

 inside front cover

 [image:]

 [image:]

 Feature Engineering Bookcamp

 SINAN OZDEMIR

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editor:

 	
 Al Krinker

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Ninoslav Čerkez

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299797

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introduction to feature engineering

 1.1 What is feature engineering, and why does it matter?

 Who needs feature engineering?

 What feature engineering cannot do

 Great data, great models

 1.2 The feature engineering pipeline

 The machine learning pipeline

 1.3 How this book is organized

 The five types of feature engineering

 A brief overview of this book’s case studies

 2 The basics of feature engineering

 2.1 Types of data

 Structured data

 Unstructured data

 2.2 The four levels of data

 Qualitative data vs. quantitative data

 The nominal level

 The ordinal level

 The interval level

 The ratio level

 2.3 The types of feature engineering

 Feature improvement

 Feature construction

 Feature selection

 Feature extraction

 Feature learning

 2.4 How to evaluate feature engineering efforts

 Evaluation metric 1: Machine learning metrics

 Evaluation metric 2: Interpretability

 Evaluation metric 3: Fairness and bias

 Evaluation metric 4: ML complexity and speed

 3 Healthcare: Diagnosing COVID-19

 3.1 The COVID flu diagnostic dataset

 The problem statement and defining success

 3.2 Exploratory data analysis

 3.3 Feature improvement

 Imputing missing quantitative data

 Imputing missing qualitative data

 3.4 Feature construction

 Numerical feature transformations

 Constructing categorical data

 3.5 Building our feature engineering pipeline

 Train/test splits

 3.6 Feature selection

 Mutual information

 Hypothesis testing

 Using machine learning

 3.7 Answers to exercises

 4 Bias and fairness: Modeling recidivism

 4.1 The COMPAS dataset

 The problem statement and defining success

 4.2 Exploratory data analysis

 4.3 Measuring bias and fairness

 Disparate treatment vs. disparate impact

 Definitions of fairness

 4.4 Building a baseline model

 Feature construction

 Building our baseline pipeline

 Measuring bias in our baseline model

 4.5 Mitigating bias

 Preprocessing

 In-processing

 Postprocessing

 4.6 Building a bias-aware model

 Feature construction: Using the Yeo-Johnson transformer to treat the disparate impact

