

 [image:]

 Vert.x in Action

 Asynchronous and Reactive Java

 Julien Ponge

 Foreword by Martijn Verberg

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Lesley Trites

 	
 Technical development editor:

 	
 Raphael Villela

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Evyator Kafkafi

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617295621

 dedication

 To Marie and Mathieu

brief contents

 Part 1. Fundamentals of asynchronous programming with Vert.x

 1 Vert.x, asynchronous programming, and reactive systems

 2 Verticles: The basic processing units of Vert.x

 3 Event bus: The backbone of a Vert.x application

 4 Asynchronous data and event streams

 5 Beyond callbacks

 6 Beyond the event bus

 Part 2. Developing reactive services with Vert.x

 7 Designing a reactive application

 8 The web stack

 9 Messaging and event streaming with Vert.x

 10 Persistent state management with databases

 11 End-to-end real-time reactive event processing

 12 Toward responsiveness with load and chaos testing

 13 Final notes: Container-native Vert.x

contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Fundamentals of asynchronous programming with Vert.x

 1 Vert.x, asynchronous programming, and reactive systems

 Being distributed and networked is the norm

 Not living on an isolated island

 There is no free lunch on the network

 The simplicity of blocking APIs

 Blocking APIs waste resources, increase costs

 Asynchronous programming with non-blocking I/O

 Multiplexing event-driven processing: The case of the event loop

 What is a reactive system?

 What else does reactive mean?

 What is Vert.x?

 Your first Vert.x application

 Preparing the project

 The VertxEcho class

 The role of callbacks

 So is this a reactive application?

 What are the alternatives to Vert.x?

 2 Verticles: The basic processing units of Vert.x

 Writing a verticle

 Preparing the project

 The verticle class

 Running and first observations

 More on verticles

 Blocking and the event loop

 Asynchronous notification of life-cycle events

 Deploying verticles

 Passing configuration data

 When code needs to block

 Worker verticles

 The executeBlocking operation

 So what is really in a verticle?

 Verticles and their environment

 More on contexts

 Bridging Vert.x and non-Vert.x threading models

 3 Event bus: The backbone of a Vert.x application

 What is the event bus?

 Is the event bus just another message broker?

 Point-to-point messaging

 Request-reply messaging

 Publish/subscribe messaging

 The event bus in an example

 Heat sensor verticle

 Listener verticle

 Sensor data verticle

 HTTP server verticle

 Bootstrapping the application

 Clustering and the distributed event bus

 Clustering in Vert.x

 From event bus to distributed event bus

 4 Asynchronous data and event streams

 Unified stream model

 What is back-pressure?

 Making a music-streaming jukebox

 Features and usage

 HTTP processing: The big picture

 Jukebox verticle basics

 Incoming HTTP connections

 Downloading as efficiently as possible

 Reading MP3 files, but not too fast

 Parsing simple streams

 Parsing complex streams

 A quick note on the stream fetch mode

 5 Beyond callbacks

 Composing asynchronous operations: The edge service example

 Scenario

 Heat sensor verticles

 Snapshot service verticle

 Callbacks

 Implementation

 Running

 The “callback hell” is not the problem

 Futures and promises

 Futures and promises in Vert.x

 Future-based APIs in Vert.x 4

 Interoperability with CompletionStage APIs

 Collector service with Vert.x futures

 Reactive extensions

 RxJava in a nutshell

 RxJava and Vert.x

 Collector service in RxJava

 Kotlin coroutines

 What is a coroutine?

 Vert.x and Kotlin coroutines

 Edge service with coroutines

 Which model should I use?

 6 Beyond the event bus

 Revisiting heat sensors with a service API

 Return of the RPCs (remote procedure calls)

 Defining a service interface

 Service implementation

 Enabling proxy code generation

 Deploying event-bus services

 Service proxies beyond callbacks

 Testing and Vert.x

 Using JUnit 5 with Vert.x

 Testing DataVerticle

 Running the tests

 Part 2 Developing reactive services with Vert.x

 7 Designing a reactive application

 What makes an application reactive

 The 10k steps challenge scenario

 One application, many services

 Service specifications

 User profile service

 Ingestion service

 Activity service

 Public API

 User web application

 Event stats service

 Congrats service

 Dashboard web application

 Running the application

 8 The web stack

 Exposing a public API

 Routing HTTP requests

 Making HTTP requests

 Access control with JWT tokens

 Using JWT tokens

 What is in a JWT token?

 Handling JWT tokens with Vert.x

 Issuing JWT tokens with Vert.x

 Cross-origin resource sharing (CORS)

 What is the problem?

 Supporting CORS with Vert.x

 A modern web frontend

 Vue.js

 Vue.js application structure and build integration

 Backend integration illustrated

 Static content serving with Vert.x

 Writing integration tests

 9 Messaging and event streaming with Vert.x

 Event-driven services beyond HTTP with Vert.x

 What Vert.x provides

 The middleware and services that we’ll use

 What is AMQP (and a message broker)?

 What is Kafka?

