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preface


  Two years ago, I decided to write a book to teach deep learning for computer vision from an intuitive perspective. My goal was to develop a comprehensive resource that takes learners from knowing only the basics of machine learning to building advanced deep learning algorithms that they can apply to solve complex computer vision problems.


  The problem : In short, as of this moment, there are no books out there that teach deep learning for computer vision the way I wanted to learn about it. As a beginner machine learning engineer, I wanted to read one book that would take me from point A to point Z. I planned to specialize in building modern computer vision applications, and I wished that I had a single resource that would teach me everything I needed to do two things: 1) use neural networks to build an end-to-end computer vision application, and 2) be comfortable reading and implementing research papers to stay up-to-date with the latest industry advancements.


  I found myself jumping between online courses, blogs, papers, and YouTube videos to create a comprehensive curriculum for myself. It’s challenging to try to comprehend what is happening under the hood on a deeper level: not just a basic understanding, but how the concepts and theories make sense mathematically. It was impossible to find one comprehensive resource that (horizontally) covered the most important topics that I needed to learn to work on complex computer vision applications while also diving deep enough (vertically) to help me understand the math that makes the magic work.


  As a beginner, I searched but couldn’t find anything to meet these needs. So now I’ve written it. My goal has been to write a book that not only teaches the content I wanted when I was starting out, but also levels up your ability to learn on your own.


  My solution is a comprehensive book that dives deep both horizontally and vertically:


  
    	
      Horizontally --This book explains most topics that an engineer needs to learn to build production-ready computer vision applications, from neural networks and how they work to the different types of neural network architectures and how to train, evaluate, and tune the network.

    


    	
      Vertically --The book dives a level or two deeper than the code and explains intuitively (and gently) how the math works under the hood, to empower you to be comfortable reading and implementing research papers or even inventing your own techniques.

    

  


  At the time of writing, I believe this is the only deep learning for vision systems resource that is taught this way. Whether you are looking for a job as a computer vision engineer, want to gain a deeper understanding of advanced neural networks algorithms in computer vision, or want to build your product or startup, I wrote this book with you in mind. I hope you enjoy it.
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about this book


  
Who should read this book


  If you know the basic machine learning framework, can hack around in Python, and want to learn how to build and train advanced, production-ready neural networks to solve complex computer vision problems, I wrote this book for you. The book was written for anyone with intermediate Python experience and basic machine learning understanding who wishes to explore training deep neural networks and learn to apply deep learning to solve computer vision problems.


  When I started writing the book, my primary goal was as follows: “I want to write a book to grow readers’ skills, not teach them content.” To achieve this goal, I had to keep an eye on two main tenets:


  
    	
      Teach you how to learn. I don’t want to read a book that just goes through a set of scientific facts. I can get that on the internet for free. If I read a book, I want to finish it having grown my skillset so I can study the topic further. I want to learn how to think about the presented solutions and come up with my own.

    


    	
      Go very deep. If I’m successful in satisfying the first tenet, that makes this one easy. If you learn how to learn new concepts, that allows me to dive deep without worrying that you might fall behind. This book doesn’t avoid the math part of the learning, because understanding the mathematical equations will empower you with the best skill in the AI world: the ability to read research papers, compare innovations, and make the right decisions about implementing new concepts in your own problems. But I promise to introduce only the mathematical concepts you need, and I promise to present them in a way that doesn’t interrupt your flow of understanding the concepts without the math part if you prefer.

    

  


  
How this book is organized: A roadmap


  This book is structured into three parts. The first part explains deep leaning in detail as a foundation for the remaining topics. I strongly recommend that you not skip this section, because it dives deep into neural network components and definitions and explains all the notions required to be able to understand how neural networks work under the hood. After reading part 1, you can jump directly to topics of interest in the remaining chapters. Part 2 explains deep learning techniques to solve object classification and detection problems, and part 3 explains deep learning techniques to generate images and visual embeddings. In several chapters, practical projects implement the topics discussed.


  
About the code


  All of this book’s code examples use open source frameworks that are free to download. We will be using Python, Tensorflow, Keras, and OpenCV. Appendix A walks you through the complete setup. I also recommend that you have access to a GPU if you want to run the book projects on your machine, because chapters 6-10 contain more complex projects to train deep networks that will take a long time on a regular CPU. Another option is to use a cloud environment like Google Colab for free or other paid options.


  Examples of source code occur both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  The code for the examples in this book is available for download from the Manning website at www.manning.com/books/deep-learning-for-vision-systems and from GitHub at https://github.com/moelgendy/deep_learning_for_vision_systems.


  
liveBook discussion forum


  Purchase of Deep Learning for Vision Systems includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/deep-learning-for-vision-systems/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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about the cover illustration


  The figure on the cover of Deep Learning for Vision Systems depicts Ibn al-Haytham, an Arab mathematician, astronomer, and physicist who is often referred to as “the father of modern optics” due to his significant contributions to the principles of optics and visual perception. The illustration is modified from the frontispiece of a fifteenth-century edition of Johannes Hevelius’s work Selenographia.


  In his book Kitab al-Manazir (Book of Optics), Ibn al-Haytham was the first to explain that vision occurs when light reflects from an object and then passes to one’s eyes. He was also the first to demonstrate that vision occurs in the brain, rather than in the eyes--and many of these concepts are at the heart of modern vision systems. You will see the correlation when you read chapter 1 of this book.


  Ibn al-Haytham has been a great inspiration for me as I work and innovate in this field. By honoring his memory on the cover of this book, I hope to inspire fellow practitioners that our work can live and inspire others for thousands of years.


  
    
Part 1. Deep learning foundation

  


  Computer vision is a technological area that’s been advancing rapidly thanks to the tremendous advances in artificial intelligence and deep learning that have taken place in the past few years. Neural networks now help self-driving cars to navigate around other cars, pedestrians, and other obstacles; and recommender agents are getting smarter about suggesting products that resemble other products. Face-recognition technologies are becoming more sophisticated, too, enabling smartphones to recognize faces before unlocking a phone or a door. Computer vision applications like these and others have become a staple in our daily lives. However, by moving beyond the simple recognition of objects, deep learning has given computers the power to imagine and create new things, like art that didn’t exist previously, new human faces, and other objects. Part 1 of this book looks at the foundations of deep learning, different forms of neural networks, and structured projects that go a bit further with concepts like hyperparameter tuning.


  
    
1 Welcome to computer vision

  


  This chapter covers


  
    	
Components of the vision system


    	
Applications of computer vision


    	
Understanding the computer vision pipeline


    	
Preprocessing images and extracting features


    	
Using classifier learning algorithms

  


  Hello! I’m very excited that you are here. You are making a great decision--to grasp deep learning (DL) and computer vision (CV). The timing couldn’t be more perfect. CV is an area that’s been advancing rapidly, thanks to the huge AI and DL advances of recent years. Neural networks are now allowing self-driving cars to figure out where other cars and pedestrians are and navigate around them. We are using CV applications in our daily lives more and more with all the smart devices in our homes--from security cameras to door locks. CV is also making face recognition work better than ever: smartphones can recognize faces for unlocking, and smart locks can unlock doors. I wouldn’t be surprised if sometime in the near future, your couch or television is able to recognize specific people in your house and react according to their personal preferences. It’s not just about recognizing objects--DL has given computers the power to imagine and create new things like artwork; new objects; and even unique, realistic human faces.


