to using GWT. Along the way, we got involved in the GWT community on the project-issue tracker and discussion boards, we pondered
 GWT at JUG meetings, and we discussed some of the finer points with the GWT team on a few special occasions.

 Early on, I posted a series of articles about GWT online that became rather popular. That response, coupled with our practical
 knowledge of GWT and of web application design in general (having been involved in that field since the Servlet API itself
 arrived), led us to think that the time was right for a hands-on GWT “how to” book. We took the concept to several book publishers
 and decided that Manning was right for the project based on our general fondness for their books and the fact that they had
 a new “in Practice” series that they thought would be a perfect fit for our proposal.

 The rest is history, as they say. A lot of long nights and weekends, and close to two years later, GWT in Practice is an actual book! The experience we have with GWT, which is captured in the book, will be helpful whether you are new to
 GWT or you have already used GWT and are seeking some problem-solving advice. We hope this book will help you find the same
 kind of success we have had in creating impressive and successful web applications using GWT.

 ROBERT COOPER

Acknowledgments

 It may seem obvious that writing a book is no small endeavor, but it would probably also surprise a lot of people to know
 just how much work goes into the process. Although there are only two names listed on the cover of this book, a host of dedicated,
 talented professionals, working behind the scenes, made this book possible.

 We would like to thank the entire staff at Manning for making GWT in Practice a reality: publisher Marjan Bace, acquisitions editor Mike Stephens, development editor Cynthia Kane, copy editor Andy Carroll,
 as well as Mary Piergies, Karen Tegtmayer, Dottie Marisco, Elizabeth Martin, Denis Dalinnik, Ron Tomich, and Megan Yockey.

 Many reviewers also provided essential feedback. The book was honed over a series of reviews thanks to their invaluable suggestions.
 We would like to thank the following individuals for their time and effort in the review process: Martyn Fletcher, Todd Hoff,
 Devon Hillard, Jason Kolter, Adam Tacy, Robert Hanson, Andrew C. Oliver, Sandy McArthur, Carl Hume, Edmon Begoli, Eric Raymond,
 Andrew Grothe, Mark Bauer, Carlo Bottiglieri, Julian Seidenberg, Deepak Vohra, Bill Fly, Peter Pavlovich, Marcin Leszczyński
 and Massimo Perga. Special thanks to Valentin Crettaz, who did one last technical review of the final manuscript shortly before
 it went to press.

Robert Cooper

 I want to begin by dedicating this to Fraser and Leslie Wylie in congratulations on their recent nuptials. I love you both.

 Thanks to Charlie for trying to keep me honest in this effort and to Chris Adamson for prodding me to write more at every
 turn. Thanks to my friends Kevin Mitchell, Chris Drobny, and Brian Gregory for their support through this process and their
 friendship. Finally, a big thanks to the GWT team for reigniting my love for the web.

Charlie Collins

 To begin with, I would like to thank my coauthor, Robert Cooper. “Cooper,” as he is affectionately known to friends, not only
 proposed this project and brought a large part of it to fruition, but he also brought me into the fold and provided the bulk
 of my early exposure to GWT.

 I would also like to thank the open source software community in general for providing me with many of the tools and software
 applications I used to write this book, from OpenOffice, ArgoUML, Subversion, and GIMP to Apache Tomcat, Eclipse, now Java,
 and, of course, GWT itself. Many thanks go to the GWT team, all of the GWT contributors, the GWT community, and to Google.
 Not only did I enjoy writing the book, but I also appreciate working with the toolkit on a day-to-day basis and building software
 with it.

 Lastly, I want to thank my family: my wife Erin and my daughters Skylar and Delaney, who not only put up with me in general,
 but also showed incredible understanding when I had to spend yet another evening or weekend at the keyboard instead of with
 them; and my parents, who have been supportive and helpful in everything, always.

About this Book

 Welcome to GWT in Practice. This book is intended to serve as a practical field guide for developers working with the Google Web Toolkit. While it includes
 some introductory information, it is not a complete introduction to all the classes and libraries included with GWT. It is,
 however, a guide to working around common issues developers encounter when building GWT applications, and to working with
 other Java EE technologies.