 Reliably ingesting messages over HTTP and AMQP

 Ingesting from AMQP

 Translating AMQP messages to Kafka records

 Ingesting from HTTP

 Sending congratulation emails

 Listening for daily step update events

 Sending emails

 Integration tests

 Ingestion testing

 Congratulation email testing

 10 Persistent state management with databases

 Databases and Vert.x

 What the Eclipse Vert.x stack provides

 A note on data/object mapping, and why you may not always need it

 User profile service with MongoDB

 Data model

 User profile API verticle and initialization

 Validating user input

 Adding users in MongoDB

 Authenticating a user

 Fetching a user’s data

 Updating a user’s data

 Activity service with PostgreSQL

 Data model

 Opening a connection pool

 Life of a device update event

 Inserting a new record

 Generating a device’s daily activity update

 Activity API queries

 Integration tests

 Testing the user profile service

 Testing the activity service API

 Testing the activity service’s event handling

 11 End-to-end real-time reactive event processing

 Advanced stream data processing with Kafka and RxJava

 Enriching daily device updates to generate user updates

 Computing device-update ingestion throughput using time-window aggregates

 Computing per-city trends using aggregation discriminants and time windows

 Real-time reactive web applications

 Forwarding Kafka records to the Vert.x event bus

 Bridging the event bus and web applications

 From Kafka to live web application updates

 Streams and state

 A stream of updates

 Hydrating the ranking state

 Periodically updating rankings from the updates stream

 12 Toward responsiveness with load and chaos testing

 Initial experiments: Is the performance any good?

 Some considerations before load testing

 Simulating users with Locust

 Load testing the API with Hey

 Let’s do some chaos engineering

 Test plan

 Chaos testing with Pumba

 We are not resilient (yet)

 From “scalable” to “scalable and resilient”

 Enforcing timeouts

 Using a circuit breaker

 Resiliency and fallback strategies

 13 Final notes: Container-native Vert.x

 Heat sensors in a cloud

 Heat sensor service

 Sensor gateway

 Heat API

 Deploying to a local cluster

 Making the services work in Kubernetes

 Building container images

 Clustering and Kubernetes

 Kubernetes deployment and service resources

 First-class Kubernetes citizens

 Health checks

 Metrics

 The end of the beginning

 index

 front matter

foreword

 I first ran across Vert.x in 2014 when I was the CTO at jClarity, a start-up I’d co-founded with Ben Evans and Kirk Pepperdine. We were building a SaaS that needed to receive large amounts of telemetry data, run analytics over it, and then present tuning recommendations to the end-user. Our use case required non-blocking, asynchronous communication, multi-tenancy (cost savings!), the ability to talk to data stores, and decent support for secured WebSockets. It would need to be a distributed system that scaled. Enter Vert.x!

 John Oliver, our Chief Scientist, discovered this flexible framework for building asynchronous applications. Vert.x could do it all. It had blazing performance, thanks to its Netty base, and it supported all other functional and non-functional requirements. Even better was that it was backed by a bunch of brilliant, humble, and friendly engineers, such as Julien Ponge, the author of this book.

 Vert.x is deliberately a non-prescriptive framework, in that it doesn’t guide you down a narrow path like, say, Spring Boot does. It's more like a toolkit of high-quality tools that are designed to work together, but you have to decide how to integrate them. That's where this book becomes your indispensable guide.

 Part one of the book exposes the two main building blocks, the Verticle processing unit and the event bus, along with how the asynchronous programming model works with them. But part two is where the real value lies. Julien guides you through the best practices around designing a reactive application and plugging in Vert.x capabilities such as Data Storage and the web-stack.

 Strangely, for me it's the awesome testing chapter that brings the most value; testing reactive applications is just plain hard, and you'll really appreciate this chapter!

 It’s an absolute privilege and pleasure to have read this book, even if it reminded me of where we’d gone wrong in a few places! Not to worry, though; we took Vert.x along with us when we got acquired by Microsoft, and this book will be the perfect companion to help us complete our story on a truly global scale.

 Martijn Verburg--“The Diabolical Developer”Principal SWE Group Manager (Java)--Microsoft

preface

 I remember sitting in a comfortable cinema room at Devoxx Belgium 2012. Among the many conferences that I had planned to attend was one with Tim Fox introducing his new project called Vert.x. At the time, Node.js was all the hype, returning to asynchronous programming as the magic solution to all scalability problems. Through his presentation, Tim convinced me (and many other attendees) that he had just laid down a solid foundation for asynchronous programming on the JVM, embracing the strength of the Java ecosystem and picking the good ideas from Node.js. One thing that struck me at the time was that you could write simple Java code, and forget complex annotation-based frameworks and application servers. Vert.x felt like a breath of fresh air, so I kept an eye on the project. Fast-forward a few years: I am now working in the Vert.x team at Red Hat, something I wouldn’t have imagined back in 2012!

 Vert.x is increasingly relevant in an era when applications are deployed to virtualized environments and containers. We expect applications to scale up and down to accommodate fluctuating traffic. We expect applications to have low latency. We expect applications to be resilient when other systems fail. We expect to pack as many applications as possible onto a given server. In short, we need resource-efficient, scalable, and dependable applications.

 This is what reactive applications are all about: latency is under control both as the workload grows and when failures happen. Vert.x is a solid foundation for building such reactive applications, but Vert.x alone is no silver bullet. You don’t build reactive applications by taking a software stack off the shelf; you also need a methodology as you architect and develop a reactive application.

 In this book we will explore how to write reactive applications with Vert.x. This is not just about learning Vert.x, but also the fundamentals of asynchronous programming and techniques to assess whether an application is truly reactive or not. Last but not least, Vert.x is fun, and you will see that this simplicity and forgetting about some supposed “best practices” can be liberating.

acknowledgments

 My first thanks go to my partner Marie and my son Mathieu for their incredible support. Writing a book takes some time away from your family, and I am very lucky to have them by my side.

 I am grateful to be working with exceptional people at Red Hat. Thanks to Mark Little, David Ingham, Rodney Russ, and Julien Viet who gave me the opportunity to first take a sabbatical to work on Vert.x with Red Hat, and then to move to a full-time position. Many thanks to my closest colleagues Julien Viet, Thomas Segismont, Clément Escoffier, Paulo Lopes, Rodney Russ, Stéphane Épardaud, and Francesco Guardiani: working with all of you is a privilege.

