

 Praise for the second edition

 From basic to complex, this book gives you the tools to create beautiful data visualizations.

 —Claudio Rodriguez, Cox Media Group

 The best reference for one of the most useful DataViz tools.

 —Jonathan Rioux, TD Insurance

 From toy examples to techniques for real projects. Shows how all the pieces fit together.

 —Scott McKissock, USAID

 A clever way to immerse yourself in the D3.js world.

 —Felipe Vildoso Casti, University of Chile

 [image: manning]

 D3.js in Action, Third Edition

 Elijah Meeks, Anne-Marie Dufour
Foreword by Andy Kirk

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Elesha Hyde
 Technical editor: Jon Borgman Review editor: Aleksandar Dragosavljević
 Production editor: Keri Hales
 Copy editor: Julie McNamee
 Proofreader: Melody Dolab
 Technical proofreader: Alain Lompo, Elena Ghisalberti
 Typesetter and cover designer: Marija Tudor

 ISBN 9781633439177

 Printed in the United States of America

 dedication

 To my three As

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1 D3.js fundamentals

 1 An introduction to D3.js

 1.1 What is D3.js?

 1.1.1 A need for web-accessible data visualizations

 1.1.2 When do we use D3.js?

 1.1.3 How D3.js works

 1.2 The D3 ecosystem: What you need to know to get started

 1.2.1 HTML and the DOM

 1.2.2 Scalable Vector Graphics

 1.2.3 Canvas and WebGL

 1.2.4 CSS

 1.2.5 JavaScript

 1.2.6 Node and JavaScript frameworks

 1.2.7 Observable notebooks

 1.3 Data visualization best practices

 2 Manipulating the DOM

 2.1 Your first D3 visualization

 2.2 Preparing your environment

 2.2.1 The structure of our first D3 project

 2.2.2 Loading D3 into a project

 2.3 Selecting elements

 2.4 Adding elements to a selection

 2.5 Setting and modifying attributes

 2.6 Setting and modifying styles

 3 Working with data

 3.1 Understanding data

 3.1.1 Finding data

 3.1.2 Data types

 3.1.3 Data formats and structures

 3.2 Preparing data

 3.2.1 Loading a dataset into a D3 project

 3.2.2 Formatting a dataset

 3.2.3 Measuring a dataset

 3.3 Binding data to DOM elements

 3.3.1 Setting DOM attributes dynamically with data

 3.4 Adapting data for the screen

 3.4.1 Scales

 3.4.2 Linear scale

 3.4.3 Band scale

 3.5 Adding labels to a chart

 4 Drawing lines, curves, and arcs

 4.1 Creating axes

 4.1.1 The margin convention

 4.1.2 Generating axes

 4.2 Drawing a line chart

 4.2.1 Using the line generator

 4.2.2 Interpolating data points into a curve

 4.3 Drawing an area

 4.3.1 Using the area generator

 4.3.2 Enhancing readability with labels

 4.4 Drawing arcs

 4.4.1 The polar coordinate system

 4.4.2 Using the arc generator

 4.4.3 Calculating the centroid of an arc

 5 Pie and stack layouts

 5.1 Creating pie and donut charts

 5.1.1 Preparatory steps

 5.1.2 The pie layout generator

 5.1.3 Drawing the arcs

 5.1.4 Adding labels

 5.2 Stacking shapes

 5.2.1 The stack layout generator

 5.2.2 Drawing a stacked bar chart

 5.2.3 Drawing a streamgraph

 5.2.4 The stack order and stack offset properties

 5.3 Adding a legend to a project

 6 Visualizing distributions

 6.1 Binning data

 6.2 Drawing a histogram

 6.3 Creating a pyramid chart

 6.4 Generating box plots

 6.4.1 Calculating quartiles with the quantile scale

 6.4.2 Positioning multiple box plots on a chart

 6.4.3 The point scale

 6.4.4 Drawing a box plot

 6.5 Comparing distributions with violin plots

 Part 2 Meeting the new standards

 7 Interactive visualizations

 7.1 Why use interactivity?

 7.1.1 A few best practices for interactivity

 7.2 Filtering a visualization

 7.2.1 Capturing user events

 7.2.2 The classed method

 7.2.3 Updating the data in a visualization

 7.2.4 Creating smooth transitions

 7.3 Revealing additional information with tooltips

 7.3.1 Building a simple tooltip

 7.3.2 Developing a compound tooltip

 7.4 Animating the enter, update, and exit selections

 7.4.1 Building a scatterplot

 7.4.2 Filtering a scatterplot

 7.4.3 Creating a reusable transition

 8 Integrating D3 in a frontend framework

 8.1 Approaches to using D3 in a frontend framework

 8.2 Installing the D3 library in a React project

 8.3 Loading data into a React project

 8.4 A reusable approach to SVG containers

 8.5 Allowing D3 to control a portion of the DOM

 8.5.1 React

 8.5.2 Angular

 8.5.3 Svelte

 8.6 Using D3 as a utility library

 8.6.1 React

 8.6.2 Angular and Svelte

 8.6.3 Generating curves

 8.7 Hybrid approach

 9 Responsive visualizations

 9.1 What is responsive design?

 9.1.1 Mobile-first approach

 9.1.2 Desktop-first approach

 9.2 A responsive line chart

 9.2.1 Adapting the size of the text labels

 9.2.2 Adjusting the axes labels

 9.2.3 Adopting a minimalistic approach

 9.3 A responsive dashboard

 9.3.1 Using a responsive grid

 9.3.2 Adapting the density of information

 9.3.3 Changing the orientation of a chart

 9.4 Additional tips

 10 Accessible visualizations

 10.1 How people with disabilities access web content

 10.2 Meeting the accessibility standards

 10.2.1 Textual information

 10.2.2 Visual information

 10.2.3 Screen reader access

 10.2.4 Interactions

 10.2.5 Other considerations

 10.2.6 Additional resources

 Part 3 Intricate data visualizations

 11 Hierarchical visualizations

 11.1 Formatting hierarchical data

 11.1.1 Working with a CSV file

 11.1.2 Working with a hierarchical JSON file

 11.2 Building a circle pack chart

 11.2.1 Generating the pack layout

 11.2.2 Drawing the circle pack

 11.2.3 Adding labels

 11.3 Building a tree chart

 11.3.1 Generating the tree layout

 11.3.2 Drawing the tree chart

 11.4 Building other hierarchical visualizations

 12 Network visualizations

 12.1 Preparing network data