  The main reason that I’m excited about deep learning for computer vision, and what drew me to this field, is how rapid advances in AI research are enabling new applications to be built every day and across different industries, something not possible just a few years ago. The unlimited possibilities of CV research is what inspired me to write this book. By learning these tools, perhaps you will be able to invent new products and applications. Even if you end up not working on CV per se, you will find many concepts in this book useful for some of your DL algorithms and architectures. That is because while the main focus is CV applications, this book covers the most important DL architectures, such as artificial neural networks (ANNs), convolutional networks (CNNs), generative adversarial networks (GANs), transfer learning, and many more, which are transferable to other domains like natural language processing (NLP) and voice user interfaces (VUIs).


  The high-level layout of this chapter is as follows:


  
    	
      Computer vision intuition --We will start with visual perception intuition and learn the similarities between humans and machine vision systems. We will look at how vision systems have two main components: a sensing device and an interpreting device. Each is tailored to fulfill a specific task.

    


    	
      Applications of CV --Here, we will take a bird’s-eye view of the DL algorithms used in different CV applications. We will then discuss vision in general for different creatures.

    


    	
      Computer vision pipeline --Finally, we will zoom in on the second component of vision systems: the interpreting device. We will walk through the sequence of steps taken by vision systems to process and understand image data. These are referred to as a computer vision pipeline. The CV pipeline is composed of four main steps: image input, image preprocessing, feature extraction, and an ML model to interpret the image. We will talk about image formation and how computers see images. Then, we will quickly review image-processing techniques and extracting features.

    

  


  Ready? Let’s get started!


  
1.1 Computer vision


  The core concept of any AI system is that it can perceive its environment and take actions based on its perceptions. Computer vision is concerned with the visual perception part: it is the science of perceiving and understanding the world through images and videos by constructing a physical model of the world so that an AI system can then take appropriate actions. For humans, vision is only one aspect of perception. We perceive the world through our sight, but also through sound, smell, and our other senses. It is similar with AI systems--vision is just one way to understand the world. Depending on the application you are building, you select the sensing device that best captures the world.


  
1.1.1 What is visual perception?


  Visual perception, at its most basic, is the act of observing patterns and objects through sight or visual input. With an autonomous vehicle, for example, visual perception means understanding the surrounding objects and their specific details--such as pedestrians, or whether there is a particular lane the vehicle needs to be centered in--and detecting traffic signs and understanding what they mean. That’s why the word perception is part of the definition. We are not just looking to capture the surrounding environment. We are trying to build systems that can actually understand that environment through visual input.


  
1.1.2 Vision systems


  In past decades, traditional image-processing techniques were considered CV systems, but that is not totally accurate. A machine processing an image is completely different from that machine understanding what’s happening within the image, which is not a trivial task. Image processing is now just a piece of a bigger, more complex system that aims to interpret image content.


  
Human vision systems


  At the highest level, vision systems are pretty much the same for humans, animals, insects, and most living organisms. They consist of a sensor or an eye to capture the image and a brain to process and interpret the image. The system then outputs a prediction of the image components based on the data extracted from the image (figure 1.1).
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  Figure 1.1 The human vision system uses the eye and brain to sense and interpret an image.


  Let’s see how the human vision system works. Suppose we want to interpret the image of dogs in figure 1.1. We look at it and directly understand that the image consists of a bunch of dogs (three, to be specific). It comes pretty natural to us to classify and detect objects in this image because we have been trained over the years to identify dogs.


  Suppose someone shows you a picture of a dog for the first time--you definitely don’t know what it is. Then they tell you that this is a dog. After a couple experiments like this, you will have been trained to identify dogs. Now, in a follow-up exercise, they show you a picture of a horse. When you look at the image, your brain starts analyzing the object features: hmmm, it has four legs, long face, long ears. Could it be a dog? “Wrong: this is a horse,” you’re told. Then your brain adjusts some parameters in its algorithm to learn the differences between dogs and horses. Congratulations! You just trained your brain to classify dogs and horses. Can you add more animals to the equation, like cats, tigers, cheetahs, and so on? Definitely. You can train your brain to identify almost anything. The same is true of computers. You can train machines to learn and identify objects, but humans are much more intuitive than machines. It takes only a few images for you to learn to identify most objects, whereas with machines, it takes thousands or, in more complex cases, millions of image samples to learn to identify objects.


  
    The ML perspective


    Let’s look at the previous example from the machine learning perspective:


    
      	
        You learned to identify dogs by looking at examples of several dog-labeled images. This approach is called supervised learning.

      


      	
        Labeled data is data for which you already know the target answer. You were shown a sample image of a dog and told that it was a dog. Your brain learned to associate the features you saw with this label: dog.

      


      	
        You were then shown a different object, a horse, and asked to identify it. At first, your brain thought it was a dog, because you hadn’t seen horses before, and your brain confused horse features with dog features. When you were told that your prediction was wrong, your brain adjusted its parameters to learn horse features. “Yes, both have four legs, but the horse’s legs are longer. Longer legs indicate a horse.” We can run this experiment many times until the brain makes no mistakes. This is called training by trial and error.

      

    

  


  
AI vision systems


  Scientists were inspired by the human vision system and in recent years have done an amazing job of copying visual ability with machines. To mimic the human vision system, we need the same two main components: a sensing device to mimic the function of the eye and a powerful algorithm to mimic the brain function in interpreting and classifying image content (figure 1.2).
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  Figure 1.2 The components of the computer vision system are a sensing device and an interpreting device.


  
1.1.3 Sensing devices


  Vision systems are designed to fulfill a specific task. An important aspect of design is selecting the best sensing device to capture the surroundings of a specific environment, whether that is a camera, radar, X-ray, CT scan, Lidar, or a combination of devices to provide the full scene of an environment to fulfill the task at hand.


  Let’s look at the autonomous vehicle (AV) example again. The main goal of the AV vision system is to allow the car to understand the environment around it and move from point A to point B safely and in a timely manner. To fulfill this goal, vehicles are equipped with a combination of cameras and sensors that can detect 360 degrees of movement--pedestrians, cyclists, vehicles, roadwork, and other objects--from up to three football fields away.


  Here are some of the sensing devices usually used in self-driving cars to perceive the surrounding area:


  
    	
      Lidar, a radar-like technique, uses invisible pulses of light to create a high-resolution 3D map of the surrounding area.

    


    	
      Cameras can see street signs and road markings but cannot measure distance.

    


    	
      Radar can measure distance and velocity but cannot see in fine detail.

    

  


  Medical diagnosis applications use X-rays or CT scans as sensing devices. Or maybe you need to use some other type of radar to capture the landscape for agricultural vision systems. There are a variety of vision systems, each designed to perform a particular task. The first step in designing vision systems is to identify the task they are built for. This is something to keep in mind when designing end-to-end vision systems.


  
    Recognizing images


    Animals, humans, and insects all have eyes as sensing devices. But not all eyes have the same structure, output image quality, and resolution. They are tailored to the specific needs of the creature. Bees, for instance, and many other insects, have compound eyes that consist of multiple lenses (as many as 30,000 lenses in a single compound eye). Compound eyes have low resolution, which makes them not so good at recognizing objects at a far distance. But they are very sensitive to motion, which is essential for survival while flying at high speed. Bees don’t need high-resolution pictures. Their vision systems are built to allow them to pick up the smallest movements while flying fast.


    [image: ]



    Compound eyes are low resolution but sensitive to motion.

  


  
1.1.4 Interpreting devices


  Computer vision algorithms are typically employed as interpreting devices. The interpreter is the brain of the vision system. Its role is to take the output image from the sensing device and learn features and patterns to identify objects. So we need to build a brain. Simple! Scientists were inspired by how our brains work and tried to reverse engineer the central nervous system to get some insight on how to build an artificial brain. Thus, artificial neural networks (ANNs) were born (figure 1.3).