 Feature extraction: Learning fair representation implementation using AIF360

 4.7 Answers to exercises

 5 Natural language processing: Classifying social media sentiment

 5.1 The tweet sentiment dataset

 The problem statement and defining success

 5.2 Text vectorization

 Feature construction: Bag of words

 Count vectorization

 TF-IDF vectorization

 5.3 Feature improvement

 Cleaning noise from text

 Standardizing tokens

 5.4 Feature extraction

 Singular value decomposition

 5.5 Feature learning

 Introduction to autoencoders

 Training an autoencoder to learn features

 Introduction to transfer learning

 Transfer learning with BERT

 Using BERT’s pretrained features

 5.6 Text vectorization recap

 5.7 Answers to exercises

 6 Computer vision: Object recognition

 6.1 The CIFAR-10 dataset

 The problem statement and defining success

 6.2 Feature construction: Pixels as features

 6.3 Feature extraction: Histogram of oriented gradients

 Optimizing dimension reduction with PCA

 6.4 Feature learning with VGG-11

 Using a pretrained VGG-11 as a feature extractor

 Fine-tuning VGG-11

 Using fine-tuned VGG-11 features with logistic regression

 6.5 Image vectorization recap

 6.6 Answers to exercises

 7 Time series analysis: Day trading with machine learning

 7.1 The TWLO dataset

 The problem statement

 7.2 Feature construction

 Date/time features

 Lag features

 Rolling/expanding window features

 Domain-specific features

 7.3 Feature selection

 Selecting features using ML

 Recursive feature elimination

 7.4 Feature extraction

 Polynomial feature extraction

 7.5 Conclusion

 7.6 Answers to exercises

 8 Feature stores

 8.1 MLOps and feature stores

 Benefits of using a feature store

 Wikipedia, MLOps, and feature stores

 8.2 Setting up a feature store with Hopsworks

 Feature groups

 Using feature groups to select data

 8.3 Creating training data in Hopsworks

 Training datasets

 Provenance

 8.4 Answer to exercise

 9 Putting it all together

 9.1 Revisiting the feature engineering pipeline

 9.2 Key takeaways

 Feature engineering is as crucial as ML model choice

 Feature engineering isn’t a one-size-fits-all solution

 9.3 Recap of feature engineering

 Feature improvement

 Feature construction

 Feature selection

 Feature extraction

 Feature learning

 9.4 Data type-specific feature engineering techniques

 Structured data

 Unstructured data

 9.5 Frequently asked questions

 When should I dummify categorical variables vs. leaving them as a single column?

 How do I know if I need to deal with bias in my data?

 9.6 Other feature engineering techniques

 Categorical dummy bucketing

 Combining learned features with conventional features

 Other raw data vectorizers

 9.7 Further reading material

 index

 front matter

preface

 Like many data scientists and machine learning engineers out there, most of my professional training and education came from real-world experiences, rather than classical education. I got all my degrees from Johns Hopkins in theoretical mathematics and never once learned about regressions and classification models. Once I received my master’s degree, I decided to make the switch from pursuing my PhD to going into startups in Silicon Valley and teaching myself the basics of ML and AI.

 I used free online resources and read reference books to begin my data science education and started a company focusing on creating enterprise AIs for large corporations. Nearly all of the material I picked up focused on the types of models and algorithms used to model data and make predictions. I used books to learn the theory and read online posts on sites like Medium to see how people would apply that theory to real-life applications.

 It wasn’t until a few years later that I started to realize that I could only go so far learning about topics like models, training, and parameter tuning. I was working with raw text data at the time, building enterprise-grade chatbots, and I noticed a big difference in the tone of the books and articles about natural language processing (NLP). They focused a lot on the classification and regression models I could use, but they focused equally, if not even more, on how to process the raw text for the models to use. They talked about tuning parameters for the data more than tuning parameters for the models themselves.

 I wondered why this wasn’t the case for other branches of ML and AI. Why weren’t people transforming tabular data with the same rigor as text data? It couldn’t be that it wasn’t necessary or helpful because pretty much every survey asking about time spent in the data science process revealed that people spent a majority of time getting and cleaning data. I decided to take this gap and turn it into a book.

 Funny enough, that wasn’t this book. I wrote another book on feature engineering a few years prior to this one. My first book on feature engineering focused on the basics of feature engineering with an emphasis on explaining the tools and algorithms over showcasing how to use them day to day. This book takes a more practical approach. Every chapter in this book is dedicated to a use case in a particular field with a dataset that invites different feature engineering techniques to be used.

 I tried to outline my own thinking process when it came to feature engineering in an easy-to-follow and concise format. I’ve made a career out of data science and machine learning, and feature engineering has been a huge part of that. I hope that this book will open your eyes and your conversations with colleagues about working with data and give you the tools and tricks to know which feature engineering techniques to apply and when.

acknowledgments

 This book required a lot of work, but I believe that all the time and effort resulted in a great book. I sure hope that you think so as well! There are many people I’d like to thank for encouraging me and helping me along the way.

 First and foremost, I want to thank my partner, Elizabeth. You’ve supported me, listened to me as I paced around our kitchen trying to figure out the best analogy for a complex topic, and walked the dog when it was my turn, but I was so engrossed in my writing that it totally slipped my mind. I love you more than anything.

 Next, I’d like to acknowledge everyone at Manning who made this text possible. I know it took a while, but your constant support and belief in the topic kept me going when things were rough. Your commitment to the quality of this book has made it better for everyone who will read it.