 I started writing this book while I was still working as an Associate Professor at INSA Lyon, and I was fortunate enough to receive warm support in my career choices. Thanks to Fabrice Valois, Frédéric Le Mouël, Nicolas Stouls, Oscar Carillo, François Lesueur, and Éric Maurincomme.

 It is an honor for me that Martijn Verburg wrote the foreword for this book. Martijn is a historical figure in the Vert.x project, and he showed early on that Vert.x was production-grade for building challenging services at his jClarity startup, later bought by Microsoft. Thanks a lot, Martijn.

 The Manning MEAP program gave me the opportunity to receive lots of feedback as the writing progressed; thanks to everyone who contacted me with remarks, typos, and suggestions.

 In fact, having written for Manning, I now understand why their books are so good. Manning is very serious about investing in authors and books. Many thanks to my development editor Lesley Trites for her always positive and constructive guidance, and to Kristen Watterson who started the book with me. Thanks to Michael Stephens for being enthusiastic about writing a book on reactive applications in Java. Many thanks to Raphael Vilella for his accurate technical feedback as I was writing chapters, and to Evyatar Kafkafi for his excellent technical proofreading. Also, thanks to Candace Gillhoolley from marketing, who I had the chance to meet at the Reactive Summit 2018 held in Montreal.

 To all the reviewers: Michał Ambroziewicz, Andrew Buttery, Salvatore Campagna, Philippe Charrière, Ahmed Chicktay, John Clingan, Earl Benjamin Bingham, Arnaud Esteve, Damian Esteban, Leonardo Jose Gomes da Silva, Evyatar Kafkafi, Alexandros Koufoudakis, Sanket Naik, Eoghan O’Donnell, Dan Sheikh, Jerry Stralko, George Thomas, Evan Wallace, James Watson, and Matthew Welke, your suggestions helped make this a better book.

about this book

 Asynchronous and reactive applications are an important topic in modern distributed systems, especially as the progressive shift to virtualized and containerized runtime environments emphasizes the need for resource-efficient, adaptable, and dependable application designs.

 Asynchronous programming is key to maximizing hardware resource usage, as it allows us to deal with more concurrent connections than in traditional blocking I/O paradigms. Services need to cater to workloads that may drastically change from one hour to the next, so we need to design code that naturally supports horizontal scalability. Last but not least, failure is inevitable when we have services interacting with other services over the network. Embracing failure is key to designing dependable systems.

 Combine asynchronous programming, horizontal scalability, and resilience, and you have what we today call reactive applications, which can also be summarized without marketing jargon as “scalable and dependable applications.”

 That being said, there is no free lunch, and the transition to writing asynchronous and reactive applications is difficult when you have a background in more traditional software stacks. Grokking asynchrony in itself is difficult, but the implications of scalability and resilience on the design of an application are anything but trivial.

 This book is aimed at Java developers from all backgrounds who would like to teach themselves both the concepts and practices of building asynchronous and reactive applications. This book uses Eclipse Vert.x, a “no-magic” toolkit for writing such applications. Developers appreciate Vert.x for its simplicity, easy embedding, and field-tested performance.

Who should read this book

 This book is intended for intermediate Java developers familiar with web development, networked services, and enterprise Java frameworks like Spring or Java EE. No prior experience in asynchronous or reactive programming is required.

How this book is organized: A roadmap

 Vert.x in Action is split into two parts.

 Part 1 covers the fundamentals of asynchronous programming and the core APIs of Vert.x:

 	
 Chapter 1 is an introduction to Vert.x, asynchronous programming, and Vert.x. If you have never been exposed to asynchronous programming before, this chapter will take you back to the core non-blocking APIs in Java, and it will show you why Vert.x provides a more approachable programming model. This chapter also discusses the need for reactive in modern distributed systems.

 	
 Chapter 2 introduces verticles, the core building blocks for writing non-blocking code in Vert.x. Since you will sometimes need to call blocking or long-running operations, this chapter also gives you tools and techniques for mixing blocking and non-blocking code.

 	
 Chapter 3 presents the event bus, an eventing system verticles use to communicate. The nice thing about the event bus is that it allows verticles to communicate not just within a single process but also across a cluster, which makes it a powerful abstraction.

 	
 Chapter 4 discusses asynchronous streams, with a focus on the notion of back-pressure which is required to regulate the flow of events between consumers and producers.

 	
 Chapter 5 shows you how to use other asynchronous programming models than callbacks. While callbacks are simple and efficient, there are many cases where they render the coordination of asynchronous operations difficult. Vert.x can mix and match different models: futures and promises, reactive extensions, and Kotlin coroutines.

 	
 Chapter 6 revisits the event bus and introduces event-bus services, a component abstraction on top of the event bus. Since the event bus serves as a natural delimitation between event-processing units, this chapter also discusses how to write tests in Vert.x.

 Part 2 of the book focuses on building a realistic reactive application:

 	
 Chapter 7 presents a realistic reactive application use case that will be used throughout the chapters of part 2. The application is composed of multiple event-driven microservices that we will specify.

 	
 Chapter 8 exposes some key elements of the Vert.x web stack: designing HTTP APIs, JSON web tokens, cross-origin resource sharing, and integrating with a modern web application frontend.

 	
 Chapter 9 is all about messaging and event streaming. We’ll cover the AMQP protocol used in message brokers, Apache Kafka, and sending emails over SMTP.