 When getting started with GWT, there are a lot of things that will seem alien to traditional web developers in the Java world.
 This begins with GWT’s tooling—a specialized version of Tomcat for debugging and testing your Ajax applications—and continues
 into the design approach—an expression of the Model View Controller (MVC) pattern more akin to desktop application development
 than the web frameworks you may be familiar with. Hopefully this book will smooth the glide path for you as you move into
 development with GWT.

 GWT in Practice also looks at working with technologies you may be familiar with, but that have different usage patterns in the GWT world.
 These include using the Java Persistence API with Hibernate or TopLink, working with build tools, testing, and continuous
 integration. These are at the core of modern enterprise application development but can be problematic for new GWT developers.
 We’ll give you what you need to integrate GWT applications into your enterprise development environment.

Who should read this book

 Ajax development brings advantages to both users and application providers; GWT brings the advantages of Ajax and the benefits
 of Java to developers. This book will be of most help to Java developers coming to GWT’s style of Ajax development.

 While you don’t need to understand everything in this book to get value from it, you should have some basic experience with
 web development in a Java EE environment and some experience working with Java application servers. Obviously, a working knowledge
 of HTML and CSS is important, as is a basic understanding of the browser DOM. Some experience with JavaScript or Ajax is also
 beneficial.

 We have made an effort to cover as many tools in our examples as possible. Whether you use Eclipse, NetBeans, or IntelliJ
 IDEA to edit code, and Ant or Maven to build your projects, you will find at least one chapter that deals with your tools.
 Of course, this means many of the chapters will include discussions of tools that are not your own. We expect you to be familiar
 enough with your tooling to work around the parts you don’t care about specifically.

 You should find this book to be helpful and a good ongoing reference while you are developing your applications. If your needs
 are task-specific, chances are good that at least one or two chapters cover what you are looking for. However, if you have
 limited experience with web technologies in general, we recommend you start with GWT in Action, available from Manning as well.

Roadmap

 This book is divided into three parts. Part 1 is a quick introduction to the “GWT way,” which includes tools and concepts the rest of the book relies upon. Part 2 includes a series of practical examples laid out in a problem, solution, and discussion format. Part 3 dives into a larger hands-on sample application that puts all of the GWT pieces together.

 In chapter 1 we take a brief historical tour and explore the roots of Ajax itself, and then address why it’s important and how GWT can
 help. We also cover the basic tools and terminology involved in GWT.

 Chapter 2 starts with an exclusively client-side example that reinforces some of the basic GWT tenets and stresses a few new points,
 such as the fact that in GWT a lot more than the view exists on the client. This is where GWT differs from many other web
 toolkits—it allows a true Model View Controller (MVC) architectural approach to be used in a browser-based application.

 From there the logical step is to create a full-featured client with server resources. In chapter 3 we use GWT Remote Procedure Calls (RPCs), demonstrate what serializable types are, and show how talking to servers works
 with GWT RPC. We also cover some of the details of the GWT hosted mode development shell, which uses an embedded version of
 Apache Tomcat.

 Those first three chapters form the foundation of the book. We then move into part 2. In chapter 4, we go a bit deeper into what a canonical GWT application involves, including data binding and using the Java Persistence
 API (JPA) with GWT to persist data in a database.

 Chapter 5 concentrates on talking to servers using mechanisms other than GWT RPC. Here we discuss JavaScript-to-Java details, the usage
 of JavaScript Object Notation (JSON), browser security, and the same-origin policy. This is also where we utilize Representational
 State Transfer (REST) and XML over HTTP. We conclude by running a Simple Object Access Protocol (SOAP) example from a GWT
 client (using Flash), and incorporating applets. This chapter runs the gamut in terms of ways to expose GWT clients to data,
 and it demonstrates the flexibility you have when working with GWT in general.

 Chapter 6 then goes on to take a close look at the GWT JavaScript Native Interface (JSNI) mechanism, and the GWT-API-Interop library.
 Both of these are used to integrate existing JavaScript libraries with GWT.

 In chapter 7 we focus on building, packaging, and deploying GWT applications with both client- and server-side components. Here we discuss
 creating and sharing GWT projects as libraries and creating deployable Web Application Archive (WAR) files. This is also where
 we first touch on using an automated build with GWT, and we cover the use of both Ant and Maven.