 I’d also like to thank all the reviewers, who took the time to read my manuscript at various stages during its development. To Aleksei Agarkov, Alexander Klyanchin, Amaresh Rajasekharan, Bhagvan Kommadi, Bob Quintus, Harveen Singh, Igor Dudchenko, Jim Amrhein, Jiri Pik, John Williams, Joshua A. McAdams, Krzysztof Jędrzejewski, Krzysztof Kamyczek, Lavanya Mysuru Krishnamurthy, Lokesh Kumar, Maria Ana, Maxim Volgin, Mikael Dautrey, Oliver Korten, Prashant Nair, Richard Vaughan, Sadhana Ganapathiraju, Satej Kumar Sahu, Seongjin Kim, Sergio Govoni, Shaksham Kapoor, Shweta Mohan Joshi, Subhash Talluri, Swapna Yeleswarapu, and Vishwesh Ravi Shrimaland: your suggestions helped make this a better book.

 Finally, a special thank you goes to my technical proofreaders, who made sure that I crossed my t’s, dotted my i’s, and commented on my code!

 All in all, many people made this book possible. Thank you all so much!

about this book

 Feature Engineering Bookcamp was written both to give the reader an overview of popular feature engineering techniques and to provide a framework for thinking about when and how to use certain techniques. I have found that books that focus on one or the other can sometimes fall a bit flat. The book that focuses only on overviews tends to ignore the practical application side of things, whereas the book that focuses on the frameworks can leave readers asking themselves, “Sure, but why does it work?” I want readers to walk away confident in both understanding and applying these techniques.

Who should read this book?

 Feature Engineering Bookcamp is for machine learning engineers and data scientists who have already entered the space and are looking for a boost in their abilities and skill sets. I assume that the reader already has functional knowledge of machine learning, cross-validation, parameter tuning, and model training using Python and scikit-learn. This book builds on that knowledge by incorporating feature engineering pipelines directly into existing machine learning frameworks.

How this book is organized: A roadmap

 This book has two introductory chapters that cover the basics of feature engineering, including how to recognize different types of data and the different categories of feature engineering. Each of chapters 3 through 8 focuses on a specific case study with a different dataset and a different goal. Each chapter gives the reader a new perspective, a new dataset, and new feature engineering techniques that are specific to the type of data we are working with. The goal is to provide a broad and comprehensive view of the types of feature engineering techniques, while showcasing a variety of datasets and data types.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/feature-engineering-bookcamp. The complete code for the examples in the book is available for download from my personal GitHub at https://github.com/sinanuozdemir/feature_engineering_bookcamp.

liveBook discussion forum

 Purchase of Feature Engineering Bookcamp includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/feature-engineering-bookcamp/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the author

 [image: Ozdemir_author_photo]

 Sinan Ozdemir is the founder and CTO of Shiba and is currently managing the Web3 components and machine learning models that power the company’s social commerce platform. Sinan is a former lecturer of data science at Johns Hopkins University and the author of multiple textbooks on data science and machine learning. Additionally, he is the founder of the acquired Kylie.ai, an enterprise-grade conversational AI platform with robotic process automation (RPA) capabilities. He holds a master’s degree in pure mathematics from Johns Hopkins University and is based in San Francisco, CA.

about the cover illustration

 The figure on the cover of Feature Engineering Bookcamp is captioned “Homme du Thibet,” or “Man from Tibet,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Introduction to feature engineering

 This chapter covers

 	
Understanding the feature engineering and machine learning pipeline

 	
Examining why feature engineering is important to the machine learning process

 	
Taking a look at the types of feature engineering

 	
Understanding how this book is structured and the types of case studies we will focus on

 Much of the current discourse around artificial intelligence (AI) and machine learning (ML) is inherently model-centric, focusing on the latest advancements in ML and deep learning. This model-first approach often comes with, at best, little regard for and, at worst, total disregard of the data being used to train said models. Fields like MLOps are exploding with ways to systematically train and utilize ML models with as little human interference as possible to “free up” the engineer’s time.

 Many prominent AI figures are urging data scientists to place more focus on a data-centric view of ML that focuses less on the model selection and hyperparameter-tuning process and more on techniques that enhance the data being ingested and used to train our models. Andrew Ng is on record saying that “machine learning is basically feature engineering” and that we need to be moving more toward a data-centric approach. Adopting a data-centric approach is especially useful when the following are true:

 	
 Datasets have few observations (<10 K), so we can extract as much information as possible from fewer rows.

 	
 Datasets have a large number of columns compared to the number of observations. This can lead to what is known as the curse of dimensionality, which describes an extremely sparse universe of data that ML models have difficulty learning from.

