

inside front cover

List of Patterns

 Application architecture patterns

 Monolithic architecture (40)

 Microservice architecture (40)

 Decomposition patterns

 Decompose by business capability (51)

 Decompose by subdomain (54)

 Messaging style patterns

 Messaging (85)

 Remote procedure invocation (72)

 Reliable communications patterns

 Circuit breaker (78)

 Service discovery patterns

 3rd party registration (85)

 Client-side discovery (83)

 Self-registration (82)

 Server-side discovery (85)

 Transactional messaging patterns

 Polling publisher (98)

 Transaction log tailing (99)

 Transactional outbox (98)

 Data consistency patterns

 Saga (114)

 Business logic design patterns

 Aggregate (150)

 Domain event (160)

 Domain model (150)

 Event sourcing (184)

 Transaction script (149)

 Querying patterns

 API composition (223)

 Command query responsibility segregation (228)

 External API patterns

 API gateway (259)

 Backends for frontends (265)

 Testing patterns

 Consumer-driven contract test (302)

 Consumer-side contract test (303)

 Service component test (335)

 Security patterns

 Access token (354)

 Cross-cutting concerns patterns

 Externalized configuration (361)

 Microservice chassis (379)

 Observability patterns

 Application metrics (373)

 Audit logging (377)

 Distributed tracing (370)

 Exception tracking (376)

 Health check API (366)

 Log aggregation (368)

 Deployment patterns

 Deploy a service as a container (393)

 Deploy a service as a VM (390)

 Language-specific packaging format (387)

 Service mesh (380)

 Serverless deployment (416)

 Sidecar (410)

 Refactoring to microservices patterns

 Anti-corruption layer (447)

 Strangler application (432)

 Microservices Patterns

 Chris Richardson

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Chris Richardson. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
Technical development editor: Christian Mennerich
Review editor: Aleksandar Dragosavljević
Project editor: Lori Weidert
Copy editor: Corbin Collins
Proofreader: Alyson Brener
Technical proofreader: Andy Miles
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617294549

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Dedication

 Where you see wrong or inequality or injustice, speak out, because this is your country. This is your democracy. Make it. Protect it. Pass it on.

 Thurgood Marshall, Justice of the Supreme Court

 Brief Table of Contents

 Chapter 1. Escaping monolithic hell

 Chapter 2. Decomposition strategies

 Chapter 3. Interprocess communication in a microservice architecture

 Chapter 4. Managing transactions with sagas

 Chapter 5. Designing business logic in a microservice architecture

 Chapter 6. Developing business logic with event sourcing

 Chapter 7. Implementing queries in a microservice architecture

 Chapter 8. External API patterns

 Chapter 9. Testing microservices: Part 1

 Chapter 10. Testing microservices: Part 2

 Chapter 11. Developing production-ready services

 Chapter 12. Deploying microservices

 Chapter 13. Refactoring to microservices

 Table of Contents

 Front matter

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 Chapter 1. Escaping monolithic hell