 12.2 Creating an adjacency matrix

 12.3 Drawing an arc diagram

 12.4 Playing with forces

 12.4.1 Running a force simulation

 13 Geospatial information visualizations

 13.1 Geographical data

 13.1.1 GeoJSON

 13.1.2 TopoJSON

 13.2 Drawing a map from GeoJSON data

 13.2.1 Choosing a projection

 13.2.2 Improving readability with graticules

 13.2.3 Making a choropleth map

 13.2.4 Locating cities on a map

 13.3 Zooming and panning

 13.4 Adding a brushing functionality

 13.5 Drawing a map from TopoJSON data

 13.6 Further concepts

 13.6.1 Tile mapping

 13.6.2 Canvas drawing

 13.6.3 Raster reprojection

 13.6.4 Hexbins

 13.6.5 Voronoi diagrams

 13.6.6 Cartograms

 Part 4 Advanced techniques

 14 Creating a custom visualization

 14.1 Gathering data

 14.2 Exploring the data

 14.3 Sketching the layout

 14.4 Building the project skeleton

 14.4.1 Another approach to responsive SVG containers

 14.4.2 Creating a responsive SVG grid

 14.5 Creating radial visualizations

 14.5.1 Adding radial axes

 14.5.2 Applying the force layout on a circle’s circumference

 14.5.3 Drawing a radial area chart

 14.5.4 Drawing a radial bar chart

 14.6 Planning meaningful interactions

 15 Rendering visualizations with Canvas

 15.1 What is Canvas and when to use it

 15.2 Rendering basic shapes with Canvas

 15.2.1 The
 <canvas>
 element
 </canvas>

 15.2.2 Line

 15.2.3 Rectangle

 15.2.4 Circle

 15.2.5 Path

 15.2.6 Text

 15.3 Mixed-mode rendering

 15.4 A strategy for Canvas interactions

 appendix A Setting up a local development environment

 A.1 Visual Studio Code

 A.2 Installing and using the Live Server extension

 appendix B Selecting a scale

 B.1 Continuous input, continuous output

 B.1.1 Continuous scales

 B.1.2 Sequential scales

 B.1.3 Diverging scales

 B.2 Continuous input, discrete output

 B.3 Discrete input, continuous output

 B.4 Discrete input, discrete output

 appendix C An overview of D3 modules

 appendix D Exercise solutions

 D.1 Solutions chapter 1

 D.1.1 Build an SVG graphic

 D.2 Solutions chapter 6

 D.2.1 Build a pyramid chart

 D.2.2 Append axes to the violin charts

 D.2.3 Add the interquartile ranges and the mean values to the violin plots

 D.3 Solutions chapter 7

 D.3.1 Create the axis and append the circles to the scatterplot

 D.3.2 Create a tooltip

 D.4 Solutions chapter 8

 D.4.1 Bar chart

 D.4.2 Ranking badges

 D.5 Solutions chapter 9

 D.5.1 Change the orientation of the bar chart on mobile

 D.6 Solutions chapter 10

 D.6.1 Create SVG patterns

 D.7 Solutions chapter 11

 D.8 Solutions chapter 12

 D.9 Solutions chapter 13

 D.10 Solutions chapter 14

 D.11 Solutions chapter 15

 appendix E A very brief introduction to Svelte

 E.1 The structure of a Svelte file

 E.2 Passing props from a parent to a child component

 E.3 Sending information from a child to a parent component

 E.4 Adding rendering logic

 E.5 Using reactive variables and functions

 index

 foreword

 In my capacity as a freelance data visualization educator, consultant, and designer, I’ve been deeply immersed in most corners of the data visualization world since the late 2000s and been fortunate to have a front-row seat to a huge amount of change. The technological landscape is always shifting. From the evolution of the tools of our trade to the platforms on which our work reaches its audience, there are always new forces pushing and pulling.

 Where once this was a small, niche community of specialists, the elevated mainstream exposure of visualization led to substantial growth, both in the volume of enthusiastic participants and through the improved widening in their diversity. A field is only as rich as the breadth of its sensibilities and cultures, and the trajectory is hopeful.

 This expanding pool of talent continues to inject fresh thinking. Traditional discourse and so-called established convictions are being challenged. A heightened appetite for experimentation has led to innovative methods impacting audiences in novel ways. The boundaries of creative possibility are being stretched beyond just the chart and just the visual.

 What remains unchanged is a desire among data visualization designers and developers to attain maximum technical expressiveness and fluency. This is the ultimate capability. Expressiveness is having access to the broadest set of representation and presentation options. It’s being able to create more than—or at least as much as—you’re able to imagine. For many years, D3.js has been the JavaScript library that offers this.

 Fluency is about accomplishing tasks that are too hard to do well by hand or too laborious to repeat by hand. Fluency minimizes the friction from not knowing how to perform certain technical tasks or from not knowing whether they’re even possible. Fluency is about having the discipline to know when and why you should and shouldn’t make certain choices.

 This is where the third edition of D3.js in Action comes in. The previous editions skillfully presented readers with an understanding of what D3.js can do and how to do it. The third edition transcends these technical contents, addressing the when, why, and for whom, in the context of contemporary data visualization practices.

 The most valuable books in any discipline tackle topics that have steep and, perhaps for some, overwhelming learning curves. They make those curves gentler and more surmountable. They work simultaneously as introductory texts for beginners and as sophisticated references for more advanced practitioners. They weave together the apparent objectivity of technology with the inherently subjective craft of visual communication. D3.js in Action delivers against these demands.