  [image: ]



  Figure 1.3 The similarities between biological neurons and artificial systems


  In figure 1.3, we can see an analogy between biological neurons and artificial systems. Both contain a main processing element, a neuron, with input signals (x1, x2, ..., xn) and an output.


  The learning behavior of biological neurons inspired scientists to create a network of neurons that are connected to each other. Imitating how information is processed in the human brain, each artificial neuron fires a signal to all the neurons that it’s connected to when enough of its input signals are activated. Thus, neurons have a very simple mechanism on the individual level (as you will see in the next chapter); but when you have millions of these neurons stacked in layers and connected together, each neuron is connected to thousands of other neurons, yielding a learning behavior. Building a multilayer neural network is called deep learning (figure 1.4).
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  Figure 1.4 Deep learning involves layers of neurons in a network.


  DL methods learn representations through a sequence of transformations of data through layers of neurons. In this book, we will explore different DL architectures, such as ANNs and convolutional neural networks, and how they are used in CV applications.


  
Can machine learning achieve better performance than the human brain?


  Well, if you had asked me this question 10 years ago, I would’ve probably said no, machines cannot surpass the accuracy of a human. But let’s take a look at the following two scenarios:


  
    	
      Suppose you were given a book of 10,000 dog images, classified by breed, and you were asked to learn the properties of each breed. How long would it take you to study the 130 breeds in 10,000 images? And if you were given a test of 100 dog images and asked to label them based on what you learned, out of the 100, how many would you get right? Well, a neural network that is trained in a couple of hours can achieve more than 95% accuracy.

    


    	
      On the creation side, a neural network can study the patterns in the strokes, colors, and shading of a particular piece of art. Based on this analysis, it can then transfer the style from the original artwork into a new image and create a new piece of original art within a few seconds.

    

  


  Recent AI and DL advances have allowed machines to surpass human visual ability in many image classification and object detection applications, and capacity is rapidly expanding to many other applications. But don’t take my word for it. In the next section, we’ll discuss some of the most popular CV applications using DL technology.


  
1.2 Applications of computer vision


  Computers began to be able to recognize human faces in images decades ago, but now AI systems are rivaling the ability of computers to classify objects in photos and videos. Thanks to the dramatic evolution in both computational power and the amount of data available, AI and DL have managed to achieve superhuman performance on many complex visual perception tasks like image search and captioning, image and video classification, and object detection. Moreover, deep neural networks are not restricted to CV tasks: they are also successful at natural language processing and voice user interface tasks. In this book, we’ll focus on visual applications that are applied in CV tasks.


  DL is used in many computer vision applications to recognize objects and their behavior. In this section, I’m not going to attempt to list all the CV applications that are out there. I would need an entire book for that. Instead, I’ll give you a bird’s-eye view of some of the most popular DL algorithms and their possible applications across different industries. Among these industries are autonomous cars, drones, robots, in-store cameras, and medical diagnostic scanners that can detect lung cancer in early stages.


  
1.2.1 Image classification


  Image classification is the task of assigning to an image a label from a predefined set of categories. A convolutional neural network is a neural network type that truly shines in processing and classifying images in many different applications:


  
    	
      Lung cancer diagnosis --Lung cancer is a growing problem. The main reason lung cancer is very dangerous is that when it is diagnosed, it is usually in the middle or late stages. When diagnosing lung cancer, doctors typically use their eyes to examine CT scan images, looking for small nodules in the lungs. In the early stages, the nodules are usually very small and hard to spot. Several CV companies decided to tackle this challenge using DL technology.


      Almost every lung cancer starts as a small nodule, and these nodules appear in a variety of shapes that doctors take years to learn to recognize. Doctors are very good at identifying mid- and large-size nodules, such as 6-10 mm. But when nodules are 4 mm or smaller, sometimes doctors have difficulty identifying them. DL networks, specifically CNNs, are now able to learn these features automatically from X-ray and CT scan images and detect small nodules early, before they become deadly (figure 1.5).
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      Figure 1.5 Vision systems are now able to learn patterns in X-ray images to identify tumors in earlier stages of development.

    


    	
      Traffic sign recognition --Traditionally, standard CV methods were employed to detect and classify traffic signs, but this approach required time-consuming manual work to handcraft important features in images. Instead, by applying DL to this problem, we can create a model that reliably classifies traffic signs, learning to identify the most appropriate features for this problem by itself (figure 1.6).
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      Figure 1.6 Vision systems can detect traffic signs with very high performance.

    

  


  NOTE Increasing numbers of image classification tasks are being solved with convolutional neural networks. Due to their high recognition rate and fast execution, CNNs have enhanced most CV tasks, both pre-existing and new. Just like the cancer diagnosis and traffic sign examples, you can feed tens or hundreds of thousands of images into a CNN to label them into as many classes as you want. Other image classification examples include identifying people and objects, classifying different animals (like cats versus dogs versus horses), different breeds of animals, types of land suitable for agriculture, and so on. In short, if you have a set of labeled images, convolutional networks can classify them into a set of predefined classes.


  
1.2.2 Object detection and localization


  Image classification problems are the most basic applications for CNNs. In these problems, each image contains only one object, and our task is to identify it. But if we aim to reach human levels of understanding, we have to add complexity to these networks so they can recognize multiple objects and their locations in an image. To do that, we can build object detection systems like YOLO (you only look once), SSD (single-shot detector), and Faster R-CNN, which not only classify images but also can locate and detect each object in images that contain multiple objects. These DL systems can look at an image, break it up into smaller regions, and label each region with a class so that a variable number of objects in a given image can be localized and labeled (figure 1.7). You can imagine that such a task is a basic prerequisite for applications like autonomous systems.
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  Figure 1.7 Deep learning systems can segment objects in an image.


  
1.2.3 Generating art (style transfer)


  Neural style transfer, one of the most interesting CV applications, is used to transfer the style from one image to another. The basic idea of style transfer is this: you take one image--say, of a city--and then apply a style of art to that image--say, The Starry Night (by Vincent Van Gogh)--and output the same city from the original image, but looking as though it was painted by Van Gogh (figure 1.8).
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  Figure 1.8 Style transfer from Van Gogh’s The Starry Night onto the original image, producing a piece of art that feels as though it was created by the original artist


  This is actually a neat application. The astonishing thing, if you know any painters, is that it can take days or even weeks to finish a painting, and yet here is an application that can paint a new image inspired by an existing style in a matter of seconds.


  
1.2.4 Creating images


  Although the earlier examples are truly impressive CV applications of AI, this is where I see the real magic happening: the magic of creation. In 2014, Ian Goodfellow invented a new DL model that can imagine new things called generative adversarial networks (GANs). The name makes them sound a little intimidating, but I promise you that they are not. A GAN is an evolved CNN architecture that is considered a major advancement in DL. So when you understand CNNs, GANs will make a lot more sense to you.


  GANs are sophisticated DL models that generate stunningly accurate synthesized images of objects, people, and places, among other things. If you give them a set of images, they can make entirely new, realistic-looking images. For example, StackGAN is one of the GAN architecture variations that can use a textual description of an object to generate a high-resolution image of the object matching that description. This is not just running an image search on a database. These “photos” have never been seen before and are totally imaginary (figure 1.9).
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  Figure 1.9 Generative adversarial networks (GANS) can create new, “made-up” images from a set of existing images.


  The GAN is one of the most promising advancements in machine learning in recent years. Research into GANs is new, and the results are overwhelmingly promising. Most of the applications of GANs so have far have been for images. But it makes you wonder: if machines are given the power of imagination to create pictures, what else can they create? In the future, will your favorite movies, music, and maybe even books be created by computers? The ability to synthesize one data type (text) to another (image) will eventually allow us to create all sorts of entertainment using only detailed text descriptions.