 	
 Chapter 10 covers databases and persistent state management with Vert.x. It shows how to use MongoDB (a so-called NoSQL database) and the PostgreSQL relational database for which Vert.x offers a native reactive client.

 	
 Chapter 11 tackles end-to-end real-time reactive event processing with RxJava and Apache Kafka. This chapter also discusses how to connect JavaScript web applications to the Vert.x event bus for a unified programming model.

 	
 Chapter 12 is highly experimental and provides techniques to assess whether a service is actually reactive. By using load and chaos testing tools, we’ll observe a service’s behavior and discuss failure mitigation techniques such as circuit breakers, and their impact on the service’s overall behavior.

 	
 Chapter 13 is the final chapter, and it discusses Vert.x applications running in container environments. We’ll discuss clustering, application configuration, and service discovery using simple mechanisms. You’ll see how to package Vert.x services as container images, deploy them to a Kubernetes cluster, and expose health checks and metrics.

 Chapters 1 to 6 are intended for all readers. Some parts can be skipped if you already have some experience with asynchronous programming.

 Chapter 7 shows the decomposition of an application based on event-driven reactive services.

 Chapters 8 to 11 cover the most popular pieces of the Vert.x stack and should be useful for all readers interested in becoming proficient with Vert.x.

 Chapter 12 is where we consolidate everything and touch on the topic of resiliency, which is fundamental to making reactive applications. This chapter can nearly be read on its own by anyone interested in load and chaos testing. Indeed, there is less code and more hands-on content in this chapter, and you could apply the same methodology to a service written in a stack other than Vert.x.

 Finally, chapter 13 can be skipped if you are not interested in containers and Kubernetes.

About the code

 The source code of the book’s examples can be downloaded free of charge from the GitHub repository at https://github.com/jponge/vertx-in-action or from the Manning website at www.manning.com/books/vertx-in-action.

 The samples require Java 8 or 11 to compile. Maven and Gradle builds are provided. An installation of Docker is required to run the tests and examples for the chapters in part 2. The book’s workflow is better in a Unix environment: Linux, macOS, or the Microsoft Windows Subsystem for Linux (WSL). I use a few command-line tools that you may have to install; details are given in the corresponding chapters.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Vert.x in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/vertx-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook .manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Dr. Julien Ponge is a Principal Software Engineer at Red Hat, working on reactive and the Eclipse Vert.x project. He is on leave from INSA Lyon and the CITI Laboratory where he was an Associate Professor in computer science and engineering. He held various teaching, research, management, and executive positions there. He has 20 years of experience in open source ecosystems, having participated in many projects and created the likes of IzPack and the Eclipse Golo programming language. He is also a regular speaker at user groups and conferences. He is an alumni from Université Clermont Auvergne (France) and the University of New South Wales (Australia) where he obtained his PhD degrees.

about the cover illustration

 The figure on the cover of Vert.x in Action is captioned “Femme Kourilienne,” or a woman from the Kurile Islands. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Fundamentals of asynchronous programming with Vert.x

 The first step toward building reactive systems is to adopt asynchronous programming. Traditional programming models based on blocking I/O do not scale as well as those that use non-blocking I/O. Serving more requests with fewer resources is very appealing, so where’s the catch? There is indeed a little problem: asynchronous programming is a non-trivial paradigm shift if you have never been exposed to it!

 The chapters in this part of the book will teach you the fundamental concepts of asynchronous programming by using the Vert.x toolkit. Thinking in asynchronous operations is definitely approachable (and fun!) with Vert.x, and we will explore the main building blocks of a Vert.x application.

1 Vert.x, asynchronous programming, and reactive systems

 This chapter covers

 	
What Vert.x is

 	
Why distributed systems cannot be avoided

 	
The challenges in programming resource-efficient networked applications

 	
What asynchronous and non-blocking programming is

 	
What a reactive application is, and why asynchronous programming is not enough

 	
Alternatives to Vert.x

 We developers live in an industry of buzzwords, technologies, and practices hype cycles. I have long taught university students the elements of designing, program-ming, integrating, and deploying applications, and I have witnessed first-hand how complicated it can be for newcomers to navigate the wild ocean of current technologies.

 Asynchronous and reactive are important topics in modern applications, and my goal with this book is to help developers understand the core concepts behind these terms, gain practical experience, and recognize when there are benefits to these approaches. We will use Eclipse Vert.x, a toolkit for writing asynchronous applications that has the added benefit of providing solutions for the different definitions of what “reactive” means.

 Ensuring that you understand the concepts is a priority for me in this book. While I want to give you a solid understanding of how to write Vert.x applications, I also want to make sure that you can translate the skills you learn here to other similar and possibly competing technologies, now or five years down the road.

1.1 Being distributed and networked is the norm

 It was common 20 years ago to deploy business applications that could perform all operations while running isolated on a single machine. Such applications typically exhibited a graphical user interface, and they had local databases or custom file management for storing data. This is, of course, a gross exaggeration, as networking was already in use, and business applications could take advantage of database servers over the network, networked file storage, and various remote code operations.

 Today, an application is more naturally exposed to end users through web and mobile interfaces. This naturally brings the network into play, and hence distributed systems. Also, service-oriented architectures allow the reuse of some functionality by issuing requests to other services, possibly controlled by a third-party provider. Examples would be delegating authentication in a consumer application to popular account providers like Google, Facebook, or Twitter, or delegating payment processing to Stripe or PayPal.

1.2 Not living on an isolated island

 Figure 1.1 is a fictional depiction of what a modern application is: a set of networked services interacting with each other. Here are some of these networked services:

 	
 A database like PostgreSQL or MongoDB stores data.