 This is a book that is to be used. “In Action” reflects the applied nature of the teaching it delivers with relevant examples, valuable exercises, and inspiring case studies helping learners to take their learning from the page and put it into practice.

 This is a book that promotes being useful. The essence of doing things because you should, not because you could, is a persistent theme. You want to make functionally cool things? Of course. You wish to make aesthetically beautiful things? Who doesn’t? This book will satisfy those cravings but through the lens of what is right and what is relevant. Your results will be useful to the people they’re designed for.

 The book is also about visualization that is usable. To design visualizations effectively is to create work that is responsive to the myriad platforms through which it may be consumed, elegantly adapting to different shapes, sizes, and feature compatibilities. To be usable, visualizations must also be equally accessible for all characteristics and abilities of the people using them. This text gives due importance to this often-neglected topic.

 The foundations of this book, through its early editions, come from the vital work of Elijah Meeks, who has been a champion developer, a prominent promoter of community and better practices, and a thoughtful critic of data visualization practice from his real-world perspective developing data visualizations in industry.

 Anne-Marie Dufour is the perfect candidate to have taken on this new edition for the latest cohort of learners. She possesses that rare combination of being a highly accomplished data visualization developer and having a keen eye for design and instinct for creativity. Her substantial technical and communicative talents are perfectly supplemented by a natural flair for breaking down complex subjects into digestible and understandable parts. Anne-Marie’s own learning journey informs how she helps others, and there is no better person to take the wheel and drive you through this exciting subject.

 Andy Kirk

 Independent Data Visualization Expert

 preface

 Back in 2017, I was working as a frontend developer and found myself yearning for my next professional step. Although I enjoyed developing websites, something was missing. I was looking to bridge my background in engineering and my love for teaching with my new coding skills. That’s when my partner suggested I have a look at data visualization. For some reason, he thought I’d enjoy exploring this booming field. When I googled “data visualization,” I stumbled upon the project Data Sketches (www.datasketch.es) by Nadieh Bremer and Shirley Wu. Like so many others, I was deeply inspired and knew I had to learn how to build such projects. That's when I discovered a library called D3.js that they used to create their work.

 I started to learn D3 here and there, subscribing to courses and reading blog posts. But my frustration kept growing as I discovered that many of the code snippets I was learning were outdated. I was confused by the lack of a straightforward step-by-step approach to learning and building D3 projects. When the first wave of the COVID-19 pandemic hit and the world went into shutdown, I finally had time to sit down and start building my first projects. Slowly, the philosophy behind D3 began to make sense and became more and more intuitive.

 A while later, thanks to a kind nudge from Andy Kirk, I was contacted by Nicole Butterfield at Manning. She told me they were looking to build a course about D3 and asked if I’d be interested. With all the enthusiasm from my first dataviz projects, I jumped headfirst into that challenge and started to put together a strategy for learning D3. After a few months, Interactive Visualization with D3.js (http://mng.bz/jXrz) came to life.

 While building this course with the second edition of D3.js in Action as a reference, my early frustrations came back. Much had changed with D3 since the book’s release, keeping us from using it to its full potential. In all my naiveté, I suggested to Nicole that I’d be willing to update the book and was lucky that Elijah and Manning allowed me to add my touch to this manuscript and bring my vision to life.

 With this new edition, I wish to provide you, the reader, with a road map toward creating unique and insightful data visualizations. This book and the projects it contains will help you learn the basics and the more advanced concepts, and I hope it will serve you as a reference for years to come.

 acknowledgments

 Before working on this manuscript, I had a vague idea that writing a book would be a ton of work, and it is. But little did I know how many people are crucial to bringing such a project to life. First, I’d like to thank Nicole Butterfield and Brian Sawyer at Manning, who believed in my ability to produce this new edition and gave me the green light to get started. I’m also grateful to Elijah Meeks for allowing me to mess with his work. I can only imagine the weird feeling of having somebody you barely know making your baby their own. Thanks a ton for your trust!

 A huge shoutout goes to Elesha Hyde, my content editor at Manning, and Jon Borgman, my technical editor and a senior software engineer with 20+ years of full-stack engineering and architect experience. I’ve worked closely with both of them for the past year and a half. They have been my cheerleaders along the way, and this book wouldn’t be half as good without their thoughtful reviews.

 A massive team of people worked behind the scenes at Manning to make this book possible—some of whom I’ve been briefly in contact with, some I didn’t have the chance to meet. Thank you so much for your dedicated work! To all the reviewers: Alain Couniot, Alain Lompo, Amogh Raghunath, Art Bergquist, Ashley Eatly, Chris Thomas, Deborah Mesquita, Elena Ghisalberti, Eli Rabinovitz, Esref Durna, Gregorio Piccoli, Hans Donner, James J Byleckie, Jereme Allen, Jonathan Boiser, Juan M. Carrillo de Gea, Leonard Grey, Mario Ruiz, Michael Bright, Patrice Maldague, Pierfrancesco D’Orsogna, Prasanth Rasam, Rodney Weis, Simon Verhoeven, Sriram Macharla, Thamizh Arasu S., and Yves Dorfsman—your suggestions helped make this a better book.

 Another thank-you goes to my small but mighty network of friends in the field of data visualization. Inbal Rief, Cédric Scherer, and Georgios Karamanis, you have witnessed all the big moments. From the “I got the gig!” to the numerous “I’m almost to the end . . . not quite yet, but almost.” Your early reviews, design feedback, and constant enthusiasm encouraged me along the way. In addition, thanks to Andy Kirk, who, in his continued kindness, agreed to write the foreword to this piece. We are many who consider you as one of the leading mentors of data visualization. Thank you for all that you do for our craft!

 Finally, it proved impossible to have a healthy work-life balance while working on this project, and I couldn’t have done it without my team at home. Ádám, you are my rock. Thank you for supporting me in all my wild endeavors! Albert and Arnó, thank you for all the hugs and kisses during those long hours at my desk. I hope you’ll enjoy taking a peek at this book, knowing you were right by my side while I created it.

 about this book

 Who should read this book

 This book is for all those who want total creative freedom with their data visualization work, from customized classical charts to creating unique data visualization layouts. You might come from a data analysis background, be a journalist, a designer, or even a dataviz enthusiast. Congrats for considering learning D3.js! You’ll quickly realize that this is a wise investment of your time. By mastering D3, you’ll unlock a level of freedom and potential for creativity that is unmatched by the gazillion data visualization tools available today.