  
    GANs create artwork


    In October 2018, an AI-created painting called The Portrait of Edmond Belamy sold for $432,500. The artwork features a fictional person named Edmond de Belamy, possibly French and--to judge by his dark frock coat and plain white collar--a man of the church.
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    AI-generated artwork featuring a fictional person named Edmond de Belamy sold for $432,500.


    The artwork was created by a team of three 25-year-old French students using GANs. The network was trained on a dataset of 15,000 portraits painted between the fourteenth and twentieth centuries, and then it created one of its own. The team printed the image, framed it, and signed it with part of a GAN algorithm.

  


  
1.2.5 Face recognition


  Face recognition (FR) allows us to exactly identify or tag an image of a person. Day-to-day applications include searching for celebrities on the web and auto-tagging friends and family in images. Face recognition is a form of fine-grained classification.


  The famous Handbook of Face Recognition (Li et al., Springer, 2011) categorizes two modes of an FR system:


  
    	
      Face identification --Face identification involves one-to-many matches that compare a query face image against all the template images in the database to determine the identity of the query face. Another face recognition scenario involves a watchlist check by city authorities, where a query face is matched to a list of suspects (one-to-few matches).

    


    	
      Face verification --Face verification involves a one-to-one match that compares a query face image against a template face image whose identity is being claimed (figure 1.10).
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  Figure 1.10 Example of face verification (left) and face recognition (right)


  
1.2.6 Image recommendation system


  In this task, a user seeks to find similar images with respect to a given query image. Shopping websites provide product suggestions (via images) based on the selection of a particular product, for example, showing a variety of shoes similar to those the user selected. An example of an apparel search is shown in figure 1.11.
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  Figure 1.11 Apparel search. The leftmost image in each row is the query/clicked image, and the subsequent columns show similar apparel. (Source: Liu et al., 2016.)


  
1.3 Computer vision pipeline: The big picture


  Okay, now that I have your attention, let’s dig one level deeper into CV systems. Remember that earlier in this chapter, we discussed how vision systems are composed of two main components: sensing devices and interpreting devices (figure 1.12 offers a reminder). In this section, we will take a look at the pipeline the interpreting device component uses to process and understand images.
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  Figure 1.12 Focusing on the interpreting device in computer vision systems


  Applications of CV vary, but a typical vision system uses a sequence of distinct steps to process and analyze image data. These steps are referred to as a computer vision pipeline. Many vision applications follow the flow of acquiring images and data, processing that data, performing some analysis and recognition steps, and then finally making a prediction based on the extracted information (figure 1.13).
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  Figure 1.13 The computer vision pipeline, which takes input data, processes it, extracts information, and then sends it to the machine learning model to learn


  Let’s apply the pipeline in figure 1.13 to an image classifier example. Suppose we have an image of a motorcycle, and we want the model to predict the probability of the object from the following classes: motorcycle, car, and dog (see figure 1.14).
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  Figure 1.14 Using the machine learning model to predict the probability of the motorcycle object from the motorcycle, car, and dog classes


  DEFINITIONS An image classifier is an algorithm that takes in an image as input and outputs a label or “class” that identifies that image. A class (also called a category) in machine learning is the output category of your data.


  Here is how the image flows through the classification pipeline:


  
    	
      A computer receives visual input from an imaging device like a camera. This input is typically captured as an image or a sequence of images forming a video.

    


    	
      Each image is then sent through some preprocessing steps whose purpose is to standardize the images. Common preprocessing steps include resizing an image, blurring, rotating, changing its shape, or transforming the image from one color to another, such as from color to grayscale. Only by standardizing the images--for example, making them the same size--can you then compare them and further analyze them.

    


    	
      We extract features. Features are what help us define objects, and they are usually information about object shape or color. For example, some features that distinguish a motorcycle are the shape of the wheels, headlights, mudguards, and so on. The output of this process is a feature vector that is a list of unique shapes that identify the object.

    


    	
      The features are fed into a classification model. This step looks at the feature vector from the previous step and predicts the class of the image. Pretend that you are the classifier model for a few minutes, and let’s go through the classification process. You look at the list of features in the feature vector one by one and try to determine what’s in the image:


      
        	
First you see a wheel feature; could this be a car, a motorcycle, or a dog? Clearly it is not a dog, because dogs don’t have wheels (at least, normal dogs, not robots). Then this could be an image of a car or a motorcycle.


        	
You move on to the next feature, the headlights. There is a higher probability that this is a motorcycle than a car.


        	
The next feature is rear mudguards --again, there is a higher probability that it is a motorcycle.


        	
The object has only two wheels; this is closer to a motorcycle.


        	
And you keep going through all the features like the body shape, pedal, and so on, until you arrive at a best guess of the object in the image.

      

    

  


  The output of this process is the probability of each class. As you can see in our example, the dog has the lowest probability, 1%, whereas there is an 85% probability that this is a motorcycle. You can see that, although the model was able to predict the right class with the highest probability, it is still a little confused about distinguishing between cars and motorcycles--it predicted that there is a 14% chance this is an image of a car. Since we know that it is a motorcycle, we can say that our ML classification algorithm is 85% accurate. Not bad! To improve this accuracy, we may need to do more of step 1 (acquire more training images), or step 2 (more processing to remove noise), or step 3 (extract better features), or step 4 (change the classifier algorithm and tune some hyperparameters), or even allow more training time. The many different approaches we can take to improve the performance of our model all lie in one or more of the pipeline steps.


  That was the big picture of how images flow through the CV pipeline. Next, we’ll zoom in one level deeper on each of the pipeline steps.


  
1.4 Image input


  In CV applications, we deal with images or video data. Let’s talk about grayscale and color images for now, and in later chapters, we will talk about videos, since videos are just stacked sequential frames of images.


  
1.4.1 Image as functions


  An image can be represented as a function of two variables x and y, which define a two-dimensional area. A digital image is made of a grid of pixels. The pixel is the raw building block of an image. Every image consists of a set of pixels in which their values represent the intensity of light that appears in a given place in the image. Let’s take a look at the motorcycle example again after applying the pixel grid to it (figure 1.15).
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  Figure 1.15 Images consists of raw building blocks called pixels. The pixel values represent the intensity of light that appears in a given place in the image.


  The image in figure 1.14 has a size of 32 × 16. This means the dimensions of the image are 32 pixels wide and 16 pixels tall. The x-axis goes from 0 to 31, and the y-axis from 0 to 16. Overall, the image has 512 (32 × 16) pixels. In this grayscale image, each pixel contains a value that represents the intensity of light on that specific pixel. The pixel values range from 0 to 255. Since the pixel value represents the intensity of light, the value 0 represents very dark pixels (black), 255 is very bright (white), and the values in between represent the intensity on the grayscale.


  You can see that the image coordinate system is similar to the Cartesian coordinate system: images are two-dimensional and lie on the x-y plane. The origin (0, 0) is at the top left of the image. To represent a specific pixel, we use the following notations: F as a function, and x, y as the location of the pixel in x- and y-coordinates. For example, the pixel located at x = 12 and y = 13 is white; this is represented by the following function: F(12, 13) = 255. Similarly, the pixel (20, 7) that lies on the front of the motorcycle is black, represented as F(20, 7) = 0.

  Grayscale => F(x, y) gives the intensity at position (x, y)


  That was for grayscale images. How about color images?