 	
 A search engine like Elasticsearch allows finding information that was previously indexed, such as products in a catalog.

 	
 A durable storage service like Amazon S3 provides persistent and replicated data storage of documents.

 	
 A messaging service can be

 	
An SMTP server to programmatically send emails.

 	
A bot for interacting with users over messaging platforms, such as Slack, Telegram, or Facebook Messenger.

 	
An integration messaging protocol for application-to-application integration, like AMQP.

 	
 An identity management service like Keycloak provides authentication and role management for user and service interactions.

 	
 Monitoring with libraries like Micrometer exposes health statuses, metrics, and logs so that external orchestration tools can maintain proper quality of service, possibly by starting new service instances or killing existing ones when they fail.

 [image:]

 Figure 1.1 A networked application/service

 Later in this book you will see examples of typical services such as API endpoints, stream processors, and edge services.1 The preceding list is not exhaustive, of course, but the key point is that services rarely live in isolation, as they need to talk to other services over the network to function.

1.3 There is no free lunch on the network

 The network is exactly where a number of things may go wrong in computing:

 	
 The bandwidth can fluctuate a lot, so data-intensive interactions between services may suffer. Not all services can enjoy fast bandwidth inside the same data center, and even so, it remains slower than communications between processes on the same machine.

 	
 The latency fluctuates a lot, and because services need to talk to services that talk to additional services to process a given request, all network-induced latency adds to the overall request-processing times.

 	
 Availability should not be taken for granted: Networks fail. Routers fail. Proxies fail. Sometimes someone runs into a network cable and disconnects it. When the network fails, a service that sends a request to another service may not be able to determine if it is the other service or the network that is down.

 In essence, modern applications are made of distributed and networked services. They are accessed over networks that themselves introduce problems, and each service needs to maintain several incoming and outgoing connections.

1.4 The simplicity of blocking APIs

 Services need to manage connections to other services and requesters. The traditional and widespread model for managing concurrent network connections is to allocate a thread for each connection. This is the model in many technologies, such as Servlets in Jakarta EE (before additions in version 3), Spring Framework (before additions in version 5), Ruby on Rails, Python Flask, and many more. This model has the advantage of simplicity, as it is synchronous.

 Let’s look at an example where a TCP server echoes input text back to the client until it sees a /quit terminal input (shown in listing 1.3).

 The server can be run using the Gradle run task from the book’s full example project (./gradlew run -PmainClass=chapter1.snippets.SynchronousEcho in a terminal). By using the netcat command-line tool, we can send and receive text.

 Listing 1.1 Client-side output of a netcat session

 $ netcat localhost 3000
Hello, Vert.x! ❶
Hello, Vert.x! ❷
Great
Great
/quit
/quit
$

 ❶ This line is the user input on the command line.

 ❷ This line is sent by the TCP server.

 Tip You may need to install netcat (or nc) on your operating system.

 On the server side, we can see the following trace.

 Listing 1.2 Server-side trace

 $./gradlew run -PmainClass=chapter1.snippets.SynchronousEcho
(...)
~ Hello, Vert.x!
~ Great
~ /quit

 The code in the following listing provides the TCP server implementation. It is a classical use of the java.io package that provides synchronous I/O APIs.

 Listing 1.3 Synchronous echo TCP protocol

 public class SynchronousEcho {
 public static void main(String[] args) throws Throwable {
 ServerSocket server = new ServerSocket();
 server.bind(new InetSocketAddress(3000));
 while (true) { ❶
 Socket socket = server.accept();
 new Thread(clientHandler(socket)).start();
 }
 }

 private static Runnable clientHandler(Socket socket) {
 return () -> {
 try (
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 PrintWriter writer = new PrintWriter(
 new OutputStreamWriter(socket.getOutputStream()))) {
 String line = "";
 while (!"/quit".equals(line)) {
 line = reader.readLine(); ❷
 System.out.println("~ " + line);
 writer.write(line + "\n"); ❸
 writer.flush();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 };
 }
}

 ❶ The main application thread plays the role of an accepting thread, as it receives socket objects for all new connections. The operation blocks when no connection is pending. A new thread is allocated for each connection.

 ❷ Reading from a socket may block the thread allocated to the connection, such as when insufficient data is being read.

 ❸ Writing to a socket may also block, such as until the underlying TCP buffer data has been sent over the network.

 The server uses the main thread for accepting connections, and each connection is allocated a new thread for processing I/O. The I/O operations are synchronous, so threads may block on I/O operations.

1.5 Blocking APIs waste resources, increase costs

 The main problem with the code in listing 1.3 is that it allocates a new thread for each incoming connection, and threads are anything but cheap resources. A thread needs memory, and the more threads you have, the more you put pressure on the operating system kernel scheduler, as it needs to give CPU time to the threads. We could improve the code in listing 1.3 by using a thread pool to reuse threads after a connection has been closed, but we still need n threads for n connections at any given point in time.

 [image:]

 Figure 1.2 Threads and blocking I/O operations

 This is illustrated in figure 1.2, where you can see the CPU usage over time of three threads for three concurrent network connections. Input/output operations such as readLine and write may block the thread, meaning that it is being parked by the operating system. This happens for two reasons:

 	
 A read operation may be waiting for data to arrive from the network.

 	
 A write operation may have to wait for buffers to be drained if they are full from a previous write operation.

 A modern operating system can properly deal with a few thousand concurrent threads. Not every networked service will face loads with so many concurrent requests, but this model quickly shows its limits when we are talking about tens of thousands of concurrent connections.

