

 inside front cover

 [image:]

 [image:]

 ASP.NET Core in Action

 Second Edition

 Andrew Lock

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Mark Elston

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Tanya Wilke

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298301

brief contents

 Part 1. Getting started with ASP.NET Core

 1 Getting started with ASP.NET Core

 2 Your first application

 3 Handling requests with the middleware pipeline

 4 Creating a website with Razor Pages

 5 Mapping URLs to Razor Pages using routing

 6 The binding model: Retrieving and validating user input

 7 Rendering HTML using Razor views

 8 Building forms with Tag Helpers

 9 Creating a Web API for mobile and client applications using MVC

 Part 2. Building complete applications

 10 Service configuration with dependency injection

 11 Configuring an ASP.NET Core application

 12 Saving data with Entity Framework Core

 13 The MVC and Razor Pages filter pipeline

 14 Authentication: Adding users to your application with Identity

 15 Authorization: Securing your application

 16 Publishing and deploying your application

 Part 3. Extending your applications

 17 Monitoring and troubleshooting errors with logging

 18 Improving your application’s security

 19 Building custom components

 20 Building custom MVC and Razor Pages components

 21 Calling remote APIs with IHttpClientFactory

 22 Building background tasks and services

 23 Testing your application

 appendix A. Preparing your development environment

 appendix B. Understanding the .NET ecosystem

 appendix C. Useful references

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Getting started with ASP.NET Core

 1 Getting started with ASP.NET Core

 1.1 An introduction to ASP.NET Core

 Using a web framework

 What is ASP.NET Core?

 1.2 When to choose ASP.NET Core

 What type of applications can you build?

 If you’re new to .NET development

 If you’re a .NET Framework developer creating a new application

 Converting an existing ASP.NET application to ASP.NET Core

 1.3 How does ASP.NET Core work?

 How does an HTTP web request work?

 How does ASP.NET Core process a request?

 1.4 What you will learn in this book

 2 Your first application

 2.1 A brief overview of an ASP.NET Core application

 2.2 Creating your first ASP.NET Core application

 Using a template to get started

 Building the application

 2.3 Running the web application

 2.4 Understanding the project layout

 2.5 The .csproj project file: Defining your dependencies

 2.6 The Program class: Building a web host

 2.7 The Startup class: Configuring your application

 Adding and configuring services

 Defining how requests are handled with middleware

 2.8 Generating responses with Razor Pages

 Generating HTML with Razor Pages

 Handling request logic with PageModels and handlers

 3 Handling requests with the middleware pipeline

 3.1 What is middleware?

 3.2 Combining middleware in a pipeline

 Simple pipeline scenario 1: A holding page

 Simple pipeline scenario 2: Handling static files

 Simple pipeline scenario 3: A Razor Pages application

 3.3 Handling errors using middleware

 Viewing exceptions in development: DeveloperExceptionPage

 Handling exceptions in production: ExceptionHandlerMiddleware

 Handling other errors: StatusCodePagesMiddleware

 Error handling middleware and Web APIs

 4 Creating a website with Razor Pages

 4.1 An introduction to Razor Pages

 Exploring a typical Razor Page

 The MVC design pattern

 Applying the MVC design pattern to Razor Pages

 Adding Razor Pages to your application

 4.2 Razor Pages vs. MVC in ASP.NET Core

 MVC controllers in ASP.NET Core

 The benefits of Razor Pages

 When to choose MVC controllers over Razor Pages

 4.3 Razor Pages and page handlers

 Accepting parameters to page handlers

 Returning responses with ActionResults

 5 Mapping URLs to Razor Pages using routing

 5.1 What is routing?

 5.2 Routing in ASP.NET Core

 Using endpoint routing in ASP.NET Core

 Convention-based routing vs. attribute routing

 Routing to Razor Pages

 5.3 Customizing Razor Page route templates

 Adding a segment to a Razor Page route template

 Replacing a Razor Page route template completely

 5.4 Exploring the route template syntax

 Using optional and default values

 Adding additional constraints to route parameters

 Matching arbitrary URLs with the catch-all parameter

 5.5 Generating URLs from route parameters

 Generating URLs for a Razor Page

 Generating URLs for an MVC controller

 Generating URLs with ActionResults

 Generating URLs from other parts of your application

 5.6 Selecting a page handler to invoke

 5.7 Customizing conventions with Razor Pages

 6 The binding model: Retrieving and validating user input

 6.1 Understanding the models in Razor Pages and MVC

 6.2 From request to model: Making the request useful

 Binding simple types

 Binding complex types

 Choosing a binding source

 6.3 Handling user input with model validation

 The need for validation

 Using DataAnnotations attributes for validation

 Validating on the server for safety

 Validating on the client for user experience

 6.4 Organizing your binding models in Razor Pages

 7 Rendering HTML using Razor views

 7.1 Views: Rendering the user interface

 7.2 Creating Razor views

 Razor views and code-behind

 Introducing Razor templates

 Passing data to views

 7.3 Creating dynamic web pages with Razor

 Using C# in Razor templates

 Adding loops and conditionals to Razor templates

 Rendering HTML with Raw

 7.4 Layouts, partial views, and _ViewStart

 Using layouts for shared markup

 Overriding parent layouts using sections

 Using partial views to encapsulate markup

 Running code on every view with _ViewStart and _ViewImports

 7.5 Selecting a view from an MVC controller

 8 Building forms with Tag Helpers

 8.1 Catering to editors with Tag Helpers

 8.2 Creating forms using Tag Helpers

 The Form Tag Helper

 The Label Tag Helper

 The Input and Textarea Tag Helpers

 The Select Tag Helper

 The Validation Message and Validation Summary Tag Helpers

 8.3 Generating links with the Anchor Tag Helper

 8.4 Cache-busting with the Append Version Tag Helper

 8.5 Using conditional markup with the Environment Tag Helper

 9 Creating a Web API for mobile and client applications using MVC

 9.1 What is a Web API and when should you use one?

 9.2 Creating your first Web API project

 9.3 Applying the MVC design pattern to a Web API

 9.4 Attribute routing: Linking action methods to URLs

 Combining route attributes to keep your route templates DRY

 Using token replacement to reduce duplication in attribute routing

 Handling HTTP verbs with attribute routing

 9.5 Using common conventions with the [ApiController] attribute

 9.6 Generating a response from a model

 Customizing the default formatters: Adding XML support

 Choosing a response format with content negotiation

 Part 2. Building complete applications

 10 Service configuration with dependency injection

 10.1 Introduction to dependency injection

 Understanding the benefits of dependency injection

 Creating loosely coupled code

 Dependency injection in ASP.NET Core

 10.2 Using the dependency injection container

 Adding ASP.NET Core framework services to the container

 Registering your own services with the container

 Registering services using objects and lambdas

 Registering a service in the container multiple times

 Injecting services into action methods, page handlers, and views

 10.3 Understanding lifetimes: When are services created?

 Transient: Everyone is unique

 Scoped: Let’s stick together

 Singleton: There can be only one

 Keeping an eye out for captured dependencies

 11 Configuring an ASP.NET Core application

 11.1 Introducing the ASP.NET Core configuration model

 11.2 Configuring your application with CreateDefaultBuilder

 11.3 Building a configuration object for your app

 Adding a configuration provider in Program.cs

 Using multiple providers to override configuration values

 Storing configuration secrets safely

 Reloading configuration values when they change

 11.4 Using strongly typed settings with the options pattern

 Introducing the IOptions interface

 Reloading strongly typed options with IOptionsSnapshot

 Designing your options classes for automatic binding

 Binding strongly typed settings without the IOptions interface

 11.5 Configuring an application for multiple environments

 Identifying the hosting environment

 Loading environment-specific configuration files

 Setting the hosting environment

 12 Saving data with Entity Framework Core

 12.1 Introducing Entity Framework Core

 What is EF Core?

 Why use an object-relational mapper?

 When should you choose EF Core?

 Mapping a database to your application code

 12.2 Adding EF Core to an application

 Choosing a database provider and installing EF Core

 Building a data model

 Registering a data context

 12.3 Managing changes with migrations

 Creating your first migration

 Adding a second migration

 12.4 Querying data from and saving data to the database

 Creating a record

 Loading a list of records

 Loading a single record

 Updating a model with changes

 12.5 Using EF Core in production applications

 13 The MVC and Razor Pages filter pipeline

 13.1 Understanding filters and when to use them

 The MVC filter pipeline

 The Razor Pages filter pipeline

 Filters or middleware: Which should you choose?

 Creating a simple filter

 Adding filters to your actions, controllers, Razor Pages, and globally

 Understanding the order of filter execution

 13.2 Creating custom filters for your application

 Authorization filters: Protecting your APIs

 Resource filters: Short-circuiting your action methods

 Action filters: Customizing model binding and action results

 Exception filters: Custom exception handling for your action methods

 Result filters: Customizing action results before they execute

 Page filters: Customizing model binding for Razor Pages

 13.3 Understanding pipeline short-circuiting

 13.4 Using dependency injection with filter attributes

 14 Authentication: Adding users to your application with Identity

 14.1 Introducing authentication and authorization

 Understanding users and claims in ASP.NET Core

 Authentication in ASP.NET Core: Services and middleware

 Authentication for APIs and distributed applications

 14.2 What is ASP.NET Core Identity?

 14.3 Creating a project that uses ASP.NET Core Identity

 Creating the project from a template

 Exploring the template in Solution Explorer

 The ASP.NET Core Identity data model

 Interacting with ASP.NET Core Identity

 14.4 Adding ASP.NET Core Identity to an existing project

 Configuring the ASP.NET Core Identity services and middleware

 Updating the EF Core data model to support Identity

 Updating the Razor views to link to the Identity UI

 14.5 Customizing a page in ASP.NET Core Identity’s default UI

 14.6 Managing users: Adding custom data to users

 15 Authorization: Securing your application

 15.1 Introduction to authorization

 15.2 Authorization in ASP.NET Core

 Preventing anonymous users from accessing your application

 Handling unauthorized requests

 15.3 Using policies for claims-based authorization

 15.4 Creating custom policies for authorization

 Requirements and handlers: The building blocks of a policy

 Creating a policy with a custom requirement and handler

 15.5 Controlling access with resource-based authorization

 Manually authorizing requests with IAuthorizationService

 Creating a resource-based AuthorizationHandler

 15.6 Hiding elements in Razor templates from unauthorized users

 16 Publishing and deploying your application

 16.1 Understanding the ASP.NET Core hosting model

 Running vs. publishing an ASP.NET Core app

 Choosing a deployment method for your application

 16.2 Publishing your app to IIS

 Configuring IIS for ASP.NET Core

 Preparing and publishing your application to IIS

 16.3 Hosting an application on Linux

 Running an ASP.NET Core app behind a reverse proxy on Linux

 Preparing your app for deployment to Linux

 16.4 Configuring the URLs for your application

 16.5 Optimizing your client-side assets using BundlerMinifier

 Speeding up an app using bundling and minification

 Adding BundlerMinifier to your application

 Using minified files in production with the Environment Tag Helper

 Serving common files from a CDN

 Part 3. Extending your applications

 17 Monitoring and troubleshooting errors with logging

 17.1 Using logging effectively in a production app

 Highlighting problems using custom log messages

 The ASP.NET Core logging abstractions

 17.2 Adding log messages to your application

 Log level: How important is the log message?

 Log category: Which component created the log

 Formatting messages and capturing parameter values

 17.3 Controlling where logs are written using logging providers

 Adding a new logging provider to your application

 Replacing the default ILoggerFactory with Serilog

 17.4 Changing log verbosity with filtering

 17.5 Structured logging: Creating searchable, useful logs

 Adding a structured logging provider to your app

 Using scopes to add additional properties to your logs

 18 Improving your application’s security

 18.1 Adding HTTPS to an application

 Using the ASP.NET Core HTTPS development certificates

 Configuring Kestrel with a production HTTPS certificate

 Enforcing HTTPS for your whole app

 18.2 Defending against cross-site scripting (XSS) attacks

 18.3 Protecting from cross-site request forgery (CSRF) attacks

 18.4 Calling your web APIs from other domains using CORS

 Understanding CORS and how it works

 Adding a global CORS policy to your whole app

 Adding CORS to specific Web API actions with EnableCorsAttribute

 Configuring CORS policies

 18.5 Exploring other attack vectors

 Detecting and avoiding open redirect attacks

 Avoiding SQL injection attacks with EF Core and parameterization

 Preventing insecure direct object references

 Protecting your users’ passwords and data

 19 Building custom components

 19.1 Customizing your middleware pipeline

 Creating simple endpoints with the Run extension

 Branching middleware pipelines with the Map extension

 Adding to the pipeline with the Use extension

 Building a custom middleware component

 19.2 Creating custom endpoints with endpoint routing

 Creating a custom endpoint routing component

 Creating simple endpoints with MapGet and WriteJsonAsync

 Applying authorization to endpoints

 19.3 Handling complex configuration requirements

 Partially building configuration to configure additional providers

 Using services to configure IOptions with IConfigureOptions

 19.4 Using a third-party dependency injection container

 20 Building custom MVC and Razor Pages components

 20.1 Creating a custom Razor Tag Helper

 Printing environment information with a custom Tag Helper

 Creating a custom Tag Helper to conditionally hide elements

 Creating a Tag Helper to convert Markdown to HTML

 20.2 View components: Adding logic to partial views

 20.3 Building a custom validation attribute

 20.4 Replacing the validation framework with FluentValidation

 Comparing FluentValidation to DataAnnotations attributes

 Adding FluentValidation to your application

 21 Calling remote APIs with IHttpClientFactory

 21.1 Calling HTTP APIs: The problem with HttpClient

 21.2 Creating HttpClients with IHttpClientFactory

 Using IHttpClientFactory to manage HttpClientHandler lifetime

 Configuring named clients at registration time

 Using typed clients to encapsulate HTTP calls

 21.3 Handling transient HTTP errors with Polly

 21.4 Creating a custom HttpMessageHandler

 22 Building background tasks and services

 22.1 Running background tasks with IHostedService

 Running background tasks on a timer

 Using scoped services in background tasks

 22.2 Creating headless worker services using IHost

 Creating a worker service from a template

 Running worker services in production

 22.3 Coordinating background tasks using Quartz.NET

 Installing Quartz.NET in an ASP.NET Core application

 Configuring a job to run on a schedule with Quartz.NET

 Using clustering to add redundancy to your background tasks

 23 Testing your application

 23.1 An introduction to testing in ASP.NET Core

 23.2 Unit testing with xUnit

 Creating your first test project

 Running tests with dotnet test

 Referencing your app from your test project

 Adding Fact and Theory unit tests

 Testing failure conditions

 23.3 Unit testing custom middleware

 23.4 Unit testing API controllers

 23.5 Integration testing: Testing your whole app in-memory

 Creating a TestServer using the Test Host package

 Testing your application with WebApplicationFactory

 Replacing dependencies in WebApplicationFactory

 Reducing duplication by creating a custom WebApplicationFactory

 23.6 Isolating the database with an in-memory EF Core provider

 appendix A. Preparing your development environment

 appendix B. Understanding the .NET ecosystem

 appendix C. Useful references

 index

 front matter

preface

 ASP.NET Core 5.0 was released in 2020, more than four years after the release of ASP.NET Core 1.0. But ASP.NET also has a long history prior to ASP.NET Core. That history provided the basis and impetus for the development of ASP.NET Core.

 Microsoft released the first version of ASP.NET in 2002 as part of the original .NET Framework 1.0. Since then, it’s been through multiple iterations, with each version bringing added features and extensibility. However, each iteration has been built on top of the .NET Framework, and so comes preinstalled in all versions of Windows.

 This brings mixed blessings—on the one hand, the ASP.NET 4.x framework today is a reliable, battle-tested platform for building modern applications on Windows. On the other hand, it is also limited by this reliance—changes to the underlying .NET Framework are far-reaching and so consequently slow to roll out, and it fundamentally excludes the many developers building and deploying to Linux or macOS.

 When I first began looking into ASP.NET Core, I was one of those developers. A Windows user at heart, I was issued a Mac by my employer and so was stuck working in a virtual machine all day. ASP.NET Core promised to change all that, allowing me to develop natively on both my Windows machine and my Mac.

 I was relatively late to the party in many respects, only taking an active interest just before the time of the RC2 release of ASP.NET Core. By that point there had already been eight beta releases, many of which contained significant breaking changes. By not diving in fully until RC2, I was spared the pain of dodgy tooling and changing APIs.

 What I saw at that point really impressed me. ASP.NET Core let developers leverage their existing knowledge of the .NET framework, and of ASP.NET MVC applications in particular, while baking in current best practices like dependency injection, strongly typed configuration, and logging. On top of that, you could build and deploy cross-platform. I was sold.