 How this book is organized: A road map

 As you may know, D3 lives within an ecosystem of frontend development tools: HTML, CSS, and JavaScript. Before you dive into chapter 2, you’ll want to ensure that you understand the basics of those tools and how we combine them to create beautiful and interactive web pages. By no means do you need to be an expert, but a little prior knowledge will make your D3 learning experience way more manageable. If you’re looking to brush up your frontend development skills, we recommend the following resources:

 	 2023 Web Development Bootcamp by Maximilian Schwarzmüller (http://mng.bz/WEe4)

 	 Complete Intro to Web Development by Frontend Masters (http://mng.bz/8wyZ)

 This book is organized in a progressive fashion. Part 1 covers the fundamentals such as working with data and creating simple charts, while part 2 focuses on meeting the new digital expectations by making our projects interactive and responsive, improving their accessibility, and combining D3 with a JavaScript framework such as React or Svelte. Each chapter in part 3 covers more advanced data visualizations: hierarchies, networks, and maps. Finally, in part 4, we invite you behind the scenes of the creation of a fully customized visualization layout, and we discuss performance and how to combine D3 with Canvas.

 If you’re new to D3, we recommend you go through chapters 1 to 7 in order. Those early chapters will help you build your mental model of D3 and ensure you have all the building blocks in your toolbox before approaching more advanced topics. D3 has a bad reputation for having a steep learning curve, but by following the steps from those early chapters, it can become very intuitive.

 If you have prior D3 knowledge and are comfortable with the basics, you might want to pick your own adventure. Chapters 8 to 15 focus on specific concepts or chart types, and it might be worth reading them when your current projects call for this knowledge.

 But to all of you, we highly recommend that you not only READ the book but that you DO the book. Each chapter contains its own data visualization project(s), which were crafted to help you integrate the concepts explained in the text. Putting those notions into practice will make all the difference in the world, making your learning journey smoother and swifter.

 For each project and exercise, you can access the starting code files and solutions on the book’s GitHub repository (http://mng.bz/Xqjv). You’ll also find the solutions to the exercises in appendix D. All the code files and code snippets in this book use D3 Version 7, which is the latest at the time of writing. To run and edit the code, you’ll need only a code editor and a browser. We recommend VS Code and Chrome or Firefox.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight what has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/d3js-in-action-third-edition. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/d3js-in-action-third-edition, and from GitHub at http://mng.bz/Xqjv.

 liveBook discussion forum

 The purchase of D3.js in Action, Third Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/d3js-in-action-third-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the authors

 Elijah Meeks has spent the past two decades working with data visualization at some of the most dynamic organizations in the world, including Stanford, Netflix, and Apple. He cofounded Noteable, a start-up focused on the intersection of computational notebooks, business intelligence, and AI. He was also the cofounder and is the current publications director of the Data Visualization Society, a professional society dedicated to advancing the field of data visualization. At present, he is a principal engineer at Confluent.

 Elijah is a prolific writer and speaker on the topic of data visualization, including authoring D3.js in Action from Manning and creating the Pearson video series Designing for the Data Visualization Lifecycle. He is the author of libraries such as Semiotic, as well as interactive works such as ORBIS: The Transportation Network Model of the Roman Empire.

 Anne-Marie Dufour has an original background in mechanical engineering, computational fluid dynamics, and frontend development. She specialized in data visualization to combine her love for science, coding, design, and teaching. This unique skill set has helped her develop a solid understanding of how data visualization can help us grasp complex phenomena and realities and how to translate them into modern web applications. She currently works as a data visualization engineer at PingThings.

 While teaching diverse engineering subjects such as fluid dynamics, heat transfer, and the environmental and social impacts of engineering projects, she developed a strong sense for how to structure information and present it in a digestible yet challenging way to keep students motivated and eager to learn. Recently she has created the liveProject series Interactive Visualization with D3.js for Manning Publications.

 about the cover illustration

 The figure on the cover of D3.js in Action, Third Edition, “Habit of a Moorish Pilgrim Returning from Mecca in 1586,” is taken from a book by Thomas Jefferys, published between 1757 and 1772.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 D3.js fundamentals

 Welcome to the world of D3.js! We know you are impatient to build mind-blowing data visualizations. You’re going to get there soon, we promise! But first, let’s make sure that you get the basics right. The notions you’ll encounter in this section are the ones you’ll meet repeatedly in your D3 journey, and understanding them in depth will give you a definite advantage once you approach more complex visualizations.

 In chapter 1, we’ll discuss why and when someone might want to use D3 and its ecosystem. We’ll also introduce concepts that will support your learning: drawing Scalable Vector Graphics (SVG) shapes, manipulating data with JavaScript, and method chaining.

 Then, in chapters 2 and 3, we’ll use D3 to build our first data visualization: a bar chart. For that, we’ll discuss how to manipulate the document object model (DOM) and work with data. In chapters 4 and 5, we’ll already build more complex visualizations with the help of D3’s shape and layout generators. We’ll finish this part in chapter 6 by discussing distributions, a subject that all data visualization practitioners meet from time to time.

1 An introduction to D3.js

 This chapter covers

 	Understanding the role of D3.js and the philosophy behind it

 	Recognizing the tools used in combination with D3.js to create data visualizations

 	Creating and styling Scalable Vector Graphics (SVG) with code

 	Learning how data visualization best practices support your journey as a D3.js developer

 Given the plethora of data visualization tools that emerged in the past decade, you might wonder if learning D3 is worth the trouble. Let us be clear: learning D3 is a wise investment. Although the learning curve can be steep and require dedication, you’ll not only be rewarded with the ability to create all the traditional charts that other libraries offer and customize them at will but also gain the freedom to get off the beaten track and create visualizations that are truly tailored to your data and audience.