 It is also important to recall that we often need more threads than incoming network connections. To take a concrete example, suppose that we have an HTTP service that offers the best price for a given product, which it does by requesting prices from four other HTTP services, as illustrated in figure 1.3. This type of service is often called an edge service or an API gateway. Requesting each service in sequence and then selecting the lowest price would render our service very slow, as each request adds to our own service’s latency. The efficient way is to start four concurrent requests from our service, and then wait and gather their responses. This translates to starting four more threads; if we had 1,000 concurrent network requests, we might be using up to 5,000 threads in the worst naive case, where all requests need to be processed at the same time and we don’t use thread pooling or maintain persistent connections from the edge service to the requested services.

 [image:]

 Figure 1.3 Request processing in an edge service

 Last, but not least, applications are often deployed to containerized or virtualized environments. This means that applications may not see all the available CPU cores, and their allocated CPU time may be limited. Available memory for processes may also be restricted, so having too many threads also eats into the memory budget. Such applications have to share CPU resources with other applications, so if all applications use blocking I/O APIs, there can quickly be too many threads to manage and schedule, which requires starting more server/container instances as traffic ramps up. This translates directly to increased operating costs.

1.6 Asynchronous programming with non-blocking I/O

 Instead of waiting for I/O operations to complete, we can shift to non-blocking I/O. You may have already sampled this with the select function in C.

 The idea behind non-blocking I/O is to request a (blocking) operation, and move on to doing other tasks until the operation result is ready. For example a non-blocking read may ask for up to 256 bytes over a network socket, and the execution thread does other things (like dealing with another connection) until data has been put into the buffers, ready for consumption in memory. In this model, many concurrent connections can be multiplexed on a single thread, as network latency typically exceeds the CPU time it takes to read incoming bytes.

 Java has long had the java.nio (Java NIO) package, which offers non-blocking I/O APIs over files and networks. Going back to our previous example of a TCP service that echoes incoming data, listings 1.4 through 1.7 show a possible implementation with Java non-blocking I/O.

 Listing 1.4 Asynchronous variant of the echo service: main loop

 public class AsynchronousEcho {
 public static void main(String[] args) throws IOException {
 Selector selector = Selector.open();

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
 serverSocketChannel.bind(new InetSocketAddress(3000));
 serverSocketChannel.configureBlocking(false); ❶
 serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); ❷

 while (true) {
 selector.select(); ❸
 Iterator<SelectionKey> it = selector.selectedKeys().iterator();
 while (it.hasNext()) {
 SelectionKey key = it.next();
 if (key.isAcceptable()) { ❹
 newConnection(selector, key);
 } else if (key.isReadable()) { ❺
 echo(key);
 } else if (key.isWritable()) { ❻
 continueEcho(selector, key);
 }
 it.remove(); ❼
 }
 }
 }
 // (...)

 ❶ We need to put the channel into non-blocking mode.

 ❷ The selector will notify of incoming connections.

 ❸ This collects all non-blocking I/O notifications.

 ❹ We have a new connection.

 ❺ A socket has received data.

 ❻ A socket is ready for writing again.

 ❼ Selection keys need to be manually removed, or they will be available again in the next loop iteration.

 Listing 1.4 shows the server socket channel preparation code. It opens the server socket channel and makes it non-blocking, then registers an NIO key selector for processing events. The main loop iterates over the selector keys that have events ready for processing and dispatches them to specialized methods depending on the event type (new connections, data has arrived, or data can be sent again).

 Listing 1.5 Asynchronous variant of the echo service: accepting connections

 private static class Context { ❶
 private final ByteBuffer nioBuffer = ByteBuffer.allocate(512);
 private String currentLine = "";
 private boolean terminating = false;
 }

 private static final HashMap<SocketChannel, Context> contexts =
 ➥ new HashMap<>();

 private static void newConnection(Selector selector, SelectionKey key)
 ➥ throws IOException {
 ServerSocketChannel serverSocketChannel = (ServerSocketChannel)
 ➥ key.channel();
 SocketChannel socketChannel = serverSocketChannel.accept();
 socketChannel
 .configureBlocking(false)
 .register(selector, SelectionKey.OP_READ); ❷
 contexts.put(socketChannel, new Context()); ❸
 }

 ❶ The Context class keeps state related to the handling of a TCP connection.

 ❷ We set the channel to non-blocking and declare interest in read operations.

 ❸ We keep all connection states in a hash map.

 Listing 1.5 shows how new TCP connections are dealt with. The socket channel that corresponds to the new connection is configured as non-blocking and then is tracked for further reference in a hash map, where it is associated to some context object. The context depends on the application and protocol. In our case, we track the current line and whether the connection is closing, and we maintain a connection-specific NIO buffer for reading and writing data.

 Listing 1.6 Asynchronous variant of the echo service: echoing data

 private static final Pattern QUIT = Pattern.compile("(\\r)?(\\n)?/quit$");

 private static void echo(SelectionKey key) throws IOException {
 SocketChannel socketChannel = (SocketChannel) key.channel();
 Context context = contexts.get(socketChannel);
 try {
 socketChannel.read(context.nioBuffer);
 context.nioBuffer.flip();
 context.currentLine = context.currentLine +
 ➥ Charset.defaultCharset().decode(context.nioBuffer);
 if (QUIT.matcher(context.currentLine).find()) {
 context.terminating = true; ❶
 } else if (context.currentLine.length() > 16) {
 context.currentLine = context.currentLine.substring(8);
 }
 context.nioBuffer.flip(); ❷
 int count = socketChannel.write(context.nioBuffer);
 if (count < context.nioBuffer.limit()) { ❸
 key.cancel();
 socketChannel.register(key.selector(), SelectionKey.OP_WRITE);
 } else {
 context.nioBuffer.clear();
 if (context.terminating) {
 cleanup(socketChannel);
 }
 }
 } catch (IOException err) {
 err.printStackTrace();
 cleanup(socketChannel);
 }
 }

 ❶ If we find a line ending with /quit, we terminate the connection.