 	
 Interpretability of the data and model is key.

 	
 The domain of the data is inherently complex (e.g., accurate financial modeling is virtually impossible without clean and complete data).

 We should be focusing on a part of the ML pipeline that requires arguably the most nuanced and careful deliberation: feature engineering.

 In this book, we will dive into the different algorithms and statistical testing procedures used to identify the strongest features, create new ones, and measure ML model success as they relate to the strength of these features. For our purposes, we will define a feature as an attribute or column of data that is meaningful to an ML model. We will make these dives by way of several case studies, each of which belonging to different domains, including healthcare and finance, and will touch on several types of data, including tabular data, text data, image data, and time-series data.

1.1 What is feature engineering, and why does it matter?

 The term feature engineering conjures different images for different data scientists. For some data scientists, feature engineering is how we narrow down the features needed for supervised models (e.g., trying to predict a response or outcome variable). For others, it is the methodology used to extract numerical representations from unstructured data for an unsupervised model (e.g., trying to extract structure from a previously unstructured dataset). Feature engineering is both of these and much more.

 For the purposes of this book, feature engineering is the art of manipulating and transforming data into a format that optimally represents the underlying problem that an ML algorithm is trying to model and mitigates inherent complexities and biases within the data.

 Data practitioners often rely on ML and deep learning algorithms to extract and learn patterns from data even when the data they are using are poorly formatted and non-optimal. Reasons for this range from the practitioner trusting their ML models too much to simply not knowing the best practices for dealing with messy and inconsistent data and hoping that the ML model will just “figure it out” for them. This approach never even gives the ML models a chance to learn from proper data and dooms the data scientist from the start.

 It comes down to whether the data scientist is willing or able to use their data as much as possible by engineering the best possible features for their ML task. If we do not engineer proper features and rely on complex and slow ML models to figure it out for us, we will likely be left with poor ML models. If we instead take the time to understand our data and craft features for our ML models to learn from, we can end up with a smaller, faster models with on-par, or even superior, performance.

 When it comes down to it, we want our ML models to perform as well as they possibly can, depending on whatever metric we choose to judge them on. To accomplish this, we can manipulate the data and the model (figure 1.1).

 [image: CH01_F01_Ozdemir]

 Figure 1.1 When taking a more data-centric approach to ML, we are not as concerned with improving the ML code, but instead, we are concerned with manipulating the impute data in such a way that the ML model has an easier time surfacing and using patterns in the data, leading to overall better performance in the pipeline.

 This book focuses not on how to optimize ML models but, rather, on techniques for transforming and manipulating data to make it easier for ML models to process and learn from datasets. We will show that there is a whole world of feature engineering techniques that can help the overall ML pipeline that isn’t just picking a better model with better hyperparameters.

1.1.1 Who needs feature engineering?

 According to the 2020 State of Data Science survey by Anaconda (see https://www.anaconda.com/state-of-data-science-2020), data wrangling (which we can consider a stand-in term for feature engineering with the added step of data loading) takes up a disproportionate amount of time and, therefore, is on the mind of every data scientist. The survey shows how data management is still taking up a large portion of data scientists’ time. Nearly half of the reported time was spent on data loading and “cleansing.” The report claims that this was “disappointing” and that “data preparation and cleansing takes valuable time away from real data science work.” One thing to note is that data “cleansing” is a pretty vague term and likely was used as a catchall for exploratory data analysis and all of feature engineering work. We believe that data preparation and feature engineering is a real, vital, and almost always unavoidable part of a data scientist’s work and should be treated with as much respect as the portions of the pipeline that are focused on data modeling.

 This book is dedicated to showcasing powerful feature engineering procedures, including model fairness evaluation (in our fairness case study chapter), deep learning-based representation learning (in both our NLP and image analysis case study chapters), hypothesis testing (in our healthcare case study), and more. These feature engineering techniques can affect model performance as much as the model selection and training process.