 D3.js is the library behind most of the exciting data visualizations on the web. It’s the tool of choice when you want total creative and technical freedom over your data visualizations, whether you make interactive prototypes for research, responsive data dashboards, or scrollytelling data stories such as “Why Budapest, Warsaw, and Lithuania split themselves in two” by Maarten Lambrechts, as shown in figure 1.1.

 [image: figure]

Figure 1.1 D3 developers have access to a wide range of data representations, such as maps. Here’s an example by Maarten Lambrechts (https://pudding.cool/2019/04/eu-regions/).

 In this first chapter, we’ll introduce D3’s ecosystem and a few concepts, such as SVG graphics and JavaScript object manipulation methods, which are crucial to comprehend before diving into digital data visualizations.

 Note Throughout the book, we’ll use the names D3.js and D3 interchangeably.

1.1 What is D3.js?

 D3.js stands for Data-Driven Documents. It’s an open source JavaScript library created in 2011 by Mike Bostock to generate dynamic and interactive data visualizations for the web. Many new data visualization libraries have been introduced since, but they generally use D3 under the hood, thanks to its power and flexibility.

1.1.1 A need for web-accessible data visualizations

 D3 was created to fill a pressing need for web-accessible, sophisticated data visualizations. Let’s say your company is using a business intelligence tool, but it doesn’t show the kind of patterns in the data that your team needs. They ask you to build a custom dashboard that shows exactly how your customers are behaving, tailored for your specific domain. That dashboard needs to be fast, interactive, and shareable around the organization. D3 is a natural choice for such a task.

 Or imagine that you’re hired to create a scrollytelling piece that visualizes how the rights of the LGBTQ+ community evolved in the past decades and across the world. This page should contain many creative visualizations that transform as the user scrolls, reveal more information with mouse events, and adapt to the size of the screen. D3 is the tool of choice to build such a project.

 Mike Bostock originally created D3 to take advantage of emerging web standards, which, as he puts it, “avoids proprietary representation and affords extraordinary flexibility, exposing the full capabilities of web standards such as CSS3, HTML5, and SVG” (http://d3js.org). D3.js version 7, the latest iteration of this popular library at the time of writing, continues this trend by modularizing the various pieces of D3 to make it fully compatible with ECMAScript modules to package JavaScript code for reuse and modern web development.

 D3.js affords developers the capacity to make richly interactive projects that are styled and served like traditional web content, such as “The Inside Scoop of Ben & Jerry’s” shown in figure 1.2. This makes them more portable, more amenable to growth, and more easily maintained by large groups where other team members might not know the specific syntax of D3.

 [image: figure]

Figure 1.2 D3 is a low-level library, giving us complete technical and creative freedom. This chord diagram is part of the project “The Inside Scoop of Ben & Jerry’s,” by Hesham Eissa and Lindsey Poulter (https://benjerry.heshlindsdataviz.com/).

 The decision on Bostock’s part to deal broadly with data and to create a library capable of presenting maps as easily as line charts and networks also means that a developer doesn’t need to understand the abstractions and syntax of one library for maps, another for dynamic SVG path creation, and yet another for networks. Instead, the code for running an interactive D3 network visualization is close to pure JavaScript and also similar to the code representing dynamic points on a D3 map. The methods are the same, but the data also could be the same, formulated in one way for the nodes and links of a network, while formulated in another way for geospatial representations on a map. Although the learning curve is steeper than with other tools, learning D3 is a wise investment.

 Not only can D3 create complex and varied graphics, it can embed the high level of interactivity that users expect, which is crucial to modern web development. With D3, every element of every chart, from a spinning globe to a slice of a pie chart, is made interactive in the same way. And because D3 was written by someone well-versed in data visualization practice, it includes interactive components and behaviors such as selecting nodes in a network, as shown in figure 1.3, that are standard in both data visualization and web development.

1.1.2 When do we use D3.js?

 The field of data visualization is enjoying a boom in popularity, and the number of tools available to generate data-bound graphics has exploded in the past decade. We have business intelligence tools such as Microsoft Excel, a common entryway to data visualization, and Power BI, the Microsoft solution to build dashboards. On the other hand, data scientists often turn to ggplot2 for R or Matplotlib for Python to visualize data.

 Browser-based point-and-click tools such as Tableau, Flourish, Datawrapper, and RAWGraphs have also taken the front of the scene, allowing you to create stunning work with minimal technical knowledge.

 Finally, JavaScript libraries such as Highcharts, Chart.js, and Plotly specialize in developing web-based interactive visualizations. And this list is far from being exhaustive.

 So where does D3 fall in this ocean of data visualization tools? When and how do we use it? We can probably say that although D3 can totally build any of the charts offered by the data visualization libraries listed here, it’s not usually the preferred option when building simple traditional charts or for the exploration phase, where we investigate which type of visualization is best suited to represent our data. Building D3 projects requires time, and D3 truly shines in complex, interactive, and custom-tailored projects. Data visualization is so much more than line charts and scatterplots! While the tools just mentioned often focus on predefined charts, D3 allows us to bind data to any graphical element and create something new, like the musical score in figure 1.4, by combining these visual elements in unique ways. We use D3 because we want the freedom to think outside the box and don’t want to be limited by what a library offers.

 [image: figure]

Figure 1.3 Interactivity is at the heart of D3. On this network visualization, mouse interactions reveal the relationships between different organizations as well as information specific to the selected node (http://mng.bz/QROG).

 [image: figure]

Figure 1.4 D3 has SVG and Canvas drawing functions, allowing developers to build custom visualizations such as this representation of musical scores by Elijah Meeks.

 Here’s an example of how we can use D3 within the scope of a data visualization project. First, we start with a preexisting dataset or with data gathered manually. We usually spend a significant amount of time cleaning, formatting, and preparing the data before beginning the data analysis process. Programming languages such as Python and R are powerful for this purpose and can help us identify the story hidden within the data. Excel can also do the job for simple data wrangling and data analysis, and it requires a less technical background. We can even use JavaScript and D3 for basic data exploration, as they offer statistical methods that we’ll discuss later in this book.