 We put the automated build technique to further use in chapter 8, where we cover continuous integration and testing. Testing has some unique aspects in GWT, and some complications involving
 performance, code coverage, and remote testing, all of which are addressed here.

 Then we move on to the third part of the book, “Dirty Hands.” As the title of this part implies, this is where we roll up
 our sleeves and crank out some non-trivial example applications. In chapter 9 we cover the use of Data Transfer Objects (DTOs) as part of the GWT application model. Here we discuss the integration of
 server-side libraries such as Spring, and we build out an Ajax-enabled administrative CRUD (Create Read Update Delete) interface
 for a bookstore.

 In chapter 10 we continue the sample application from chapter 9 and add the user-facing storefront. We further discuss security and the concept of roles, and then we add some eye candy
 by creating a drag-and-drop system for GWT. We also discuss JSNI special effects.

 In chapter 11 we get into another sample application, this time a screen-sharing example that utilizes the Comet push technique. In this
 example, we deal with application state using the GWT history mechanism, and we also cope with state on the server side.

 Finally, we conclude the book with two appendices that provide valuable reference information. Appendix A describes many impressive third-party GWT applications or libraries that you can use to enhance or extend your own applications.
 Appendix B is a general reference that includes GWT tools and options, definitions for GWT module descriptor and host page elements,
 a list of emulated JRE classes available with GWT, a description of GWT serializable types, and a list of common user interface
 widgets and the event handling they support.

Code conventions

 In the text, the names of classes, keywords, interfaces, XML elements, code, and other code-related terms are presented in
 a monospace font. In longer code examples, some lines have been reformatted to fit within the available space on the page. Additionally, some
 lines of code were so long that they simply couldn’t be represented and we have truncated them with the [...] signifier and noted them.

 Code annotations are used in place of inline comments in the code. These highlight important concepts or areas of the code.
 Some annotations appear with numbered bullets that are referenced later in the text. The original source code also contains
 additional comments you might find of value.

Code downloads

 All the code referenced in this book is available for download from www.manning.com/GWTinPractice or www.manning.com/cooper. We expect that if you are working through the book as a practical exercise, you will download and have this code available,
 as not all the code needed to run the projects is included in the text of the book.

 Once you have unzipped the example source distribution, you will find it organized by chapter. Each chapter’s folder contains
 a readme.txt file that provides specific setup instructions or considerations for working with that code. There is also a
 top-level file that provides a detailed overview of the project layout conventions.

 The example code works for Mac, Windows, and Linux users. To get started, you should set up two environment variables: JAVA_HOME (if you don’t have it set by default), and GWT_HOME. These can be set using the set command on Windows, or export on Mac OS X or Linux.

Author Online

 The purchase of GWT in Practice includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/GWTinPractice. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of GWT in Practice is a “Janissary in Ceremonial Dress.” Janissaries were an elite corps of soldiers in the service of the Ottoman Empire, loyal
 only to the Sultan. The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1,
 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable
 to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration
 bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front
 cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Getting Started

 Chances are if you have picked up this book, you are using GWT in your applications now, or maybe you are coming to GWT for
 the first time. In chapters 1-3 we are going to make a run through the basics, and help you sidestep land mines along the way. By the time you get through
 part 1, you should be fluent in the GWT core technologies, and the application design we are going to use and reuse throughout this
 book.

 We will begin with a look at the tried-and-true Model View Controller (MVC) pattern. We are going to harp on this a lot, so
 you would be well served to see where we are coming from. If you, like many other developers, have used MVC in the context
 of web development and have done minimal desktop application development, this is an important shift in perspective. We will
 continue looking at the core GWT tools, including the compiler, the debugging shell and the utility scripts that come with
 the system. Finally we will step through the GWT Remote Procedure Call (RPC) mechanism in some detail to make sure you have
 a handle on the full suite of GWT tools and technologies. What we aren’t going to do is rehash the GWT documentation. There
 are a lot of classes for UI construction available to you, as well as a lot of utility classes, but these are best left to
 the JavaDoc. We are going to take a look at only what you need to know to get up and running smoothly in your development
 efforts.