 1.1. The slow march toward monolithic hell

 1.1.1. The architecture of the FTGO application

 1.1.2. The benefits of the monolithic architecture

 1.1.3. Living in monolithic hell

 1.2. Why this book is relevant to you

 1.3. What you’ll learn in this book

 1.4. Microservice architecture to the rescue

 1.4.1. Scale cube and microservices

 1.4.2. Microservices as a form of modularity

 1.4.3. Each service has its own database

 1.4.4. The FTGO microservice architecture

 1.4.5. Comparing the microservice architecture and SOA

 1.5. Benefits and drawbacks of the microservice architecture

 1.5.1. Benefits of the microservice architecture

 1.5.2. Drawbacks of the microservice architecture

 1.6. The Microservice architecture pattern language

 1.6.1. Microservice architecture is not a silver bullet

 1.6.2. Patterns and pattern languages

 1.6.3. Overview of the Microservice architecture pattern language

 1.7. Beyond microservices: Process and organization

 1.7.1. Software development and delivery organization

 1.7.2. Software development and delivery process

 1.7.3. The human side of adopting microservices

 Summary

 Chapter 2. Decomposition strategies

 2.1. What is the microservice architecture exactly?

 2.1.1. What is software architecture and why does it matter?

 2.1.2. Overview of architectural styles

 2.1.3. The microservice architecture is an architectural style

 2.2. Defining an application’s microservice architecture

 2.2.1. Identifying the system operations

 2.2.2. Defining services by applying the Decompose by business capability pattern

 2.2.3. Defining services by applying the Decompose by sub-domain pattern

 2.2.4. Decomposition guidelines

 2.2.5. Obstacles to decomposing an application into services

 2.2.6. Defining service APIs

 Summary

 Chapter 3. Interprocess communication in a microservice architecture

 3.1. Overview of interprocess communication in a microservice architecture

 3.1.1. Interaction styles

 3.1.2. Defining APIs in a microservice architecture

 3.1.3. Evolving APIs

 3.1.4. Message formats

 3.2. Communicating using the synchronous Remote procedure invocation pattern

 3.2.1. Using REST

 3.2.2. Using gRPC

 3.2.3. Handling partial failure using the Circuit breaker pattern

 3.2.4. Using service discovery

 3.3. Communicating using the Asynchronous messaging pattern

 3.3.1. Overview of messaging

 3.3.2. Implementing the interaction styles using messaging

 3.3.3. Creating an API specification for a messaging-based service API

 3.3.4. Using a message broker

 3.3.5. Competing receivers and message ordering

 3.3.6. Handling duplicate messages

 3.3.7. Transactional messaging

 3.3.8. Libraries and frameworks for messaging

 3.4. Using asynchronous messaging to improve availability

 3.4.1. Synchronous communication reduces availability

 3.4.2. Eliminating synchronous interaction

 Summary

 Chapter 4. Managing transactions with sagas

 4.1. Transaction management in a microservice architecture

 4.1.1. The need for distributed transactions in a microservice architecture

 4.1.2. The trouble with distributed transactions

 4.1.3. Using the Saga pattern to maintain data consistency

 4.2. Coordinating sagas

 4.2.1. Choreography-based sagas

 4.2.2. Orchestration-based sagas

 4.3. Handling the lack of isolation

 4.3.1. Overview of anomalies

 4.3.2. Countermeasures for handling the lack of isolation

 4.4. The design of the Order Service and the Create Order Saga

 4.4.1. The OrderService class

 4.4.2. The implementation of the Create Order Saga

 4.4.3. The OrderCommandHandlers class

 4.4.4. The OrderServiceConfiguration class

 Summary

 Chapter 5. Designing business logic in a microservice architecture

 5.1. Business logic organization patterns

 5.1.1. Designing business logic using the Transaction script pattern

 5.1.2. Designing business logic using the Domain model pattern

 5.1.3. About Domain-driven design

 5.2. Designing a domain model using the DDD aggregate pattern

 5.2.1. The problem with fuzzy boundaries

 5.2.2. Aggregates have explicit boundaries

 5.2.3. Aggregate rules

 5.2.4. Aggregate granularity

 5.2.5. Designing business logic with aggregates

 5.3. Publishing domain events

 5.3.1. Why publish change events?

 5.3.2. What is a domain event?

 5.3.3. Event enrichment

 5.3.4. Identifying domain events

 5.3.5. Generating and publishing domain events

 5.3.6. Consuming domain events

 5.4. Kitchen Service business logic

 5.4.1. The Ticket aggregate

 5.5. Order Service business logic

 5.5.1. The Order Aggregate

 5.5.2. The OrderService class

 Summary

 Chapter 6. Developing business logic with event sourcing

 6.1. Developing business logic using event sourcing

 6.1.1. The trouble with traditional persistence

 6.1.2. Overview of event sourcing

 6.1.3. Handling concurrent updates using optimistic locking

 6.1.4. Event sourcing and publishing events

 6.1.5. Using snapshots to improve performance

 6.1.6. Idempotent message processing

 6.1.7. Evolving domain events

 6.1.8. Benefits of event sourcing

 6.1.9. Drawbacks of event sourcing

 6.2. Implementing an event store

 6.2.1. How the Eventuate Local event store works

 6.2.2. The Eventuate client framework for Java

 6.3. Using sagas and event sourcing together

 6.3.1. Implementing choreography-based sagas using event sourcing

 6.3.2. Creating an orchestration-based saga

 6.3.3. Implementing an event sourcing-based saga participant

 6.3.4. Implementing saga orchestrators using event sourcing

 Summary

 Chapter 7. Implementing queries in a microservice architecture

 7.1. Querying using the API composition pattern

 7.1.1. The findOrder() query operation

 7.1.2. Overview of the API composition pattern

 7.1.3. Implementing the findOrder() query operation using the API composition pattern

 7.1.4. API composition design issues

 7.1.5. The benefits and drawbacks of the API composition pattern

 7.2. Using the CQRS pattern

 7.2.1. Motivations for using CQRS

 7.2.2. Overview of CQRS

 7.2.3. The benefits of CQRS

 7.2.4. The drawbacks of CQRS

 7.3. Designing CQRS views

 7.3.1. Choosing a view datastore

 7.3.2. Data access module design

 7.3.3. Adding and updating CQRS views

 7.4. Implementing a CQRS view with AWS DynamoDB

 7.4.1. The OrderHistoryEventHandlers module

 7.4.2. Data modeling and query design with DynamoDB

 7.4.3. The OrderHistoryDaoDynamoDb class

 Summary

 Chapter 8. External API patterns

 8.1. External API design issues

 8.1.1. API design issues for the FTGO mobile client

 8.1.2. API design issues for other kinds of clients

 8.2. The API gateway pattern

 8.2.1. Overview of the API gateway pattern

 8.2.2. Benefits and drawbacks of an API gateway

 8.2.3. Netflix as an example of an API gateway

 8.2.4. API gateway design issues

 8.3. Implementing an API gateway

 8.3.1. Using an off-the-shelf API gateway product/service

 8.3.2. Developing your own API gateway

 8.3.3. Implementing an API gateway using GraphQL

 Summary

 Chapter 9. Testing microservices: Part 1

 9.1. Testing strategies for microservice architectures

 9.1.1. Overview of testing

 9.1.2. The challenge of testing microservices

 9.1.3. The deployment pipeline

 9.2. Writing unit tests for a service

 9.2.1. Developing unit tests for entities

 9.2.2. Writing unit tests for value objects

 9.2.3. Developing unit tests for sagas

 9.2.4. Writing unit tests for domain services

 9.2.5. Developing unit tests for controllers

 9.2.6. Writing unit tests for event and message handlers

 Summary

 Chapter 10. Testing microservices: Part 2

 10.1. Writing integration tests

 10.1.1. Persistence integration tests

 10.1.2. Integration testing REST-based request/response style interactions

 10.1.3. Integration testing publish/subscribe-style interactions

 10.1.4. Integration contract tests for asynchronous request/response interactions

 10.2. Developing component tests

 10.2.1. Defining acceptance tests

 10.2.2. Writing acceptance tests using Gherkin

 10.2.3. Designing component tests

 10.2.4. Writing component tests for the FTGO Order Service

 10.3. Writing end-to-end tests

 10.3.1. Designing end-to-end tests

 10.3.2. Writing end-to-end tests

 10.3.3. Running end-to-end tests

 Summary

 Chapter 11. Developing production-ready services

 11.1. Developing secure services

 11.1.1. Overview of security in a traditional monolithic application

 11.1.2. Implementing security in a microservice architecture

 11.2. Designing configurable services

 11.2.1. Using push-based externalized configuration

 11.2.2. Using pull-based externalized configuration

 11.3. Designing observable services

 11.3.1. Using the Health check API pattern

 11.3.2. Applying the Log aggregation pattern

 11.3.3. Using the Distributed tracing pattern

 11.3.4. Applying the Application metrics pattern

 11.3.5. Using the Exception tracking pattern

 11.3.6. Applying the Audit logging pattern

 11.4. Developing services using the Microservice chassis pattern

 11.4.1. Using a microservice chassis

 11.4.2. From microservice chassis to service mesh

 Summary

 Chapter 12. Deploying microservices

 12.1. Deploying services using the Language-specific packaging format pattern

 12.1.1. Benefits of the Service as a language-specific package pattern

 12.1.2. Drawbacks of the Service as a language-specific package pattern

 12.2. Deploying services using the Service as a virtual machine pattern

 12.2.1. The benefits of deploying services as VMs

 12.2.2. The drawbacks of deploying services as VMs

 12.3. Deploying services using the Service as a container pattern

 12.3.1. Deploying services using Docker

 12.3.2. Benefits of deploying services as containers

 12.3.3. Drawbacks of deploying services as containers

 12.4. Deploying the FTGO application with Kubernetes

 12.4.1. Overview of Kubernetes

 12.4.2. Deploying the Restaurant service on Kubernetes

 12.4.3. Deploying the API gateway

 12.4.4. Zero-downtime deployments

 12.4.5. Using a service mesh to separate deployment from release

 12.5. Deploying services using the Serverless deployment pattern

 12.5.1. Overview of serverless deployment with AWS Lambda

 12.5.2. Developing a lambda function

 12.5.3. Invoking lambda functions

 12.5.4. Benefits of using lambda functions

 12.5.5. Drawbacks of using lambda functions

 12.6. Deploying a RESTful service using AWS Lambda and AWS Gateway

 12.6.1. The design of the AWS Lambda version of Restaurant Service

 12.6.2. Packaging the service as ZIP file

 12.6.3. Deploying lambda functions using the Serverless framework

 Summary

 Chapter 13. Refactoring to microservices

 13.1. Overview of refactoring to microservices

 13.1.1. Why refactor a monolith?

 13.1.2. Strangling the monolith

 13.2. Strategies for refactoring a monolith to microservices

 13.2.1. Implement new features as services

 13.2.2. Separate presentation tier from the backend

 13.2.3. Extract business capabilities into services

 13.3. Designing how the service and the monolith collaborate

 13.3.1. Designing the integration glue

 13.3.2. Maintaining data consistency across a service and a monolith

 13.3.3. Handling authentication and authorization

 13.4. Implementing a new feature as a service: handling misdelivered orders

 13.4.1. The design of Delayed Delivery Service

 13.4.2. Designing the integration glue for Delayed Delivery Service

 13.5. Breaking apart the monolith: extracting delivery management

 13.5.1. Overview of existing delivery management functionality

 13.5.2. Overview of Delivery Service

 13.5.3. Designing the Delivery Service domain model

 13.5.4. The design of the Delivery Service integration glue

 13.5.5. Changing the FTGO monolith to interact with Delivery Service

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

 Front matter

Preface

 One of my favorite quotes is

 The future is already here—it’s just not very evenly distributed.

 William Gibson, science fiction author

 The essence of that quote is that new ideas and technology take a while to diffuse through a community and become widely adopted. A good example of the slow diffusion of ideas is the story of how I discovered microservices. It began in 2006, when, after being inspired by a talk given by an AWS evangelist, I started down a path that ultimately led to my creating the original Cloud Foundry. (The only thing in common with today’s Cloud Foundry is the name.) Cloud Foundry was a Platform-as-a-Service (PaaS) for automating the deployment of Java applications on EC2. Like every other enterprise Java application that I’d built, my Cloud Foundry had a monolith architecture consisting of a single Java Web Application Archive (WAR) file.

 Bundling a diverse and complex set of functions such as provisioning, configuration, monitoring, and management into a monolith created both development and operations challenges. You couldn’t, for example, change the UI without testing and redeploying the entire application. And because the monitoring and management component relied on a Complex Event Processing (CEP) engine which maintained in-memory state we couldn’t run multiple instances of the application! That’s embarrassing to admit, but all I can say is that I am a software developer, and, “let he who is without sin cast the first stone.”

 Clearly, the application had quickly outgrown its monolith architecture, but what was the alternative? The answer had been out in the software community for some time at companies such as eBay and Amazon. Amazon had, for example, started to migrate away from the monolith around 2002 (https://plus.google.com/110981030061712822816/posts/AaygmbzVeRq). The new architecture replaced the monolith with a collection of loosely coupled services. Services are owned by what Amazon calls two-pizza teams—teams small enough to be fed by two pizzas.

 Amazon had adopted this architecture to accelerate the rate of software development so that the company could innovate faster and compete more effectively. The results are impressive: Amazon reportedly deploys changes into production every 11.6 seconds!

 In early 2010, after I’d moved on to other projects, the future of software architecture finally caught up with me. That’s when I read the book The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise (Addison-Wesley Professional, 2009) by Michael T. Fisher and Martin L. Abbott. A key idea in that book is the scale cube, which, as described in chapter 2, is a three-dimensional model for scaling an application. The Y-axis scaling defined by the scale cube functionally decomposes an application into services. In hindsight, this was quite obvious, but for me at the time, it was an a-ha moment! I could have solved the challenges I was facing two years earlier by architecting Cloud Foundry as a set of services!

 In April 2012, I gave my first talk on this architectural approach, called “Decomposing Applications of Deployability and Scalability” (www.slideshare.net/chris.e.richardson/decomposing-applications-for-scalability-and-deployability-april-2012). At the time, there wasn’t a generally accepted term for this kind of architecture. I sometimes called it modular, polyglot architecture, because the services could be written in different languages.

 But in another example of how the future is unevenly distributed, the term microservice was used at a software architecture workshop in 2011 to describe this kind of architecture (https://en.wikipedia.org/wiki/Microservices). I first encountered the term when I heard Fred George give a talk at Oredev 2013, and I liked it!

 In January 2014, I created the https://microservices.io website to document architecture and design patterns that I had encountered. Then in March 2014, James Lewis and Martin Fowler published a blog post about microservices (https://martinfowler.com/articles/microservices.html). By popularizing the term microservices, the blog post caused the software community to consolidate around the concept.

 The idea of small, loosely coupled teams, rapidly and reliably developing and delivering microservices is slowly diffusing through the software community. But it’s likely that this vision of the future is quite different from your daily reality. Today, business-critical enterprise applications are typically large monoliths developed by large teams. Software releases occur infrequently and are often painful for everyone involved. IT often struggles to keep up with the needs of the business. You’re wondering how on earth you can adopt the microservice architecture.

 The goal of this book is to answer that question. It will give you a good understanding of the microservice architecture, its benefits and drawbacks, and when to use it. The book describes how to solve the numerous design challenges you’ll face, including how to manage distributed data. It also covers how to refactor a monolithic application to a microservice architecture. But this book is not a microservices manifesto. Instead, it’s organized around a collection of patterns. A pattern is a reusable solution to a problem that occurs in a particular context. The beauty of a pattern is that besides describing the benefits of the solution, it also describes the drawbacks and the issues you must address in order to successfully implement a solution. In my experience, this kind of objectivity when thinking about solutions leads to much better decision making. I hope you’ll enjoy reading this book and that it teaches you how to successfully develop microservices.