 ❷ Java NIO buffers need positional manipulations: the buffer has read data, so to write it back to the client, we need to flip and return to the start position.

 ❸ It may happen that not all data can be written, so we stop looking for read operations and declare interest in a notification indicating when the channel can be written to again.

 Listing 1.6 has the code for the echo method. The processing is very simple: we read data from the client socket, and then we attempt to write it back. If the write operation was only partial, we stop further reads, declare interest in knowing when the socket channel is writable again, and then ensure all data is written.

 Listing 1.7 Asynchronous variant of the echo service: continuing and closing

 private static void cleanup(SocketChannel socketChannel) throws IOException {
 socketChannel.close();
 contexts.remove(socketChannel);
 }

 private static void continueEcho(Selector selector, SelectionKey key)
 ➥ throws IOException {
 SocketChannel socketChannel = (SocketChannel) key.channel();
 Context context = contexts.get(socketChannel);
 try {
 int remainingBytes = context.nioBuffer.limit() - context.nioBuffer.position();
 int count = socketChannel.write(context.nioBuffer);
 if (count == remainingBytes) { ❶
 context.nioBuffer.clear();
 key.cancel();
 if (context.terminating) {
 cleanup(socketChannel);
 } else {
 socketChannel.register(selector, SelectionKey.OP_READ);
 }
 }
 } catch (IOException err) {
 err.printStackTrace();
 cleanup(socketChannel);
 }
 }
}

 ❶ We remain in this state until all data has been written back. Then we drop our write interest and declare read interest.

 Finally, listing 1.7 shows the methods for closing the TCP connection and for finishing writing a buffer. When all data has been written in continueEcho, we register interest again in reading data.

 As this example shows, using non-blocking I/O is doable, but it significantly increases the code complexity compared to the initial version that used blocking APIs. The echo protocol needs two states for reading and writing back data: reading, or finishing writing. For more elaborate TCP protocols, you can easily anticipate the need for more complicated state machines.

 It is also important to note that like most JDK APIs, java.nio focuses solely on what it does (here, I/O APIs). It does not provide higher-level protocol-specific helpers, like for writing HTTP clients and servers. Also, java.nio does not prescribe a threading model, which is still important to properly utilize CPU cores, nor does it handle asynchronous I/O events or articulate the application processing logic.

 Note This is why, in practice, developers rarely deal with Java NIO. Networking libraries like Netty and Apache MINA solve the shortcomings of Java NIO, and many toolkits and frameworks are built on top of them. As you will soon discover, Eclipse Vert.x is one of them.

1.7 Multiplexing event-driven processing: The case of the event loop

 A popular threading model for processing asynchronous events is that of the event loop. Instead of polling for events that may have arrived, as we did in the previous Java NIO example, events are pushed to an event loop.

 As you can see in figure 1.4, events are queued as they arrive. They can be I/O events, such as data being ready for consumption or a buffer having been fully written to a socket. They can also be any other event, such as a timer firing. A single thread is assigned to an event loop, and processing events shouldn’t perform any blocking or long-running operation. Otherwise, the thread blocks, defeating the purpose of using an event loop.

 [image:]

 Figure 1.4 Processing events using an event loop

 Event loops are quite popular: JavaScript code running in web browsers runs on top of an event loop. Many graphical interface toolkits, such as Java Swing, also have an event loop.

 Implementing an event loop is easy.

 Listing 1.8 Using a simple event loop

 public static void main(String[] args) {
 EventLoop eventLoop = new EventLoop();
 new Thread(() -> { ❶
 for (int n = 0; n < 6; n++) {
 delay(1000);
 eventLoop.dispatch(new EventLoop.Event("tick", n));
 }
 eventLoop.dispatch(new EventLoop.Event("stop", null));
 }).start();
 new Thread(() -> { ❷
 delay(2500);
 eventLoop.dispatch(new EventLoop.Event("hello", "beautiful world"));
 delay(800);
 eventLoop.dispatch(new EventLoop.Event("hello", "beautiful universe"));
 }).start();
 eventLoop.dispatch(new EventLoop.Event("hello", "world!")); ❸
 eventLoop.dispatch(new EventLoop.Event("foo", "bar"));
 eventLoop
 .on("hello", s -> System.out.println("hello " + s)) ❹
 .on("tick", n -> System.out.println("tick #" + n))
 .on("stop", v -> eventLoop.stop())
 .run();
 System.out.println("Bye!");
}

private static void delay(long millis) { ❺
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
}

 ❶ A first thread that dispatches events every second to the event loop

 ❷ A second thread that dispatches two events at 2500 ms and 3300 ms

 ❸ Events dispatched from the main thread

 ❹ Event handlers defined as Java lambda functions

 ❺ This method wraps a possibly checked exception into an unchecked exception to avoid polluting the main method code with exception-handling logic.

 The code in listing 1.8 shows the use of an event-loop API whose execution gives the following console output.

 Listing 1.9 Console output from the event-loop example

 hello world!
No handler for key foo
tick #0
tick #1
hello beautiful world
tick #2
hello beautiful universe
tick #3
tick #4
tick #5
Bye!

 More sophisticated event-loop implementations are possible, but the one in the following listing relies on a queue of events and a map of handlers.