 This book came about largely due to my approach to learning about ASP.NET Core. Rather than simply reading documentation and blog posts, I decided to try something new and start writing about what I learned. Each week I would dedicate some time to exploring a new aspect of ASP.NET Core, and I’d write a blog post about it. When the possibility of writing a book came about, I jumped at the chance—another excuse to dive further into the framework!

 Since I started this book, a lot has changed, both with the book and ASP.NET Core. The first major release of the framework in June 2016 still had many rough edges, in particular around the tooling experience. With the release of .NET 5.0 in November 2020, ASP.NET Core has really come into its own, with the APIs and tooling reaching mature levels. This book targets the .NET 5.0 release of ASP.NET Core, but as long as you’re using at least .NET Core 3.1, you will be able to follow along without any issues.

 This book covers everything you need to get started with ASP.NET Core, whether you’re completely new to web development or you’re an existing ASP.NET developer. It focuses very much on the framework itself, so I don’t go into details about client-side frameworks such as Angular and React or technologies like Docker. I also don’t cover all the new features in .NET 5.0 such as Blazor and gRPC. Instead, I provide links where you can find more information.

 We'll focus on building server-rendered applications using Razor Pages and Web APIs using MVC controllers. You’ll learn the fundamentals of ASP.NET Core, such as middleware, dependency injection, and configuration, and how to customize each for your requirements. You’ll learn how to add authentication and authorization to your apps, how to improve their security, and how to deploy and monitor them. Finally, you’ll learn how to test your applications using both unit tests and integration tests.

 Personally, I find it a joy working with ASP.NET Core apps compared to apps using the previous version of ASP.NET, and I hope that passion comes through in this book!

acknowledgments

 While there is only one name on the cover of this book, a plethora of people contributed to both its writing and production. In this section I’d like to thank everyone who encouraged me, contributed, and put up with me for the past year.

 Firstly, and most importantly, I’d like to thank my girlfriend, Becky. Your continual support and encouragement mean the world to me and have kept me going through such a busy time. You’ve taken the brunt of my stress and pressure, and I’m eternally grateful. I love you always.

 I’d also like to thank my whole family for their support. In particular my parents, Jan and Bob, for putting up with my ranting, and my sister, Amanda, for all your upbeat chats.

 On a professional level, I’d like to thank Manning for giving me this opportunity. Brian Sawyer “discovered” me in the first version of this book and encouraged me to tackle the second version. Marina Michaels served as my development editor for the second time running, and again proved alternately meticulous, critical, encouraging, and enthusiastic. The book is undoubtedly better thanks to your involvement. Thanks also to Deirdre Hiam, my project editor; Andy Carroll, my copyeditor; Jason Everett, my proofreader; and Mihaela Batinic, my reviewing editor.

 My thanks also go to Mark Elston and Tanya Wilke who served as technical development editor and technical proofer, respectively. Mark provided invaluable feedback, highlighting my incorrect assumptions and technical biases that come from working with a framework I know so well. Tanya Wilke verified that the code I wrote actually ran and made sense, working through the chapters with formidable efficiency.

 To everyone at Manning who helped get this book published and marketed, a heartfelt thanks. I’d also like to thank all the MEAP reviewers for their comments, which helped improve the book in innumerable ways.

 I would have never been in a position to write this book if it weren’t for the excellent content produced by the .NET community and those I follow on Twitter. In particular, thanks to Jon Galloway for regularly featuring my blog on the ASP.NET community standup.

 Finally, thanks to all those friends who encouraged and supported me, and showed interest generally. We may not have been able to meet up as much as we’d like, but I look forward to getting together for a drink as soon as it’s possible.

 To all the reviewers: Al Pezewski, Ben McNamara, Daniel Vásquez, Filip Wojcieszyn, Foster Haines, Gustavo Filipe Ramos Gomes, Jean-François Morin, Joel Kotarski, John Guthrie, Juan Luis Barreda, Luis Moux, Mike Erickson, Raushan Jha, Rob Ruetsch, Ron Lease, Ruben Vandeginste, Sau Fai Fong, Steve Love, Tanya Wilke, Vincent Delcoigne, and Willis G. Hampton, your suggestions helped make this a better book.

about this book

 This book is about the ASP.NET Core framework: what it is, and how you can use it to build web applications. While some of this content is already available online, it’s scattered around the internet in disparate documents and blog posts. This book guides you through building your first applications, introducing additional complexity as you cement previous concepts.

 I present each topic using relatively small examples, rather than building on a single example application through the book. There are merits to both approaches, but I wanted to ensure the focus remained on the specific topics being taught, without the mental overhead of navigating an increasingly large project.

 By the end of the book, you should have a solid understanding of how to build apps with ASP.NET Core, the framework’s strengths and weaknesses, and how to leverage its features to build apps securely. While I don’t spend a lot of time on application architecture, I do make sure to point out best practices, especially where I only superficially cover architecture in the name of brevity.

Who should read this book

 This book is for C# developers who are interested in learning a cross-platform web framework. It doesn’t assume you have any experience building web applications—you may be a mobile or desktop developer, for example—though previous experience with ASP.NET or another web framework is undoubtedly beneficial.

 Other than a working knowledge of C# and .NET, I assume some knowledge of common object-oriented practices and a basic understanding of relational databases in general. I assume a passing familiarity with HTML and CSS and of JavaScript’s place as a client-side scripting language. You don’t need to know any JavaScript or CSS frameworks for this book, though ASP.NET Core works well with both if that is your forte.

 Web frameworks naturally touch on a wide range of topics, from the database and network to visual design and client-side scripting. I provide as much context as possible, and I include links to sites and books where you can learn more.

How this book is organized: A roadmap

 This book is divided into 3 parts, 23 chapters, and 3 appendixes. Ideally, you will read the book cover to cover and then use it as a reference, but I realize that won’t suit everyone. While I use small sample apps to demonstrate a topic, some chapters build on the work of previous ones, so the content will make more sense when read sequentially.

 I strongly suggest reading the chapters in part 1 in sequence, as each chapter builds on topics introduced in the previous chapters. Part 2 is also best read sequentially, though most of the chapters are independent if you wish to jump around. You can read the chapters in part 3 out of order, though I recommend only doing so after you have covered parts 1 and 2.

 Part 1 provides a general introduction to ASP.NET Core and the overall architecture of a typical web application. Once we have covered the basics, we’ll dive into the Razor Pages framework, which makes up the bulk of most ASP.NET Core server-rendered web applications, and the underlying Model-View-Controller (MVC) architecture.

 	
 Chapter 1 introduces ASP.NET Core and its place in the web development landscape. It discusses when you should and shouldn’t use ASP.NET Core, the basics of web requests in ASP.NET Core, and the options available for a development environment.

 	
 Chapter 2 walks through all the components of a basic ASP.NET Core application, discussing their roles and how they combine to generate a response to a web request.

 	
 Chapter 3 describes the middleware pipeline, which is the main application pipeline in ASP.NET Core. This defines how incoming requests are processed and how a response should be generated.

 	
 Chapter 4 shows how to use Razor Pages to build page-based websites. Razor Pages are the recommended way to build server-rendered applications in ASP.NET Core, and they are designed for page-based applications.

 	
 Chapter 5 describes the Razor Pages routing system. Routing is the process of mapping incoming request URLs to a specific class and method, which then executes to generate a response.

 	
 Chapter 6 looks at model-binding—the process of mapping form data and URL parameters passed in a request to concrete C# objects.

 	
 Chapter 7 shows how to generate HTML web pages using the Razor template language.

 	
 Chapter 8 builds on chapter 7 by introducing Tag Helpers, which can greatly reduce the amount of code required to build forms and web pages.

 	
 Chapter 9 describes how to use MVC controllers to build APIs that can be called by client-side apps.

 Part 2 covers important topics for building full-featured web applications, once you have understood the basics.

 	
 Chapter 10 describes how to use ASP.NET Core’s built-in dependency injection container to configure your application’s services.

 	
 Chapter 11 discusses how to read settings and secrets in ASP.NET Core, and how to map these to strongly typed objects.

 	
 Chapter 12 introduces Entity Framework Core for saving data into a relational database.

 	
 Chapter 13 builds on the topics in part 1 by introducing the MVC and Razor Pages filter pipeline.

 	
 Chapter 14 describes how to add user profiles and authentication to your application using ASP.NET Core Identity.

 	
 Chapter 15 builds on the previous chapter by introducing authorization for users, so you can restrict which pages a signed-in user can access.

 	
 Chapter 16 looks at how to publish your app, how to configure your app for a production environment, and how to optimize your client-side assets.

 The chapters that make up part 3 cover important, cross-cutting aspects of ASP.NET Core development.

 	
 Chapter 17 shows how to configure logging in your application, and how to write log messages to multiple locations.

 	
 Chapter 18 explores some of the security considerations you should be aware of when developing your application, including how to configure your application for HTTPS.

 	
 Chapter 19 describes how to build and use a variety of custom components, such as custom middleware, and how to handle complex configuration requirements.

 	
 Chapter 20 expands on chapter 19 and shows how to build custom Razor Page components, such as custom Tag Helpers and custom validation attributes.

 	
 Chapter 21 discusses the new IHttpClientFactory and how to use it to create HttpClient instances for calling remote APIs.

 	
 Chapter 22 explores the generic IHost abstraction, which you can use to create Windows Services and Linux daemons. You’ll also learn to run tasks in the background of your applications.

 	
 Chapter 23 shows how to test an ASP.NET Core application with the xUnit testing framework. It covers both unit tests and integration tests using the Test Host.

 The three appendixes provide supplementary information.

 	
 Appendix A describes how to configure your development environment, whether you’re on Windows, Linux, or macOS.

 	
 Appendix B provides some background to .NET 5.0, .NET Core, and .NET Standard, discusses how they fit in the .NET landscape, and explains what they mean for your apps.

 	
 Appendix C contains a number of links that I have found useful in learning about ASP.NET Core.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code is provided for all chapters except chapter 1. You can view the source code for each chapter in my GitHub repository at https://github.com/andrewlock/asp-dot-net-core-in-action-2e. A zip file containing all the source code is also available from the publisher’s website at www.manning.com/books/asp-net-core-in-action-second-edition.

 All the code examples in this book use .NET 5.0 and were built using both Visual Studio and Visual Studio Code. To build and run the examples, you will need to install the .NET SDK, as described in appendix A.

liveBook discussion forum

 Purchase of ASP.NET Core in Action, Second Edition, includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image:]

 	
 Andrew Lock graduated with an Engineering degree from Cambridge University, specializing in Software Engineering, and went on to obtain a PhD in Digital Image Processing. He has been developing professionally using .NET for the last 10 years, using a wide range of technologies including WinForms, ASP.NET WebForms, ASP.NET MVC, and ASP.NET Webpages. He has been building and maintaining applications with ASP.NET Core since the release of 1.0 in 2016. Andrew has a very active blog at https://andrewlock.net dedicated to ASP.NET Core. It is frequently featured in the community spotlight by the ASP.NET team at Microsoft, on the .NET blog, and in the weekly community standups. Andrew has been a Microsoft Valued Professional (MVP) since 2017.

about the cover illustration

 The caption for the illustration on the cover of ASP.NET Core in Action, Second Edition is “The Captain Pasha. Kapudan pasha, admiral of the Turkish navy.” The Kapudan Pasha was the highest military rank of the Ottoman Navy from 1567 until 1867 when the post was abolished and replaced with the Naval Minister. The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book ... two hundred years later. The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1. Getting started with ASP.NET Core

 Web applications are everywhere these days, from social media web apps and news sites to the apps on your phone. Behind the scenes, there is almost always a server running a web application or an HTTP API. Web applications are expected to be infinitely scalable, deployed to the cloud, and highly performant. Getting started can be overwhelming at the best of times, and doing so with such high expectations can be even more of a challenge.

 The good news for you as readers is that ASP.NET Core was designed to meet those requirements. Whether you need a simple website, a complex e-commerce web app, or a distributed web of microservices, you can use your knowledge of ASP.NET Core to build lean web apps that fit your needs. ASP.NET Core lets you build and run web apps on Windows, Linux, or macOS. It’s highly modular, so you only use the components you need, keeping your app as compact and performant as possible.

 In part 1 you’ll go from a standing start all the way to building your first web applications and APIs. Chapter 1 gives a high-level overview of ASP.NET Core, which you’ll find especially useful if you’re new to web development in general. You’ll get your first glimpse of a full ASP.NET Core application in chapter 2, and we’ll look at each component of the app in turn and see how they work together to generate a response.

 Chapter 3 looks in detail at the middleware pipeline, which defines how incoming web requests are processed and how a response is generated. We’ll look at several standard pieces of middleware and see how the Razor Pages framework fits in to the pipeline. In chapters 4 through 8 we’ll focus on Razor Pages, which is the main approach to generating responses in ASP.NET Core apps. In chapters 4 through 6 we’ll examine the behavior of the Razor Pages framework itself, routing, and model binding. In chapters 7 and 8 we’ll look at how you can build the UI for your application using the Razor syntax and Tag Helpers, so that users can navigate and interact with your app. Finally, in chapter 9 we’ll explore specific features of ASP.NET Core that let you build Web APIs and see how that differs from building UI-based applications.

 There’s a lot of content in part 1, but by the end you’ll be well on your way to building simple applications with ASP.NET Core. Inevitably, I’ll gloss over some of the more complex configuration aspects of the framework, but you should get a good understanding of the Razor Pages framework and how you can use it to build dynamic web apps. In later parts of this book we’ll dive deeper into the ASP.NET Core framework, where you’ll learn how to configure your application and add extra features, such as user profiles.

1 Getting started with ASP.NET Core

 This chapter covers

 	
What is ASP.NET Core?

 	
Things you can build with ASP.NET Core

 	
The advantages and limitations of .NET Core and .NET 5.0

 	
How ASP.NET Core works

 Choosing to learn and develop with a new framework is a big investment, so it’s important to establish early on whether it’s right for you. In this chapter, I provide some background about ASP.NET Core: what it is, how it works, and why you should consider it for building your web applications.

 If you’re new to .NET development, this chapter will help you to understand the .NET landscape. For existing .NET developers, I provide guidance on whether now is the right time to consider moving your focus to .NET Core and .NET 5.0, and on the advantages ASP.NET Core can offer over previous versions of ASP.NET.

 By the end of this chapter, you should have a good overview of the .NET landscape, the role of .NET 5.0, and the basic mechanics of how ASP.NET Core works—so without further ado, let’s dive in!

1.1 An introduction to ASP.NET Core

 ASP.NET Core is a cross-platform, open source, web application framework that you can use to quickly build dynamic, server-side rendered applications. You can also use ASP.NET Core to create HTTP APIs that can be consumed by mobile applications, by browser-based single-page applications such as Angular and React, or by other backend applications.

 ASP.NET Core provides structure, helper functions, and a framework for building applications, which saves you having to write a lot of this code yourself. The ASP.NET Core framework code then calls into your “handlers” which, in turn, call methods in your application’s business logic, as shown in figure 1.1. This business logic is the core of your application. You can interact with other services here, such as databases or remote APIs, but your business logic does not typically depend directly on ASP.NET Core.

 In this section I cover

 	
 The reasons for using a web framework

 	
 The previous ASP.NET framework’s benefits and limitations

 	
 What ASP.NET Core is and its motivations

 At the end of this section you should have a good sense of why ASP.NET Core was created, its design goals, and why you might want to use it.

 [image:]

 Figure 1.1 A typical ASP.NET Core application consists of several layers. The ASP.NET Core framework code handles requests from a client, dealing with the complex networking code. The framework then calls into handlers (Razor Pages and Web API controllers) that you write using primitives provided by the framework. Finally, these handlers call into your application’s domain logic, which are typically C# classes and objects without any ASP.NET Core-specific dependencies.

1.1.1 Using a web framework

 If you’re new to web development, it can be daunting moving into an area with so many buzzwords and a plethora of ever-changing products. You may be wondering if they’re all necessary—how hard can it be to return a file from a server?

 Well, it’s perfectly possible to build a static web application without the use of a web framework, but its capabilities will be limited. As soon as you want to provide any kind of security or dynamism, you’ll likely run into difficulties, and the original simplicity that enticed you will fade before your eyes.

 Just as desktop or mobile development frameworks can help you build native applications, ASP.NET Core makes writing web applications faster, easier, and more secure than trying to build everything from scratch. It contains libraries for common things like

 	
 Creating dynamically changing web pages

 	
 Letting users log in to your web app

 	
 Letting users use their Facebook account to log in to your web app using OAuth

 	
 Providing a common structure for building maintainable applications

 	
 Reading configuration files

 	
 Serving image files

 	
 Logging requests made to your web app

 The key to any modern web application is the ability to generate dynamic web pages. A dynamic web page may display different data depending on the current logged-in user, or it could display content submitted by users. Without a dynamic framework, it wouldn’t be possible to log in to websites or to display any sort of personalized data on a page. In short, websites like Amazon, eBay, and Stack Overflow (seen in figure 1.2) wouldn’t be possible.