 Once the data analysis is underway, it’s common to create a few prototypes that help refine our story. Tools like Tableau and RAWGraphs allow us to generate such charts quickly. That’s a super important step, and the visualizations created during this phase aren’t usually fancy or refined. We don’t want to get too attached to our ideas during this prototyping phase by spending a lot of time on them. We might find ourselves having to “kill our darlings” and start over a few times until we identify the best-suited visualization for the story we want to tell. Network diagrams might be an exception here, and jumping right into D3 generally makes sense for these projects.

 Finally, once we know the type of visualization we’ll create, like the Sankey diagram in figure 1.5, it’s time to roll up our sleeves and code it with D3! Nowadays, the coding step often occurs within single-page applications (SPAs), using frameworks such as React or Svelte.

 [image: figure]

Figure 1.5 “A portfolio of inclusive businesses for a sustainable future” is an award-winning project created by Voilà: (https://chezvoila.com/project/findevportfolio/).

1.1.3 How D3.js works

 You might have already experimented with D3 and found that it isn’t easy to get into. Maybe that’s because you expected it to work like a charting library. A case in point is creating a bar chart, which we’ll do in chapters 2 and 3. D3 doesn’t have one single function to create a bar chart. Instead, it has a function that appends an <svg> container into the document object model (DOM) and another set of functions that appends one <rect> element for each data point. We then use scales to calculate the length of the rectangles that compose our histogram and set their height attributes. Finally, we call another set of functions that adds an x- and a y-axis to the bar chart.

 As you can see in figure 1.6, it’s a much longer process than using a dedicated charting library such as Highcharts. But the explicit manner in which D3 deals with data and graphics is also its strength. Although other charting libraries conveniently allow you to make line charts and pie charts quickly, they often break down when you want to create a visualization that falls outside of the traditional charts spectrum or when it comes to implementing custom interactions. Not D3—it allows you to build whatever data-driven graphics and interactivity you can imagine.

 In figure 1.7, you see a mind map of how we generally approach the coding of a data visualization with D3. We start with a dataset, often a CSV or a JSON file, and we use the d3-fetch module to load this dataset into our project. We then usually need to perform a few manipulations to format the data. For example, we ensure that our numbers and dates are correctly formatted. If we didn’t do it previously, we might also want to interrogate our dataset to find its main characteristics. For instance, knowing its maximum and minimum values in advance is often helpful. We’re then ready to start building our visualization, for which we’ll combine the different D3 functions that you’ll learn in this book. Finally, we add interactivity by listening to mouse events, allowing users to filter the data or zoom in on the visualization.

 [image: figure]

Figure 1.6 A bar chart generated with Highcharts vs. with D3.js. The Highcharts’ code is simpler and shorter, but D3.js is more versatile.

 [image: figure]

Figure 1.7 How to approach data visualization with D3.js

 Interview with Elijah Meeks

 Meeks is a data visualization engineer and the author of the first two editions of D3.js in Action.

 Can you tell us a little bit about your background and how you entered the field of data visualization?

 I’ve done data visualization work in some form or another for almost 15 years at organizations like Apple, Netflix, the Data Visualization Society, Stanford, and at Noteable, a startup I cofounded. I got into data visualization in an unconventional way, starting with GIS (Geographic Information System) to support my PhD work on state formation in early China. From there, I started to work with network visualization and, later, finally began to make bar charts and line charts.

 How did you discover D3, and what inspired you to learn more about this library?

 Early on in my career, I used Flash with ActionScript3 to create interactive apps that used data visualization. When it became clear that Flash was dying, I started to explore Protovis as an alternative, which was quickly replaced by D3. The more I understood D3, the more I understood data visualization. More than that, I found using D3 to visualize data helped me learn more about data structures, analytics, and machine learning.

 You wrote the first two editions of D3.js in Action at a time when there weren’t a lot of D3-related resources available. How did this project come to life?

 I’ll always be grateful for the opportunity Manning gave me to write those books. That work forced me to understand D3 more fully and comprehensively than I did just using it for projects. Writing about how to use D3 caused me to grow more ambitious in my usage and in planning the content of the book. The first edition included examples for how to use D3 almost as an MVC to create HTML content, creating custom touch events on your charts for phones or tablets, alongside making your own layouts, generators, and components. The second edition dropped some of that in favor of more practical content like integrating D3 with React.

 You’ve played a vital role in the data visualization field over the past decade, starting as the first data visualization engineer at Netflix and later becoming the CIO of Noteable. During this time, you’ve witnessed significant transformations in the industry. What are your thoughts on how data visualization development has evolved over the years, and where do you believe it’s headed?

 I’m a firm believer in eras in any culture, and data visualization practice is no different. We started with computers providing us with simple charting options in order to visualize tabular data (like charts in Excel). When D3 came out, the energy of the community was on exploring that grammar of graphics and understanding how you could use encoding to create ever more sophisticated and dynamic charts. Now we’re at a point when there are enough examples of data visualization across domains (whether business intelligence, journalism, or data science) that the expectations for the data visualization products being made cross boundaries that in earlier periods seemed very distinct. Rather than focusing on novel charts, we see a focus on more integrated data visualization approaches that allow different roles with different skills and expectations to work on the same data-driven products.

1.2 The D3 ecosystem: What you need to know to get started

 D3.js is never used alone but rather is part of an ecosystem of technologies and tools that we combine to create rich web interfaces. Like any web page, D3 projects are built within the DOM and use the power of HTML5. Although D3 can create and manipulate traditional HTML elements such as divisions (<div>) and lists (,), we mainly generate our visualizations with SVG graphics or within Canvas, an HTML element that renders bitmap images from scripts. Then we might also use good old CSS stylesheets, which can enhance D3 projects and make their design easier to maintain, especially across broad teams.