1.1.2 What feature engineering cannot do

 It is important to mention that good feature engineering is not a silver bullet. Feature engineering cannot, for example, solve the problem of too little data for our ML models. While there is no magic threshold for how small is too small, in most cases, when working with datasets of under 1,000 rows, feature engineering can only do so much to squeeze as much information out of those observations as possible. Of course, there are exceptions to this. When we touch on transfer learning in our NLP and image case studies, we will see how pretrained ML models can learn from mere hundreds of observations, but this is only because they’ve been pretrained on hundreds of thousands of observations already.

 Feature engineering also cannot create links between features and responses where there are not any. If the features we start with implicitly do not hold any predictive power to our response variable, then no amount of feature engineering will create that link. We could be able to achieve small bumps in performance, but we cannot expect either feature engineering or ML models to magically create relationships between features and responses for us.

1.1.3 Great data, great models

 Great models cannot exist without great data. It is virtually impossible to guarantee an accurate and fair model without well-structured data that deeply represents the problem at hand.

 I’ve spent the majority of my ML career working with natural language processing (NLP); specifically, I focus on building ML pipelines that can automatically derive and optimize conversational AI architecture from unstructured historical transcripts and knowledge bases. Early on, I spent most of my days focusing on deriving and implementing knowledge graphs and using state-of-the-art transfer learning and sequence-to-sequence models to develop conversational AI pipelines that could learn from raw human-to-human transcripts and be able to update on new topics as new conversations came in.

 It was after my most recent AI startup was acquired that I met a conversational architecture designer and linguist named Lauren Senna, who taught me about the deep structure in conversations that she and her teams used to build bots that could outperform any of my auto-derived bots any day of the week. Lauren told me about the psychology of how people talk to and interact with bots and why it differed from how knowledge base articles are written. It was then that I finally realized I needed to spend more time focusing our ML efforts on preprocessing efforts to bring out these latent patterns and structures, so the predictive systems could grab hold of them and become more accurate than ever. She and I were responsible for, in some cases, up to 50% improvement in bot performance, and I would speak at various conferences about how data scientists could utilize similar techniques to unlock patterns in their own data.

 Without understanding and respecting the data, I could have never brought out the greatness of the models trying their best to capture, learn from, and scale up the patterns locked within the data.

1.2 The feature engineering pipeline

 Before we dive into the feature engineering pipeline, we need to back up a bit and talk about the overall ML pipeline. This is important because the feature engineering pipeline is itself a part of the greater ML pipeline, so this will give us the perspective we need to understand the feature engineering steps.

1.2.1 The machine learning pipeline

 The ML pipeline generally consists of five steps (figure 1.2):

 	
 Defining the problem domain—What problem are we trying to solve with ML? This is the time to define any characteristics we want to prioritize, like the speed of model predictions or interpretability. These considerations will be crucial when it comes to model evaluation.

 	
 Obtaining data that accurately represents the problem we are trying to solve—Think about and implement methods of collecting data that are fair, safe, and respectful of the data providers’ privacy. This is also a great time to perform an exploratory data analysis (EDA) to get a good sense of the data we are working with. I will assume you have done your fair share of EDA on data, and I will do my fair share in this book to help you understand our data as much as possible. If this is a supervised problem, are we going to deal with imbalanced classes? If this is an unsupervised problem, do we have a sample of data that will represent the population well enough to draw good enough insights?

 	
 Feature engineering—This is the main focus of this book and the pivotal point in our ML pipeline. This step involves all of the work of creating the optimal representation of data that can be fed into the ML models.

 	
 Model selection and training—This is a huge part of the data scientist’s pipeline and should be done diligently and with care. At this stage, we are choosing models that best fit our data and our considerations from step 1. If model interpretability was highlighted as a priority, perhaps, we will stay in the family of tree-based models over deep learning-driven models.

 	
 Model deployment and evaluation—At this stage, our data have been prepped, our models have been trained, and it’s time to put our models into production. At this point, the data scientist can consider model versioning and prediction speeds as factors in the readiness of their models. For example, will we need some sort of user interface to obtain predictions synchronously, or can we perform predictions offline? Evaluation processes must be deployed to track out models’ performance over time and look out for model decay.