Acknowledgments

 Although writing is a solitary activity, it takes a large number of people to turn rough drafts into a finished book.

 First, I want to thank Erin Twohey and Michael Stevens from Manning for their persistent encouragement to write another book. I would also like to thank my development editors, Cynthia Kane and Marina Michaels. Cynthia Kane got me started and worked with me on the first few chapters. Marina Michaels took over from Cynthia and worked with me to the end. I’ll be forever grateful for Marina’s meticulous and constructive critiques of my chapters. And I want to thank the rest of the Manning team who’s been involved in getting this book published.

 I’d like to thank my technical development editor, Christian Mennerich, my technical proofreader, Andy Miles, and all my external reviewers: Andy Kirsch, Antonio Pessolano, Areg Melik-Adamyan, Cage Slagel, Carlos Curotto, Dror Helper, Eros Pedrini, Hugo Cruz, Irina Romanenko, Jesse Rosalia, Joe Justesen, John Guthrie, Keerthi Shetty, Michele Mauro, Paul Grebenc, Pethuru Raj, Potito Coluccelli, Shobha Iyer, Simeon Leyzerzon, Srihari Sridharan, Tim Moore, Tony Sweets, Trent Whiteley, Wes Shaddix, William E. Wheeler, and Zoltan Hamori.

 I also want to thank everyone who purchased the MEAP and provided feedback in the forum or to me directly.

 I want to thank the organizers and attendees of all of the conferences and meetups at which I’ve spoken for the chance to present and revise my ideas. And I want to thank my consulting and training clients around the world for giving me the opportunity to help them put my ideas into practice.

 I want to thank my colleagues Andrew, Valentin, Artem, and Stanislav at Eventuate, Inc., for their contributions to the Eventuate product and open source projects.

 Finally, I’d like to thank my wife, Laura, and my children, Ellie, Thomas, and Janet for their support and understanding over the last 18 months. While I’ve been glued to my laptop, I’ve missed out on going to Ellie’s soccer games, watching Thomas learning to fly on his flight simulator, and trying new restaurants with Janet.

 Thank you all!

About this book

 The goal of this book is to teach you how to successfully develop applications using the microservice architecture.

 Not only does it discuss the benefits of the microservice architecture, it also describes the drawbacks. You’ll learn when you should consider using the monolithic architecture and when it makes sense to use microservices.

Who should read this book

 The focus of this book is on architecture and development. It’s meant for anyone responsible for developing and delivering software, such as developers, architects, CTOs, or VPs of engineering.

 The book focuses on explaining the microservice architecture patterns and other concepts. My goal is for you to find this material accessible, regardless of the technology stack you use. You only need to be familiar with the basics of enterprise application architecture and design. In particular, you need to understand concepts like three-tier architecture, web application design, relational databases, interprocess communication using messaging and REST, and the basics of application security. The code examples, though, use Java and the Spring framework. In order to get the most out of them, you should be familiar with the Spring framework.

Roadmap

 This book consists of 13 chapters:

 	
Chapter 1 describes the symptoms of monolithic hell, which occurs when a monolithic application outgrows its architecture, and advises on how to escape by adopting the microservice architecture. It also provides an overview of the microservice architecture pattern language, which is the organizing theme for most of the book.

 	
Chapter 2 explains why software architecture is important and describes the patterns you can use to decompose an application into a collection of services. It also explains how to overcome the various obstacles you typically encounter along the way.

 	
Chapter 3 describes the different patterns for robust, interprocess communication in a microservice architecture. It explains why asynchronous, message-based communication is often the best choice.

 	
Chapter 4 explains how to maintain data consistency across services by using the Saga pattern. A saga is a sequence of local transactions coordinated using asynchronous messaging.

 	
Chapter 5 describes how to design the business logic for a service using the domain-driven design (DDD) Aggregate and Domain event patterns.

 	
Chapter 6 builds on chapter 5 and explains how to develop business logic using the Event sourcing pattern, an event-centric way to structure the business logic and persist domain objects.

 	
Chapter 7 describes how to implement queries that retrieve data scattered across multiple services by using either the API composition pattern or the Command query responsibility segregation (CQRS) pattern.

 	
Chapter 8 covers the external API patterns for handling requests from a diverse collection of external clients, such as mobile applications, browser-based JavaScript applications, and third-party applications.

 	
Chapter 9 is the first of two chapters on automated testing techniques for microservices. It introduces important testing concepts such as the test pyramid, which describes the relative proportions of each type of test in your test suite. It also shows how to write unit tests, which form the base of the testing pyramid.

 	
Chapter 10 builds on chapter 9 and describes how to write other types of tests in the test pyramid, including integration tests, consumer contract tests, and component tests.

 	
Chapter 11 covers various aspects of developing production-ready services, including security, the Externalized configuration pattern, and the service observability patterns. The service observability patterns include Log aggregation, Application metrics, and Distributed tracing.

 	
Chapter 12 describes the various deployment patterns that you can use to deploy services, including virtual machines, containers, and serverless. It also discusses the benefits of using a service mesh, a layer of networking software that mediates communication in a microservice architecture.

 	
Chapter 13 explains how to incrementally refactor a monolithic architecture to a microservice architecture by applying the Strangler application pattern: implementing new features as services and extracting modules out of the monolith and converting them to services.

 As you progress through these chapters, you’ll learn about different aspects of the microservice architecture.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code. In many cases, the original source code has been reformatted; the publisher has added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Every chapter, except chapters 1, 2, and 13, contains code from the companion example application. You can find the code for this application in a GitHub repository: https://github.com/microservices-patterns/ftgo-application.

Book forum

 The purchase of Microservices Patterns includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, share your solutions to exercises, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to https://forums.manning.com/forums/microservices-patterns. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Another great resource for learning the microservice architecture is my website http://microservices.io.

 Not only does it contain the complete pattern language, it also has links to other resources such as articles, presentations, and example code.

About the author

 Chris Richardson is a developer and architect. He is a Java Champion, a JavaOne rock star, and the author of POJOs in Action (Manning, 2006), which describes how to build enterprise Java applications with frameworks such as Spring and Hibernate.

 Chris was also the founder of the original CloudFoundry.com, an early Java PaaS for Amazon EC2.

 Today, he is a recognized thought leader in microservices and speaks regularly at international conferences. Chris is the creator of Microservices.io, a pattern language for microservices. He provides microservices consulting and training to organizations around the world that are adopting the microservice architecture. Chris is working on his third startup: Eventuate.io, an application platform for developing transactional microservices.

About the cover illustration

 Jefferys

 The figure on the cover of Microservices Patterns is captioned “Habit of a Morisco Slave in 1568.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

 Chapter 1. Escaping monolithic hell

 This chapter covers:

 	The symptoms of monolithic hell and how to escape it by adopting the microservice architecture

 	The essential characteristics of the microservice architecture and its benefits and drawbacks

 	How microservices enable the DevOps style of development of large, complex applications

 	The microservice architecture pattern language and why you should use it

 It was only Monday lunchtime, but Mary, the CTO of Food to Go, Inc. (FTGO), was already feeling frustrated. Her day had started off really well. She had spent the previous week with other software architects and developers at an excellent conference learning about the latest software development techniques, including continuous deployment and the microservice architecture. Mary had also met up with her former computer science classmates from North Carolina A&T State and shared technology leadership war stories. The conference had left her feeling empowered and eager to improve how FTGO develops software.

 Unfortunately, that feeling had quickly evaporated. She had just spent the first morning back in the office in yet another painful meeting with senior engineering and business people. They had spent two hours discussing why the development team was going to miss another critical release date. Sadly, this kind of meeting had become increasingly common over the past few years. Despite adopting agile, the pace of development was slowing down, making it next to impossible to meet the business’s goals. And, to make matters worse, there didn’t seem to be a simple solution.

 The conference had made Mary realize that FTGO was suffering from a case of monolithic hell and that the cure was to adopt the microservice architecture. But the microservice architecture and the associated state-of-the-art software development practices described at the conference felt like an elusive dream. It was unclear to Mary how she could fight today’s fires while simultaneously improving the way software was developed at FTGO.

 Fortunately, as you will learn in this book, there is a way. But first, let’s look at the problems that FTGO is facing and how they got there.

1.1. The slow march toward monolithic hell

 Since its launch in late 2005, FTGO had grown by leaps and bounds. Today, it’s one of the leading online food delivery companies in the United States. The business even plans to expand overseas, although those plans are in jeopardy because of delays in implementing the necessary features.

 At its core, the FTGO application is quite simple. Consumers use the FTGO website or mobile application to place food orders at local restaurants. FTGO coordinates a network of couriers who deliver the orders. It’s also responsible for paying couriers and restaurants. Restaurants use the FTGO website to edit their menus and manage orders. The application uses various web services, including Stripe for payments, Twilio for messaging, and Amazon Simple Email Service (SES) for email.

 Like many other aging enterprise applications, the FTGO application is a monolith, consisting of a single Java Web Application Archive (WAR) file. Over the years, it has become a large, complex application. Despite the best efforts of the FTGO development team, it’s become an example of the Big Ball of Mud pattern (www.laputan.org/mud/). To quote Foote and Yoder, the authors of that pattern, it’s a “haphazardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle.” The pace of software delivery has slowed. To make matters worse, the FTGO application has been written using some increasingly obsolete frameworks. The FTGO application is exhibiting all the symptoms of monolithic hell.