Chapter 1. Introducing GWT

 This chapter covers

	The history and purpose of GWT

 	The components of GWT

 	GWT basics

 	Working with the GWT shell and GWT compiler

 The man of virtue makes the difficulty to be overcome his first business, and success only a subsequent consideration.

 Confucius

 Asynchronous JavaScript and XML (Ajax) development is hard. Not ascending-Everest hard, maybe not even calculating-your-taxes
 hard, but hard. This is true for a number of reasons: JavaScript can require a lot of specialized knowledge and discipline,
 browsers have slightly different implementations and feature sets, tooling is still immature, and debugging in multiple environments
 is problematic. All of these factors add up to developers needing a vast knowledge of browser oddities and tricks to build
 and manage large Ajax projects.

 To help deal with these problems, a number of toolkits and libraries have emerged. Libraries like Dojo, Script.aculo.us, Ext
 JS, and the Yahoo User Interface Library (YUI) have sought to provide enhanced core features and general ease of use to JavaScript. In addition, projects
 like Direct Web Remoting (DWR) have sought to simplify communications between the client and the server. Even more advanced techniques, like those used
 by XML11 and Echo2, create an entire rendering layer in the browser while executing application code on the server side. These
 are all valid approaches, but the Google Web Toolkit (GWT) represents something different.

 GWT is a Java to JavaScript cross-compiler. That is, it takes Java code and compiles it into JavaScript to be run in a browser,
 as figure 1.1 depicts.

 Figure 1.1. An overview of the GWT approach. Java source code is compiled into JavaScript, which is then run in a web browser as JavaScript/HTML/CSS.

 [image:]

 There are many reasons GWT was engineered to start with the statically compiled, strongly typed Java language, which has generous
 tooling and testing support, and then emits JavaScript application versions for all the major browsers in one compilation
 step. Chief among these reasons is the simple fact that JavaScript is what is available in a browser: starting from a single
 code base and generating all the required variations makes life a lot easier for the developer, and more consistent, stable,
 and performant for the user.

 Other aspects that set GWT apart include a harness for debugging Java bytecode directly as it executes in a simulated browser
 environment, a set of core UI and layout widgets with which to build applications, a Remote Procedure Call (RPC) system for handling communications with a host web server, internationalization support, and testing mechanisms.

 GWT provides a platform for creating true “Rich” Internet Applications (RIAs)—rich in the sense of allowing the client to maintain state and even perform computations locally, with a full data model,
 without requiring a trip to the server for every update to the interface. This has many advantages for both the user and the
 developer. The user gets a more responsive application, and the developer can distribute the load of the application. GWT
 also provides a rich platform in terms of a wide variety of UI elements and capabilities: sliders, reflections, drag-and-drop
 support, suggest boxes, data-bound tables, and more. This rich client platform, ultimately utilizing only HTML, JavaScript,
 and Cascading Style Sheets (CSS), still has full access, in a variety of ways, to back-end server resources when needed.

 In short, GWT makes Ajax development a lot easier. Not falling-off-a-log easy, maybe not even taking-candy-from-a-baby easy,
 but easier—and it makes Ajax applications better for users. With GWT in Practice, we hope to clarify some facets of GWT that might seem hard or confusing. Along the way, we’ll also provide practical GWT
 development advice based on real-world experience.

 If you’re a Java web developer now, you’ll need a change of perspective to build GWT applications well, and you’ll need a
 good understanding of the core GWT tools and how they work in order to fit them into your environment. If you’re an Ajax developer
 coming to Java, you’ll need a bit of indoctrination in “The Java Way.” Even if you’re currently using or experimenting with
 GWT, you may want to increase your technical bag of tricks. It’s our hope that you find all of this, and maybe even a little
 more, in this book.

1.1. Why GWT

 The quick, but wrong, answer to why GWT was created and why it’s gaining popularity is because it’s new and shiny! Though
 GWT is no SOA or ESB on the buzz-meter yet, it’s widely discussed. But does it deserve the attention and praise it receives?
 When we get past the hype, what are the reasons for its creation, and why might it make sense to use it?