  In color images, instead of representing the value of the pixel by just one number, the value is represented by three numbers representing the intensity of each color in the pixel. In an RGB system, for example, the value of the pixel is represented by three numbers: the intensity of red, intensity of green, and intensity of blue. There are other color systems for images like HSV and Lab. All follow the same concept when representing the pixel value (more on color images soon). Here is the function representing color images in the RGB system:

  Color image in RGB => F(x, y) = [ red (x, y), green (x, y), blue (x, y) ] 


  Thinking of an image as a function is very useful in image processing. We can think of an image as a function of F(x, y) and operate on it mathematically to transform it to a new image function G(x, y). Let’s take a look at the image transformation examples in table 1.1.


  Table 1.1 Image transformation example functions


  
    
      	
        Application

      

      	
        Transformation

      
    


    
      	
        Darken the image.

      

      	
        G(x, y) = 0.5 * F(x, y)

      
    


    
      	
        Brighten the image.

      

      	
        G(x, y) = 2 * F(x, y)

      
    


    
      	
        Move an object down 150 pixels.

      

      	
        G(x, y) = F(x, y + 150)

      
    


    
      	
        Remove the gray in an image to transform the image into black and white.

      

      	
        G(x, y) = { 0 if F(x, y) < 130, 255 otherwise }

      
    

  


  
1.4.2 How computers see images


  When we look at an image, we see objects, landscape, colors, and so on. But that’s not the case with computers. Consider figure 1.16. Your human brain can process it and immediately know that it is a picture of a motorcycle. To a computer, the image looks like a 2D matrix of the pixels’ values, which represent intensities across the color spectrum. There is no context here, just a massive pile of data.
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  Figure 1.16 A computer sees images as matrices of values. The values represent the intensity of the pixels across the color spectrum. For example, grayscale images range between pixel values of 0 for black and 255 for white.


  The image in figure 1.16 is of size 24 × 24. This size indicates the width and height of the image: there are 24 pixels horizontally and 24 vertically. That means there is a total of 576 (24 × 24) pixels. If the image is 700 × 500, then the dimensionality of the matrix will be (700, 500), where each pixel in the matrix represents the intensity of brightness in that pixel. Zero represents black, and 255 represents white.


  
1.4.3 Color images


  In grayscale images, each pixel represents the intensity of only one color, whereas in the standard RGB system, color images have three channels (red, green, and blue). In other words, color images are represented by three matrices: one represents the intensity of red in the pixel, one represents green, and one represents blue (figure 1.17).
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  Figure 1.17 Color images are represented by red, green, and blue channels, and matrices can be used to indicate those colors’ intensity.


  As you can see in figure 1.17, the color image is composed of three channels: red, green, and blue. Now the question is, how do computers see this image? Again, they see the matrix, unlike grayscale images, where we had only one channel. In this case, we will have three matrices stacked on top of each other; that’s why it’s a 3D matrix. The dimensionality of 700 × 700 color images is (700, 700, 3). Let’s say the first matrix represents the red channel; then each element of that matrix represents an intensity of red color in that pixel, and likewise with green and blue. Each pixel in a color image has three numbers (0 to 255) associated with it. These numbers represent intensity of red, green, and blue color in that particular pixel.


  If we take the pixel (0,0) as an example, we will see that it represents the top-left pixel of the image of green grass. When we view this pixel in the color images, it looks like figure 1.18. The example in figure 1.19 shows some shades of the color green and their RGB values.


  
    How do computers see color?


    Computers see an image as matrices. Grayscale images have one channel (gray); thus, we can represent grayscale images in a 2D matrix, where each element represents the intensity of brightness in that particular pixel. Remember, 0 means black and 255 means white. Grayscale images have one channel, whereas color images have three channels: red, green, and blue. We can represent color images in a 3D matrix where the depth is three.


    We’ve also seen how images can be treated as functions of space. This concept allows us to operate on images mathematically and change or extract information from them. Treating images as functions is the basis of many image-processing techniques, such as converting color to grayscale or scaling an image. Each of these steps is just operating mathematical equations to transform an image pixel by pixel.


    
      	
        Grayscale: f(x, y) gives the intensity at position (x, y)

      


      	
        Color image: f(x, y) = [ red (x, y), green (x, y), blue (x, y) ]
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    An image of green grass is actually made of three colors of varying intensity.
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  Figure 1.19 Different shades of green mean different intensities of the three image colors (red, green, blue).


  
1.5 Image preprocessing


  In machine learning (ML) projects, you usually go through a data preprocessing or cleaning step. As an ML engineer, you will spend a good amount of time cleaning up and preparing the data before you build your learning model. The goal of this step is to make your data ready for the ML model to make it easier to analyze and process computationally. The same thing is true with images. Based on the problem you are solving and the dataset in hand, some data massaging is required before you feed your images to the ML model.


  Image processing could involve simple tasks like image resizing. Later, you will learn that in order to feed a dataset of images to a convolutional network, the images all have to be the same size. Other processing tasks can take place, like geometric and color transformation, converting color to grayscale, and many more. We will cover various image-processing techniques throughout the chapters of this book and in the projects.


  The acquired data is usually messy and comes from different sources. To feed it to the ML model (or neural network), it needs to be standardized and cleaned up. Preprocessing is used to conduct steps that will reduce the complexity and increase the accuracy of the applied algorithm. We can’t write a unique algorithm for each of the conditions in which an image is taken; thus, when we acquire an image, we convert it into a form that would allow a general algorithm to solve it. The following subsections describe some data-preprocessing techniques.


  
1.5.1 Converting color images to grayscale to reduce computation complexity


  Sometimes you will find it useful to remove unnecessary information from your images to reduce space or computational complexity. For example, suppose you want to convert your colored images to grayscale, because for many objects, color is not necessary to recognize and interpret an image. Grayscale can be good enough for recognizing certain objects. Since color images contain more information than black-and-white images, they can add unnecessary complexity and take up more space in memory. Remember that color images are represented in three channels, which means that converting them to grayscale will reduce the number of pixels that need to be processed (figure 1.20).
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  Figure 1.20 Converting color images to grayscale results in a reduced number of pixels that need to be processed. This could be a good approach for applications that do not rely a lot on the color information loss due to the conversion.


  In this example, you can see how patterns of brightness and darkness (intensity) can be used to define the shape and characteristics of many objects. However, in other applications, color is important to define certain objects, like skin cancer detection, which relies heavily on skin color (red rashes).


  
    	
      Standardizing images --As you will see in chapter 3, one important constraint that exists in some ML algorithms, such as CNNs, is the need to resize the images in your dataset to unified dimensions. This implies that your images must be preprocessed and scaled to have identical widths and heights before being fed to the learning algorithm.


      
        When is color important?


        Converting an image to grayscale might not be a good decision for some problems. There are a number of applications for which color is very important: for example, building a diagnostic system to identify red skin rashes in medical images. This application relies heavily on the intensity of the red color in the skin. Removing colors from the image will make it harder to solve this problem. In general, color images provide very helpful information in many medical applications.


        Another example of the importance of color in images is lane-detection applications in a self-driving car, where the car has to identify the difference between yellow and white lines, because they are treated differently. Grayscale images do not provide enough information to distinguish between the yellow and white lines.
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        Grayscale-based image processors cannot differentiate between color images.


        The rule of thumb to identify the importance of colors in your problem is to look at the image with the human eye. If you are able to identify the object you are looking for in a gray image, then you probably have enough information to feed to your model. If not, then you definitely need more information (colors) for your model. The same rule can be applied for most other preprocessing techniques that we will discuss.

      

    


    	
      Data augmentation --Another common preprocessing technique involves augmenting the existing dataset with modified versions of the existing images. Scaling, rotations, and other affine transformations are typically used to enlarge your dataset and expose the neural network to a wide variety of variations of your images. This makes it more likely that your model will recognize objects when they appear in any form and shape. Figure 1.21 shows an example of image augmentation applied to a butterfly image.
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      Figure 1.21 Image-augmentation techniques create modified versions of the input image to provide more examples for the ML model to learn from.