 [image:]

 Figure 1.2 The Stack Overflow website (https://stackoverflow.com) is built using ASP.NET and is almost entirely dynamic content.

 The benefits and limitations of ASP.NET

 ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web framework, released in June 2016. Previous versions of ASP.NET have seen many incremental updates, focusing on high developer productivity and prioritizing backwards compatibility. ASP.NET Core bucks that trend by making significant architectural changes that rethink the way the web framework is designed and built.

 ASP.NET Core owes a lot to its ASP.NET heritage, and many features have been carried forward from before, but ASP.NET Core is a new framework. The whole technology stack has been rewritten, including both the web framework and the underlying platform.

 At the heart of the changes is the philosophy that ASP.NET should be able to hold its head high when measured against other modern frameworks, but that existing .NET developers should continue to have a sense of familiarity.

 To understand why Microsoft decided to build a new framework, it’s important to understand the benefits and limitations of the previous ASP.NET web framework.

 The first version of ASP.NET was released in 2002 as part of .NET Framework 1.0, in response to the then conventional scripting environments of classic ASP and PHP. ASP.NET Web Forms allowed developers to rapidly create web applications using a graphical designer and a simple event model that mirrored desktop application-building techniques.

 The ASP.NET framework allowed developers to quickly create new applications, but over time the web development ecosystem changed. It became apparent that ASP.NET Web Forms suffered from many issues, especially when building larger applications. In particular, a lack of testability, a complex stateful model, and limited influence over the generated HTML (making client-side development difficult) led developers to evaluate other options.

 In response, Microsoft released the first version of ASP.NET MVC in 2009, based on the Model-View-Controller pattern, a common web design pattern used in other frameworks such as Ruby on Rails, Django, and Java Spring. This framework allowed you to separate UI elements from application logic, made testing easier, and provided tighter control over the HTML-generation process.

 ASP.NET MVC has been through four more iterations since its first release, but they have all been built on the same underlying framework provided by the System.Web.dll file. This library is part of .NET Framework, so it comes pre-installed with all versions of Windows. It contains all the core code that ASP.NET uses when you build a web application.

 This dependency brings both advantages and disadvantages. On the one hand, the ASP.NET framework is a reliable, battle-tested platform that’s fine for building web applications on Windows. It provides a wide range of features, which have seen many years in production, and it is well known by virtually all Windows web developers.

 On the other hand, this reliance is limiting—changes to the underlying System.Web.dll file are far-reaching and, consequently, slow to roll out. This limits the extent to which ASP.NET is free to evolve and results in release cycles only happening every few years. There’s also an explicit coupling with the Windows web host, Internet Information Service (IIS), which precludes its use on non-Windows platforms.

 More recently, Microsoft has declared .NET Framework to be “done.” It won’t be removed or replaced, but it also won’t receive any new features. Consequently, ASP.NET based on System.Web.dll will not receive new features or updates either.

 In recent years, many web developers have started looking at cross-platform web frameworks that can run on Windows as well as Linux and macOS. Microsoft felt the time had come to create a framework that was no longer tied to its Windows legacy, and thus ASP.NET Core was born.

1.1.2 What is ASP.NET Core?

 The development of ASP.NET Core was motivated by the desire to create a web framework with four main goals:

 	
 To be run and developed cross-platform

 	
 To have a modular architecture for easier maintenance

 	
 To be developed completely as open source software

 	
 To be applicable to current trends in web development, such as client-side applications and deployment to cloud environments

 To achieve all these goals, Microsoft needed a platform that could provide underlying libraries for creating basic objects such as lists and dictionaries, and for performing, for example, simple file operations. Up to this point, ASP.NET development had always been focused, and dependent, on the Windows-only .NET Framework. For ASP.NET Core, Microsoft created a lightweight platform that runs on Windows, Linux, and macOS called .NET Core (and subsequently .NET 5.0), as shown in figure 1.3.

 [image:]

 Figure 1.3 The relationship between ASP.NET Core, ASP.NET, .NET Core/.NET 5.0, and .NET Framework. ASP.NET Core runs on .NET Core and .NET 5.0, so it can run cross-platform. Conversely, ASP.NET runs on .NET Framework only, so it is tied to the Windows OS.

 Definition .NET 5.0 is the next version of .NET Core after 3.1. It represents a unification of .NET Core and other .NET platforms into a single runtime and framework. The terms .NET Core and .NET 5.0 are often used interchangeably, but for consistency with Microsoft’s language, I use the term .NET 5.0 to refer to the latest version of .NET Core, and .NET Core when referring to previous versions.

 .NET Core (and its successor, .NET 5.0) employs many of the same APIs as .NET Framework, but it’s more modular and only implements a subset of the features .NET Framework does, with the goal of providing a simpler implementation and programming model. It’s a completely separate platform, rather than a fork of .NET Framework, though it uses similar code for many of its APIs.

 With .NET 5.0 alone, it’s possible to build console applications that run cross-platform. Microsoft created ASP.NET Core to be an additional layer on top of console applications, such that converting to a web application involves adding and composing libraries, as shown in figure 1.4.

 [image:]

 Figure 1.4 The ASP.NET Core application model. The .NET 5.0 platform provides a base console application model for running command-line apps. Adding a web server library converts this into an ASP.NET Core web app. Additional features, such as configuration and logging, are added by way of additional libraries.

 By adding an ASP.NET Core web server to your .NET 5.0 app, your application can run as a web application. ASP.NET Core is composed of many small libraries that you can choose from to provide your application with different features. You’ll rarely need all the libraries available to you, and you only add what you need. Some of the libraries are common and will appear in virtually every application you create, such as the ones for reading configuration files or performing logging. Other libraries build on top of these base capabilities to provide application-specific functionality, such as third-party logging-in via Facebook or Google.

 Most of the libraries you’ll use in ASP.NET Core can be found on GitHub, in the Microsoft ASP.NET Core organization repositories at https://github.com/dotnet/ aspnetcore. You can find the core libraries there, such as the authentication and logging libraries, as well as many more peripheral libraries, such as the third-party authentication libraries.

 All ASP.NET Core applications will follow a similar design for basic configuration, as suggested by the common libraries, but in general the framework is flexible, leaving you free to create your own code conventions. These common libraries, the extension libraries that build on them, and the design conventions they promote are covered by the somewhat nebulous term ASP.NET Core.

1.2 When to choose ASP.NET Core

 Hopefully, you now have a general grasp of what ASP.NET Core is and how it was designed. But the question remains: should you use it? Microsoft is recommending that all new .NET web development should use ASP.NET Core, but switching to or learning a new web stack is a big ask for any developer or company. In this section I cover

 	
 What sort of applications you can build with ASP.NET Core

 	
 Some of the highlights of ASP.NET Core

 	
 Why you should consider using ASP.NET Core for new applications

 	
 Things to consider before converting existing ASP.NET applications to ASP.NET Core

1.2.1 What type of applications can you build?

 ASP.NET Core provides a generalized web framework that can be used for a variety of applications. It can most obviously be used for building rich, dynamic websites, whether they’re e-commerce sites, content-based sites, or large n-tier applications—much the same as the previous version of ASP.NET.

 When .NET Core was originally released, there were few third-party libraries available for building these types of complex applications. After several years of active development, that’s no longer the case. Many developers have updated their libraries to work with ASP.NET Core, and many other libraries have been created to target ASP.NET Core specifically. For example, the open source content management system (CMS) Orchard1 has been redeveloped as Orchard Core2 to run on ASP.NET Core. In contrast, the cloudscribe3 CMS project (figure 1.5) was written specifically for ASP.NET Core from its inception.

 [image:]

 Figure 1.5 The .NET Foundation website (https://dotnetfoundation.org/) is built using the cloudscribe CMS and ASP.NET Core.

 Traditional page-based server-side-rendered web applications are the bread and butter of ASP.NET development, both with the previous version of ASP.NET and with ASP.NET Core. Additionally, single-page applications (SPAs), which use a client-side framework that commonly talks to a REST server, are easy to create with ASP.NET Core. Whether you’re using Angular, Vue, React, or some other client-side framework, it’s easy to create an ASP.NET Core application to act as the server-side API.

 Definition REST stands for representational state transfer. RESTful applications typically use lightweight and stateless HTTP calls to read, post (create/update), and delete data.

 ASP.NET Core isn’t restricted to creating RESTful services. It’s easy to create a web service or remote procedure call (RPC)-style service for your application, depending on your requirements, as shown in figure 1.6. In the simplest case, your application might expose only a single endpoint, narrowing its scope to become a microservice. ASP.NET Core is perfectly designed for building simple services, thanks to its cross-platform support and lightweight design.

 [image:]

 Figure 1.6 ASP.NET Core can act as the server-side application for a variety of clients: it can serve HTML pages for traditional web applications, it can act as a REST API for client-side SPA applications, or it can act as an ad hoc RPC service for client applications.

 Note In this book I focus on building traditional, page-based server-side-rendered web applications and RESTful web APIs. I also show how to create “headless” worker services in chapter 22.

 You should consider multiple factors when choosing a platform, not all of which are technical. One such factor is the level of support you can expect to receive from its creators. For some organizations, this can be one of the main obstacles to adopting open source software. Luckily, Microsoft has pledged to provide full support for Long Term Support (LTS) versions of .NET Core and ASP.NET Core for at least three years from the time of their release.4 And as all development takes place in the open, you can sometimes get answers to your questions from the general community, as well as from Microsoft directly.

 When deciding whether to use ASP.NET Core, you have two primary dimensions to consider: whether you’re already a .NET developer, and whether you’re creating a new application or looking to convert an existing one.

1.2.2 If you’re new to .NET development

 If you’re new to .NET development and are considering ASP.NET Core, then welcome! Microsoft is pushing ASP.NET Core as an attractive option for web development beginners, but taking .NET cross-platform means it’s competing with many other frameworks on their own turf. ASP.NET Core has many selling points when compared to other cross-platform web frameworks:

 	
 It’s a modern, high-performance, open source web framework.

 	
 It uses familiar design patterns and paradigms.

 	
 C# is a great language (or you can use VB.NET or F# if you prefer).

 	
 You can build and run on any platform.

 ASP.NET Core is a re-imagining of the ASP.NET framework, built with modern software design principles on top of the new .NET Core/.NET 5.0 platform. Although new in one sense, .NET Core has several years of widespread production use and has drawn significantly from the mature, stable, and reliable .NET Framework, which has been used for nearly two decades. You can rest easy knowing that by choosing ASP.NET Core and .NET 5.0, you’ll be getting a dependable platform as well as a full-featured web framework.

 Many of the web frameworks available today use similar well-established design patterns, and ASP.NET Core is no different. For example, Ruby on Rails is known for its use of the Model-View-Controller (MVC) pattern; Node.js is known for the way it processes requests using small discrete modules (called a pipeline); and dependency injection is found in a wide variety of frameworks. If these techniques are familiar to you, you should find it easy to transfer them across to ASP.NET Core; if they’re new to you, then you can look forward to using industry best practices!

 Note You’ll encounter a pipeline in chapter 3, MVC in chapter 4, and dependency injection in chapter 10.

 The primary language of .NET development, and ASP.NET Core in particular, is C#. This language has a huge following, and for good reason! As an object-oriented C -based language, it provides a sense of familiarity to those used to C, Java, and many other languages. In addition, it has many powerful features, such as Language Integrated Query (LINQ), closures, and asynchronous programming constructs. The C# language is also designed in the open on GitHub, as is Microsoft’s C# compiler, codenamed Roslyn.5

 NOTE I use C# throughout this book and will highlight some of the newer features it provides, but I won’t be teaching the language from scratch. If you want to learn C#, I recommend C# in Depth, fourth edition by Jon Skeet (Manning, 2019), and Code like a Pro in C# by Jort Rodenburg (Manning, 2021).

 One of the major selling points of ASP.NET Core and .NET 5.0 is the ability to develop and run on any platform. Whether you’re using a Mac, Windows, or Linux, you can run the same ASP.NET Core apps and develop across multiple environments. As a Linux user, a wide range of distributions are supported (RHEL, Ubuntu, Debian, CentOS, Fedora, and openSUSE, to name a few), so you can be confident your operating system of choice will be a viable option. ASP.NET Core even runs on the tiny Alpine distribution, for truly compact deployments to containers.

 Built with containers in mind

 Traditionally, web applications were deployed directly to a server, or more recently, to a virtual machine. Virtual machines allow operating systems to be installed in a layer of virtual hardware, abstracting away the underlying hardware. This has several advantages over direct installation, such as easy maintenance, deployment, and recovery. Unfortunately, they’re also heavy, both in terms of file size and resource use.

 This is where containers come in. Containers are far more lightweight and don’t have the overhead of virtual machines. They’re built in a series of layers and don’t require you to boot a new operating system when starting a new one. That means they’re quick to start and are great for quick provisioning. Containers, and Docker in particular, are quickly becoming the go-to platform for building large, scalable systems.

 Containers have never been a particularly attractive option for ASP.NET applications, but with ASP.NET Core, .NET 5.0, and Docker for Windows, that’s all changing. A lightweight ASP.NET Core application running on the cross-platform .NET 5.0 framework is perfect for thin container deployments. You can learn more about your deployment options in chapter 16.

 As well as running on each platform, one of the selling points of .NET is the ability to write and compile only once. Your application is compiled to Intermediate Language (IL) code, which is a platform-independent format. If a target system has the .NET 5.0 runtime installed, you can run compiled IL from any platform. That means you can, for example, develop on a Mac or a Windows machine and deploy the exact same files to your production Linux machines. This compile-once, run-anywhere promise has finally been realized with ASP.NET Core and .NET Core/.NET 5.0.

1.2.3 If you’re a .NET Framework developer creating a new application

 If you’re a .NET developer, the choice of whether to invest in ASP.NET Core for new applications has largely been a question of timing. Early versions of .NET Core were lacking in some features that made it hard to adopt. With the release of .NET Core 3.1 and .NET 5.0, that is no longer a problem; Microsoft now explicitly advises that all new .NET applications should use .NET 5.0. Microsoft has pledged to provide bug and security fixes for the older ASP.NET framework, but it won’t provide any more feature updates. .NET Framework isn’t being removed, so your old applications will continue to work, but you shouldn’t use it for new development.

 The main benefits of ASP.NET Core over the previous ASP.NET framework are

 	
 Cross-platform development and deployment

 	
 A focus on performance as a feature

 	
 A simplified hosting model

 	
 Regular releases with a shorter release cycle

 	
 Open source

 	
 Modular features

 As a .NET developer, if you aren’t using any Windows-specific constructs, such as the Registry, the ability to build and deploy cross-platform opens the door to a whole new avenue of applications: take advantage of cheaper Linux VM hosting in the cloud, use Docker containers for repeatable continuous integration, or write .NET code on your Mac without needing to run a Windows virtual machine. ASP.NET Core, in combination with .NET 5.0, makes all this possible.

 .NET Core and .NET 5.0 are inherently cross-platform, but you can still use platform-specific features if you need to. For example, Windows-specific features like the Registry or Directory Services can be enabled with a compatibility pack that makes these APIs available in .NET 5.0.6 They’re only available when running .NET 5.0 on Windows, not on Linux or macOS, so you need to take care that such applications only run in a Windows environment or account for the potential missing APIs.

 The hosting model for the previous ASP.NET framework was a relatively complex one, relying on Windows IIS to provide the web server hosting. In a cross-platform environment, this kind of symbiotic relationship isn’t possible, so an alternative hosting model has been adopted—one that separates web applications from the underlying host. This opportunity has led to the development of Kestrel: a fast, cross-platform HTTP server on which ASP.NET Core can run.

 Instead of the previous design, whereby IIS calls into specific points of your application, ASP.NET Core applications are console applications that self-host a web server and handle requests directly, as shown in figure 1.7. This hosting model is conceptually much simpler and allows you to test and debug your applications from the command line, though it doesn’t necessarily remove the need to run IIS (or equivalent) in production, as you’ll see in section 1.3.

 Note You can also optionally run ASP.NET Core inside of IIS, as shown in figure 1.7, which can have performance benefits over the reverse-proxy version. This is primarily a deployment detail and doesn’t change the way you build ASP.NET Core applications.

 [image:]

 Figure 1.7 The difference between hosting models in ASP.NET (top) and ASP.NET Core (bottom). With the previous version of ASP.NET, IIS is tightly coupled with the application. The hosting model in ASP.NET Core is simpler; IIS hands off the request to a self-hosted web server in the ASP.NET Core application and receives the response, but has no deeper knowledge of the application.