 In the next few sections, we’ll address these questions and lay out the overall approach of GWT and look at why it was created,
 where it’s applicable, and why it should matter to you as a software developer (or manager). We’ll begin our discussion of
 what makes GWT significant with a brief trip back through the history of web development, and the patterns and techniques
 involved, in order to frame the concepts.

 1.1.1. History

 In the beginning, there was HTML. Originally, HTML was a semantic document markup language intended to help researchers on
 the Internet link related documents together. But soon after HTML use blossomed, forms came along. When forms were added to
 HTML, it transitioned from being strictly a document markup language to a UI design language. HTML still suffers in some ways
 from this legacy, but the ease with which it allowed web-based applications to be deployed became a driving factor in its
 use nonetheless.

 As the world of web applications began to expand, developers supporting the basic form applications on the server side repurposed
 the Model View Controller (MVC) pattern so that it centered on the server and rendered to HTML. From simple Perl scripts to
 complete frameworks, development remained on the server, and things like application state became a complex problem with complex
 solutions—involving everything from Struts to JavaServer Faces (JSF) and Seam. Although these solutions made web applications
 more capable and development easier, they didn’t provide the user experience of a full desktop-like fat client application,
 and they continued in the same render-call-render lifecycle that the web had used when forms were first added.

 When Netscape introduced JavaScript to the web browser, the browser became something more than just a simple thin client.
 It became a platform on its own, capable of running small applications entirely within the scope of a page. This approach
 was widely used for simple things, such as field validation, but its use didn’t spread to more advanced functionality until
 Microsoft introduced the XMLHttpRequest (XHR) object. This object made calls back to the server from the JavaScript environment
 easy, and the technique was soon adopted by all the major browsers. The frontiers and capabilities of web applications expanded
 even further when dynamic HTML and forms were combined with the server side via XHR, permitting only portions of browser windows
 to be redrawn. The Ajax era was born.

 1.1.2. Why Ajax matters

 Ajax changed the landscape because it finally broke the browser’s render-call-render pattern and allowed browsers to update
 without making a visible, and often slow, trip back to the server for every page view. Ajax makes even the term page a bit of a relic. With Ajax, the browser is much closer to being able to support full blown fat or rich Internet applications.

 Because GWT is Ajax and is easily extensible to new browsers, it provides a wider array of supported devices than many other
 RIA approaches. Silverlight, Flash, and the Java Applet Plugin all give developers the ability to create powerful, easy-to-use
 applications that run from a web browser, but their dependency on an environment outside of the browser means that they will
 always lag behind in deployment. GWT and other Ajax-based applications worked on Day Zero for both the Nintendo Wii and the
 iPhone, for instance. GWT’s concise browser abstraction also makes it easy to update GWT applications when new versions of
 currently supported browsers are released, requiring only a recompile of the Java to support new devices.

 Ajax is also significant in that applications that are native to the browser feel more natural to users. No matter how seamless the browser integration, there are typically some noticeable differences with
 plugin technologies. Such differences may include an install step; the treatment of browser constructs in a different manner,
 such as with bookmarks and navigation; and starkly different user interface elements compared with HTML, CSS, and JavaScript.
 GWT, and Ajax in general, is a form of RIA that embraces the parts of the web that do work well and that users are familiar
 with.

 1.1.3. Leveraging the web

 Users and developers have embraced the web because it offers centralized management and delivery, no local installation, instant
 updates to both functionality and content, and elements such as shareable bookmarks. Although the specifications that make
 up the web have needed to be adapted over the years to cope with drawbacks such as the stateless nature of HTTP, limited user
 input elements, and the render-call-render lifecycle, the advantages of the web have prevailed.

 The desirable parts of the web, coupled with the implementation difficulties, are why RIA technologies exist in the first
 place, and this includes GWT. Some of these technologies, though, may go too far in their abstraction of the web layer, hiding
 the good as well as the bad.

 GWT, happily, is designed with the web tier in mind. The centrally hosted distribution model that the web offers is fully
 leveraged, and updates to applications are transparent and seamless in this model. The URL is the application-download location,
 and the browser is the application platform. Concepts that users know and love are also present, and are intentionally not
 hidden or disabled. Browser buttons—even the infamous back button—can be put to work rather than disabled, and can do exactly
 what they’re expected to do. Bookmarks are there and, again, they work, even when deep-linked into a particular area of the
 application.