    


    	
      Other techniques --Many more preprocessing techniques are available to get your images ready for training an ML model. In some projects, you might need to remove the background color from your images to reduce noise. Other projects might require that you brighten or darken your images. In short, any adjustments that you need to apply to your dataset are part of preprocessing. You will select the appropriate processing techniques based on the dataset at hand and the problem you are solving. You will see many image-processing techniques throughout this book, helping you build your intuition of which ones you need when working on your own projects.

    

  


  
    No free lunch theorem


    This is a phrase that was introduced by David Wolpert and William Macready in “No Free Lunch Theorems for Optimizations” (IEEE Transactions on Evolutionary Computation 1, 67). You will often hear this said when a team is working on an ML project. It means that no one prescribed recipe fits all models. When working on ML projects, you will need to make many choices like building your neural network architecture, tuning hyperparameters, and applying the appropriate data preprocessing techniques. While there are some rule-of-thumb approaches to tackle certain problems, there is really no single recipe that is guaranteed to work well in all situations.


    You must make certain assumptions about the dataset and the problem you are trying to solve. For some datasets, it is best to convert the colored images to grayscale, while for other datasets, you might need to keep or adjust the color images.


    The good news is that, unlike traditional machine learning, DL algorithms require minimum data preprocessing because, as you will see soon, neural networks do most of the heavy lifting in processing an image and extracting features.

  


  
1.6 Feature extraction


  Feature extraction is a core component of the CV pipeline. In fact, the entire DL model works around the idea of extracting useful features that clearly define the objects in the image. So we’ll spend a little more time here, because it is important that you understand what a feature is, what a vector of features is, and why we extract features.


  DEFINITION A feature in machine learning is an individual measurable property or characteristic of an observed phenomenon. Features are the input that you feed to your ML model to output a prediction or classification. Suppose you want to predict the price of a house: your input features (properties) might include square_foot, number_of_rooms, bathrooms, and so on, and the model will output the predicted price based on the values of your features. Selecting good features that clearly distinguish your objects increases the predictive power of ML algorithms.


  
1.6.1 What is a feature in computer vision?


  In CV, a feature is a measurable piece of data in your image that is unique to that specific object. It may be a distinct color or a specific shape such as a line, edge, or image segment. A good feature is used to distinguish objects from one another. For example, if I give you a feature like a wheel and ask you to guess whether an object is a motorcycle or a dog, what would your guess be? A motorcycle. Correct! In this case, the wheel is a strong feature that clearly distinguishes between motorcycles and dogs. However, if I give you the same feature (a wheel) and ask you to guess whether an object is a bicycle or a motorcycle, this feature is not strong enough to distinguish between those objects. You need to look for more features like a mirror, license plate, or maybe a pedal, that collectively describe an object. In ML projects, we want to transform the raw data (image) into a feature vector to show to our learning algorithm, which can learn the characteristics of the object (figure 1.22).
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  Figure 1.22 Example input image fed to a feature-extraction algorithm to find patterns within the image and create the feature vector


  In the figure, we feed the raw input image of a motorcycle into a feature extraction algorithm. Let’s treat the feature extraction algorithm as a black box for now, and we will come back to it. For now, we need to know that the extraction algorithm produces a vector that contains a list of features. This feature vector is a 1D array that makes a robust representation of the object.


  
    Feature generalizability


    It is important to point out that figure 1.22 reflects features extracted from just one motorcycle. A very important characteristic of a feature is repeatability. The feature should be able to detect motorcycles in general, not just this specific one. So in real-world problems, a feature is not an exact copy of a piece of the input image.
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    Features need to detect general patterns.


    If we take the wheel feature, for example, the feature doesn’t look exactly like the wheel of one particular motorcycle. Instead, it looks like a circular shape with some patterns that identify wheels in all images in the training dataset. When the feature extractor sees thousands of images of motorcycles, it recognizes patterns that define wheels in general, regardless of where they appear in the image and what type of motorcycle they are part of.

  


  
1.6.2 What makes a good (useful) feature?


  Machine learning models are only as good as the features you provide. That means coming up with good features is an important job in building ML models. But what makes a good feature? And how can you tell?


  Let’s discuss this with an example. Suppose we want to build a classifier to tell the difference between two types of dogs: Greyhound and Labrador. Let’s take two features--the dogs’ height and their eye color--and evaluate them (figure 1.23).


  [image: ]



  Figure 1.23 Example of Greyhound and Labrador dogs


  Let’s begin with height. How useful do you think this feature is? Well, on average, Greyhounds tend to be a couple of inches taller than Labradors, but not always. There is a lot of variation in the dog world. So let’s evaluate this feature across different values in both breeds’ populations. Let’s visualize the height distribution on a toy example in the histogram in figure 1.24.
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  Figure 1.24 A visualization of the height distribution on a toy dogs dataset


  From the histogram, we can see that if the dog’s height is 20 inches or less, there is more than an 80% probability that the dog is a Labrador. On the other side of the histogram, if we look at dogs that are taller than 30 inches, we can be pretty confident the dog is a Greyhound. Now, what about the data in the middle of the histogram (heights from 20 to 30 inches)? We can see that the probability of each type of dog is pretty close. The thought process in this case is as follows:


  if height ≤ 20:


   return higher probability to Labrador


  if height ≥ 30:


   return higher probability to Greyhound


  if 20 < height < 30:


   look for other features to classify the object


  So the height of the dog in this case is a useful feature because it helps (adds information) in distinguishing between both dog types. We can keep it. But it doesn’t distinguish between Greyhounds and Labradors in all cases, which is fine. In ML projects, there is usually no one feature that can classify all objects on its own. That’s why, in machine learning, we almost always need multiple features, where each feature captures a different type of information. If only one feature would do the job, we could just write if-else statements instead of bothering with training a classifier.


  TIP Similar to what we did earlier with color conversion (color versus grayscale), to figure out which features you should use for a specific problem, do a thought experiment. Pretend you are the classifier. If you want to differentiate between Greyhounds and Labradors, what information do you need to know? You might ask about the hair length, the body size, the color, and so on.


  For another quick example of a non-useful feature to drive this idea home, let’s look at dog eye color. For this toy example, imagine that we have only two eye colors, blue and brown. Figure 1.25 shows what a histogram might look like for this example.
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  Figure 1.25 A visualization of the eye color distribution in a toy dogs dataset


  It is clear that for most values, the distribution is about 50/50 for both types. So practically, this feature tells us nothing, because it doesn’t correlate with the type of dog. Hence, it doesn’t distinguish between Greyhounds and Labradors.


  
    What makes a good feature for object recognition?


    A good feature will help us recognize an object in all the ways it may appear. Characteristics of a good feature follow:


    
      	
        Identifiable

      


      	
        Easily tracked and compared

      


      	
        Consistent across different scales, lighting conditions, and viewing angles

      


      	
        Still visible in noisy images or when only part of an object is visible

      

    

  


  
1.6.3 Extracting features (handcrafted vs. automatic extracting)


  This is a large topic in machine learning that could take up an entire book. It’s typically described in the context of a topic called feature engineering. In this book, we are only concerned with extracting features in images. So I’ll touch on the idea very quickly in this chapter and build on it in later chapters.