 Changing the hosting model to use a built-in HTTP web server has created another opportunity. Performance has been somewhat of a sore point for ASP.NET applications in the past. It’s certainly possible to build high-performing applications—Stack Overflow (https://stackoverflow.com) is a testament to that—but the web framework itself isn’t designed with performance as a priority, so it can end up being somewhat of an obstacle.

 To be competitive cross-platform, the ASP.NET team has focused on making the Kestrel HTTP server as fast as possible. TechEmpower (www.techempower.com/ benchmarks) has been running benchmarks on a whole range of web frameworks from various languages for several years now. In Round 19 of the plain text benchmarks, TechEmpower announced that ASP.NET Core with Kestrel was the fastest of over 400 frameworks tested!7

 Web servers: naming things is hard

 One of the difficult aspects of programming for the web is the confusing array of often conflicting terminology. For example, if you’ve used IIS in the past, you may have described it as a web server, or possibly a web host. Conversely, if you’ve ever built an application using Node.js, you may have also referred to that application as a web server. Alternatively, you may have called the physical machine on which your application runs a web server!

 Similarly, you may have built an application for the internet and called it a website or a web application, probably somewhat arbitrarily based on the level of dynamism it displayed.

 In this book, when I say “web server” in the context of ASP.NET Core, I am referring to the HTTP server that runs as part of your ASP.NET Core application. By default, this is the Kestrel web server, but that’s not a requirement. It would be possible to write a replacement web server and substitute it for Kestrel if you desired.

 The web server is responsible for receiving HTTP requests and generating responses. In the previous version of ASP.NET, IIS took this role, but in ASP.NET Core, Kestrel is the web server.

 I will only use the term “web application” to describe ASP.NET Core applications in this book, regardless of whether they contain only static content or are completely dynamic. Either way, they’re applications that are accessed via the web, so that name seems the most appropriate.

 Many of the performance improvements made to Kestrel did not come from the ASP.NET team members themselves, but from contributors to the open source project on GitHub.8 Developing in the open means you typically see fixes and features make their way to production faster than you would for the previous version of ASP.NET, which was dependent on .NET Framework and Windows and, as such, had long release cycles.

 In contrast, .NET 5.0, and hence ASP.NET Core, is designed to be released in small increments. Major versions will be released on a predictable cadence, with a new version every year, and a new Long Term Support (LTS) version released every two years.9 In addition, bug fixes and minor updates can be released as and when they’re needed. Additional functionality is provided as NuGet packages, independent of the underlying .NET 5.0 platform.

 Note NuGet is a package manager for .NET that enables importing libraries into your projects. It’s equivalent to Ruby Gems, npm for JavaScript, or Maven for Java.

 To enable this approach to releases, ASP.NET Core is highly modular, with as little coupling to other features as possible. This modularity lends itself to a pay-for-play approach to dependencies, where you start with a bare-bones application and only add the additional libraries you require, as opposed to the kitchen-sink approach of previous ASP.NET applications. Even MVC is an optional package! But don’t worry, this approach doesn’t mean that ASP.NET Core is lacking in features; it means you need to opt in to them. Some of the key infrastructure improvements include

 	
 Middleware “pipeline” for defining your application’s behavior

 	
 Built-in support for dependency injection

 	
 Combined UI (MVC) and API (Web API) infrastructure

 	
 Highly extensible configuration system

 	
 Scalable for cloud platforms by default using asynchronous programming

 Each of these features was possible in the previous version of ASP.NET but required a fair amount of additional work to set up. With ASP.NET Core, they’re all there, ready, and waiting to be connected!

 Microsoft fully supports ASP.NET Core, so if you have a new system you want to build, there’s no significant reason not to use it. The largest obstacle you’re likely to come across is wanting to use programming models that are no longer supported in ASP.NET Core, such as Web Forms or WCF server, as I’ll discuss in the next section.

 Hopefully, this section has whetted your appetite with some of the many reasons to use ASP.NET Core for building new applications. But if you’re an existing ASP.NET developer considering whether to convert an existing ASP.NET application to ASP.NET Core, that’s another question entirely.

1.2.4 Converting an existing ASP.NET application to ASP.NET Core

 In contrast with new applications, an existing application is presumably already providing value, so there should always be a tangible benefit to performing what may amount to a significant rewrite in converting from ASP.NET to ASP.NET Core. The advantages of adopting ASP.NET Core are much the same as for new applications: cross-platform deployment, modular features, and a focus on performance. Whether the benefits are sufficient will depend largely on the particulars of your application, but there are some characteristics that are clear indicators against conversion:

 	
 Your application uses ASP.NET Web Forms

 	
 Your application is built using WCF

 	
 Your application is large, with many “advanced” MVC features

 If you have an ASP.NET Web Forms application, attempting to convert it to ASP.NET Core isn’t advisable. Web Forms is inextricably tied to System.Web.dll, and as such will likely never be available in ASP.NET Core. Converting an application to ASP.NET Core would effectively involve rewriting the application from scratch, not only shifting frameworks but also shifting design paradigms. A better approach would be to slowly introduce Web API concepts and try to reduce the reliance on legacy Web Forms constructs such as ViewData. You can find many resources online to help you with this approach, in particular the www.asp.net/web-api website.10

 Windows Communication Foundation (WCF) is only partially supported in ASP.NET Core.11 It’s possible to consume some WCF services, but support is spotty at best. There’s no supported way to host a WCF service from an ASP.NET Core application, so if you absolutely must support WCF, then ASP.NET Core may be best avoided for now.

 Tip If you like WCFs RPC-style of programming, but you don’t have a hard requirement on WCF itself, consider using gRPC instead. gRPC is a modern RPC framework with many concepts similar to WCF, and it’s supported by ASP.NET Core out of the box.12

 If your existing application is complex and makes extensive use of the previous MVC or Web API extensibility points or message handlers, then porting your application to ASP.NET Core may be more difficult. ASP.NET Core is built with many similar features to the previous version of ASP.NET MVC, but the underlying architecture is different. Several of the previous features don’t have direct replacements and so will require rethinking.

 The larger the application, the greater the difficulty you’re likely to have converting your application to ASP.NET Core. Microsoft itself suggests that porting an application from ASP.NET MVC to ASP.NET Core is at least as big a rewrite as porting from ASP.NET Web Forms to ASP.NET MVC. If that doesn’t scare you, then nothing will!

 If an application is rarely used, isn’t part of your core business, or won’t need significant development in the near term, I strongly suggest you don’t try to convert it to ASP.NET Core. Microsoft will support .NET Framework for the foreseeable future (Windows itself depends on it!), and the payoff in converting these “fringe” applications is unlikely to be worth the effort.

 So, when should you port an application to ASP.NET Core? As I’ve already mentioned, the best opportunity for getting started is on small, green-field, new projects instead of existing applications. That said, if the existing application in question is small or will need significant future development, then porting may be a good option. It is always best to work in small iterations where possible, rather than attempting to convert the entire application at once. But if your application consists primarily of MVC or Web API controllers and associated Razor views, moving to ASP.NET Core may well be a good choice.

1.3 How does ASP.NET Core work?

 By now, you should have a good idea of what ASP.NET Core is and the sort of applications you should use it for. In this section, you’ll see how an application built with ASP.NET Core works, from the user requesting a URL to a page being displayed in the browser. To get there, first you’ll see how an HTTP request works for any web server, and then you’ll see how ASP.NET Core extends the process to create dynamic web pages.

1.3.1 How does an HTTP web request work?

 As you know, ASP.NET Core is a framework for building web applications that serve data from a server. One of the most common scenarios for web developers is building a web app that you can view in a web browser. The high-level process you can expect from any web server is shown in figure 1.8.

 [image:]

 Figure 1.8 Requesting a web page. The user starts by requesting a web page, which causes an HTTP request to be sent to the server. The server interprets the request, generates the necessary HTML, and sends it back in an HTTP response. The browser can then display the web page.

 The process begins when a user navigates to a website or types a URL in their browser. The URL or web address consists of a hostname and a path to some resource on the web app. Navigating to the address in the browser sends a request from the user’s computer to the server on which the web app is hosted, using the HTTP protocol.

 Definition The hostname of a website uniquely identifies its location on the internet by mapping via the Domain Name Service (DNS) to an IP address. Examples include microsoft.com, www.google.co.uk, and facebook.com.

 A brief primer on HTTP

 Hypertext Transfer Protocol (HTTP) is the application-level protocol that powers the web. It is a stateless request-response protocol, whereby a client machine sends a request to a server, which sends a response in turn.

 Every HTTP request consists of a verb indicating the “type” of the request and a path indicating the resource to interact with. They typically also include headers, which are key-value pairs, and in some cases a body, such as the contents of a form, when sending data to the server.

 An HTTP response contains a status code, indicating whether the request was successful, and optionally headers and a body.

 For a more detailed look at the HTTP protocol itself, as well as more examples, see section 1.3 (“A quick introduction to HTTP”) in Go Web Programming by Sau Sheong Chang (Manning, 2016), https://livebook.manning.com/book/go-web-programming/ chapter-1/point-9018-55-145-1.

 The request passes through the internet, potentially to the other side of the world, until it finally makes its way to the server associated with the given hostname, on which the web app is running. The request is potentially received and rebroadcast at multiple routers along the way, but it’s only when it reaches the server associated with the hostname that the request is processed.

 Once the server receives the request, it will check that the request makes sense, and if it does, it will generate an HTTP response. Depending on the request, this response could be a web page, an image, a JavaScript file, or a simple acknowledgment. For this example, I’ll assume the user has reached the home page of a web app, so the server responds with some HTML. The HTML is added to the HTTP response, which is then sent back across the internet to the browser that made the request.

 As soon as the user’s browser begins receiving the HTTP response, it can start displaying content on the screen, but the HTML page may also reference other pages and links on the server. To display the complete web page, instead of a static, colorless, raw HTML file, the browser must repeat the request process, fetching every referenced file. HTML, images, CSS for styling, and JavaScript files for extra behavior are all fetched using the exact same HTTP request process.

 Pretty much all interactions that take place on the internet are a facade over this same basic process. A basic web page may only require a few simple requests to fully render, whereas a modern, large web page may take hundreds. At the time of writing, the Amazon.com homepage (www.amazon.com), for example, makes 606 requests, including ones for 3 CSS files, 12 JavaScript files, and 402 image files!

 Now that you have a feel for the process, let’s see how ASP.NET Core dynamically generates the response on the server.

1.3.2 How does ASP.NET Core process a request?

 When you build a web application with ASP.NET Core, browsers will still be using the same HTTP protocol as before to communicate with your application. ASP.NET Core itself encompasses everything that takes place on the server to handle a request, including verifying that the request is valid, handling login details, and generating HTML.

 Just as with the generic web page example, the request process starts when a user’s browser sends an HTTP request to the server, as shown in figure 1.9.

 [image:]

 Figure 1.9 How an ASP.NET Core application processes a request. A request is received by the ASP.NET Core application, which runs a self-hosted web server. The web server processes the request and passes it to the body of the application, which generates a response and returns it to the web server. The web server sends this response to the browser.

 The request is received from the network by your ASP.NET Core application. Every ASP.NET Core application has a built-in web server, Kestrel by default, which is responsible for receiving raw requests and constructing an internal representation of the data, an HttpContext object, which can be used by the rest of the application.

 From this representation, your application should have all the details it needs to create an appropriate response to the request. It can use the details stored in HttpContext to generate an appropriate response, which may be to generate some HTML, to return an “access denied” message, or to send an email, all depending on your application’s requirements.

 Once the application has finished processing the request, it will return the response to the web server. The ASP.NET Core web server will convert the representation into a raw HTTP response and send it to the network, which will forward it to the user’s browser.

 To the user, this process appears to be the same as for the generic HTTP request shown in figure 1.8—the user sent an HTTP request and received an HTTP response. All the differences are server-side, within your application.

 ASP.NET Core and reverse proxies

 You can expose ASP.NET Core applications directly to the internet, so that Kestrel receives requests directly from the network. However, it’s more common to use a reverse proxy between the raw network and your application. In Windows, the reverse-proxy server will typically be IIS, and on Linux or macOS it might be NGINX, HAProxy, or Apache.

 A reverse proxy is software responsible for receiving requests and forwarding them to the appropriate web server. The reverse proxy is exposed directly to the internet, whereas the underlying web server is exposed only to the proxy. This setup has several benefits, primarily security and performance for the web servers.

 You may be thinking that having a reverse proxy and a web server is somewhat redundant. Why not have one or the other? Well, one of the benefits is the decoupling of your application from the underlying operating system. The same ASP.NET Core web server, Kestrel, can be cross-platform and used behind a variety of proxies without putting any constraints on a particular implementation. Alternatively, if you wrote a new ASP.NET Core web server, you could use that in place of Kestrel without needing to change anything else about your application.

 Another benefit of a reverse proxy is that it can be hardened against potential threats from the public internet. They’re often responsible for additional aspects, such as restarting a process that has crashed. Kestrel can remain a simple HTTP server not having to worry about these extra features when it’s used behind a reverse proxy. Think of it as a simple separation of concerns: Kestrel is concerned with generating HTTP responses; the reverse proxy is concerned with handling the connection to the internet.

 You’ve seen how requests and responses find their way to and from an ASP.NET Core application, but I haven’t yet touched on how the response is generated. In part 1 of this book, we’ll look at the components that make up a typical ASP.NET Core application and how they all fit together. A lot goes into generating a response in ASP.NET Core, typically all within a fraction of a second, but over the course of the book we’ll step through an application slowly, covering each of the components in detail.

1.4 What you will learn in this book

 This book will take you on an in-depth tour of the ASP.NET Core framework. To benefit from the book, you should be familiar with C# or a similar objected-oriented language. Basic familiarity with web concepts like HTML and JavaScript will also be beneficial. You will learn

 	
 How to create page-based applications with Razor Pages

 	
 Key ASP.NET Core concepts like model-binding, validation, and routing

 	
 How to generate HTML for web pages using Razor syntax and Tag Helpers

 	
 To use features like dependency injection, configuration, and logging as your applications grow more complex

 	
 How to protect your application using security best practices

 Throughout the book we’ll use a variety of examples to learn and explore concepts. The examples are generally small and self-contained so we can focus on a single feature at a time.

 I’ll be using Visual Studio for most of the examples in this book, but you’ll be able to follow along using your favorite editor or IDE. Appendix A includes details on setting up your editor or IDE and installing the .NET 5.0 SDK. Even though the examples in this book show Windows tools, everything you see can be achieved equally well on Linux or Mac platforms.

 Tip You can install .NET 5.0 from https://dotnet.microsoft.com/download. Appendix A contains further details on how to configure your development environment for working with ASP.NET Core and .NET 5.0.

 In the next chapter, you’ll create your first application from a template and run it. We’ll walk through each of the main components that make up your application and see how they all work together to render a web page.

Summary

 	
 ASP.NET Core is a new web framework built with modern software architecture practices and modularization as its focus.

 	
 It’s best used for new, “green-field” projects.

 	
 Legacy technologies such as WCF Server and Web Forms can’t be used with ASP.NET Core.

 	
 ASP.NET Core runs on the cross-platform .NET 5.0 platform. You can access Windows-specific features such as the Windows Registry by using the Windows Compatibility Pack.

 	
 .NET 5.0 is the next version of .NET Core after .NET Core 3.1.

 	
 Fetching a web page involves sending an HTTP request and receiving an HTTP response.

 	
 ASP.NET Core allows you to dynamically build responses to a given request.

 	
 An ASP.NET Core application contains a web server, which serves as the entry point for a request.

 	
 ASP.NET Core apps are typically protected from the internet by a reverse-proxy server, which forwards requests to the application.

 1 The Orchard project source code is at https://github.com/OrchardCMS.

 2 Orchard Core (www.orchardcore.net). Source code at https://github.com/OrchardCMS/OrchardCore.

 3 The cloudscribe project (www.cloudscribe.com). Source code at https://github.com/cloudscribe.

 4 View the support policy at https://dotnet.microsoft.com/platform/support/policy/dotnet-core.

 5 The C# language and .NET Compiler Platform GitHub source code repository can be found at https://github .com/dotnet/roslyn.

 6 The Windows Compatibility Pack is designed to help port code from .NET Framework to .NET Core/.NET 5.0. See https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack.

 7 As always in web development, technology is in a constant state of flux, so these benchmarks will evolve over time. Although ASP.NET Core may not maintain its top-ten slot, you can be sure that performance is one of the key focal points of the ASP.NET Core team.

 8 The Kestrel HTTP server GitHub project can be found in the ASP.NET Core repository at https://github .com/dotnet/aspnetcore.