 [image: CH01_F02_Ozdemir]

 Figure 1.2 The ML pipeline. From left to right: we must understand the problem domain, obtain and understand data, engineer our features (which obviously is the main focus on this book), select and train our models, and then deploy models with the understanding that we may need to double back to any of the past steps if evaluations of the models show any kind of data or concept drift that would manifest as model decay—a drop in performance over time for our ML model.

 Tip Speaking of problem domain, it isn’t required to be an expert in a particular domain to be a data scientist working on problems in said field. That being said, I would strongly encourage you to, at the very least, reach out to experts in a field and do some research to get yourself in a position where you can understand the potential pros and cons of architecting ML pipelines that may affect people.

 In the last step of the ML pipeline, we also need to watch out for concept drift (when our interpretation of the data changes) and data drift (when the underlying distributions of our data change). These are references to how data may change over time. In this book, we will not need to worry about these concepts, but they are worth taking a moment to explore deeper.

 Concept drift is the phenomenon that refers to the statistical properties of a feature or the response that has changed over time. If we train a model on a dataset at a point in time, we have, by definition, a snapshot of a function that relates our features to our response. As time progresses, the environment which that data represents may evolve, and how we perceive those features and responses may also change. This idea is most often applied to response variables but can also be considered for our features.

 Imagine we are data scientists for a streaming media platform. We are tasked with building a model to predict when we should show a speed bump to the user and ask them whether they are still watching. We can build a basic model to predict this using metrics, such as minutes since they pressed a button or average length of an episode of the show they are currently watching, and our response would be a simple True or False to should we show the speed bump or not? At the time of model creation, our team sat down and, as domain experts, thought of all the ways we may want to show this speed bump. Maybe they fell asleep. Maybe they had to run out for an errand and left it on by accident. So we build a model and deploy it. Two months later, we start to receive requests to increase the time it takes to show the speed bump, and our team gets back together to read the requests. As it turns out, a large group of people (including this author) use streaming media apps to play soothing documentaries for their dogs and cats to help them with their separation anxiety when they leave for long stretches of time. This is a concept that our model was not trying to account for. We now have to add observations and features like Is the show about animals? to help account for this new concept.

 Data drift refers to the phenomenon that our data’s underlying distribution has shifted for some reason, but our interpretation of that feature remains unchanged. This is common when there are behavior changes that our models have not accounted for. Imagine we’re back at the streaming media platform. We built a model in late 2019 to predict the number of hours someone would watch a show, given variables such as their past watching habits, types of shows they enjoy, and more, and it was going well. Suddenly, a global pandemic arises, and some of us (no judgment) start watching media online more often, maybe even while we are working to make it sound like people are still around us even while we are home alone. Our response variable’s distribution (which is measured in hours of watch time) will dramatically shift to the right, and our model may not be able to keep up its past performance, given this distribution shift. This is data drift. The concept of hours watched hasn’t changed, but it is our underlying distribution of that response that has changed.

 This idea can be applied just as easily to a feature. If hours watched was a feature to a new response variable of Will this person watch the next episode if we offer it to them? the same principles apply, and that dramatic shift in the distribution is something our model hasn’t seen before.

 If we zoom in around the middle portion of the ML pipeline, we see feature engineering. Feature engineering, as it is a part of the larger ML pipeline, can be thought of as its own pipeline with its own steps. If we were to double-click and open up the feature engineering box in the ML pipeline, we would see the following steps:

 	
 Feature understanding—Recognizing the levels of data we are working with is crucial and will impact which types of feature engineering are available to us. It is at this stage that we will have to, for example, ascertain what level our data belong to. Don’t worry; we will get into the levels of data in the next chapter.

 	
 Feature structuring—If any of our data are unstructured (e.g., text, image, video, etc.; see figure 1.3), we must convert them to a structured format, so our ML models can understand them. An example would be converting pieces of text into a vector representation or transforming images into a matrix form. We can use feature extraction or learning to accomplish this.