 Given that D3 is a JavaScript library, we naturally tend to combine D3 methods with native JavaScript functions to access and manipulate the data. D3 now fully supports the ECMAScript 2015 or ES6 revision of JavaScript and most of the latest updates. D3 also comes as modules that can be integrated into the recent frameworks and libraries we build web projects with (React, Svelte, etc.). Using these modules is often the preferred approach because it doesn’t pollute the global scope of our applications.

 In this section, we’ll briefly discuss these technologies and their role in the D3 ecosystem. Because SVG knowledge is foundational to understanding D3, we’ll spend time explaining in greater detail the basics that you’ll need to comprehend to start building visualizations. If you’re already familiar with HTML, SVG elements, CSS, JavaScript, and JavaScript modules, feel free to skim or skip ahead to section 1.3.

1.2.1 HTML and the DOM

 When you land on a web page, the first file to be loaded is an HTML file, like the following example. The browser parses the HTML file to build the DOM, the programming interface used for web documents. We often refer to it as the DOM tree because it consists of a set of nested elements, also called nodes or tags. In our example, the <head> and the <body> elements are children of the <html> parent. Similarly, the <body> tag is the parent of the <h1>, the <div>, and the <p> tags. The <h1> title is also a sibling of the <div> element. When you load a web page, what you see on the screen are the elements contained within the <body> tag:

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>A simple HTML file | D3.js in Action</title>
 </head>
 <body>
 <h1>I am a title</h1>
 <div>
 <p>I am a paragraph.</p>
 <p>I am another paragraph.</p>
 </div>
 </body>
</html>

 In the DOM, three categories of information about each element define its behavior and appearance: styles, attributes, and properties. Styles determine color, size, borders, opacity, and so on. Attributes include classes and IDs, though some attributes can also determine appearance, depending on which type of element you’re dealing with. For SVG elements, attributes are used to set the position, size, and proportions of the different shapes. Properties typically refer to states, such as the “checked” property of a check box, which is true if the box is checked and false if the box is unchecked. Although the terms “attribute” and “property” are often used interchangeably, they’re two separate things. An attribute appears as the initial state when the DOM is rendered. A property is the current state of an element and can change as the user interacts with the interface. In chapter 2, we’ll discuss the D3 methods used to generate or modify the styles and attributes of HTML and SVG elements.

 The DOM also determines the onscreen drawing order of elements, with child elements drawn after and inside parent elements. Although the CSS property z-index gives us partial control over the order in which traditional HTML elements are drawn onto the screen, SVG elements strictly follow the order in which they appear in the DOM. Per the painter’s model, what is drawn after appears on top of what was drawn before.

1.2.2 Scalable Vector Graphics

 The introduction of Scalable Vector Graphics (SVG) changed the face of the web—literally. Within a few years, SVG became a major web development tool. While raster graphics (PNG and JPG) are composed of tiny pixels that become visible when we zoom in too close, vector graphics are built with math and geometry. They maintain a crisp look at any size and any screen resolution. Another considerable advantage of SVG graphics is that they can be injected directly into the DOM, allowing developers to manipulate and animate their elements and making them accessible to screen readers. If built properly, SVG graphics are also performant, as their file size is only a fraction of their equivalent raster images.

 When creating data visualizations with D3, we usually inject SVG shapes into the DOM and modify their attributes to generate the visual elements that compose the visualization. Understanding how SVG works, the main SVG shapes, and their presentational attributes is essential to most D3 projects. In this section, we’ll cover the SVG shapes that you’ll keep reusing over and over throughout your D3 project. If you’re not familiar with SVG, take the time to code along with us. We promise it will make working with D3 way easier down the road.

 How to access the code files

 Every chapter in this book includes code-along exercises designed to support your learning experience. We highly recommend that you “do” the book rather than just “read” the book, which means completing the exercises as you read the chapters. You’ll retain much more information this way and will soon be on your way to building your own D3 projects! For every exercise and project, you have access to ready-to-use code files. You can find them on the book’s GitHub repository (http://mng.bz/Xqjv). If you’re familiar with Git, you can clone the repository on your computer. You can also download the zipped files.

 [image: sidebar figure]
 Download the code files from the GitHub repository.

 Each chapter has its own folder that contains one or multiple exercises numbered per the sections in each chapter. The exercises include a start folder containing all the files you need to get started. You’ll find the complete solution to the exercise in the end folder. As you progress through a chapter’s sections, you can keep coding in the file you used for the previous section or start anew with the folder dedicated to that section. Both options will lead to the same result.

 Let’s start exploring vector graphics. Go to the code files provided with this book. Find the end folder in chapter_01/SVG_Shapes_Gallery, and right-click on the index.html file. In the menu, go to Open With, and select a browser. We recommend working with Chrome or Firefox for their great inspector tools. The file will open in a new browser tab, and the vector graphic that you see in figure 1.8 will appear. You can also view these SVG shapes on the GitHub-hosted project (http://mng.bz/yZmB).

 [image: figure]

Figure 1.8 Gallery of fundamental SVG shapes that we’ll build in this section

 The SVG graphic you’re looking at contains the shapes you’ll use most often as you create D3 visualizations: lines, rectangles, circles, ellipses, paths, and text.

 When working with D3, you usually tell the library which shapes it should append to the DOM. You’re also responsible for knowing which presentational attributes need to be included for the shapes to have the dimensions, color, and position that you’re looking for. In the following exercise, you’ll write the code that creates each of the SVG elements from figure 1.8. We’ll refer to this exercise as our Gallery of SVG Shapes. Afterwards, you’ll know all the SVG basics you need to get started.

 Open the index.html file from the start folder of exercise SVG_Shapes_Gallery in your code editor of choice. We recommend Visual Studio Code (VS Code), a code editor that is free, easy to use, and has multiple functionalities that you’ll find helpful for frontend development.

 As you can see in listing 1.1, index.html is a simple HTML file. If you open this file in your browser (right-click on the file and choose a browser in the Open With menu), you’ll only see a blank page because the <body> element is empty. In the next subsections, we’ll add SVG shapes into this <body> element.