 9 The release schedule for .NET 5.0 and beyond: https://devblogs.microsoft.com/dotnet/introducing-net-5/.

 10 An alternative approach would be to consider converting your application to Blazor using the community-driven effort to create Blazor versions of common WebForms components: https://github.com/FritzAndFriends/BlazorWebFormsComponents.

 11 You can find the client libraries for using WCF with .NET Core at https://github.com/dotnet/wcf.

 12 You can find an eBook from Microsoft on gRPC for WCF developers at https://docs.microsoft.com/en-us/dotnet/architecture/grpc-for-wcf-developers/.

2 Your first application

 This chapter covers

 	
Creating your first ASP.NET Core web application

 	
Running your application

 	
Understanding the components of your application

 After reading chapter 1, you should have a general idea of how ASP.NET Core applications work and when you should use them. You should have also set up a development environment you can use to start building applications.

 Tip See appendix A for guidance on installing the .NET 5.0 SDK and choosing an editor/IDE.

 In this chapter, you’ll dive right in by creating your first web app. You’ll get to kick the tires and poke around a little to get a feel for how it works, and in later chapters I’ll show you how to go about customizing and building your own applications.

 As you work through this chapter, you should begin to get a grasp of the various components that make up an ASP.NET Core application, as well as an understanding of the general application-building process. Most applications you create will start from a similar template, so it’s a good idea to get familiar with the setup as soon as possible.

 Definition A template provides the basic code required to build an application. You can use a template as the starting point for building your own apps.

 I’ll start by showing you how to create a basic ASP.NET Core application using one of the Visual Studio templates. If you’re using other tooling, such as the .NET CLI, you’ll have similar templates available. I use Visual Studio 2019 and ASP.NET Core 5.0 with .NET 5.0 in this chapter, but I also provide tips for working with the .NET CLI.

 Tip You can view the application code for this chapter in the GitHub repository for the book at https://github.com/andrewlock/asp-dot-net-core-in-action-2e.

 Once you’ve created your application, I’ll show you how to restore all the necessary dependencies, compile your application, and run it to see the HTML output. The application will be simple in some respects—it will only have two different pages—but it’ll be a fully configured ASP.NET Core application.

 Having run your application, the next step will be to understand what’s going on! We’ll take a journey through all the major parts of an ASP.NET Core application, looking at how to configure the web server, the middleware pipeline, and HTML generation, among other things. We won’t go into detail at this stage, but you’ll get a feel for how they all work together to create a complete application.

 We’ll begin by looking at the plethora of files created when you start a new project, and you’ll learn how a typical ASP.NET Core application is laid out. In particular, I’ll focus on the Program.cs and Startup.cs files. Virtually the entire configuration of your application takes place in these two files, so it’s good to get to grips with what they’re for and how they’re used. You’ll see how to define the middleware pipeline for your application and how you can customize it.

 Finally, you’ll see how the app generates HTML in response to a request, looking at each of the components that make up the Razor Pages endpoint. You’ll see how it controls what code is run in response to a request and how to define the HTML that should be returned for a particular request.

 At this stage, don’t worry if you find parts of the project confusing or complicated; you’ll be exploring each section in detail as you move through the book. By the end of the chapter, you should have a basic understanding of how ASP.NET Core applications are put together, from when your application is first run to when a response is generated. Before we begin, though, we’ll review how ASP.NET Core applications handle requests.

2.1 A brief overview of an ASP.NET Core application

 In chapter 1, I described how a browser makes an HTTP request to a server and receives a response, which it uses to render HTML on the page. ASP.NET Core allows you to dynamically generate that HTML depending on the particulars of the request, so that you can, for example, display different data depending on the current logged-in user.

 Say you want to create a web app to display information about your company. You could create a simple ASP.NET Core app to achieve this; then, later, you could add dynamic features to your app. Figure 2.1 shows how the application would handle a request for a page in your application.

 [image:]

 Figure 2.1 An overview of an ASP.NET Core application. The ASP.NET Core application receives an incoming HTTP request from the browser. Every request passes to the middleware pipeline, which potentially modifies it and then passes it to the endpoint middleware at the end of the pipeline to generate a response. The response passes back through the middleware to the server, and finally out to the browser.

 Much of this diagram should be familiar to you from figure 1.8 in chapter 1; the request and response, the reverse proxy, and the ASP.NET Core web server are all still there, but you’ll notice that I’ve expanded the ASP.NET Core application itself to show the middleware pipeline and the endpoint middleware. This is the main custom part of your app that goes into generating the response from a request.

 The first port of call after the reverse proxy forwards a request is the ASP.NET Core web server, which is the default cross-platform Kestrel server. Kestrel takes the raw incoming network request and uses it to generate an HttpContext object that the rest of the application can use.

 The HttpContext object

 The HttpContext constructed by the ASP.NET Core web server is used by the application as a sort of storage box for a single request. Anything that’s specific to this particular request and the subsequent response can be associated with it and stored in it. This could include properties of the request, request-specific services, data that’s been loaded, or errors that have occurred. The web server fills the initial HttpContext with details of the original HTTP request and other configuration details and passes it on to the rest of the application.

 Note Kestrel isn’t the only HTTP server available in ASP.NET Core, but it’s the most performant and is cross-platform. I’ll only refer to Kestrel throughout the book. The main alternative, HTTP.sys, only runs on Windows and can’t be used with IIS.1

 Kestrel is responsible for receiving the request data and constructing a C# representation of the request, but it doesn’t attempt to generate a response directly. For that, Kestrel hands the HttpContext to the middleware pipeline found in every ASP.NET Core application. This is a series of components that process the incoming request to perform common operations such as logging, handling exceptions, or serving static files.

 Note You’ll learn about the middleware pipeline in detail in the next chapter.

 At the end of the middleware pipeline is the endpoint middleware. This middleware is responsible for calling the code that generates the final response. In most applications that will be an MVC or Razor Pages block.

 Razor Pages are responsible for generating the HTML that makes up the pages of a typical ASP.NET Core web app. They’re also typically where you find most of the business logic of your app, calling out to various services in response to the data contained in the original request. Not every app needs an MVC or Razor Pages block, but it’s typically how you’ll build most apps that display HTML to a user.

 Note I’ll cover Razor Pages and MVC controllers in chapter 4, including how to choose between them. I cover generating HTML in chapters 7 and 8.

 Most ASP.NET Core applications follow this basic architecture, and the example in this chapter is no different. First you’ll see how to create and run your application, and then we’ll look at how the code corresponds to the outline in figure 2.1. Without further ado, let’s create an application!

2.2 Creating your first ASP.NET Core application

 You can start building applications with ASP.NET Core in many different ways, depending on the tools and operating system you’re using. Each set of tools will have slightly different templates, but they have many similarities. The example used throughout this chapter is based on a Visual Studio 2019 template, but you can easily follow along with templates from the .NET CLI or Visual Studio for Mac.

 Reminder This chapter uses Visual Studio 2019 and ASP.NET Core 5.0 with .NET 5.0.

 Getting an application up and running typically involves four basic steps, which we’ll work through in this chapter:

 	
 Generate—Create the base application from a template to get started.

 	
 Restore—Restore all the packages and dependencies to the local project folder using NuGet.

 	
 Build—Compile the application and generate all the necessary assets.

 	
 Run—Run the compiled application.

 Visual Studio and the .NET CLI include many ASP.NET Core templates for building different types of applications. For example,

 	
 Razor Pages web application—Razor Pages applications generate HTML on the server and are designed to be viewed by users in a web browser directly.

 	
 MVC (Model-View-Controller) application—MVC applications are similar to Razor Pages apps in that they generate HTML on the server and are designed to be viewed by users directly in a web browser. They use traditional MVC controllers instead of Razor Pages.

 	
 Web API application—Web API applications return data in a format that can be consumed by single-page applications (SPAs) and APIs. They are typically used in conjunction with client-side applications like Angular and React.js or mobile applications.

 We will look at each of these application types in this book, but in this chapter we will focus on the Razor Pages template.

2.2.1 Using a template to get started

 Using a template can quickly get you up and running with an application, automatically configuring many of the fundamental pieces. Both Visual Studio and the .NET CLI come with a number of standard templates for building web applications, console applications, and class libraries.

 Tip In .NET, a project is a unit of deployment, which will be compiled into a .dll file or an executable, for example. Each separate app is a separate project. Multiple projects can be built and developed at once in a solution.

 To create your first web application, open Visual Studio and perform the following steps:

 	
 Choose Create a New Project from the splash screen, or choose File > New > Project from the main Visual Studio screen.

 	
 From the list of templates, choose ASP.NET Core Web Application, ensuring you select the C# language template, as shown in figure 2.2. Click Next.

 [image:]

 Figure 2.2 The new project dialog box. Select the C# ASP.NET Core Web Application template from the list on the right side. When you next create a new project, you can select from the recent templates list on the left.

 	
 On the next screen, enter a project name, location, and solution name, and click Create, as shown in figure 2.3. For example, use WebApplication1 as both the project and solution name.

 [image:]

 Figure 2.3 The Configure Your New Project dialog box. To create a new .NET 5.0 application, select ASP.NET Core Web Application from the template screen. On the following screen, enter a project name, location, and solution name, and click Create.

 	
 On the following screen (figure 2.4):

 	
Ensure .NET Core is selected.

 	
Select ASP.NET Core 5.0. If this option isn’t available, ensure you have .NET 5.0 installed. See appendix A for details on configuring your environment.

 	
Select ASP.NET Core Web App to create a Razor Pages web application.

 	
Ensure No Authentication is specified. You’ll learn how to add users to your app in chapter 14.

 	
Ensure Configure for HTTPS is checked.

 	
Ensure Enable Docker Support is unchecked.

 	
Click Create.

 [image:]

 Figure 2.4 The web application template screen. This screen follows on from the Configure Your Project dialog box and lets you customize the template that will generate your application. For this starter project, you’ll create a Razor Pages web application without authentication.

 	
 Wait for Visual Studio to generate the application from the template. Once Visual Studio has finished, you’ll be presented with an introductory page about ASP.NET Core, and you should be able to see that Visual Studio has created and added a number of files to your project, as shown in figure 2.5.

 [image:]

 Figure 2.5 Visual Studio after creating a new ASP.NET Core application from a template. The Solution Explorer shows your newly created project. The introductory page has helpful links for learning about ASP.NET Core.

 If you’re not using Visual Studio, you can create a similar template using the .NET CLI. Create a folder to hold your new project. Open a PowerShell or cmd prompt in the folder (on Windows) or a terminal session (on Linux or macOS) and run the commands in the following listing.

 Listing 2.1 Creating a new Razor Page application with the .NET CLI

 dotnet new sln -n WebApplication1 ❶
dotnet new webapp -o WebApplication1 ❷
dotnet sln add WebApplication1 ❸

 ❶ Create a solution file called WebApplication1 in the current folder.

 ❷ Create a Razor Pages project in a subfolder, WebApplication1.

 ❸ Add the new project to the solution file.

 Whether you use Visual Studio or the .NET CLI, you now have the basic files required to build and run your first ASP.NET Core application.

2.2.2 Building the application

 At this point, you have most of the files necessary to run your application, but you’ve got two steps left. First, you need to ensure all the dependencies used by your project are copied to your local directory, and second, you need to compile your application so that it can be run.

 The first of these steps isn’t strictly necessary, as both Visual Studio and the .NET CLI automatically restore packages when they first create your project, but it’s good to know what’s going on. In earlier versions of the .NET CLI, before 2.0, you needed to manually restore packages using dotnet restore.

 You can compile your application by choosing Build > Build Solution, by using the shortcut Ctrl-Shift-B, or by running dotnet build from the command line. If you build from Visual Studio, the output window shows the progress of the build, and assuming everything is hunky dory, will compile your application, ready for running. You can also run the dotnet build console commands from the Package Manager Console in Visual Studio.

 Tip Visual Studio and the .NET CLI tools will automatically build your application when you run it if they detect that a file has changed, so you generally won’t need to explicitly perform this step yourself.

 NuGet packages and the .NET command-line interface

 One of the foundational components of .NET 5.0 cross-platform development is the .NET command-line interface (CLI). This provides several basic commands for creating, building, and running .NET 5.0 applications. Visual Studio effectively calls these automatically, but you can also invoke them directly from the command line if you’re using a different editor. The most common commands used during development are

 	
 dotnet restore

 	
 dotnet build

 	
 dotnet run

 Each of these commands should be run inside your project folder and will act on that project alone.

 Most ASP.NET Core applications have dependencies on various external libraries, which are managed through the NuGet package manager. These dependencies are listed in the project, but the files of the libraries themselves aren’t included. Before you can build and run your application, you need to ensure there are local copies of each dependency in your project folder. The first command, dotnet restore, ensures your application’s NuGet dependencies are copied to your project folder.

 ASP.NET Core projects list their dependencies in the project’s .csproj file. This is an XML file that lists each dependency as a PackageReference node. When you run dotnet restore, it uses this file to establish which NuGet packages to download and copy to your project folder. Any dependencies listed are available for use in your application.

 The restore process typically happens implicitly when you build or run your application, but it can sometimes be useful to run it explicitly, in continuous-integration build pipelines, for example.

 You can compile your application using dotnet build. This will check for any errors in your application and, if there are no issues, will produce output that can be run using dotnet run.

 Each command contains a number of switches that can modify its behavior. To see the full list of available commands, run

 dotnet --help

 or to see the options available for a particular command, new for example, run

 dotnet new --help

2.3 Running the web application

 You’re ready to run your first application, and there are a number of different ways to go about it. In Visual Studio, you can either click the green arrow on the toolbar next to IIS Express, or press the F5 shortcut. Visual Studio will automatically open a web browser window for you with the appropriate URL and, after a second or two, you should be presented with your brand-new application, as shown in figure 2.6. Alternatively, you can run the application from the command line with the .NET CLI tools using dotnet run, and open the URL in a web browser manually, using the address provided on the command line.

 [image:]

 Figure 2.6 The home page of your new ASP.NET Core application. When you run it from Visual Studio, IIS Express chooses a random port by default. If you’re running from the command line with dotnet run, your application will be available at http:/ /localhost:5000 and https:/ /localhost:5001.

 Tip The first time you run the application from Visual Studio, you will be prompted to install the development certificate. Doing so ensures your browser doesn’t display warnings about an invalid certificate.2 See chapter 18 for more about HTTPS certificates.

 By default, this page shows a simple Welcome banner and a link to the official Microsoft documentation for ASP.NET Core. At the top of the page are two links: Home and Privacy. The Home link is the page you’re currently on. Clicking Privacy will take you to a new page, as shown in figure 2.7. As you’ll see shortly, you can use Razor Pages in your application to define these two pages and build the HTML they display.

 [image:]

 Figure 2.7 The Privacy page of your application. You can navigate between the two pages of the application using the Home and Privacy links in the application’s header. The app generates the content of the pages using Razor Pages.

 At this point, you need to notice a couple of things. First, the header containing the links and the application title, “WebApplication1,” is the same on both pages. Second, the title of the page, as shown in the tab of the browser, changes to match the current page. You’ll see how to achieve these features in chapter 7, when we discuss the rendering of HTML using Razor templates.

 Note You can only view the application on the same computer that is running it at the moment; your application isn’t exposed to the internet yet. You’ll learn how to publish and deploy your application in chapter 16.

 There isn’t any more to the user experience of the application at this stage. Click around a little and, once you’re happy with the behavior of the application, roll up your sleeves—it’s time to look at some code!

2.4 Understanding the project layout

 When you’re new to a framework, creating an application from a template like this can be a mixed blessing. On the one hand, you can get an application up and running quickly, with little input required on your part. Conversely, the number of files can sometimes be overwhelming, leaving you scratching your head working out where to start. The basic web application template doesn’t contain a huge number of files and folders, as shown in figure 2.8, but I’ll run through the major ones to get you oriented.

 [image:]

 Figure 2.8 The Solution Explorer and folder on disk for a new ASP.NET Core application. The Solution Explorer also displays the Connected Services and Dependencies nodes, which list NuGet and other dependencies, though the folders themselves don’t exist on disk.

 The first thing to notice is that the main project, WebApplication1, is nested in a top-level directory with the name of the solution, which is also WebApplication1 in this case. Within this top-level folder, you’ll also find the solution (.sln) file for use by Visual Studio and files related to Git version control,3 though these are hidden in Visual Studio’s Solution Explorer view.

 Note Visual Studio uses the concept of a solution to work with multiple projects. The example solution only consists of a single project, which is listed in the .sln file. If you use a CLI template to create your project, you won’t have a .sln or Git files unless you generate them explicitly using additional .NET CLI templates.