 The next section describes the architecture of the FTGO application. Then it talks about why the monolithic architecture worked well initially. We’ll get into how the FTGO application has outgrown its architecture and how that has resulted in monolithic hell.

 1.1.1. The architecture of the FTGO application

 FTGO is a typical enterprise Java application. Figure 1.1 shows its architecture. The FTGO application has a hexagonal architecture, which is an architectural style described in more detail in chapter 2. In a hexagonal architecture, the core of the application consists of the business logic. Surrounding the business logic are various adapters that implement UIs and integrate with external systems.

 Figure 1.1. The FTGO application has a hexagonal architecture. It consists of business logic surrounded by adapters that implement UIs and interface with external systems, such as mobile applications and cloud services for payments, messaging, and email.

 [image:]

 The business logic consists of modules, each of which is a collection of domain objects. Examples of the modules include Order Management, Delivery Management, Billing, and Payments. There are several adapters that interface with the external systems. Some are inbound adapters, which handle requests by invoking the business logic, including the REST API and Web UI adapters. Others are outbound adapters, which enable the business logic to access the MySQL database and invoke cloud services such as Twilio and Stripe.

 Despite having a logically modular architecture, the FTGO application is packaged as a single WAR file. The application is an example of the widely used monolithic style of software architecture, which structures a system as a single executable or deployable component. If the FTGO application were written in the Go language (GoLang), it would be a single executable. A Ruby or NodeJS version of the application would be a single directory hierarchy of source code. The monolithic architecture isn’t inherently bad. The FTGO developers made a good decision when they picked monolithic architecture for their application.

 1.1.2. The benefits of the monolithic architecture

 In the early days of FTGO, when the application was relatively small, the application’s monolithic architecture had lots of benefits:

 	
Simple to develop—IDEs and other developer tools are focused on building a single application.

 	
Easy to make radical changes to the application—You can change the code and the database schema, build, and deploy.

 	
Straightforward to test—The developers wrote end-to-end tests that launched the application, invoked the REST API, and tested the UI with Selenium.

 	
Straightforward to deploy—All a developer had to do was copy the WAR file to a server that had Tomcat installed.

 	
Easy to scale—FTGO ran multiple instances of the application behind a load balancer.

 Over time, though, development, testing, deployment, and scaling became much more difficult. Let’s look at why.

 1.1.3. Living in monolithic hell

 Unfortunately, as the FTGO developers have discovered, the monolithic architecture has a huge limitation. Successful applications like the FTGO application have a habit of outgrowing the monolithic architecture. Each sprint, the FTGO development team implemented a few more stories, which made the code base larger. Moreover, as the company became more successful, the size of the development team steadily grew. Not only did this increase the growth rate of the code base, it also increased the management overhead.

 As figure 1.2 shows, the once small, simple FTGO application has grown over the years into a monstrous monolith. Similarly, the small development team has now become multiple Scrum teams, each of which works on a particular functional area. As a result of outgrowing its architecture, FTGO is in monolithic hell. Development is slow and painful. Agile development and deployment is impossible. Let’s look at why this has happened.

 Figure 1.2. A case of monolithic hell. The large FTGO developer team commits their changes to a single source code repository. The path from code commit to production is long and arduous and involves manual testing. The FTGO application is large, complex, unreliable, and difficult to maintain.

 [image:]

 Complexity intimidates developers

 A major problem with the FTGO application is that it’s too complex. It’s too large for any developer to fully understand. As a result, fixing bugs and correctly implementing new features have become difficult and time consuming. Deadlines are missed.

 To make matters worse, this overwhelming complexity tends to be a downward spiral. If the code base is difficult to understand, a developer won’t make changes correctly. Each change makes the code base incrementally more complex and harder to understand. The clean, modular architecture shown earlier in figure 1.1 doesn’t reflect reality. FTGO is gradually becoming a monstrous, incomprehensible, big ball of mud.

 Mary remembers recently attending a conference where she met a developer who was writing a tool to analyze the dependencies between the thousands of JARs in their multimillion lines-of-code (LOC) application. At the time, that tool seemed like something FTGO could use. Now she’s not so sure. Mary suspects a better approach is to migrate to an architecture that is better suited to a complex application: microservices.

 Development is slow

 As well as having to fight overwhelming complexity, FTGO developers find day-to-day development tasks slow. The large application overloads and slows down a developer’s IDE. Building the FTGO application takes a long time. Moreover, because it’s so large, the application takes a long time to start up. As a result, the edit-build-run-test loop takes a long time, which badly impacts productivity.

 Path from commit to deployment is long and arduous

 Another problem with the FTGO application is that deploying changes into production is a long and painful process. The team typically deploys updates to production once a month, usually late on a Friday or Saturday night. Mary keeps reading that the state-of-the-art for Software-as-a-Service (SaaS) applications is continuous deployment: deploying changes to production many times a day during business hours. Apparently, as of 2011, Amazon.com deployed a change into production every 11.6 seconds without ever impacting the user! For the FTGO developers, updating production more than once a month seems like a distant dream. And adopting continuous deployment seems next to impossible.

 FTGO has partially adopted agile. The engineering team is divided into squads and uses two-week sprints. Unfortunately, the journey from code complete to running in production is long and arduous. One problem with so many developers committing to the same code base is that the build is frequently in an unreleasable state. When the FTGO developers tried to solve this problem by using feature branches, their attempt resulted in lengthy, painful merges. Consequently, once a team completes its sprint, a long period of testing and code stabilization follows.

 Another reason it takes so long to get changes into production is that testing takes a long time. Because the code base is so complex and the impact of a change isn’t well understood, developers and the Continuous Integration (CI) server must run the entire test suite. Some parts of the system even require manual testing. It also takes a while to diagnose and fix the cause of a test failure. As a result, it takes a couple of days to complete a testing cycle.

 Scaling is difficult

 The FTGO team also has problems scaling its application. That’s because different application modules have conflicting resource requirements. The restaurant data, for example, is stored in a large, in-memory database, which is ideally deployed on servers with lots of memory. In contrast, the image processing module is CPU intensive and best deployed on servers with lots of CPU. Because these modules are part of the same application, FTGO must compromise on the server configuration.

 Delivering a reliable monolith is challenging

 Another problem with the FTGO application is the lack of reliability. As a result, there are frequent production outages. One reason it’s unreliable is that testing the application thoroughly is difficult, due to its large size. This lack of testability means bugs make their way into production. To make matters worse, the application lacks fault isolation, because all modules are running within the same process. Every so often, a bug in one module—for example, a memory leak—crashes all instances of the application, one by one. The FTGO developers don’t enjoy being paged in the middle of the night because of a production outage. The business people like the loss of revenue and trust even less.

 Locked into increasingly obsolete technology stack

 The final aspect of monolithic hell experienced by the FTGO team is that the architecture forces them to use a technology stack that’s becoming increasingly obsolete. The monolithic architecture makes it difficult to adopt new frameworks and languages. It would be extremely expensive and risky to rewrite the entire monolithic application so that it would use a new and presumably better technology. Consequently, developers are stuck with the technology choices they made at the start of the project. Quite often, they must maintain an application written using an increasingly obsolete technology stack.

 The Spring framework has continued to evolve while being backward compatible, so in theory FTGO might have been able to upgrade. Unfortunately, the FTGO application uses versions of frameworks that are incompatible with newer versions of Spring. The development team has never found the time to upgrade those frameworks. As a result, major parts of the application are written using increasingly out-of-date frameworks. What’s more, the FTGO developers would like to experiment with non-JVM languages such as GoLang and NodeJS. Sadly, that’s not possible with a monolithic application.

1.2. Why this book is relevant to you

 It’s likely that you’re a developer, architect, CTO, or VP of engineering. You’re responsible for an application that has outgrown its monolithic architecture. Like Mary at FTGO, you’re struggling with software delivery and want to know how to escape monolith hell. Or perhaps you fear that your organization is on the path to monolithic hell and you want to know how to change direction before it’s too late. If you need to escape or avoid monolithic hell, this is the book for you.

 This book spends a lot of time explaining microservice architecture concepts. My goal is for you to find this material accessible, regardless of the technology stack you use. All you need is to be familiar with the basics of enterprise application architecture and design. In particular, you need to know the following:

 	Three-tier architecture

 	Web application design

 	How to develop business logic using object-oriented design

 	How to use an RDBMS: SQL and ACID transactions

 	How to use interprocess communication using a message broker and REST APIs

 	Security, including authentication and authorization

 The code examples in this book are written using Java and the Spring framework. That means in order to get the most out of the examples, you need to be familiar with the Spring framework too.

1.3. What you’ll learn in this book

 By the time you finish reading this book you’ll understand the following:

 	The essential characteristics of the microservice architecture, its benefits and drawbacks, and when to use it

 	Distributed data management patterns

 	Effective microservice testing strategies

 	Deployment options for microservices

 	Strategies for refactoring a monolithic application into a microservice architecture

 You’ll also be able to do the following:

 	Architect an application using the microservice architecture pattern

 	Develop the business logic for a service

 	Use sagas to maintain data consistency across services

 	Implement queries that span services

 	Effectively test microservices

 	Develop production-ready services that are secure, configurable, and observable

 	Refactor an existing monolithic application to services

1.4. Microservice architecture to the rescue

 Mary has come to the conclusion that FTGO must migrate to the microservice architecture.