  
Traditional machine learning using handcrafted features


  In traditional ML problems, we spend a good amount of time in manual feature selection and engineering. In this process, we rely on our domain knowledge (or partner with domain experts) to create features that make ML algorithms work better. We then feed the produced features to a classifier like a support vector machine (SVM) or AdaBoost to predict the output (figure 1.26). Some of the handcrafted feature sets are these:


  
    	
      Histogram of oriented gradients (HOG)

    


    	
      Haar Cascades

    


    	
      Scale-invariant feature transform (SIFT)

    


    	
      Speeded-Up Robust Feature (SURF)
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  Figure 1.26 Traditional machine learning algorithms require handcrafted feature extraction.


  
Deep learning using automatically extracted features


  In DL, however, we do not need to manually extract features from the image. The network extracts features automatically and learns their importance on the output by applying weights to its connections. You just feed the raw image to the network, and while it passes through the network layers, the network identifies patterns within the image with which to create features (figure 1.27). Neural networks can be thought of as feature extractors plus classifiers that are end-to-end trainable, as opposed to traditional ML models that use handcrafted features.
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  Figure 1.27 A deep neural network passes the input image through its layers to automatically extract features and classify the object. No handcrafted features are needed.


  
    How do neural networks distinguish useful features from non-useful features?


    You might get the impression that neural networks only understand the most useful features, but that’s not entirely true. Neural networks scoop up all the features available and give them random weights. During the training process, the neural network adjusts these weights to reflect their importance and how they should impact the output prediction. The patterns with the highest appearance frequency will have higher weights and are considered more useful features. Features with the lowest weights will have very little impact on the output. This learning process will be discussed in deeper detail in the next chapter.
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    Weighting different features to reflect their importance in identifying the object

  


  
Why use features?


  The input image has too much extra information that is not necessary for classification. Therefore, the first step after preprocessing the image is to simplify it by extracting the important information and throwing away nonessential information. By extracting important colors or image segments, we can transform complex and large image data into smaller sets of features. This makes the task of classifying images based on their features simpler and faster.


  Consider the following example. Suppose we have a dataset of 10,000 images of motorcycles, each of 1,000 width by 1,000 height. Some images have solid backgrounds, and others have busy backgrounds of unnecessary data. When these thousands of images are fed to the feature extraction algorithms, we lose all the unnecessary data that is not important to identify motorcycles, and we only keep a consolidated list of useful features that can be fed directly to the classifier (figure 1.28). This process is a lot simpler than having the classifier look at the raw dataset of 10,000 images to learn the properties of motorcycles.


  [image: ]



  Figure 1.28 Extracting and consolidating features from thousands of images in one feature vector to be fed to the classifier


  
1.7 Classifier learning algorithm


  Here is what we have discussed so far regarding the classifier pipeline:


  
    	
      Input image --We’ve seen how images are represented as functions, and that computers see images as a 2D matrix for grayscale images and a 3D matrix (three channels) for colored images.

    


    	
      Image preprocessing --We discussed some image-preprocessing techniques to clean up our dataset and make it ready as input to the ML algorithm.

    


    	
      Feature extraction --We converted our large dataset of images into a vector of useful features that uniquely describe the objects in the image.

    

  


  Now it is time to feed the extracted feature vector to the classifier to output a class label for the images (for example, motorcycle or otherwise).


  As we discussed in the previous section, the classification task is done one of these ways: traditional ML algorithms like SVMs, or deep neural network algorithms like CNNs. While traditional ML algorithms might get decent results for some problems, CNNs truly shine in processing and classifying images in the most complex problems.


  In this book, we will discuss neural networks and how they work in detail. For now, I want you to know that neural networks automatically extract useful features from your dataset, and they act as a classifier to output class labels for your images. Input images pass through the layers of the neural network to learn their features layer by layer (figure 1.29). The deeper your network is (the more layers), the more it will learn the features of the dataset: hence the name deep learning. More layers come with some trade-offs that we will discuss in the next two chapters. The last layer of the neural network usually acts as the classifier that outputs the class label.
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  Figure 1.29 Input images pass through the layers of a neural network so it can learn features layer by layer.


  
Summary


  
    	
      Both human and machine vision systems contain two basic components: a sensing device and an interpreting device.

    


    	
      The interpreting process consists of four steps: input the data, preprocess it, do feature extraction, and produce a machine learning model.

    


    	
      An image can be represented as a function of x and y. Computers see an image as a matrix of pixel values: one channel for grayscale images and three channels for color images.

    


    	
      Image-processing techniques vary for each problem and dataset. Some of these techniques are converting images to grayscale to reduce complexity, resizing images to a uniform size to fit your neural network, and data augmentation.

    


    	
      Features are unique properties in the image that are used to classify its objects. Traditional ML algorithms use several feature-extraction methods.

    

  


  
    
2 Deep learning and neural networks

  


  This chapter covers


  
    	
Understanding perceptrons and multilayer perceptrons


    	
Working with the different types of activation functions


    	
Training networks with feedforward, error functions, and error optimization


    	
Performing backpropagation

  


  In the last chapter, we discussed the computer vision (CV) pipeline components: the input image, preprocessing, extracting features, and the learning algorithm (classifier). We also discussed that in traditional ML algorithms, we manually extract features that produce a vector of features to be classified by the learning algorithm, whereas in deep learning (DL), neural networks act as both the feature extractor and the classifier. A neural network automatically recognizes patterns and extracts features from the image and classifies them into labels (figure 2.1).


  [image: ]


  Figure 2.1 Traditional ML algorithms require manual feature extraction. A deep neural network automatically extracts features by passing the input image through its layers.


  In this chapter, we will take a short pause from the CV context to open the DL algorithm box from figure 2.1. We will dive deeper into how neural networks learn features and make predictions. Then, in the next chapter, we will come back to CV applications with one of the most popular DL architectures: convolutional neural networks.


  The high-level layout of this chapter is as follows:


  
    	
      We will begin with the most basic component of the neural network: the perceptron, a neural network that contains only one neuron.

    


    	
      Then we will move on to a more complex neural network architecture that contains hundreds of neurons to solve more complex problems. This network is called a multilayer perceptron (MLP), where neurons are stacked in hidden layers. Here, you will learn the main components of the neural network architecture: the input layer, hidden layers, weight connections, and output layer.

    


    	
      You will learn that the network training process consists of three main steps:


      
        	
Feedforward operation


        	
Calculating the error


        	
Error optimization: using backpropagation and gradient descent to select the most optimum parameters that minimize the error function

      

    

  


  We will dive deep into each of these steps. You will see that building a neural network requires making necessary design decisions: choosing an optimizer, cost function, and activation functions, as well as designing the architecture of the network, including how many layers should be connected to each other and how many neurons should be in each layer. Ready? Let’s get started!
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  Figure 2.2 An artificial neural network consists of layers of nodes, or neurons connected with edges.


  
2.1 Understanding perceptrons


  Let’s take a look at the artificial neural network (ANN) diagram from chapter 1 (figure 2.2). You can see that ANNs consist of many neurons that are structured in layers to perform some kind of calculations and predict an output. This architecture can be also called a multilayer perceptron, which is more intuitive because it implies that the network consists of perceptrons structured in multiple layers. Both terms, MLP and ANN, are used interchangeably to describe this neural network architecture.


  In the MLP diagram in figure 2.2, each node is called a neuron. We will discuss how MLP networks work soon, but first let’s zoom in on the most basic component of the neural network: the perceptron. Once you understand how a single perceptron works, it will become more intuitive to understand how multiple perceptrons work together to learn data features.


  
2.1.1 What is a perceptron?


  The most simple neural network is the perceptron, which consists of a single neuron. Conceptually, the perceptron functions in a manner similar to a biological neuron (figure 2.3). A biological neuron receives electrical signals from its dendrites, modulates the electrical signals in various amounts, and then fires an output signal through its synapses only when the total strength of the input signals exceeds a certain threshold. The output is then fed to another neuron, and so forth.