 Leveraging the parts of the web that do work well is intentional with GWT, as is GWT’s extension of the RIA landscape to provide
 tooling and testing support.

 1.1.4. Tooling and testing

 Another of the reasons GWT is significant and is different from some other RIA offerings is that it provides tooling and testing
 support. GWT includes a powerful debugging shell that allows you to test and debug your code as it interacts with the native
 browser on your platform.

 The testing support GWT provides is based on JUnit and on a few extensions the toolkit provides. Your GWT code can be tested
 as Java, from the shell. After you compile your code into JavaScript, the same test can be used again in that form by using
 further scaffolding provided by GWT. This allows you to test on various browser versions and, if desired, even on different
 platform and browser combinations.

 The Java language also comes with first-class tooling support. Invaluable tools such as code parsers like PMD, static analysis
 tools like Checkstyle and FindBugs, advanced refactoring engines available in most Java Integrated Development Environments
 (IDEs), and debuggers and profilers all function perfectly normally within the context of the GWT shell.

 Tooling support and testing facilities, which are front and center with GWT, are standard fare in traditional programming
 but aren’t as common in for client-side web technologies. Along with this support, GWT provides a great deal of help for developers
 in other areas. One of the biggest advantages GWT offers is that it helps you cope with browser differences.

 1.1.5. A single code base

 Traditionally, web development has required a doctorate in browserology in order to cope with all of the differences in behavior
 among browser types and versions, even when you’re just writing a standard web application using HTML and forms. Along with
 knowing details about multiple versions of HTML, the Document Object Model (DOM), CSS, JavaScript, and HTTP standards, developers
 have also needed to be aware of the way quirks and bugs affect each browser.

 Add XML and XHR to the mix, along with more browser differences, and you can see why Ajax development has a well-deserved
 reputation on the street as being difficult. GWT doesn’t avoid that difficulty directly, but it does encapsulate it and allow
 developers to worry about their application, rather than about the differences among browsers. GWT lets you work on a single
 code base, using Java, and then cross-compile that code into Ajax-enabled HTML and JavaScript for most of the major browser
 types and versions currently in use (Internet Explorer, Firefox, Safari, and Opera at present).

 This is a huge benefit to developers. Imagine a world where browser makers actually adhere to standards and use the latest
 standard consistently—where you, as a developer, need create only one version of your application, which will work regardless
 of the user agent. That is a fantasy, of course, but the next best thing is to write application code once and then generate
 additional code to cope with the differences in the browser environment. This gives you, in effect, the same thing—one version
 of code to write and maintain instead of multiple versions. This is what GWT aims for.

 The abstraction isn’t always perfect, but it works well most of the time. And when there is a problem—a particular browser
 version has an issue in a particular scenario—it can usually be resolved quickly with open access to the source and the expertise
 of the community (and that expertise is put back into the toolkit, so that others avoid the same problem in the future).

 1.1.6. Limitations

 Along with the potentially leaky, but undeniably extremely useful, abstraction of the web layer, GWT has a few other potential
 limitations or drawbacks you should be aware of.

 Don’t call GWT a framework (even though in places the documentation does refer to it as such). GWT hasn’t been here for years,
 and a lot of components people expect from “Framework” products aren’t there. Java web frameworks, like Struts and WebWork,
 evolved from the lessons learned in traditional Java web development. As such, they come with a style, a set of patterns,
 and expected ways of working, all of which help developers see where to begin with their applications. GWT doesn’t have that.
 When working with GWT as a developer, it’s best to think of it as an analogue to the Java Abstract Windowing Toolkit (AWT).
 It’s the basis for your application framework, not the framework itself.

 This can be considered a limitation, but it can also be seen as a well-focused starting point. GWT doesn’t try to dictate
 the development approach you’ll use; rather, it aims to provide the components you can begin with to create Ajax applications, or frameworks, on your own. Through the course
 of this book, we’ll demonstrate several patterns for development that should mitigate concerns in this area; the point here
 is that a toolkit isn’t necessarily limiting—it’s a starting point.