 Listing 1.10 A simple event-loop implementation

 public final class EventLoop {
 private final ConcurrentLinkedDeque<Event> events = new ConcurrentLinkedDeque<>();
 private final ConcurrentHashMap<String, Consumer<Object>> handlers = new
 ➥ ConcurrentHashMap<>();

 public EventLoop on(String key, Consumer<Object> handler) { ❶
 handlers.put(key, handler);
 return this;
 }

 public void dispatch(Event event) { events.add(event); } ❷
 public void stop() { Thread.currentThread().interrupt(); }

 public void run() {
 while (!(events.isEmpty() && Thread.interrupted())) { ❸
 if (!events.isEmpty()) {
 Event event = events.pop();
 if (handlers.containsKey(event.key)) {
 handlers.get(event.key).accept(event.data);
 } else {
 System.err.println("No handler for key " + event.key);
 }
 }
 }
 }
}

 ❶ Handlers are stored in a map where each key has a handler.

 ❷ Dispatching is pushing events to a queue.

 ❸ The event loop looks for events and finds a handler based on event keys.

 The event loop runs on the thread that calls the run method, and events can be safely sent from other threads using the dispatch method.

 Last, but not least, an event is simply a pair of a key and data, as shown in the following, which is a static inner class of EventLoop.

 Listing 1.11 A simple event-loop implementation

 public static final class Event {
 private final String key;
 private final Object data;

 public Event(String key, Object data) {
 this.key = key;
 this.data = data;
 }
}

1.8 What is a reactive system?

 So far we have discussed how to do the following:

 	
 Leverage asynchronous programming and non-blocking I/O to handle more concurrent connections and use less threads

 	
 Use one threading model for asynchronous event processing (the event loop)

 By combining these two techniques, we can build scalable and resource-efficient applications. Let’s now discuss what a reactive system is and how it goes beyond “just” asynchronous programming.

 The four properties of reactive systems are exposed in The Reactive Manifesto: responsive, resilient, elastic, and message-driven (www.reactivemanifesto.org/). We are not going to paraphrase the manifesto in this book, so here is a brief take on what these properties are about:

 	
 Elastic --Elasticity is the ability for the application to work with a variable number of instances. This is useful, as elasticity allows the app to respond to traffic spikes by starting new instances and load-balancing traffic across instances. This has an interesting impact on the code design, as shared state across instances needs to be well identified and limited (e.g., server-side web sessions). It is useful for instances to report metrics, so that an orchestrator can decide when to start or stop instances based on both network traffic and reported metrics.

 	
 Resilient --Resiliency is partially the flip side of elasticity. When one instance crashes in a group of elastic instances, resiliency is naturally achieved by redirecting traffic to other instances, and a new instance can be started if necessary. That being said, there is more to resiliency. When an instance cannot fulfill a request due to some conditions, it still tries to answer in degraded mode. Depending on the application domain, it may be possible to respond with older cached values, or even to respond with empty or default data. It may also be possible to forward a request to some other, non-error instance. In the worst case, an instance can respond with an error, but in a timely fashion.

 	
 Responsive --Responsivity is the result of combining elasticity and resiliency. Consistent response times provide strong service-level agreement guarantees. This is achieved both thanks to the ability to start new instances if need be (to keep response times acceptable), and also because instances still respond quickly when errors arise. It is important to note that responsivity is not possible if one component relies on a non-scalable resource, like a single central database. Indeed, starting more instances does not solve the problem if they all issue requests to one resource that is quickly going to be overloaded.

 	
 Message-driven --Using asynchronous message passing rather than blocking paradigms like remote procedure calls is the key enabler of elasticity and resiliency, which lead to responsiveness. This also enables messages to be dispatched to more instances (making the system elastic) and controls the flow between message producers and message consumers (this is back-pressure, and we will explore it later in this book).

 A reactive system exhibits these four properties, which make for dependable and resource-efficient systems.

 Does asynchronous imply reactive?

 This is an important question, as being asynchronous is often presented as being a magic cure for software woes. Clearly, reactive implies asynchronous, but the converse is not necessarily true.

 As a (not so) fictitious example, consider a shopping web application where users can put items in a shopping cart. This is classically done by storing items in a server-side web session. When sessions are being stored in memory or in local files, the system is not reactive, even if it internally uses non-blocking I/O and asynchronous programming. Indeed, an instance of the application cannot take over another one because sessions are application state, and in this case that state is not being replicated and shared across nodes.

 A reactive variant of this example would use a memory grid service (e.g., Hazelcast, Redis, or Infinispan) to store the web sessions, so that incoming requests could be routed to any instance.

1.9 What else does reactive mean?

 As reactive is a trendy term, it is also being used for very different purposes. You just saw what a reactive system is, but there are two other popular reactive definitions, summarized in table 1.1.

 Table 1.1 All the reactive things

 	
 Reactive?

 	
 Description

 	
 Systems

 	
 Dependable applications that are message-driven, resilient, elastic, and responsive.

 	
 Programming

 	
 A means of reacting to changes and events. Spreadsheet programs are a great example of reactive programming: when cell data changes, cells having formulas depending on affected cells are recomputed automatically. Later in this book you will see RxJava, a popular reactive extensions API for Java that greatly helps coordinate asynchronous event and data processing. There is also functional reactive programming, a style of programming that we won’t cover in this book but for which Functional Reactive Programming by Stephen Blackheath and Anthony Jones (Manning, 2016) is a fantastic resource.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F03_Ponge.png

OEBPS/OEBPS/Images/CH01_F04_Ponge.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F01_Ponge.png

OEBPS/OEBPS/Images/CH01_F02_Ponge.png