 Inside the solution folder, you’ll find your project folder, which in turn contains three subfolders—Pages, Properties, and wwwroot. Pages (unsurprisingly) contains the Razor Pages files you’ll use to build your application. The Properties folder contains a single file, launchSettings.json, which controls how Visual Studio will run and debug the application. The wwwroot folder is special, in that it’s the only folder in your application that browsers are allowed to directly access when browsing your web app. You can store your CSS, JavaScript, images, or static HTML files in here and browsers will be able to access them. They won’t be able to access any file that lives outside of wwwroot.

 Although the wwwroot and Properties folders exist on disk, you can see that Solution Explorer shows them as special nodes, out of alphabetical order, near the top of your project. You’ve got two more special nodes in the project, Dependencies and Connected Services, but they don’t have corresponding folders on disk. Instead, they show a collection of all the dependencies, such as NuGet packages, and remote services that the project relies on.

 In the root of your project folder, you’ll find two JSON files: appsettings.json and appsettings.Development.json. These provide configuration settings that are used at runtime to control the behavior of your app.

 The most important file in your project is WebApplication1.csproj, as it describes how to build your project. Visual Studio doesn’t explicitly show the .csproj file, but you can edit it if you double-click the project name in Solution Explorer. We’ll have a closer look at this project file in the next section.

 Finally, Visual Studio shows two C# files in the project folder—Program.cs and Startup.cs. In sections 2.6 and 2.7, you’ll see how these fundamental classes are responsible for configuring and running your application.

2.5 The .csproj project file: Defining your dependencies

 The .csproj file is the project file for .NET applications and contains the details required for the .NET tooling to build your project. It defines the type of project being built (web app, console app, or library), which platform the project targets (.NET Core 3.1, .NET 5.0, and so on), and which NuGet packages the project depends on.

 The project file has been a mainstay of .NET applications, but in ASP.NET Core it has had a facelift to make it easier to read and edit. These changes include

 	
 No GUIDs—Previously, globally unique identifiers (GUIDs) were used for many things, but now they’re rarely used in the project file.

 	
 Implicit file includes—Previously, every file in the project had to be listed in the .csproj file for it to be included in the build. Now, files are automatically compiled.

 	
 No paths to NuGet package .dll files—Previously, you had to include the path to the .dll files contained in NuGet packages in the .csproj, as well as listing the dependencies in a packages.config file. Now you can reference the NuGet package directly in your .csproj, and you don’t need to specify the path on disk.

 All of these changes combine to make the project file far more compact than you’ll be used to from previous .NET projects. The following listing shows the entire .csproj file for your sample app.

 Listing 2.2 The .csproj project file, showing SDK, target framework, and references

 <Project Sdk="Microsoft.NET.Sdk.Web"> ❶
 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework> ❷
 </PropertyGroup>
</Project>

 ❶ The SDK attribute specifies the type of project you’re building.

 ❷ The TargetFramework is the framework you’ll run on, in this case, .NET 5.0.

 For simple applications, you probably won’t need to change the project file much. The Sdk attribute on the Project element includes default settings that describe how to build your project, whereas the TargetFramework element describes the framework your application will run on. For .NET Core 3.1 projects, this will have the netcoreapp3.1 value; if you’re running on .NET 5.0, this will be net5.0.

 Tip With the new csproj style, Visual Studio users can double-click a project in Solution Explorer to edit the .csproj file without having to close the project first.

 The most common changes you’ll make to the project file are to add additional NuGet packages using the PackageReference element. By default, your app doesn’t reference any NuGet packages at all.

 Using NuGet libraries in your project

 Even though all apps are unique in some way, they also share common requirements. For example, most apps need to access a database or manipulate JSON or XML formatted data. Rather than having to reinvent that code in every project, you should use existing reusable libraries.

 NuGet is the library package manager for .NET, where libraries are packaged into NuGet packages and published to https://nuget.org. You can use these packages in your project by referencing the unique package name in your .csproj file. These make the package’s namespace and classes available in your code files. You can publish (and host) NuGet packages to repositories other than https://nuget.org—see https://docs.microsoft.com/nuget for details.

 You can add a NuGet reference to your project by running dotnet add package <packagename> from inside the project folder. This updates your project file with a <PackageReference> node and restores the NuGet package for your project. For example, to install the popular Newtonsoft.Json library, you would run

 dotnet add package Newtonsoft.Json

 This adds a reference to the latest version of the library to your project file, as shown next, and makes the Newtonsoft.Json namespace available in your source code files.

 <Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="NewtonSoft.Json" Version="12.0.3" />
 </ItemGroup>
</Project>

 If you’re using Visual Studio, you can manage packages with the NuGet Package Manager by right-clicking the solution name or a project and choosing Manage NuGet Packages.

 As a point of interest, there’s no officially agreed upon pronunciation for NuGet. Feel free to use the popular “noo-get” or “nugget” styles, or if you’re feeling especially posh, “noo-jay”!

 The simplified project file format is much easier to edit by hand than previous versions, which is great if you’re developing cross-platform. But if you’re using Visual Studio, don’t feel like you have to take this route. You can still use the GUI to add project references, exclude files, manage NuGet packages, and so on. Visual Studio will update the project file itself, as it always has.

 Tip For further details on the changes to the csproj format, see the documentation at http://mng.bz/PPGg.

 The project file defines everything Visual Studio and the .NET CLI need to build your app. Everything, that is, except the code! In the next section we’ll take a look at the entry point for your ASP.NET Core application—the Program.cs class.

2.6 The Program class: Building a web host

 All ASP.NET Core applications start in the same way as .NET Console applications—with a Program.cs file. This file contains a static void Main function, which is a standard characteristic of console apps. This method must exist and is called whenever you start your web application.

 Tip .NET 5.0 and C# 9 introduced “top-level statements,” which implicitly create the Main entry point. I don’t use top-level statements in this book, but they are supported in ASP.NET Core 5.0. See the documentation for details: http://mng.bz/JDaP.

 In ASP.NET Core applications, the Main entry point is used to build and run an IHost instance, as shown in the following listing, which shows the default Program.cs file. The IHost is the core of your ASP.NET Core application, containing the application configuration and the Kestrel server that listens for requests and sends responses.

 Listing 2.3 The default Program.cs file configures and runs an IWebHost

 public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args) ❶
 .Build() ❷
 .Run(); ❸
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args) ❹
 .ConfigureWebHostDefaults(webBuilder => ❺
 {
 webBuilder.UseStartup<Startup>(); ❻
 };
 }
}

 ❶ Create an IHostBuilder using the CreateHostBuilder method.

 ❷ Build and return an instance of IHost from the IHostBuilder.

 ❸ Run the IHost and start listening for requests and generating responses.

 ❹ Create an IHostBuilder using the default configuration.

 ❺ Configure the application to use Kestrel and listen to HTTP requests.

 ❻ The Startup class defines most of your application’s configuration.

 The Main function contains all the basic initialization code required to create a web server and to start listening for requests. It uses an IHostBuilder, created by the call to CreateDefaultBuilder, to define how the IHost is configured, before instantiating the IHost with a call to Build().

 Note You’ll find this pattern of using a builder object to configure a complex object repeated throughout the ASP.NET Core framework. It’s a useful technique for allowing users to configure an object, delaying its creation until all configuration has finished. It’s one of the patterns described in the “Gang of Four” book, Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison Wesley, 1994).

 Much of your app’s configuration takes place in the IHostBuilder created by the call to CreateDefaultBuilder, but it delegates some responsibility to a separate class, Startup. The Startup class referenced in the generic UseStartup<> method is where you configure your app’s services and define your middleware pipeline. In section 2.7, we’ll spend a while delving into this crucial class.

 At this point, you may be wondering why you need two classes for configuration: Program and Startup. Why not include all your app’s configuration in one class or the other?

 Figure 2.9 shows the typical split of configuration components between Program and Startup. Generally speaking, Program is where you configure the infrastructure of your application, such as the HTTP server, integration with IIS, and configuration sources. In contrast, Startup is where you define which components and features your application uses, and the middleware pipeline for your app.

 The Program class for two different ASP.NET Core applications will generally be similar, but the Startup classes will often differ significantly (though they generally follow a similar pattern, as you’ll see shortly). You’ll rarely find that you need to modify Program as your application grows, whereas you’ll normally update Startup whenever you add additional features. For example, if you add a new NuGet dependency to your project, you’ll normally need to update Startup to make use of it.

 The Program class is where a lot of app configuration takes place, but in the default templates this is hidden inside the CreateDefaultBuilder method. CreateDefaultBuilder is a static helper method that simplifies the bootstrapping of your app by creating an IHostBuilder with some common configuration. In chapter 11 we’ll peek inside this method and explore the configuration system, but for now it’s enough to keep figure 2.9 in mind, and to be aware that you can completely change the IHost configuration if you need to.

 [image:]

 Figure 2.9 The difference in configuration scope for Program and Startup. Program is concerned with infrastructure configuration that will typically remain stable throughout the lifetime of the project. In contrast, you’ll often modify Startup to add new features and to update application behavior.

 The other helper method used by default is ConfigureWebHostDefaults. This uses a WebHostBuilder object to configure Kestrel to listen for HTTP requests.

 Creating services with the generic host

 It might seem strange that you must call ConfigureWebHostDefaults as well as CreateDefaultBuilder—couldn’t we just have one method? Isn’t handling HTTP requests the whole point of ASP.NET Core?

 Well, yes and no! ASP.NET Core 3.0 introduced the concept of a generic host. This allows you to use much of the same framework as ASP.NET Core applications to write non-HTTP applications. These apps can be run as console apps or can be installed as Windows services (or as systemd daemons on Linux), to run background tasks or read from message queues, for example.

 Kestrel and the web framework of ASP.NET Core builds on top of the generic host functionality introduced in ASP.NET Core 3.0. To configure a typical ASP.NET Core app, you configure the generic host features that are common across all apps; features such as configuration, logging, and dependency services. For web applications, you then also configure the services, such as Kestrel, that are necessary to handle web requests.

 In chapter 22 you’ll see how to build applications using the generic host to run scheduled tasks and build services.

 Once the configuration of the IHostBuilder is complete, the call to Build produces the IHost instance, but the application still isn’t handling HTTP requests yet. It’s the call to Run that starts the HTTP server listening. At this point, your application is fully operational and can respond to its first request from a remote browser.

2.7 The Startup class: Configuring your application

 As you’ve seen, Program is responsible for configuring a lot of the infrastructure for your app, but you configure some of your app’s behavior in Startup. The Startup class is responsible for configuring two main aspects of your application:

 	
 Service registration—Any classes that your application depends on for providing functionality—both those used by the framework and those specific to your application—must be registered so that they can be correctly instantiated at runtime.

 	
 Middleware and endpoints—How your application handles and responds to requests.

 You configure each of these aspects in its own method in Startup: service registration in ConfigureServices, and middleware configuration in Configure. A typical outline of Startup is shown in the following listing.

 Listing 2.4 An outline of Startup.cs showing how each aspect is configured

 public class Startup
{
 public void ConfigureServices(IServiceCollection services) ❶
 {
 // method details
 }
 public void Configure(IApplicationBuilder app) ❷
 {
 // method details
 }
}

 ❶ Configure services by registering them with the IServiceCollection.

 ❷ Configure the middleware pipeline for handling HTTP requests.

 The IHostBuilder created in Program calls ConfigureServices and then Configure, as shown in figure 2.10. Each call configures a different part of your application, making it available for subsequent method calls. Any services registered in the ConfigureServices method are available to the Configure method. Once configuration is complete, an IHost is created by calling Build() on the IHostBuilder.

 [image:]

 Figure 2.10 The IHostBuilder is created in Program.cs and calls methods on Startup to configure the application’s services and middleware pipeline. Once configuration is complete, the IHost is created by calling Build() on the IHostBuilder.

 An interesting point about the Startup class is that it doesn’t implement an interface as such. Instead, the methods are invoked by using reflection to find methods with the predefined names of Configure and ConfigureServices. This makes the class more flexible and enables you to modify the signature of the method to accept additional parameters that are fulfilled automatically. I’ll cover how this works in detail in chapter 10; for now it’s enough to know that anything that’s configured in ConfigureServices can be accessed by the Configure method.

 Definition Reflection in .NET allows you to obtain information about types in your application at runtime. You can use reflection to create instances of classes at runtime and to invoke and access them.

 Because the Startup class is fundamental to ASP.NET Core applications, the rest of section 2.7 walks you through both ConfigureServices and Configure to give you a taste of how they’re used. I won’t explain them in detail (we have the rest of the book for that!), but you should keep in mind how they follow on from each other and how they contribute to the application’s configuration as a whole.

2.7.1 Adding and configuring services

 ASP.NET Core uses small, modular components for each distinct feature. This allows individual features to evolve separately, with only a loose coupling to others, and it’s generally considered good design practice. The downside to this approach is that it places the burden on the consumer of a feature to correctly instantiate it. Within your application, these modular components are exposed as one or more services that are used by the application.

 Definition Within the context of ASP.Net Core, service refers to any class that provides functionality to an application. These could be classes exposed by a library or code you’ve written for your application.

 For example, in an e-commerce app, you might have a TaxCalculator that calculates the tax due on a particular product, taking into account the user’s location in the world. Or you might have a ShippingCostService that calculates the cost of shipping to a user’s location. A third service, OrderTotalCalculatorService, might use both of these services to work out the total price the user must pay for an order. Each service provides a small piece of independent functionality, but you can combine them to create a complete application. This is known as the single responsibility principle.

 Definition The single responsibility principle (SRP) states that every class should be responsible for only a single piece of functionality—it should only need to change if that required functionality changes. It’s one of the five main design principles promoted by Robert C. Martin in Agile Software Development, Principles, Patterns, and Practices (Pearson, 2013).

 OrderTotalCalculatorService needs access to an instance of ShippingCostService and TaxCalculator. A naive approach to this problem is to use the new keyword and create an instance of a service whenever you need it. Unfortunately, this tightly couples your code to the specific implementation you’re using and can completely undo all the good work achieved by modularizing the features in the first place. In some cases, it may break the SRP by making you perform initialization code in addition to using the service you created.

 One solution to this problem is to make it somebody else’s problem. When writing a service, you can declare your dependencies and let another class fill those dependencies for you. Your service can then focus on the functionality for which it was designed, instead of trying to work out how to build its dependencies.

 This technique is called dependency injection or the Inversion of Control (IoC) principle, and it is a well-recognized design pattern that is used extensively.

 Definition Design patterns are solutions to common software design problems.

 Typically, you’ll register the dependencies of your application into a “container,” which can then be used to create any service. This is true for both your own custom application services and the framework services used by ASP.NET Core. You must register each service with the container before it can be used in your application.

 Note I’ll describe the dependency inversion principle and the IoC container used in ASP.NET Core in detail in chapter 10.

 In an ASP.NET Core application, this registration is performed in the ConfigureServices method. Whenever you use a new ASP.NET Core feature in your application, you’ll need to come back to this method and add in the necessary services. This is not as arduous as it sounds, as shown in the following listing, taken from the example application.

 Listing 2.5 Startup.ConfigureServices: adding services to the IoC container

 public class Startup
{
 // This method gets called by the runtime.
 // Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }
}

 You may be surprised that a complete Razor Pages application only includes a single call to add the necessary services, but the AddRazorPages() method is an extension method that encapsulates all the code required to set up the Razor Pages services. Behind the scenes, it adds various Razor services for rendering HTML, formatting services, routing services, and many more.

 As well as registering framework-related services, this method is where you’d register any custom services you have in your application, such as the example TaxCalculator discussed previously. IServiceCollection is a list of every known service that your application will need to use. By adding a new service to it, you ensure that whenever a class declares a dependency on your service, the IoC container knows how to provide it.

 With your services all configured, it’s time to move on to the final configuration step: defining how your application responds to HTTP requests.

2.7.2 Defining how requests are handled with middleware

 So far, in the IHostBuilder and Startup classes, you’ve defined the infrastructure of the application and registered your services with the IoC container. In the final configuration method of the Startup class, Configure, you define the middleware pipeline for the application, which defines how your app handles HTTP requests. Here’s the Configure method for the template application.

 Listing 2.6 Startup.Configure: defining the middleware pipeline

 public class Startup
{
 public void Configure(
 IApplicationBuilder app, ❶
 IWebHostEnvironment env) ❷
 {
 if (env.IsDevelopment()) ❸
 {
 app.UseDeveloperExceptionPage(); ❹
 }
 else
 {
 app.UseExceptionHandler("/Error"); ❺
 app.UseHsts(); ❺
 }

 app.UseHttpsRedirection();

 app.UseStaticFiles(); ❻

 app.UseRouting(); ❼
 app.UseAuthorization(); ❽

 app.UseEndpoints(endpoints => ❾
 {
 endpoints.MapRazorPages();
 }
 }
}

 ❶ IApplicationBuilder is used to build the middleware pipeline.