 One area that is a limitation with GWT is that search engines have a hard time with JavaScript. Most search engine agents
 or robots don’t speak JavaScript or know how to navigate an application that isn’t composed of simple links. This means many
 GWT resources are nonexistent as far as such search engines are concerned. Of course, this applies to all of Ajax and JavaScript
 in general, not just GWT.

 Many techniques can help you cope with this issue. Often the most useful and thorough is to have a native HTML-only version
 of your application alongside your GWT application, so that user agents that can’t load JavaScript, whether or not they’re
 search engine agents, can still access your data. The non-JavaScript version of your application need not be pretty; it should
 concentrate on core content and any degree of functionality you can provide. Be careful, though; make sure any non-JavaScript
 version of your site is an accurate representation. Providing “search engine only” content is known as cloaking, and it can get your site banned from search engine indexes.

 When viewed in total, the benefits of GWT outweigh its limitations in many, but not all, cases. Overall, GWT provides a new
 approach to building Ajax web applications—starting from a single code base, generating the variations for all the major browsers,
 embracing the concepts of the web that are already familiar to users, and providing many tools and supporting features along
 the way.

 Now that we have looked at the inspiration and reasoning behind GWT, we’ll turn to addressing exactly what GWT includes.

1.2. What GWT includes

 The Google Web Toolkit provides a number of technologies for building Ajax applications: the GWT compiler, a UI layer, an
 RPC system, several additional utilities that make the web tier easier to manage, and the GWT shell. We’ll look briefly at
 each of them now, and then we’ll step through them and highlight their usage. To begin, the compiler is at the core of GWT.

 1.2.1. GWT compiler

 The GWT Java compiler takes Java code and compiles it into JavaScript—that’s all. It has some advanced rules for doing this,
 however. By defining GWT compile tasks into modules, which we’ll cover in more detail in section 1.3, the compiler can perform more analysis on the code as it’s processed, and branch into multiple compilation artifacts for
 different output targets. This means that when compiling a class, you can specify differing implementations based on known
 parameters. The obvious switch point is the user agent or client browser you’re targeting. This feature drives the core of
 GWT’s cross-browser compatibility.

 Unlike most Ajax toolkits written in JavaScript, which have complex logic to adapt to different browser environments, GWT
 will switch out the implementation of core classes based on the user agent the compilation task is targeting. The bottom line
 is that each browser gets a lean, mean, and specific version of your application and isn’t forced to download code for all
 the other browsers your application can support. It’s through this mechanism that GWT implements a cross-browser UI toolkit.

 1.2.2. User Interface layer

 Built on top of GWT’s intelligent compilation system is a cross-browser UI layer. The real magic here comes from implementing
 the UI elements in Java and then using a browser-specific implementation of the core DOM to build out the native browser elements
 as they’re needed by the higher-level Java layer. Whereas some Ajax libraries have a lot of focus on UI widgets, GWT is intended
 to provide a core of UI functionality that users and the community can build upon.

 The GWT UI layer provides a wide variety of layout-related panels, data representation constructs such as Tree and Grid, a set of user input elements, and more. The 1.4 release of GWT began to expand the UI toolkit to include some new advanced
 elements, like a rich text editor and a suggest box. This release also started to include some great new optimized UI elements
 that draw from the power of the plugin-capable compiler, such as the ImageBundle.

 The ImageBundle takes static images in your application and merges them into a single graphic file. Then, by using the placed background
 mode in the CSS box model, it shows only the part of the large single image required at any point, as shown in figure 1.2. This means the client browser can make a single request to get all the images in your application, rather than negotiating
 multiple HTTP request-response cycles, thereby improving the startup time of your application.

 Figure 1.2. The ImageBundle merges many images into one large base image and then renders an individual image on the page by positioning the compiled
 image as a background behind a transparent view area image.

 [image:]

 In addition to the core UI foundation and the subset of UI elements provided, GWT also includes several means for communicating
 with server resources. Chief among these methods is the GWT RPC mechanism.

 1.2.3. Remote Procedure Calls

 Another GWT core feature that draws heavily from the plugin capabilities of the compiler is the RPC functionality. This system
 allows for serialization and deserialization of Java objects from server-side implementations of remote services, which can then be called asynchronously from the client.