 Interestingly, software architecture has very little to do with functional requirements. You can implement a set of use cases—an application’s functional requirements—with any architecture. In fact, it’s common for successful applications, such as the FTGO application, to be big balls of mud.

 Architecture matters, however, because of how it affects the so-called quality of service requirements, also called nonfunctional requirements, quality attributes, or ilities. As the FTGO application has grown, various quality attributes have suffered, most notably those that impact the velocity of software delivery: maintainability, extensibility, and testability.

 On the one hand, a disciplined team can slow down the pace of its descent toward monolithic hell. Team members can work hard to maintain the modularity of their application. They can write comprehensive automated tests. On the other hand, they can’t avoid the issues of a large team working on a single monolithic application. Nor can they solve the problem of an increasingly obsolete technology stack. The best a team can do is delay the inevitable. To escape monolithic hell, they must migrate to a new architecture: the Microservice architecture.

 Today, the growing consensus is that if you’re building a large, complex application, you should consider using the microservice architecture. But what are microservices exactly? Unfortunately, the name doesn’t help because it overemphasizes size. There are numerous definitions of the microservice architecture. Some take the name too literally and claim that a service should be tiny—for example, 100 LOC. Others claim that a service should only take two weeks to develop. Adrian Cockcroft, formerly of Netflix, defines a microservice architecture as a service-oriented architecture composed of loosely coupled elements that have bounded contexts. That’s not a bad definition, but it is a little dense. Let’s see if we can do better.

 1.4.1. Scale cube and microservices

 My definition of the microservice architecture is inspired by Martin Abbott and Michael Fisher’s excellent book, The Art of Scalability (Addison-Wesley, 2015). This book describes a useful, three-dimensional scalability model: the scale cube, shown in figure 1.3.

 Figure 1.3. The scale cube defines three separate ways to scale an application: X-axis scaling load balances requests across multiple, identical instances; Z-axis scaling routes requests based on an attribute of the request; Y-axis functionally decomposes an application into services.

 [image:]

 The model defines three ways to scale an application: X, Y, and Z.

 X-axis scaling load balances requests across multiple instances

 X-axis scaling is a common way to scale a monolithic application. Figure 1.4 shows how X-axis scaling works. You run multiple instances of the application behind a load balancer. The load balancer distributes requests among the N identical instances of the application. This is a great way of improving the capacity and availability of an application.

 Figure 1.4. X-axis scaling runs multiple, identical instances of the monolithic application behind a load balancer.

 [image:]

 Z-axis scaling routes requests based on an attribute of the request

 Z-axis scaling also runs multiple instances of the monolith application, but unlike X-axis scaling, each instance is responsible for only a subset of the data. Figure 1.5 shows how Z-axis scaling works. The router in front of the instances uses a request attribute to route it to the appropriate instance. An application might, for example, route requests using userId.

 Figure 1.5. Z-axis scaling runs multiple identical instances of the monolithic application behind a router, which routes based on a request attribute. Each instance is responsible for a subset of the data.

 [image:]

 In this example, each application instance is responsible for a subset of users. The router uses the userId specified by the request Authorization header to select one of the N identical instances of the application. Z-axis scaling is a great way to scale an application to handle increasing transaction and data volumes.

 Y-axis scaling functionally decomposes an application into services

 X- and Z-axis scaling improve the application’s capacity and availability. But neither approach solves the problem of increasing development and application complexity. To solve those, you need to apply Y-axis scaling, or functional decomposition. Figure 1.6 shows how Y-axis scaling works: by splitting a monolithic application into a set of services.

 Figure 1.6. Y-axis scaling splits the application into a set of services. Each service is responsible for a particular function. A service is scaled using X-axis scaling and, possibly, Z-axis scaling.

 [image:]

 A service is a mini application that implements narrowly focused functionality, such as order management, customer management, and so on. A service is scaled using X-axis scaling, though some services may also use Z-axis scaling. For example, the Order service consists of a set of load-balanced service instances.

 The high-level definition of microservice architecture (microservices) is an architectural style that functionally decomposes an application into a set of services. Note that this definition doesn’t say anything about size. Instead, what matters is that each service has a focused, cohesive set of responsibilities. Later in the book I discuss what that means.

 Now let’s look at how the microservice architecture is a form of modularity.

 1.4.2. Microservices as a form of modularity

 Modularity is essential when developing large, complex applications. A modern application like FTGO is too large to be developed by an individual. It’s also too complex to be understood by a single person. Applications must be decomposed into modules that are developed and understood by different people. In a monolithic application, modules are defined using a combination of programming language constructs (such as Java packages) and build artifacts (such as Java JAR files). However, as the FTGO developers have discovered, this approach tends not to work well in practice. Long-lived, monolithic applications usually degenerate into big balls of mud.

 The microservice architecture uses services as the unit of modularity. A service has an API, which is an impermeable boundary that is difficult to violate. You can’t bypass the API and access an internal class as you can with a Java package. As a result, it’s much easier to preserve the modularity of the application over time. There are other benefits of using services as building blocks, including the ability to deploy and scale them independently.

 1.4.3. Each service has its own database

 A key characteristic of the microservice architecture is that the services are loosely coupled and communicate only via APIs. One way to achieve loose coupling is by each service having its own datastore. In the online store, for example, Order Service has a database that includes the ORDERS table, and Customer Service has its database, which includes the CUSTOMERS table. At development time, developers can change a service’s schema without having to coordinate with developers working on other services. At runtime, the services are isolated from each other—for example, one service will never be blocked because another service holds a database lock.

 Don’t worry: Loose coupling doesn’t make Larry Ellison richer

 The requirement for each service to have its own database doesn’t mean it has its own database server. You don’t, for example, have to spend 10 times more on Oracle RDBMS licenses. Chapter 2 explores this topic in depth.

 Now that we’ve defined the microservice architecture and described some of its essential characteristics, let’s look at how this applies to the FTGO application.

 1.4.4. The FTGO microservice architecture

 The rest of this book discusses the FTGO application’s microservice architecture in depth. But first let’s quickly look at what it means to apply Y-axis scaling to this application. If we apply Y-axis decomposition to the FTGO application, we get the architecture shown in figure 1.7. The decomposed application consists of numerous frontend and backend services. We would also apply X-axis and, possibly Z-axis scaling, so that at runtime there would be multiple instances of each service.

 Figure 1.7. Some of the services of the microservice architecture-based version of the FTGO application. An API Gateway routes requests from the mobile applications to services. The services collaborate via APIs.

 [image:]

 The frontend services include an API gateway and the Restaurant Web UI. The API gateway, which plays the role of a facade and is described in detail in chapter 8, provides the REST APIs that are used by the consumers’ and couriers’ mobile applications. The Restaurant Web UI implements the web interface that’s used by the restaurants to manage menus and process orders.

 The FTGO application’s business logic consists of numerous backend services. Each backend service has a REST API and its own private datastore. The backend services include the following:

 	
Order Service—Manages orders

 	
Delivery Service—Manages delivery of orders from restaurants to consumers

 	
Restaurant Service—Maintains information about restaurants

 	
Kitchen Service—Manages the preparation of orders

 	
Accounting Service—Handles billing and payments

 Many services correspond to the modules described earlier in this chapter. What’s different is that each service and its API are very clearly defined. Each one can be independently developed, tested, deployed, and scaled. Also, this architecture does a good job of preserving modularity. A developer can’t bypass a service’s API and access its internal components. Chapter 13 describes how to transform an existing monolithic application into microservices.

 1.4.5. Comparing the microservice architecture and SOA

 Some critics of the microservice architecture claim it’s nothing new—it’s service-oriented architecture (SOA). At a very high level, there are some similarities. SOA and the microservice architecture are architectural styles that structure a system as a set of services. But as table 1.1 shows, once you dig deep, you encounter significant differences.

 Table 1.1. Comparing SOA with microservices

 	

 	
 SOA

 	
 Microservices

 	Inter-service communication

 	Smart pipes, such as Enterprise Service Bus, using heavyweight protocols, such as SOAP and the other WS* standards.

 	Dumb pipes, such as a message broker, or direct service-to-service communication, using lightweight protocols such as REST or gRPC

 	Data

 	Global data model and shared databases

 	Data model and database per service

 	Typical service

 	Larger monolithic application

 	Smaller service

 SOA and the microservice architecture usually use different technology stacks. SOA applications typically use heavyweight technologies such as SOAP and other WS* standards. They often use an ESB, a smart pipe that contains business and message-processing logic to integrate the services. Applications built using the microservice architecture tend to use lightweight, open source technologies. The services communicate via dumb pipes, such as message brokers or lightweight protocols like REST or gRPC.

 SOA and the microservice architecture also differ in how they treat data. SOA applications typically have a global data model and share databases. In contrast, as mentioned earlier, in the microservice architecture each service has its own database. Moreover, as described in chapter 2, each service is usually considered to have its own domain model.

 Another key difference between SOA and the microservice architecture is the size of the services. SOA is typically used to integrate large, complex, monolithic applications. Although services in a microservice architecture aren’t always tiny, they’re almost always much smaller. As a result, a SOA application usually consists of a few large services, whereas a microservices-based application typically consists of dozens or hundreds of smaller services.