 ❷ Other services can be accepted as parameters.

 ❸ Different behavior when in development or production

 ❹ Only runs in a development environment

 ❺ Only runs in a production environment

 ❻ Adds the static-file middleware

 ❼ Adds the endpoint routing middleware, which determines which endpoint to execute

 ❽ Adds the authorization middleware, which can block access to specific pages as required

 ❾ Adds the endpoint middleware, which executes a Razor Page to generate an HTML response

 As I described previously, middleware consists of small components that execute in sequence when the application receives an HTTP request. They can perform a whole host of functions, such as logging, identifying the current user for a request, serving static files, and handling errors.

 The IApplicationBuilder that’s passed to the Configure method is used to define the order in which middleware executes. The order of the calls in this method is important, as the order in which they’re added to the builder is the order in which they’ll execute in the final pipeline. Middleware can only use objects created by previous middleware in the pipeline—it can’t access objects created by later middleware.

 Warning It’s important that you consider the order of middleware when adding it to the pipeline. Middleware can only use objects created by earlier middleware in the pipeline.

 You should also note that an IWebHostEnvironment parameter is used to provide different behavior when you’re in a development environment. When you’re running in development (when EnvironmentName is set to "Development"), the Configure method adds one piece of exception-handling middleware to the pipeline; in production, it adds a different one.

 The IWebHostEnvironment object contains details about the current environment, as determined by IHostBuilder in Program. It exposes a number of properties:

 	
 ContentRootPath—Location of the working directory for the app, typically the folder in which the application is running

 	
 WebRootPath—Location of the wwwroot folder that contains static files

 	
 EnvironmentName—Whether the current environment is a development or production environment

 IWebHostEnvironment is already set by the time Startup is invoked; you can’t change these values using the application settings in Startup. EnvironmentName is typically set externally by using an environment variable when your application starts.

 Note You’ll learn about hosting environments and how to change the current environment in chapter 11.

 In development, DeveloperExceptionPageMiddleware (added by the UseDeveloperExceptionPage() call) ensures that if your application throws an exception that isn’t caught, you’ll be presented with as much information as possible in the browser to diagnose the problem, as shown in figure 2.11. It’s akin to the “yellow screen of death” in the previous version of ASP.NET, but this time it’s white, not yellow.

 [image:]

 Figure 2.11 The developer exception page contains many different sources of information to help you diagnose a problem, including the exception stack trace and details about the request that generated the exception.

 Note The default templates also add HstsMiddleware in production, which sets security headers in your response, in line with industry best practices. See chapter 18 for details about this and other security-related middleware.

 When you’re running in a production environment, exposing this amount of data to users would be a big security risk. Instead, ExceptionHandlerMiddleware is registered so that if users encounter an exception in your method, they will be presented with a friendly error page that doesn’t reveal the source of the problems. If you run the default template in production mode and trigger an error, you’ll be presented with the message shown in figure 2.12 instead. Obviously, you’d need to update this page to be more visually appealing and more user-friendly, but at least it doesn’t reveal the inner workings of your application.

 [image:]

 Figure 2.12 The default exception-handling page. In contrast to the developer exception page, this one doesn’t reveal any details about your application to users. In reality, you’d update the message to something more user-friendly.

 The next piece of middleware added to the pipeline is HttpsRedirectionMiddleware, using this statement:

 app.UseHttpsRedirection();

 This ensures your application only responds to secure (HTTPS) requests and is an industry best practice. We’ll look more at HTTPS in chapter 18.

 StaticFileMiddleware is added to the pipeline next with this statement:

 app.UseStaticFiles();

 This middleware is responsible for handling requests for static files such as CSS files, JavaScript files, and images. When a request arrives at the middleware, it checks to see if the request is for an existing file. If it is, the middleware returns the file. If not, the request is ignored and the next piece of middleware can attempt to handle the request. Figure 2.13 shows how the request is processed when a static file is requested. When the static-file middleware handles a request, other middleware that comes later in the pipeline, such as the routing middleware or the endpoint middleware, won’t be called at all.

 [image:]

 Figure 2.13 An overview of a request for a static file at /css/site.css for an ASP.NET Core application. The request passes through the middleware pipeline until it’s handled by the static-file middleware. This returns the requested CSS file as the response, which passes back to the web server. The endpoint middleware is never invoked and never sees the request.

 Now we come to the most substantial pieces of middleware in the pipeline: the routing middleware and the endpoint middleware. Together, this pair of middleware are responsible for interpreting the request to determine which Razor Page to invoke, for reading parameters from the request, and for generating the final HTML. Very little configuration is required—you need only to add the middleware to the pipeline and specify that you wish to use Razor Page endpoints by calling MapRazorPages. For each request, the routing middleware uses the request’s URL to determine which Razor Page to invoke. The endpoint middleware actually executes the Razor Page to generate the HTML response.

 Note The default templates also add the AuthorizationMiddleware between the routing middleware and the endpoint middleware. This allows the authorization middleware to decide whether to allow access before the Razor Page is executed. You’ll learn more about this approach in chapter 5 on routing and chapter 15 on authorization.

 Phew! You’ve finally finished configuring your application with all the settings, services, and middleware it needs. Configuring your application touches on a wide range of different topics that we’ll delve into further throughout the book, so don’t worry if you don’t fully understand all the steps yet.

 Once the application is configured, it can start handling requests. But how does it handle them? I’ve already touched on StaticFileMiddleware, which will serve the image and CSS files to the user, but what about the requests that require an HTML response? In the rest of this chapter, I’ll give you a glimpse into Razor Pages and how they generate HTML.

2.8 Generating responses with Razor Pages

 When an ASP.NET Core application receives a request, it progresses through the middleware pipeline until a middleware component can handle it, as you saw in figure 2.13. Normally, the final piece of middleware in a pipeline is the endpoint middleware. This middleware works with the routing middleware to match a request URL’s path to a configured route, which defines which Razor Page to invoke.

 Definition A path is the remainder of the request URL, once the domain has been removed. For example, for a request to www.microsoft.com/account/ manage, the path is /account/manage.

 Once a Razor Page has been selected, the routing middleware notes the selected Razor Page in the request’s HttpContext and continues executing the middleware pipeline. Eventually the request will reach the endpoint middleware. The endpoint middleware executes the Razor Page to generate the HTML response and sends it back to the browser, as shown in figure 2.14.

 [image:]

 Figure 2.14 Rendering a Razor template to HTML. The Razor Page is selected based on the URL page /Privacy and is executed to generate the HTML.

 In the next section we’ll look at how Razor Pages generate HTML using the Razor syntax. After that we’ll look at how you can use page handlers to add business logic and behavior to your Razor Pages.

2.8.1 Generating HTML with Razor Pages

 Razor Pages are stored in .cshtml files (a portmanteau of .cs and .html) within the Pages folder of your project. In general, the routing middleware maps request URL paths to a single Razor Page by looking in the Pages folder of your project for a Razor Page with the same path. For example, you can see in figure 2.14 that the Privacy page of your app corresponds to the path /Privacy in the browser’s address bar. If you look inside the Pages folder of your project, you’ll find the Privacy.cshtml file, shown in the following listing.

 Listing 2.7 The Privacy.cshtml Razor Page

 @page ❶
@model PrivacyModel ❷
@{
 ViewData["Title"] = "Privacy Policy"; ❸
}
<h1>@ViewData["Title"]</h1> ❹

<p>Use this page to detail your site's privacy policy.</p> ❺

 ❶ Indicates that this is a Razor Page

 ❷ Links the Razor Page to a specific PageModel

 ❸ C# code that doesn’t write to the response

 ❹ HTML with dynamic C# values written to the response

 ❺ Standalone, static HTML

 Razor Pages use a templating syntax, called Razor, that combines static HTML with dynamic C# code and HTML generation. The @page directive on the first line of the Razor Page is the most important. This directive must always be placed on the first line of the file, as it tells ASP.NET Core that the .cshtml file is a Razor Page. Without it, you won’t be able to view your page correctly.

 The next line of the Razor Page defines which PageModel in your project the Razor Page is associated with:

 @model PrivacyModel

 In this case the PageModel is called PrivacyModel, and it follows the standard convention for naming Razor Page models. You can find this class in the Privacy.cshtml.cs file in the Pages folder of your project, as shown in figure 2.15. Visual Studio nests these files underneath the Razor Page .cshtml files in Solution Explorer. We’ll look at the page model in the next section.

 [image:]

 Figure 2.15 By convention, page models for Razor Pages are placed in a file with the same name as the Razor Page with a .cs suffix appended. Visual Studio nests these files under the Razor Page in Solution Explorer.

 In addition to the @page and @model directives, you can see that static HTML is always valid in a Razor Page and will be rendered “as is” in the response.

 <p>Use this page to detail your site’s privacy policy.</p>

 You can also write ordinary C# code in Razor templates by using this construct:

 @{ /* C# code here */ }

 Any code between the curly braces will be executed but won’t be written to the response. In the listing, you’re setting the title of the page by writing a key to the ViewData dictionary, but you aren’t writing anything to the response at this point:

 @{
 ViewData["Title"] = "Privacy Policy";
}

 Another feature shown in this template is that you can dynamically write C# variables to the HTML stream using the @ symbol. This ability to combine dynamic and static markup is what gives Razor Pages their power. In the example, you’re fetching the "Title" value from the ViewData dictionary and writing the values to the response inside an <h1> tag:

 <h1>@ViewData["Title"]</h1>

 At this point, you might be a little confused by the template in listing 2.7 when it’s compared to the output shown in figure 2.14. The title and the static HTML content appear in both the listing and figure, but some parts of the final web page don’t appear in the template. How can that be?

 Razor Pages have the concept of layouts, which are “base” templates that define the common elements of your application, such as headers and footers. The HTML of the layout combines with the Razor Page template to produce the final HTML that’s sent to the browser. This prevents you from having to duplicate code for the header and footer in every page, and it means that, if you need to tweak something, you’ll only need to do it in one place.

 Note I’ll cover Razor templates, including layouts, in detail in chapter 7. You can find layouts in the Pages/Shared folder of your project.

 As you’ve already seen, you can include C# code in your Razor Pages by using curly braces @{ }, but generally speaking you’ll want to limit the code in your .cshtml file to presentational concerns only. Complex logic, code to access services such as a database, and data manipulation should be handled in the PageModel instead.

2.8.2 Handling request logic with PageModels and handlers

 As you’ve already seen, the @page directive in a .cshtml file marks the page as a Razor Page, but most Razor Pages also have an associated page model. By convention, this is placed in a file commonly known as a “code behind” file that has a .cs extension, as you saw in figure 2.15. Page models should derive from the PageModel base class, and they typically contain one or more methods called page handlers that define how to handle requests to the Razor Page.

 Definition A page handler is a method that runs in response to a request. Razor Page models must be derived from the PageModel class. They can contain multiple page handlers, though typically they only contain one or two.

 The following listing shows the page model for the Privacy.cshtml Razor Page, found in the file Privacy.cshtml.cs.

 Listing 2.8 The PrivacyModel in Privacy.cshtml.cs—a Razor Page page model

 public class PrivacyModel: PageModel ❶
{
 private readonly ILogger<PrivacyModel> _logger; ❷
 public PrivacyModel(ILogger<PrivacyModel> logger) ❷
 { ❷
 _logger = logger; ❷
 } ❷

 public void OnGet() ❸
 {
 }
}

 ❶ Razor Pages must inherit from PageModel.

 ❷ You can use dependency injection to provide services in the constructor.

 ❸ The default page handler is OnGet. Returning void indicates HTML should be generated.

 This page model is extremely simple, but it demonstrates a couple of important points:

 	
 Page handlers are driven by convention.

 	
 Page models can use dependency injection to interact with other services.

 Page handlers are typically named by convention, based on the HTTP verb that they respond to. They return either void, indicating that the Razor Page’s template should be rendered, or an IActionResult that contains other instructions for generating the response, such as redirecting the user to a different page.

 Definition Every HTTP request includes a verb that indicates the “type” of the request. When browsing a website, the default verb is GET, which fetches a resource from the server so you can view it. The second most common verb is POST, which is used to send data to the server, such as when completing a form.

 The PrivacyModel contains a single handler, OnGet, which indicates it should run in response to GET requests for the page. As the method returns void, executing the handler will execute the associated Razor template for the page to generate the HTML.

 Note Razor Pages are focused on building page-based apps, so you typically want to return HTML rather than JSON or XML. However, you can also use an IActionResult to return any sort of data, to redirect users to a new page, or to send an error. You’ll learn more about IActionResults in chapter 4.

 Dependency injection is used to inject an ILogger<PrivacyModel> instance into the constructor of the page model. The service is unused in this example, but it can be used to record useful information to a variety of destinations, such as the console, a file, or a remote logging service. You can access additional services in your page model by accepting them as parameters in the constructor—the ASP.NET Core framework will take care of configuring and injecting instances of any services you request.

 Note I describe the dependency inversion principle and the IoC container used in ASP.NET Core in detail in chapter 10. Logging is covered in chapter 17.

 Clearly, the PrivacyModel page model does not do much in this case, and you may be wondering why it’s worth having. If all they do is tell the Razor Page to generate HTML, then why do we need page models at all?

 The key thing to remember here is that you now have a framework for performing arbitrarily complex functions in response to a request. You could easily update the handler method to load data from the database, send an email, add a product to a basket, or create an invoice—all in response to a simple HTTP request. This extensibility is where a lot of the power in Razor Pages (and the MVC pattern in general) lies.

 The other important point is that you’ve separated the execution of these methods from the generation of the HTML itself. If the logic changes and you need to add behavior to a page handler, you don’t need to touch the HTML generation code, so you’re less likely to introduce bugs. Conversely, if you need to change the UI slightly, change the color of the title for example, then your handler method logic is safe.

 And there you have it, a complete ASP.NET Core Razor Pages application! Before we move on, let’s take one last look at how our application handles a request. Figure 2.16 shows a request to the /Privacy path being handled by the sample application. You’ve seen everything here already, so the process of handling a request should be familiar. It shows how the request passes through the middleware pipeline before being handled by the endpoint middleware. The Privacy.cshtml Razor Page executes the OnGet handler and generates the HTML response, which passes back through the middleware to the ASP.NET Core web server before being sent to the user’s browser.

 [image:]

 Figure 2.16 An overview of a request to the /Privacy URL for the sample ASP.NET Razor Pages application. The routing middleware routes the request to the OnGet handler of the Privacy.cshtml.cs Razor Page. The Razor Page generates an HTML response by executing the Razor template in Privacy.cshtml and passes the response back through the middleware pipeline to the browser.

 It’s been a pretty intense trip, but you now have a good overview of how an entire application is configured and how it handles a request using Razor Pages. In the next chapter, you’ll take a closer look at the middleware pipeline that exists in all ASP.NET Core applications. You’ll learn how it’s composed, how you can use it to add functionality to your application, and how you can use it to create simple HTTP services.

Summary

 	
 The .csproj file contains details of how to build your project, including which NuGet packages it depends on. It’s used by Visual Studio and the .NET CLI to build your application.

 	
 Restoring the NuGet packages for an ASP.NET Core application downloads all your project’s dependencies so it can be built and run.

 	
 Program.cs defines the static void Main entry point for your application. This function is run when your app starts, the same as for console applications.

 	
 Program.cs is where you build an IHost instance, using an IHostBuilder. The helper method, Host.CreateDefaultBuilder() creates an IHostBuilder that loads configuration settings and sets up logging. Calling Build() creates the IHost instance.

 	
 The ConfigureWebHostDefaults extension method configures the generic host using a WebHostBuilder. It configures the Kestrel HTTP server, adds IIS integration if necessary, and specifies the application’s Startup class.

 	
 You can start the web server and begin accepting HTTP requests by calling Run on the IHost.

 	
 Startup is responsible for service configuration and defining the middleware pipeline.

 	
 All services, both framework and custom application services, must be registered in the call to ConfigureServices in order to be accessed later in your application.

 	
 Middleware is added to the application pipeline with IApplicationBuilder. Middleware defines how your application responds to requests.

 	
 The order in which middleware is registered defines the final order of the middleware pipeline for the application. Typically, EndpointMiddleware is the last middleware in the pipeline. Earlier middleware, such as StaticFileMiddleware, will attempt to handle the request first. If the request is handled, EndpointMiddleware will never receive the request.

 	
 Razor Pages are located in the Pages folder and are typically named according to the URL path they handle. For example, Privacy.cshtml handles the path /Privacy.

 	
 Razor Pages must contain the @page directive as the first line of the file.

 	
 Page models derive from the PageModel base class and contain page handlers. Page handlers are methods named using conventions that indicate the HTTP verb they handle. For example, OnGet handles the GET verb.