 [image: CH01_F03_Ozdemir]

 Figure 1.3 Raw data, such as text, audio, images, and videos, must be transformed into numerical vector representations to be processed by any ML algorithm. This process, which we will refer to as feature structuring, can be done through extraction techniques, such as applying a bag-of-words algorithm or using a nonparametric feature learning approach, like autoencoders (both bag-of-words and autoencoders are covered in our NLP case study). We will see both of these methods used in the fourth case study, on natural language processing.

 	
 Feature optimization—Once we have a structured representation for our data, we can apply optimizations, such as feature improvement, extraction, construction, and selection, to obtain the best data possible for our models. A majority of day-to-day feature engineering work is usually in this category. A majority of the code examples in this book will revolve around feature optimization. Every case study will have some instances of feature optimization, in which we will have to either create new features or take existing ones and make them more powerful for our ML model.

 	
 Feature evaluation—As we alter our feature engineering pipelines to try different scenarios, we will want to see just how effective the feature engineering techniques we’ve applied are going to be. We can achieve this by choosing a single learning algorithm and, perhaps, a few parameter options for quick tuning. We can then compare the applications of different feature engineering pipelines against a constant model to rank which steps of pipelines are performing, given a change in person with and without their appearance. If we are not seeing the performance where we need it to be, we will go back to previous optimization and structuring steps to attempt to get a better data representation (figure 1.4).

 [image: CH01_F04_Ozdemir]

 Figure 1.4 Zooming in on the feature engineering phase of our ML pipeline, we can see the steps it takes to develop proper and successful feature engineering pipelines.

1.3 How this book is organized

 A book consisting of many case studies can be hard to organize. On one hand, we want to provide ample context and intuition behind the techniques we are going to use to engineer our features. On the other hand, we recognize the value of examples and code samples to help solidify the concepts.

 To that end, we will put both hands together for a high five as we build a narrative around each case study to show end-to-end code that solves a domain-specific problem, while breaking up segments of the code with written sections to explain why we did what we just did and why we are about to do what we are. I hope this will offer up the best of both worlds, showing the reader both hands-on code and high-level thinking about the problem at hand.

1.3.1 The five types of feature engineering

 The main focus of this book is on five main categories of feature engineering. We will touch on each of these five categories in the next chapter, and we will continually refer back to them throughout the entire book:

 	
 Feature improvement—Making existing features more usable through mathematical transformations

 	
 Example—Imputing (filling in) missing temperatures on a weather dataset by inferring them from the other columns

 	
 Feature construction—Augmenting the dataset by creating new interpretable features from existing interpretable features

 	
 Example—Dividing the total price of home feature by the square foot of home feature to create a price per square foot feature in a home-valuation dataset

 	
 Feature selection—Choosing the best subset of features from an existing set of features

 	
 Example—After creating the price per square foot feature, possibly removing the previous two features if they don’t add any value to the ML model anymore

 	
 Feature extraction—Relying on algorithms to automatically create new, sometimes uninterpretable, features, usually based on making parametric assumptions about the data

 	
 Example—Relying on pretrained transfer learning models, like Google’s BERT, to map unstructured text to a structured and generally uninterpretable vector space

 	
 Feature learning—Automatically generating a brand new set of features, usually by extracting structure and learning representations from raw unstructured data, such as text, images, and videos, often using deep learning

 	
 Example—Training generative adversarial networks (GANs) to deconstruct and reconstruct images for the purposes of learning the optimal representation for a given task

 At this point, it is worth noting two things. First, it doesn’t matter if we are working with an ML model that is supervised or unsupervised. This is because features, as we’ve defined them, are attributes that are meaningful to our ML model. So whether our goal is to cluster observations together or predict the price movement of a stock in a few hours, how we engineer our features will make all the difference. Secondly, oftentimes people will perform operations on data that are consistent with feature engineering without the intention of feeding the data into an ML model. For example, someone may want to vectorize text into a bag-of-words representation for the purpose of creating a word cloud visualization, or perhaps, a company needs to impute missing values on customer data to highlight churn statistics. This is, of course, valid, but it will not fit our relatively strict definition of feature engineering as it relates to ML.

 If we were to look at the four steps of feature engineering and how our five types of feature engineering fit in, we would end up with a pipeline that shows an end-to-end pipeline for how to ingest and manipulate data for the purpose of engineering features that best help the ML model solve the task at hand. That pipeline would look something like figure 1.5.