1.5. Benefits and drawbacks of the microservice architecture

 Let’s first consider the benefits and then we’ll look at the drawbacks.

 1.5.1. Benefits of the microservice architecture

 The microservice architecture has the following benefits:

 	It enables the continuous delivery and deployment of large, complex applications.

 	Services are small and easily maintained.

 	Services are independently deployable.

 	Services are independently scalable.

 	The microservice architecture enables teams to be autonomous.

 	It allows easy experimenting and adoption of new technologies.

 	It has better fault isolation.

 Let’s look at each benefit.

 Enables the continuous delivery and deployment of large, complex applications

 The most important benefit of the microservice architecture is that it enables continuous delivery and deployment of large, complex applications. As described later in section 1.7, continuous delivery/deployment is part of DevOps, a set of practices for the rapid, frequent, and reliable delivery of software. High-performing DevOps organizations typically deploy changes into production with very few production issues.

 There are three ways that the microservice architecture enables continuous delivery/deployment:

 	
It has the testability required by continuous delivery/deployment—Automated testing is a key practice of continuous delivery/deployment. Because each service in a microservice architecture is relatively small, automated tests are much easier to write and faster to execute. As a result, the application will have fewer bugs.

 	
It has the deployability required by continuous delivery/deployment—Each service can be deployed independently of other services. If the developers responsible for a service need to deploy a change that’s local to that service, they don’t need to coordinate with other developers. They can deploy their changes. As a result, it’s much easier to deploy changes frequently into production.

 	
It enables development teams to be autonomous and loosely coupled—You can structure the engineering organization as a collection of small (for example, two-pizza) teams. Each team is solely responsible for the development and deployment of one or more related services. As figure 1.8 shows, each team can develop, deploy, and scale their services independently of all the other teams. As a result, the development velocity is much higher.

 Figure 1.8. The microservices-based FTGO application consists of a set of loosely coupled services. Each team develops, tests, and deploys their services independently.

 [image:]

 The ability to do continuous delivery and deployment has several business benefits:

 	It reduces the time to market, which enables the business to rapidly react to feedback from customers.

 	It enables the business to provide the kind of reliable service today’s customers have come to expect.

 	Employee satisfaction is higher because more time is spent delivering valuable features instead of fighting fires.

 As a result, the microservice architecture has become the table stakes of any business that depends upon software technology.

 Each service is small and easily maintained

 Another benefit of the microservice architecture is that each service is relatively small. The code is easier for a developer to understand. The small code base doesn’t slow down the IDE, making developers more productive. And each service typically starts a lot faster than a large monolith does, which also makes developers more productive and speeds up deployments.

 Services are independently scalable

 Each service in a microservice architecture can be scaled independently of other services using X-axis cloning and Z-axis partitioning. Moreover, each service can be deployed on hardware that’s best suited to its resource requirements. This is quite different than when using a monolithic architecture, where components with wildly different resource requirements—for example, CPU-intensive vs. memory-intensive—must be deployed together.

 Better fault isolation

 The microservice architecture has better fault isolation. For example, a memory leak in one service only affects that service. Other services will continue to handle requests normally. In comparison, one misbehaving component of a monolithic architecture will bring down the entire system.

 Easily experiment with and adopt new technologies

 Last but not least, the microservice architecture eliminates any long-term commitment to a technology stack. In principle, when developing a new service, the developers are free to pick whatever language and frameworks are best suited for that service. In many organizations, it makes sense to restrict the choices, but the key point is that you aren’t constrained by past decisions.

 Moreover, because the services are small, rewriting them using better languages and technologies becomes practical. If the trial of a new technology fails, you can throw away that work without risking the entire project. This is quite different than when using a monolithic architecture, where your initial technology choices severely constrain your ability to use different languages and frameworks in the future.

 1.5.2. Drawbacks of the microservice architecture

 Certainly, no technology is a silver bullet, and the microservice architecture has a number of significant drawbacks and issues. Indeed most of this book is about how to address these drawbacks and issues. As you read about the challenges, don’t worry. Later in this book I describe ways to address them.

 Here are the major drawbacks and issues of the microservice architecture:

 	Finding the right set of services is challenging.

 	Distributed systems are complex, which makes development, testing, and deployment difficult.

 	Deploying features that span multiple services requires careful coordination.

 	Deciding when to adopt the microservice architecture is difficult.

 Let’s look at each one in turn.

 Finding the right services is challenging

 One challenge with using the microservice architecture is that there isn’t a concrete, well-defined algorithm for decomposing a system into services. As with much of software development, it’s something of an art. To make matters worse, if you decompose a system incorrectly, you’ll build a distributed monolith, a system consisting of coupled services that must be deployed together. A distributed monolith has the drawbacks of both the monolithic architecture and the microservice architecture.

 Distributed systems are complex

 Another issue with using the microservice architecture is that developers must deal with the additional complexity of creating a distributed system. Services must use an interprocess communication mechanism. This is more complex than a simple method call. Moreover, a service must be designed to handle partial failure and deal with the remote service either being unavailable or exhibiting high latency.

 Implementing use cases that span multiple services requires the use of unfamiliar techniques. Each service has its own database, which makes it a challenge to implement transactions and queries that span services. As described in chapter 4, a microservices-based application must use what are known as sagas to maintain data consistency across services. Chapter 7 explains that a microservices-based application can’t retrieve data from multiple services using simple queries. Instead, it must implement queries using either API composition or CQRS views.

 IDEs and other development tools are focused on building monolithic applications and don’t provide explicit support for developing distributed applications. Writing automated tests that involve multiple services is challenging. These are all issues that are specific to the microservice architecture. Consequently, your organization’s developers must have sophisticated software development and delivery skills in order to successfully use microservices.

 The microservice architecture also introduces significant operational complexity. Many more moving parts—multiple instances of different types of service—must be managed in production. To successfully deploy microservices, you need a high level of automation. You must use technologies such as the following:

 	Automated deployment tooling, like Netflix Spinnaker

 	An off-the-shelf PaaS, like Pivotal Cloud Foundry or Red Hat OpenShift

 	A Docker orchestration platform, like Docker Swarm or Kubernetes

 I describe the deployment options in more detail in chapter 12.

 Deploying features spanning multiple services needs careful coordination

 Another challenge with using the microservice architecture is that deploying features that span multiple services requires careful coordination between the various development teams. You have to create a rollout plan that orders service deployments based on the dependencies between services. That’s quite different than a monolithic architecture, where you can easily deploy updates to multiple components atomically.

 Deciding when to adopt is difficult

 Another issue with using the microservice architecture is deciding at what point during the lifecycle of the application you should use this architecture. When developing the first version of an application, you often don’t have the problems that this architecture solves. Moreover, using an elaborate, distributed architecture will slow down development. That can be a major dilemma for startups, where the biggest problem is usually how to rapidly evolve the business model and accompanying application. Using the microservice architecture makes it much more difficult to iterate rapidly. A startup should almost certainly begin with a monolithic application.

 Later on, though, when the problem is how to handle complexity, that’s when it makes sense to functionally decompose the application into a set of microservices. You may find refactoring difficult because of tangled dependencies. Chapter 13 goes over strategies for refactoring a monolithic application into microservices.

 As you can see, the microservice architecture offer many benefits, but also has some significant drawbacks. Because of these issues, adopting a microservice architecture should not be undertaken lightly. But for complex applications, such as a consumer-facing web application or SaaS application, it’s usually the right choice. Well-known sites like eBay (www.slideshare.net/RandyShoup/the-ebay-architecture-striking-a-balance-between-site-stability-feature-velocity-performance-and-cost), Amazon.com, Groupon, and Gilt have all evolved from a monolithic architecture to a microservice architecture.

 You must address numerous design and architectural issues when using the microservice architecture. What’s more, many of these issues have multiple solutions, each with a different set of trade-offs. There is no one single perfect solution. To help guide your decision making, I’ve created the Microservice architecture pattern language. I reference this pattern language throughout the rest of the book as I teach you about the microservice architecture. Let’s look at what a pattern language is and why it’s helpful.

1.6. The Microservice architecture pattern language

 Architecture and design are all about making decisions. You need to decide whether the monolithic or microservice architecture is the best fit for your application. When making these decisions you have lots of trade-offs to consider. If you pick the microservice architecture, you’ll need to address lots of issues.

 A good way to describe the various architectural and design options and improve decision making is to use a pattern language. Let’s first look at why we need patterns and a pattern language, and then we’ll take a tour of the Microservice architecture pattern language.

 1.6.1. Microservice architecture is not a silver bullet

 Back in 1986, Fred Brooks, author of The Mythical Man-Month (Addison-Wesley Professional, 1995), said that in software engineering, there are no silver bullets. That means there are no techniques or technologies that if adopted would give you a tenfold boost in productivity. Yet decades years later, developers are still arguing passionately about their favorite silver bullets, absolutely convinced that their favorite technology will give them a massive boost in productivity.

 A lot of arguments follow the suck/rock dichotomy (http://nealford.com/memeagora/2009/08/05/suck-rock-dichotomy.html), a term coined by Neal Ford that describes how everything in the software world either sucks or rocks, with no middle ground. These arguments have this structure: if you do X, then a puppy will die, so therefore you must do Y. For example, synchronous versus reactive programming, object-oriented versus functional, Java versus JavaScript, REST versus messaging. Of course, reality is much more nuanced. Every technology has drawbacks and limitations that are often overlooked by its advocates. As a result, the adoption of a technology usually follows the Gartner hype cycle (https://en.wikipedia.org/wiki/Hype_cycle), in which an emerging technology goes through five phases, including the peak of inflated expectations (it rocks), followed by the trough of disillusionment (it sucks), and ending with the plateau of productivity (we now understand the trade-offs and when to use it).