 	
 Razor templates can contain standalone C#, standalone HTML, and dynamic HTML generated from C# values. By combining all three, you can build highly dynamic applications.

 	
 Razor layouts define common elements of a web page, such as headers and footers. They let you extract this code into a single file, so you don’t have to duplicate it across every Razor template.

 1 If you want to learn more about HTTP.sys, the documentation describes the server and how to use it: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys.

 2 You can install the development certificate on Windows and macOS. For instructions on trusting the certificate on Linux, see your distribution’s instructions. Not all browsers (Mozilla Firefox, for example) use the certificate store, so follow your browser’s guidelines for trusting the certificate. If you still have difficulties, see the troubleshooting tips at http://mng.bz/1rmy.

 3 The Git files will only be added if you choose Add to Source Control in Visual Studio. You don’t have to use Git, but I strongly recommend using some sort of version control when you build applications. If you’re somewhat familiar with Git, but still find it a bit daunting, and a rebase terrifying, I highly recommend reading “Think Like (a) Git,” http://think-like-a-git.net/. It helped me achieve Git enlightenment.

3 Handling requests with the middleware pipeline

 This chapter covers

 	
What middleware is

 	
Serving static files using middleware

 	
Adding functionality using middleware

 	
Combining middleware to form a pipeline

 	
Handling exceptions and errors with middleware

 In the previous chapter, you had a whistle-stop tour of a complete ASP.NET Core application to see how the components come together to create a web application. In this chapter, we’ll focus in on one small subsection: the middleware pipeline.

 In ASP.NET Core, middleware are C# classes or functions that handle an HTTP request or response. They are chained together, with the output of one middleware acting as the input to the next middleware, to form a pipeline.

 The middleware pipeline is one of the most important parts of configuration for defining how your application behaves and how it responds to requests. Understanding how to build and compose middleware is key to adding functionality to your applications.

 In this chapter you’ll learn what middleware is and how to use it to create a pipeline. You’ll see how you can chain multiple middleware components together, with each component adding a discrete piece of functionality. The examples in this chapter are limited to using existing middleware components, showing how to arrange them in the correct way for your application. In chapter 19 you’ll learn how to build your own middleware components and incorporate them into the pipeline.

 We’ll begin by looking at the concept of middleware, all the things you can achieve with it, and how a middleware component often maps to a “cross-cutting concern.” These are the functions of an application that cut across multiple different layers. Logging, error handling, and security are classic cross-cutting concerns that are all required by many different parts of your application. Because all requests pass through the middleware pipeline, it’s the preferred location to configure and handle this functionality.

 In section 3.2, I’ll explain how you can compose individual middleware components into a pipeline. You’ll start out small, with a web app that only displays a holding page. From there, you’ll learn how to build a simple static-file server that returns requested files from a folder on disk.

 Next, you’ll move on to a more complex pipeline containing multiple middleware. In this example you’ll explore the importance of ordering in the middleware pipeline and see how requests are handled when your pipeline contains more than one middleware.

 In section 3.3 you’ll learn how you can use middleware to deal with an important aspect of any application: error handling. Errors are a fact of life for all applications, so it’s important that you account for them when building your app. As well as ensuring that your application doesn’t break when an exception is thrown or an error occurs, it’s important that users of your application are informed about what went wrong in a user-friendly way.

 You can handle errors in a few different ways, but they are one of the classic cross-cutting concerns, and middleware is well placed to provide the required functionality. In section 3.3 I’ll show how you can handle exceptions and errors using middleware provided by Microsoft. In particular, you’ll learn about three different components:

 	
 DeveloperExceptionPageMiddleware—Provides quick error feedback when building an application

 	
 ExceptionHandlerMiddleware—Provides a user-friendly generic error page in production

 	
 StatusCodePagesMiddleware—Converts raw error status codes into user-friendly error pages

 By combining these pieces of middleware, you can ensure that any errors that do occur in your application won’t leak security details and won’t break your app. On top of that, they will leave users in a better position to move on from the error, giving them as friendly an experience as possible.

 You won’t see how to build your own middleware in this chapter—instead you’ll see that you can go a long way using the components provided as part of ASP.NET Core. Once you understand the middleware pipeline and its behavior, it will be much easier to understand when and why custom middleware is required. With that in mind, let’s dive in!

3.1 What is middleware?

 The word middleware is used in a variety of contexts in software development and IT, but it’s not a particularly descriptive word—what is middleware?

 In ASP.NET Core, middleware are C# classes1 that can handle an HTTP request or response. Middleware can

 	
 Handle an incoming HTTP request by generating an HTTP response

 	
 Process an incoming HTTP request, modify it, and pass it on to another piece of middleware

 	
 Process an outgoing HTTP response, modify it, and pass it on to either another piece of middleware or the ASP.NET Core web server

 You can use middleware in a multitude of ways in your own applications. For example, a piece of logging middleware might note when a request arrived and then pass it on to another piece of middleware. Meanwhile, an image-resizing middleware component might spot an incoming request for an image with a specified size, generate the requested image, and send it back to the user without passing it on.

 The most important piece of middleware in most ASP.NET Core applications is the EndpointMiddleware class. This class normally generates all your HTML pages and API responses (for Web API applications) and is the focus of most of this book. Like the image-resizing middleware, it typically receives a request, generates a response, and then sends it back to the user, as shown in figure 3.1.

 [image:]

 Figure 3.1 Example of a middleware pipeline. Each middleware handles the request and passes it on to the next middleware in the pipeline. After a middleware generates a response, it passes the response back through the pipeline. When it reaches the ASP.NET Core web server, the response is sent to the user’s browser.

 Definition This arrangement, where a piece of middleware can call another piece of middleware, which in turn can call another, and so on, is referred to as a pipeline. You can think of each piece of middleware as a section of pipe—when you connect all the sections, a request flows through one piece and into the next.

 One of the most common use cases for middleware is for the cross-cutting concerns of your application. These aspects of your application need to occur for every request, regardless of the specific path in the request or the resource requested. These include things like

 	
 Logging each request

 	
 Adding standard security headers to the response

 	
 Associating a request with the relevant user

 	
 Setting the language for the current request

 In each of these examples, the middleware would receive a request, modify it, and then pass the request on to the next piece of middleware in the pipeline. Subsequent middleware could use the details added by the earlier middleware to handle the request in some way. For example, in figure 3.2, the authentication middleware associates the request with a user. The authorization middleware uses this detail to verify whether the user has permission to make that specific request to the application or not.

 [image:]

 Figure 3.2 Example of a middleware component modifying a request for use later in the pipeline. Middleware can also short-circuit the pipeline, returning a response before the request reaches later middleware.

 If the user has permission, the authorization middleware will pass the request on to the endpoint middleware to allow it to generate a response. If the user doesn’t have permission, the authorization middleware can short-circuit the pipeline, generating a response directly. It returns the response to the previous middleware before the endpoint middleware has even seen the request.

 A key point to glean from this is that the pipeline is bidirectional. The request passes through the pipeline in one direction until a piece of middleware generates a response, at which point the response passes back through the pipeline, passing through each piece of middleware for a second time, until it gets back to the first piece of middleware. Finally, this first/last piece of middleware will pass the response back to the ASP.NET Core web server.

 The HttpContext object

 I mentioned the HttpContext in chapter 2, and it’s sitting behind the scenes here too. The ASP.NET Core web server constructs an HttpContext for each request, which the ASP.NET Core application uses as a sort of storage box for a single request. Anything that’s specific to this particular request and the subsequent response can be associated with and stored in it. This could include properties of the request, request-specific services, data that’s been loaded, or errors that have occurred. The web server fills the initial HttpContext with details of the original HTTP request and other configuration details and passes it on to the rest of the application.

 All middleware has access to the HttpContext for a request. It can use this, for example, to determine whether the request contains any user credentials, to identify which page the request is attempting to access, and to fetch any posted data. It can then use these details to determine how to handle the request.

 Once the application has finished processing the request, it will update the HttpContext with an appropriate response and return it through the middleware pipeline to the web server. The ASP.NET Core web server then converts the representation into a raw HTTP response and sends it back to the reverse proxy, which forwards it to the user’s browser.

 As you saw in chapter 2, you define the middleware pipeline in code as part of your initial application configuration in Startup. You can tailor the middleware pipeline specifically to your needs—simple apps may need only a short pipeline, whereas large apps with a variety of features may use much more middleware. Middleware is the fundamental source of behavior in your application. Ultimately, the middleware pipeline is responsible for responding to any HTTP requests it receives.

 Requests are passed to the middleware pipeline as HttpContext objects. As you saw in chapter 2, the ASP.NET Core web server builds an HttpContext object from an incoming request, which passes up and down the middleware pipeline. When you’re using existing middleware to build a pipeline, this is a detail you’ll rarely have to deal with. But, as you’ll see in the final section of this chapter, its presence behind the scenes provides a route to exerting extra control over your middleware pipeline.

 You can also think of your middleware pipeline as being a series of concentric components, similar to a traditional matryoshka (Russian) doll, as shown in figure 3.3. A request progresses “through” the pipeline by heading deeper into the stack of middleware until a response is returned. The response then returns through the middleware, passing through them in the reverse order to the request.

 [image:]

 Figure 3.3 You can also think of middleware as being a series of nested components, where a request is sent deeper into the middleware, and the response resurfaces out of it. Each middleware can execute logic before passing the response on to the next middleware and can execute logic after the response has been created, on the way back out of the stack.

 Middleware vs. HTTP modules and HTTP handlers

 In the previous version of ASP.NET, the concept of a middleware pipeline isn’t used. Instead, you have HTTP modules and HTTP handlers.

 An HTTP handler is a process that runs in response to a request and generates the response. For example, the ASP.NET page handler runs in response to requests for .aspx pages. Alternatively, you could write a custom handler that returns resized images when an image is requested.

 HTTP modules handle the cross-cutting concerns of applications, such as security, logging, or session management. They run in response to the lifecycle events that a request progresses through when it’s received by the server. Examples of events include BeginRequest, AcquireRequestState, and PostAcquireRequestState.

 This approach works, but it’s sometimes tricky to reason about which modules will run at which points. Implementing a module requires a relatively detailed understanding of the state of the request at each individual lifecycle event.

 The middleware pipeline makes understanding your application far simpler. The pipeline is completely defined in code, specifying which components should run and in which order. Behind the scenes, the middleware pipeline in ASP.NET Core is simply a chain of method calls, where each middleware function calls the next in the pipeline.

 That’s pretty much all there is to the concept of middleware. In the next section, I’ll discuss ways you can combine middleware components to create an application, and how to use middleware to separate the concerns of your application.

3.2 Combining middleware in a pipeline

 Generally speaking, each middleware component has a single primary concern. It will handle one aspect of a request only. Logging middleware will only deal with logging the request, authentication middleware is only concerned with identifying the current user, and static-file middleware is only concerned with returning static files.

 Each of these concerns is highly focused, which makes the components themselves small and easy to reason about. It also gives your app added flexibility; adding a static-file middleware doesn’t mean you’re forced into having image-resizing behavior or authentication. Each of these features is an additional piece of middleware.

 To build a complete application, you compose multiple middleware components together into a pipeline, as shown in the previous section. Each middleware has access to the original request, plus any changes made by previous middleware in the pipeline. Once a response has been generated, each middleware can inspect and/or modify the response as it passes back through the pipeline before it’s sent to the user. This allows you to build complex application behaviors from small, focused components.

 In the rest of this section, you’ll see how to create a middleware pipeline by composing small components together. Using standard middleware components, you’ll learn to create a holding page and to serve static files from a folder on disk. Finally, you’ll take another look at the default middleware pipeline you built in chapter 2 and decompose it to understand why it’s built like it is.

3.2.1 Simple pipeline scenario 1: A holding page

 For your first app, and your first middleware pipeline, you’ll learn how to create an app consisting of a holding page. This can be useful when you’re first setting up your application, to ensure it’s processing requests without errors.

 Tip Remember, you can view the application code for this book in the GitHub repository at https://github.com/andrewlock/asp-dot-net-core-in-action-2e.

 In previous chapters, I’ve mentioned that the ASP.NET Core framework is composed of many small, individual libraries. You typically add a piece of middleware by referencing a package in your application’s .csproj project file and configuring the middleware in the Configure method of your Startup class. Microsoft ships many standard middleware components with ASP.NET Core for you to choose from, and you can also use third-party components from NuGet and GitHub, or you can build your own custom middleware.

 Note I’ll discuss building custom middleware in chapter 19.

 Unfortunately, there isn’t a definitive list of middleware available, but you can view the source code for all the middleware that comes as part of ASP.NET Core in the main ASP.NET Core GitHub repository (https://github.com/aspnet/aspnetcore). You can find most of the middleware in the src/Middleware folder, though some middleware is in other folders where it forms part of a larger feature. For example, the authentication and authorization middleware can be found in the src/Security folder instead. Alternatively, with a bit of searching on https://nuget.org you can often find middleware with the functionality you need.

 In this section, you’ll see how to create one of the simplest middleware pipelines, consisting of WelcomePageMiddleware only. WelcomePageMiddleware is designed to quickly provide a sample page when you’re first developing an application, as you can see in figure 3.4. You wouldn’t use it in a production app, as you can’t customize the output, but it’s a single, self-contained middleware component you can use to ensure your application is running correctly.

 [image:]

 Figure 3.4 The Welcome page middleware response. Every request to the application, at any path, will return the same Welcome page response.

 Tip WelcomePageMiddleware is included as part of the base ASP.NET Core framework, so you don’t need to add a reference to any additional NuGet packages.

 Even though this application is simple, the exact same process you’ve seen before occurs when the application receives an HTTP request, as shown in figure 3.5.

 The request passes to the ASP.NET Core web server, which builds a representation of the request and passes it to the middleware pipeline. As it’s the first (only!) middleware in the pipeline, WelcomePageMiddleware receives the request and must decide how to handle it. The middleware responds by generating an HTML response, no matter what request it receives. This response passes back to the ASP.NET Core web server, which forwards it on to the user to display in their browser.

 [image:]

 Figure 3.5 WelcomePageMiddleware handles a request. The request passes from the reverse proxy to the ASP.NET Core web server and, finally, to the middleware pipeline, which generates an HTML response.

 As with all ASP.NET Core applications, you define the middleware pipeline in the Configure method of Startup by adding middleware to an IApplicationBuilder object. To create your first middleware pipeline, consisting of a single middleware component, you need just a single method call.

 Listing 3.1 Startup for a Welcome page middleware pipeline

 using Microsoft.AspNetCore.Builder;
namespace CreatingAHoldingPage
{
 public class Startup ❶
 {
 public void Configure(IApplicationBuilder app) ❷
 {
 app.UseWelcomePage(); ❸
 }
 }
}

 ❶ The Startup class is very simple for this basic application.

 ❷ The Configure method is used to define the middleware pipeline.

 ❸ The only middleware in the pipeline

 As you can see, the Startup class for this application is very simple. The application has no configuration and no services, so Startup doesn’t have a constructor or a ConfigureServices method. The only required method is Configure, in which you call UseWelcomePage.

 You build the middleware pipeline in ASP.NET Core by calling methods on IApplicationBuilder, but this interface doesn’t define methods like UseWelcomePage itself. Instead, these are extension methods.

OEBPS/OEBPS/Images/1-4.png

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/2-10.png

OEBPS/OEBPS/Images/3-01.png

OEBPS/OEBPS/Images/1-3.png

OEBPS/OEBPS/Images/2-01.png

OEBPS/OEBPS/Images/2-09.png

OEBPS/OEBPS/Images/2-11.png

OEBPS/OEBPS/Images/1-6.png

OEBPS/OEBPS/Images/3-03.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/3-02.png

OEBPS/OEBPS/Images/2-08.png

OEBPS/OEBPS/Images/2-12.png

OEBPS/OEBPS/Images/1-5.png

OEBPS/OEBPS/Images/2-07.png

OEBPS/OEBPS/Images/3-05.png

OEBPS/OEBPS/Images/1-9.png

OEBPS/OEBPS/Images/2-05.png

OEBPS/OEBPS/Images/2-14.png

OEBPS/OEBPS/Images/1-8.png

OEBPS/OEBPS/Images/2-06.png

OEBPS/OEBPS/Images/2-04.png

OEBPS/OEBPS/Images/3-04.png

OEBPS/OEBPS/Images/1-7.png

OEBPS/OEBPS/Images/2-13.png

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/2-03.png

OEBPS/OEBPS/Images/1-2.png

OEBPS/OEBPS/Images/2-16.png

OEBPS/OEBPS/Images/Lock2.png

OEBPS/OEBPS/Images/1-1.png

OEBPS/OEBPS/Images/2-15.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/2-02.png