  To model the biological neuron phenomenon, the artificial neuron performs two consecutive functions: it calculates the weighted sum of the inputs to represent the total strength of the input signals, and it applies a step function to the result to determine whether to fire the output 1 if the signal exceeds a certain threshold or 0 if the signal doesn’t exceed the threshold.
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   Figure 2.3 Artificial neurons were inspired by biological neurons. Different neurons are connected to each other by synapses that carry information.


  As we discussed in chapter 1, not all input features are equally useful or important. To represent that, each input node is assigned a weight value, called its connection weight, to reflect its importance.


  
    Connection weights


    Not all input features are equally important (or useful) features. Each input feature (x1) is assigned its own weight (w1) that reflects its importance in the decision-making process. Inputs assigned greater weight have a greater effect on the output. If the weight is high, it amplifies the input signal; and if the weight is low, it diminishes the input signal. In common representations of neural networks, the weights are represented by lines or edges from the input node to the perceptron.


    For example, if you are predicting a house price based on a set of features like size, neighborhood, and number of rooms, there are three input features (x1, x2, and x3). Each of these inputs will have a different weight value that represents its effect on the final decision. For example, if the size of the house has double the effect on the price compared with the neighborhood, and the neighborhood has double the effect compared with the number of rooms, you will see weights something like 8, 4, and 2, respectively.


    How the connection values are assigned and how the learning happens is the core of the neural network training process. This is what we will discuss for the rest of this chapter.

  


  In the perceptron diagram in figure 2.4, you can see the following:


  
    	
      Input vector --The feature vector that is fed to the neuron. It is usually denoted with an uppercase x to represent a vector of inputs (x1, x2, . . ., xn).

    


    	
      Weights vector --Each x1 is assigned a weight value w1 that represents its importance to distinguish between different input datapoints.

    


    	
      Neuron functions --The calculations performed within the neuron to modulate the input signals: the weighted sum and step activation function.

    


    	
      Output --Controlled by the type of activation function you choose for your network. There are different activation functions, as we will discuss in detail in this chapter. For a step function, the output is either 0 or 1. Other activation functions produce probability output or float numbers. The output node represents the perceptron prediction.
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  Figure 2.4 Input vectors are fed to the neuron, with weights assigned to represent importance. Calculations performed within the neuron are weighted sum and activation functions.


  Let’s take a deeper look at the weighted sum and step function calculations that happen inside the neuron.


  
Weighted sum function


  Also known as a linear combination, the weighted sum function is the sum of all inputs multiplied by their weights, and then added to a bias term. This function produces a straight line represented in the following equation:


  z = Σxi · wi + b (bias)


  z = x1 · w1 + x2 · w2 + x3

OEBPS/OEBPS/Images/1-4.png
Artificial neursl network (ANN)






OEBPS/OEBPS/Images/1-27.png
Input Feature extraction and classification

St a





OEBPS/OEBPS/Images/1-19.png
Mint Mint green

ex oerese e soero
RG8 152281 152 5

ive groon Lime mo groen

700238 B iroszsn vexwcTEAss VEX rcrEnse
RGB 1121205 3 RG8 19923470 RG8






OEBPS/OEBPS/Images/2-1.png
Traditional machine leaming flow
Deep leaming flow





OEBPS/cover.jpeg
Mohamed Elgendy

/'l MANNING






OEBPS/OEBPS/Images/1-10.png
Face verification Face identification

Person
1
Person
1
Face Face
verifcation H identfcation Person
sysiem system 2
Not
person
1 Haven't
soon har

before






OEBPS/OEBPS/Images/1-17.png
IRGB channels

Color image
- Channel 3
F0.0)=[11.102.35) Bluo intensity 150
vaes 768 6] 164 s 36
Channel 2 - 150
Snersty S
770[ 170 a8 170 17
% o7
m)
)
169
58] 150 197150 150
108
Chamnel 1 [zap]m
Rod inensity
values S g

a8 e[ 1e8 | -






OEBPS/OEBPS/Images/1-26.png
Input

Festure extraction ming sigorithm
(handcrafied) ‘SVM or AdaBoost sout

P





OEBPS/OEBPS/Images/1-3.png
Newon

(information

from other neurons) )
Fiowof
otomaton

Artificial

I neuron





OEBPS/OEBPS/Images/1-29.png
Input image

Feature extraction layers

(The input image flows through the
network layers to learn its features.
Early layers detect patterns i the
image, then later layers detect
patterns within patterns, and 5o on,
until it creates the feature vector.)

of a motorcycle or
the lower node ifit doesn't)





OEBPS/OEBPS/Images/1-6.png





OEBPS/OEBPS/Images/Manning_M_small.png





OEBPS/OEBPS/Images/1-16.png
What we see






OEBPS/OEBPS/Images/2-3.png
Newon

(information

from other neurons) )
Fiowof
otomaton

Artificial

I neuron





OEBPS/OEBPS/Images/1-unnumb-2.png





OEBPS/OEBPS/Images/1-28.png





OEBPS/OEBPS/Images/1-5.png





OEBPS/OEBPS/Images/1-15.png
12, 13) =255
White pixel

F20.7)=0
Black pixel

{— F18,9)= 190
Gray pixel





OEBPS/OEBPS/Images/1-20.png





OEBPS/OEBPS/Images/2-2.png
Artificial neursl network (ANN)






OEBPS/OEBPS/Images/1-22.png
Wl
AN
AN
D4R






OEBPS/OEBPS/Images/1-9.png
This small bus bird

has a shor, poiny boak

1 on s wings.

This biedis completely
rod with black wings and
a poiny boak.






OEBPS/OEBPS/Images/1-14.png
1. Input date 2. Preprocessing

3. Feature extraction 4. Classifier

Features vector





OEBPS/OEBPS/Images/1-8.png
Original image






OEBPS/OEBPS/Images/1-23.png
(Greyhound hasiand






OEBPS/OEBPS/Images/1-21.png
[ B B B B

Orginalimage

De-toxturized

Edge enhanced

‘Sallont edge map.

— Fupirotate





OEBPS/OEBPS/Images/1-7.png





OEBPS/OEBPS/Images/1-13.png
totcen [ 2 Prpcosng || 3 Fouroeniocon |-o| 4 Mmodel |

+Images Goting the data «Find distinguiting +Loam fom the
+Videos (mage reacy: information about extracted features
frames) « Standardize images the image o predictand

« Color transiormaton classiy objects






OEBPS/OEBPS/Images/1-unnumb-5key.png





OEBPS/OEBPS/Images/1-unnumb-1.png
Compound oyes. How bees s00 a fower






OEBPS/OEBPS/Images/2-4.png





OEBPS/OEBPS/Images/1-11.png





OEBPS/OEBPS/Images/1-2.png
Computer vision system

Sensing device Interproting device Output
o Dogs
orass

P=——N






OEBPS/OEBPS/Images/1-unnumb-3a.png





OEBPS/OEBPS/Images/1-1.png
Human vision system

Interprotation
& { oo
? orass
Eye (sensing device ~ Brain (interpreting device
responsible for capturing responsible for understanding

images of the environment) the image content)





OEBPS/OEBPS/Images/1-12.png
-,

i

Computer vision system

Sensing device foterpreting dovice Output

Dogs
orass






OEBPS/OEBPS/Images/1-25.png
bl
=





OEBPS/OEBPS/Images/Manning_copyright.png





OEBPS/OEBPS/Images/1-unnumb-3b.png





OEBPS/OEBPS/Images/1-24.png
0

Height





OEBPS/OEBPS/Images/1-unnumb-4K.png
Feature after looking Feature after looking
at one image at thousands of images