 Microservices are not immune to the silver bullet phenomenon. Whether this architecture is appropriate for your application depends on many factors. Consequently, it’s bad advice to advise always using the microservice architecture, but it’s equally bad advice to advise never using it. As with many things, it depends.

 The underlying reason for these polarized and hyped arguments about technology is that humans are primarily driven by their emotions. Jonathan Haidt, in his excellent book The Righteous Mind: Why Good People Are Divided by Politics and Religion (Vintage, 2013), uses the metaphor of an elephant and its rider to describe how the human mind works. The elephant represents the emotion part of the human brain. It makes most of the decisions. The rider represents the rational part of the brain. It can sometimes influence the elephant, but it mostly provides justifications for the elephant’s decisions.

 We—the software development community—need to overcome our emotional nature and find a better way of discussing and applying technology. A great way to discuss and describe technology is to use the pattern format, because it’s objective. When describing a technology in the pattern format, you must, for example, describe the drawbacks. Let’s take a look at the pattern format.

 1.6.2. Patterns and pattern languages

 A pattern is a reusable solution to a problem that occurs in a particular context. It’s an idea that has its origins in real-world architecture and that has proven to be useful in software architecture and design. The concept of a pattern was created by Christopher Alexander, a real-world architect. He also created the concept of a pattern language, a collection of related patterns that solve problems within a particular domain. His book A Pattern Language: Towns, Buildings, Construction (Oxford University Press, 1977) describes a pattern language for architecture that consists of 253 patterns. The patterns range from solutions to high-level problems, such as where to locate a city (“Access to water”), to low-level problems, such as how to design a room (“Light on two sides of every room”). Each of these patterns solves a problem by arranging physical objects that range in scope from cities to windows.

 Christopher Alexander’s writings inspired the software community to adopt the concept of patterns and pattern languages. The book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 1994), by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides is a collection of object-oriented design patterns. The book popularized patterns among software developers. Since the mid-1990s, software developers have documented numerous software patterns. A software pattern solves a software architecture or design problem by defining a set of collaborating software elements.

 Let’s imagine, for example, that you’re building a banking application that must support a variety of overdraft policies. Each policy defines limits on the balance of an account and the fees charged for an overdrawn account. You can solve this problem using the Strategy pattern, which is a well-known pattern from the classic Design Patterns book. The solution defined by the Strategy pattern consists of three parts:

 	A strategy interface called Overdraft that encapsulates the overdraft algorithm

 	One or more concrete strategy classes, one for each particular context

 	The Account class that uses the algorithm

 The Strategy pattern is an object-oriented design pattern, so the elements of the solution are classes. Later in this section, I describe high-level design patterns, where the solution consists of collaborating services.

 One reason why patterns are valuable is because a pattern must describe the context within which it applies. The idea that a solution is specific to a particular context and might not work well in other contexts is an improvement over how technology used to typically be discussed. For example, a solution that solves the problem at the scale of Netflix might not be the best approach for an application with fewer users.

 The value of a pattern, however, goes far beyond requiring you to consider the context of a problem. It forces you to describe other critical yet frequently overlooked aspects of a solution. A commonly used pattern structure includes three especially valuable sections:

 	Forces

 	Resulting context

 	Related patterns

 Let’s look at each of these, starting with forces.

 Forces: The issues that you must address when solving a problem

 The forces section of a pattern describes the forces (issues) that you must address when solving a problem in a given context. Forces can conflict, so it might not be possible to solve all of them. Which forces are more important depends on the context. You have to prioritize solving some forces over others. For example, code must be easy to understand and have good performance. Code written in a reactive style has better performance than synchronous code, yet is often more difficult to understand. Explicitly listing the forces is useful because it makes clear which issues need to be solved.

 Resulting context: The consequences of applying a pattern

 The resulting context section of a pattern describes the consequences of applying the pattern. It consists of three parts:

 	
Benefits—The benefits of the pattern, including the forces that have been resolved

 	
Drawbacks—The drawbacks of the pattern, including the unresolved forces

 	
Issues—The new problems that have been introduced by applying the pattern

 The resulting context provides a more complete and less biased view of the solution, which enables better design decisions.

 Related patterns: The five different types of relationships

 The related patterns section of a pattern describes the relationship between the pattern and other patterns. There are five types of relationships between patterns:

 	
Predecessor—A predecessor pattern is a pattern that motivates the need for this pattern. For example, the Microservice architecture pattern is the predecessor to the rest of the patterns in the pattern language, except the monolithic architecture pattern.

 	
Successor—A pattern that solves an issue that has been introduced by this pattern. For example, if you apply the Microservice architecture pattern, you must then apply numerous successor patterns, including service discovery patterns and the Circuit breaker pattern.

 	
Alternative—A pattern that provides an alternative solution to this pattern. For example, the Monolithic architecture pattern and the Microservice architecture pattern are alternative ways of architecting an application. You pick one or the other.

 	
Generalization—A pattern that is a general solution to a problem. For example, in chapter 12 you’ll learn about the different implementations of the Single service per host pattern.

 	
Specialization—A specialized form of a particular pattern. For example, in chapter 12 you’ll learn that the Deploy a service as a container pattern is a specialization of Single service per host.

 In addition, you can organize patterns that tackle issues in a particular problem area into groups. The explicit description of related patterns provides valuable guidance on how to effectively solve a particular problem. Figure 1.9 shows how the relationships between patterns is visually represented.

 Figure 1.9. The visual representation of different types of relationships between the patterns: a successor pattern solves a problem created by applying the predecessor pattern; two or more patterns can be alternative solutions to the same problem; one pattern can be a specialization of another pattern; and patterns that solve problems in the same area can be grouped, or generalized.

 [image:]

 The different kinds of relationships between patterns shown in figure 1.9 are represented as follows:

 	Represents the predecessor-successor relationship

 	Patterns that are alternative solutions to the same problem

 	Indicates that one pattern is a specialization of another pattern

 	Patterns that apply to a particular problem area

 A collection of patterns related through these relationships sometimes form what is known as a pattern language. The patterns in a pattern language work together to solve problems in a particular domain. In particular, I’ve created the Microservice architecture pattern language. It’s a collection of interrelated software architecture and design patterns for microservices. Let’s take a look at this pattern language.

 1.6.3. Overview of the Microservice architecture pattern language

 The Microservice architecture pattern language is a collection of patterns that help you architect an application using the microservice architecture. Figure 1.10 shows the high-level structure of the pattern language. The pattern language first helps you decide whether to use the microservice architecture. It describes the monolithic architecture and the microservice architecture, along with their benefits and drawbacks. Then, if the microservice architecture is a good fit for your application, the pattern language helps you use it effectively by solving various architecture and design issues.

 Figure 1.10. A high-level view of the Microservice architecture pattern language showing the different problem areas that the patterns solve. On the left are the application architecture patterns: Monolithic architecture and Microservice architecture. All the other groups of patterns solve problems that result from choosing the Microservice architecture pattern.

 [image:]

 The pattern language consists of several groups of patterns. On the left in figure 1.10 is the application architecture patterns group, the Monolithic architecture pattern and the Microservice architecture pattern. Those are the patterns we’ve been discussing in this chapter. The rest of the pattern language consists of groups of patterns that are solutions to issues that are introduced by using the Microservice architecture pattern.

 The patterns are also divided into three layers:

 	
Infrastructure patterns—These solve problems that are mostly infrastructure issues outside of development.

 	
Application infrastructure—These are for infrastructure issues that also impact development.

 	
Application patterns—These solve problems faced by developers.

 These patterns are grouped together based on the kind of problem they solve. Let’s look at the main groups of patterns.

 Patterns for decomposing an application into services

 Deciding how to decompose a system into a set of services is very much an art, but there are a number of strategies that can help. The two decomposition patterns shown in figure 1.11 are different strategies you can use to define your application’s architecture.

 Figure 1.11. There are two decomposition patterns: Decompose by business capability, which organizes services around business capabilities, and Decompose by subdomain, which organizes services around domain-driven design (DDD) subdomains.

 [image:]

 Chapter 2 describes these patterns in detail.

 Communication patterns

 An application built using the microservice architecture is a distributed system. Consequently, interprocess communication (IPC) is an important part of the microservice architecture. You must make a variety of architectural and design decisions about how your services communicate with one another and the outside world. Figure 1.12 shows the communication patterns, which are organized into five groups:

 	
Communication style—What kind of IPC mechanism should you use?

 	
Discovery—How does a client of a service determine the IP address of a service instance so that, for example, it makes an HTTP request?

 	
Reliability—How can you ensure that communication between services is reliable even though services can be unavailable?

 	
Transactional messaging—How should you integrate the sending of messages and publishing of events with database transactions that update business data?

 	
External API—How do clients of your application communicate with the services?

 Figure 1.12. The five groups of communication patterns

 [image:]

 Chapter 3 looks at the first four groups of patterns: communication style, discovery, reliability, and transaction messaging. Chapter 8 looks at the external API patterns.