 To do this, the compiler generates code during the compilation step to handle the serialization at a low level. Serialized
 objects are versioned and mapped at compile time. This carries with it two major advantages. First, you can guarantee the
 client and server agreement as new versions are deployed. Second, the server implementation can compress the state of Java
 objects down to arrays of JavaScript primitives. This passing of simple arrays allows for even more concise data formatting
 than JavaScript Object Notation (JSON), which many laud for its simplicity and efficiency. We’ll take a close look at the
 RPC functionality and communicating with servers in chapter 3.

 Along with its own RPC system, GWT also includes a set of additional utilities that make development for the web simpler.

 1.2.4. Additional utilities

 Beyond the approach and the core elements, GWT also includes a number of utilities that are designed to make building applications
 for the web tier easier. These include support for additional ways to communicate with servers, internationalization (i18n)
 tools, a history management system, and testing support.

 GWT provides several client-side libraries for going beyond the standard GWT RPC and instead communicating with XML and JSON-based
 services. These make it easy to integrate with many existing web APIs or to implement a completely non-Java-based backend.
 We’ll explore these techniques in more detail in chapter 5.

 There is also a compile-time-checked internationalization library that makes providing multilanguage support easy and reliable.
 This makes it not only possible, but straightforward, to internationalize your Ajax web applications. You’ll see more about
 how this system works in section 1.5 when we delve into some compiler details.

 The history management system makes bookmarking and deep-linking in your Ajax application pretty easy too. This system can
 also be overloaded when you need to seamlessly link between several deployed GWT applications. This can come in handy if you
 ever need to lazy load portions of your application for performance reasons or to reduce the initial download time (these
 occasions should be rare, because of all the other optimizations GWT provides).

 Last, but not least, there is formal testing support. GWT gives you a means to test your code by writing test cases either
 as Java or as JavaScript. We’ll cover this in more detail in chapter 8, which is devoted to testing and other aspects of code quality, such as continuous integration.

 All of the additional utilities GWT provides are aimed at making the development cycle a little easier, and a little more
 predictable, on the web tier. Along these same lines, one of the main tools GWT provides is the GWT shell.

 1.2.5. GWT shell

 All of the great features GWT includes are built on the core of the architectural approach and the GWT compiler. But wait!
 There’s more! GWT also includes a nice set of developer tools starting with the GWT shell and hosted mode browser, which is
 shown in figure 1.3.

 Figure 1.3. The GWT shell and hosted mode browser. The shell includes a hierarchical log view and a custom web browser.

 [image:]

 The GWT shell allows you to test your application in a browser while executing the native Java bytecode. This gives you the
 ability to use all your favorite Java tools to inspect your application, including profilers, step-through debugging, and
 JTI-based monitors. This hosted mode browser, with an embedded Apache Tomcat server, is also what makes it possible to test
 your compiled JavaScript with JUnit. Because the shell is so central to all GWT development projects, we’ll cover it in more
 detail in section 1.4, and we’ll use it throughout the book.

 We have looked at the reasons for the GWT architecture choices in general and at some of the tools and utilities provided.
 We’ll now turn to the basic concepts of working with GWT and getting a project started.

1.3. GWT basics

 Individual GWT projects are composed of a few key parts. We’ll briefly touch on the main components of a GWT project to familiarize
 you with the concepts that you’ll use over and over again when working with the toolkit.

 First, GWT projects are defined in terms of modules, composed of resources, configuration, and source. The module configuration
 defines compile-time information about a project and specifies resources needed at runtime. Beyond configuration, modules
 also make possible a rich inheritance mechanism. Because of this capability, projects can be complete web applications, they
 can be of a pure library nature, or they can fall anywhere in between.

 One thing a module defines is the starting point for a project’s code, known as an entry point. Entry point classes are coded in Java and are referenced by a module definition and compiled to JavaScript. Modules themselves,
 and the entry points they define, are invoked through a <script> reference on an HTML page, known as a host page. Host pages invoke GWT projects and also support a few special <meta> tags that can be used to tweak things. At a high level, these are the three main components of a GWT project: a module configuration
 file, an entry point class, and an HTML host page.