 [image: CH01_F05_Ozdemir]

 Figure 1.5 Our final zoom-in on the ML feature engineering pipeline. The feature engineering pipeline consists of four stages that include understanding our data, structuring and optimizing the data, and then evaluating that data using ML models. Note that the data union to combine the originally structured data and the newly structured data are optional and are at the discretion of the data scientist and the task at hand.

1.3.2 A brief overview of this book’s case studies

 The goal of this book is to showcase increasingly complex feature engineering procedures that build upon each other and to provide a basis for using these procedures through examples, code samples, and case studies. The first few case studies in this book focus on core feature engineering procedures that any data scientist should have a handle on and will apply to nearly every dataset out there. As we progress through the case studies presented in this book, the techniques will become more advanced and more specific to types of data.

 These case studies are also presented in a way that, if you decide to come back (and we hope you do), you are free to jump right to any particular case study that uses a feature engineering technique you want to use and get started right away. This book has six case studies, each coming from distinct domains and using different data types. Each case study will build on top of previous ones by introducing more and more advanced feature engineering techniques.

 Our first case study is the healthcare/COVID-19 diagnostics case study, wherein we will work with already structured data related to the global COVID-19 pandemic. In this case study, we will be attempting to make predictive diagnoses of COVID, using data structured in a tabular format. We will learn about the different levels of data: feature improvement, feature construction, and feature selection.

 Our second case study is the fairness/predicting law school success dataset, wherein bias and ethics will take center stage. This case study focuses on looking beyond traditional ML metrics and what harm arises when we blindly follow algorithms’ advice when real people’s well-being is at stake. We will look at how to protect models from potential bias inherent in datasets by introducing different definitions of fairness and recognizing protected characteristics within data. Feature selection and feature construction will play a part as they relate to mitigating bias in data.

 We will then look at our NLP/classifying tweet sentiment case study, wherein we will start to see more advanced feature engineering techniques like feature extraction and feature learning in action. The problem statement here is relatively simple: Is this tweet’s author happy, neutral, or unhappy? We will look at how traditional parametric feature extraction methods, like principal component analysis, compare to more modern feature learning approaches, like transfer learning and autoencoders.

 After working with text data, it’s only fair that we dive into the image/object recognition case study. We will work with two different image datasets to try and teach a model how to recognize various objects. We will see yet another face-off between traditional parametric feature extraction methods, such as histograms of oriented gradients, and modern feature learning approaches, like generative adversarial networks, and how different feature engineering techniques have trade-offs between model performance and interpretability.

 Moving on to the time series/day trading with deep learning case study, we will seek alpha (try to beat the market) and try to deploy deep learning to perform the most basic day trading question: in the next few hours, will this stock price significantly drop, rise, or stay about the same? It seems simple, but nothing is simple when it comes to the stock market. In this case study, time series techniques take center stage and feature selection, improvement, construction, and extraction all play a part.

 Our last case study will take a detour down a beautiful and often overlooked backroad. The feature store/streaming data using Flask study will look at how we can deploy feature engineering techniques to a Flask service to make our feature engineering efforts more efficient and widely accessible to the greater engineer audience. We will be setting up a web service in Flask to create a feature store to store and serve real-time data from our previous day-trading case study.

 In each case study, we will follow the same learning pattern:

 	
 We will introduce the dataset, often accompanied by a brief exploratory data analysis step to help us gain an understanding of the original dataset.

 	
 We will then set up the problem statement to help us understand what kinds of feature engineering techniques will be appropriate.

OEBPS/OEBPS/Images/CH01_F02_Ozdemir.png

OEBPS/OEBPS/Images/CH01_F03_Ozdemir.png

OEBPS/OEBPS/Images/CH01_F01_Ozdemir.png

OEBPS/OEBPS/Images/CH01_F05_Ozdemir.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/Ozdemir_author_photo.png

OEBPS/OEBPS/Images/CH01_F04_Ozdemir.png

OEBPS/OEBPS/Images/IFC_F01_Ozdemir.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Manning_copyright.png