 Data consistency patterns for implementing transaction management

 As mentioned earlier, in order to ensure loose coupling, each service has its own database. Unfortunately, having a database per service introduces some significant issues. I describe in chapter 4 that the traditional approach of using distributed transactions (2PC) isn’t a viable option for a modern application. Instead, an application needs to maintain data consistency by using the Saga pattern. Figure 1.13 shows data-related patterns.

 Figure 1.13. Because each service has its own database, you must use the Saga pattern to maintain data consistency across services.

 [image:]

 Chapters 4, 5, and 6 describe these patterns in more detail.

 Patterns for querying data in a microservice architecture

 The other issue with using a database per service is that some queries need to join data that’s owned by multiple services. A service’s data is only accessible via its API, so you can’t use distributed queries against its database. Figure 1.14 shows a couple of patterns you can use to implement queries.

 Figure 1.14. Because each service has its own database, you must use one of the querying patterns to retrieve data scattered across multiple services.

 [image:]

 Sometimes you can use the API composition pattern, which invokes the APIs of one or more services and aggregates results. Other times, you must use the Command query responsibility segregation (CQRS) pattern, which maintains one or more easily queried replicas of the data. Chapter 7 looks at the different ways of implementing queries.

 Service deployment patterns

 Deploying a monolithic application isn’t always easy, but it is straightforward in the sense that there is a single application to deploy. You have to run multiple instances of the application behind a load balancer.

 In comparison, deploying a microservices-based application is much more complex. There may be tens or hundreds of services that are written in a variety of languages and frameworks. There are many more moving parts that need to be managed. Figure 1.15 shows the deployment patterns.

 Figure 1.15. Several patterns for deploying microservices. The traditional approach is to deploy services in a language-specific packaging format. There are two modern approaches to deploying services. The first deploys services as VM or containers. The second is the serverless approach. You simply upload the service’s code and the serverless platform runs it. You should use a service deployment platform, which is an automated, self-service platform for deploying and managing services.

 [image:]

 The traditional, and often manual, way of deploying applications in a language-specific packaging format, for example WAR files, doesn’t scale to support a microservice architecture. You need a highly automated deployment infrastructure. Ideally, you should use a deployment platform that provides the developer with a simple UI (command-line or GUI) for deploying and managing their services. The deployment platform will typically be based on virtual machines (VMs), containers, or serverless technology. Chapter 12 looks at the different deployment options.

 Observability patterns provide insight into application behavior

 A key part of operating an application is understanding its runtime behavior and troubleshooting problems such as failed requests and high latency. Though understanding and troubleshooting a monolithic application isn’t always easy, it helps that requests are handled in a simple, straightforward way. Each incoming request is load balanced to a particular application instance, which makes a few calls to the database and returns a response. For example, if you need to understand how a particular request was handled, you look at the log file of the application instance that handled the request.

 In contrast, understanding and diagnosing problems in a microservice architecture is much more complicated. A request can bounce around between multiple services before a response is finally returned to a client. Consequently, there isn’t one log file to examine. Similarly, problems with latency are more difficult to diagnose because there are multiple suspects.

 You can use the following patterns to design observable services:

 	
Health check API—Expose an endpoint that returns the health of the service.

 	
Log aggregation—Log service activity and write logs into a centralized logging server, which provides searching and alerting.

 	
Distributed tracing—Assign each external request a unique ID and trace requests as they flow between services.

 	
Exception tracking—Report exceptions to an exception tracking service, which deduplicates exceptions, alerts developers, and tracks the resolution of each exception.

 	
Application metrics—Maintain metrics, such as counters and gauges, and expose them to a metrics server.

 	
Audit logging—Log user actions.

 Chapter 11 describes these patterns in more detail.

 Patterns for the automated testing of services

 The microservice architecture makes individual services easier to test because they’re much smaller than the monolithic application. At the same time, though, it’s important to test that the different services work together while avoiding using complex, slow, and brittle end-to-end tests that test multiple services together. Here are patterns for simplifying testing by testing services in isolation:

 	
Consumer-driven contract test—Verify that a service meets the expectations of its clients.

 	
Consumer-side contract test—Verify that the client of a service can communicate with the service.

 	
Service component test—Test a service in isolation.

 Chapters 9 and 10 describe these testing patterns in more detail.

 Patterns for handling cross-cutting concerns

 In a microservice architecture, there are numerous concerns that every service must implement, including the observability patterns and discovery patterns. It must also implement the Externalized Configuration pattern, which supplies configuration parameters such as database credentials to a service at runtime. When developing a new service, it would be too time consuming to reimplement these concerns from scratch. A much better approach is to apply the Microservice Chassis pattern and build services on top of a framework that handles these concerns. Chapter 11 describes these patterns in more detail.

 Security patterns

 In a microservice architecture, users are typically authenticated by the API gateway. It must then pass information about the user, such as identity and roles, to the services it invokes. A common solution is to apply the Access token pattern. The API gateway passes an access token, such as JWT (JSON Web Token), to the services, which can validate the token and obtain information about the user. Chapter 11 discusses the Access token pattern in more detail.

 Not surprisingly, the patterns in the Microservice architecture pattern language are focused on solving architect and design problems. You certainly need the right architecture in order to successfully develop software, but it’s not the only concern. You must also consider process and organization.

1.7. Beyond microservices: Process and organization

 For a large, complex application, the microservice architecture is usually the best choice. But in addition to having the right architecture, successful software development requires you to also have organization, and development and delivery processes. Figure 1.16 shows the relationships between process, organization, and architecture.

 Figure 1.16. The rapid, frequent, and reliable delivery of large, complex applications requires a combination of DevOps, which includes continuous delivery/deployment, small, autonomous teams, and the microservice architecture.

 [image:]

 I’ve already described the microservice architecture. Let’s look at organization and process.

 1.7.1. Software development and delivery organization

 Success inevitably means that the engineering team will grow. On the one hand, that’s a good thing because more developers can get more done. The trouble with large teams is, as Fred Brooks wrote in The Mythical Man-Month, the communication overhead of a team of size N is O(N2). If the team gets too large, it will become inefficient, due to the communication overhead. Imagine, for example, trying to do a daily standup with 20 people.

 The solution is to refactor a large single team into a team of teams. Each team is small, consisting of no more than 8–12 people. It has a clearly defined business-oriented mission: developing and possibly operating one or more services that implement a feature or a business capability. The team is cross-functional and can develop, test, and deploy its services without having to frequently communicate or coordinate with other teams.

 The reverse Conway maneuver

 In order to effectively deliver software when using the microservice architecture, you need to take into account Conway’s law (https://en.wikipedia.org/wiki/Conway%27s_law), which states the following:

 Organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations.

 Melvin Conway

 In other words, your application’s architecture mirrors the structure of the organization that developed it. It’s important, therefore, to apply Conway’s law in reverse (www.thoughtworks.com/radar/techniques/inverse-conway-maneuver) and design your organization so that its structure mirrors your microservice architecture. By doing so, you ensure that your development teams are as loosely coupled as the services.

 The velocity of the team of teams is significantly higher than that of a single large team. As described earlier in section 1.5.1, the microservice architecture plays a key role in enabling the teams to be autonomous. Each team can develop, deploy, and scale their services without coordinating with other teams. Moreover, it’s very clear who to contact when a service isn’t meeting its SLA.

 What’s more, the development organization is much more scalable. You grow the organization by adding teams. If a single team becomes too large, you split it and its associated service or services. Because the teams are loosely coupled, you avoid the communication overhead of a large team. As a result, you can add people without impacting productivity.

 1.7.2. Software development and delivery process

 Using the microservice architecture with a waterfall development process is like driving a horse-drawn Ferrari—you squander most of the benefit of using microservices. If you want to develop an application with the microservice architecture, it’s essential that you adopt agile development and deployment practices such as Scrum or Kanban. Better yet, you should practice continuous delivery/deployment, which is a part of DevOps.

 Jez Humble (https://continuousdelivery.com/) defines continuous delivery as follows:

 Continuous Delivery is the ability to get changes of all types—including new features, configuration changes, bug fixes and experiments—into production, or into the hands of users, safely and quickly in a sustainable way.

 A key characteristic of continuous delivery is that software is always releasable. It relies on a high level of automation, including automated testing. Continuous deployment takes continuous delivery one step further in the practice of automatically deploying releasable code into production. High-performing organizations that practice continuous deployment deploy multiple times per day into production, have far fewer production outages, and recover quickly from any that do occur (https://puppet.com/resources/whitepaper/state-of-devops-report). As described earlier in section 1.5.1, the microservice architecture directly supports continuous delivery/deployment.

 Move fast without breaking things

 The goal of continuous delivery/deployment (and, more generally, DevOps) is to rapidly yet reliably deliver software. Four useful metrics for assessing software development are as follows:

 	
Deployment frequency—How often software is deployed into production

 	
Lead time—Time from a developer checking in a change to that change being deployed

 	
Mean time to recover—Time to recover from a production problem

 	
Change failure rate—Percentage of changes that result in a production problem

 In a traditional organization, the deployment frequency is low, and the lead time is high. Stressed-out developers and operations people typically stay up late into the night fixing last-minute issues during the maintenance window. In contrast, a DevOps organization releases software frequently, often multiple times per day, with far fewer production issues. Amazon, for example, deployed changes into production every 11.6 seconds in 2014 (www.youtube.com/watch?v=dxk8b9rSKOo), and Netflix had a lead time of 16 minutes for one software component (https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15).