Listing 1.1 Starting HTML for the Gallery of SVG Shapes exercise

 <!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>SVG Shapes Gallery | D3.js in Action</title>
</head>
<body>

</body>
</html>

 Where to find more information

 The following sections will introduce multiple SVG elements and their attributes. As frontend developers, we heavily rely on online resources when building our projects, using SVG elements that we’re not familiar with, or looking for a JavaScript function to perform a specific action. MDN Web Docs (https://developer.mozilla.org/) is always a reliable and comprehensive resource. It contains easy-to-understand and often editable examples of SVG elements and their attributes, CSS properties, and JavaScript functions.

 Responsive SVG container

 In the world of SVG graphics, the <svg> container is the whiteboard on which we draw. Every single SVG shape is nested inside a <svg> parent. To see it in action, edit index.html, and add an SVG container inside the <body> element. Reload your page in the browser. Nothing is visible yet:

 <body>
 <svg></svg>
</body>

 Open the inspector tool of your browser (right-click in your browser window, and choose Inspect). Within the inspector window, you’ll see the DOM that composes the page. Find the <svg></svg> container, also called the SVG node. When you pass your mouse over it in the inspector, the SVG element gets highlighted on the page. You can see this effect in figure 1.9.

 [image: figure]

Figure 1.9 SVG node selected in the DOM tree and highlighted in the viewport

 By default, the browser gives a width of 300 px and a height of 150 px to the SVG container. But we can also use attributes to assign these values. Attributes are there to provide additional information about HTML elements. With inline SVG, we mainly use attributes to set the size and positions of the shapes that compose an SVG graphic.

 For example, we can set the width and height attributes of an SVG element. Go back to your text editor, and add a width and a height attribute to the SVG container. Set their values to 900 and 300, respectively, and save the file:

 <svg width="900" height="300"></svg>

 Reload your project in the browser, and find the SVG node in the inspector tool. Note that the width and height attributes now appear on the SVG element. If you pass your mouse over the SVG node in the DOM tree of the inspector tool, you’ll also see that the SVG container in the viewport now has a size of 900 px by 300 px, as shown in figure 1.10.

 [image: figure]

Figure 1.10 SVG node taking the size specified by its attributes

 To help us see the SVG container without having to highlight it from the inspector, let’s give it a border. Add a style attribute to the SVG element, and insert the CSS border property. In the next snippet, we used the border shorthand property to create a black, solid border of 1 px width:

 <svg width="900" height="300" style="border:1px solid black;"></svg>

 Save your file, reload the page, and confirm that there is a border around your SVG container. Now resize your browser window until it’s smaller than the SVG container. You’ll observe that the SVG container keeps a fixed width and height and doesn’t adapt to the browser window’s size. Let’s try to make our SVG container responsive (adapting automatically to the window size).

 Previously, we’ve set the SVG attributes as absolute values (900 and 300), and the browser interpreted them as measurements in pixels (900 px and 300 px). But we can also use percentages. In your text editor, change the width attribute to a relative value of "100%", save the file, and reload the page:

 <svg width="100%" height="300" style="border:1px solid black;"></svg>

 Resize your browser again, and notice how the SVG takes the full width available and keeps a fixed height of 300 px. That’s better, but we’ve lost our original aspect ratio.

 To make responsive SVG elements, we can use the viewBox attribute. In your code editor, remove the width and the height attributes from the SVG container, and replace them with a viewBox attribute. Give it a value of "0 0 900 300":

 <svg viewBox="0 0 900 300" style="border:1px solid black;"></svg>

 Play again with resizing your browser window. What do you notice? The SVG container now adapts to any screen size while maintaining its aspect ratio of 900:300. We have a responsive SVG!

 As you’ve seen, the viewBox attribute consists of a list of four values. The first two numbers specify the origin of the coordinate system of the viewBox (x and y). In this book, we’ll always use 0 0, but it’s good to know that these values can change which portion of the SVG container is visible on the screen. The last two numbers of the viewBox attribute are its width and height. They define the aspect ratio of the SVG and ensure that it scales perfectly to fit within any container without distortion.

 Fitting within a container is the key here. So far, the container of our inline SVG is the <body> element, which generally extends to fit the browser’s viewport. If the viewport gets very large, the SVG gets very large too. Usually, we want our SVG to have a maximum width so that it doesn’t get larger than the rest of the content on the page. To do so, wrap the SVG container inside a div with a width of 100% and a max-width of 1200px. For simplicity, we’ve set these properties as inline styles. Note that we’ve also added a margin of value 0 auto to center the SVG horizontally on the page:

 <div style="width:100%; max-width:1200px; margin:0 auto;">
 <svg viewBox="0 0 900 300" style="border:1px solid black;"> ... </svg>
</div>

 Try resizing your browser one more time and see how our SVG adapts gracefully to any screen size while respecting the maximum width of its container. This strategy is helpful to inject D3 visualizations into responsive web pages, and we’ll use it throughout the book.

 SVG coordinate system

 Now that you know how to make inline SVG responsive, it’s important to address how the SVG shapes are positioned within the SVG container. The SVG container is like a blank sheet on which we draw vectorial shapes. Vectorial shapes are defined with basic geometric principles and positioned in reference to the coordinate system of the SVG container.

 The SVG coordinate system is similar to the Cartesian coordinate system. Its 2D plane uses two perpendicular axes to determine the position of elements, referred to as x and y. These two axes originate from the top-left corner of the SVG container, as you can see in figure 1.11. It means that the positive direction of the y-axis goes from top to bottom. Remembering this will save you from a few headaches!

 [image: figure]

Figure 1.11 Coordinate system of the SVG container and position of an element

 To position an element inside the SVG container, we start from the origin at the top-left corner and move toward the right. This will give us the horizontal position (x) of the element. For the vertical position (y), we start at the top and move down. These positions are defined by the presentational attributes of each SVG shape.

 We’ll now look at the SVG shapes that you’ll often meet while building D3 projects. We’ll also discuss their main presentational attributes. The goal here is by no means to write a comprehensive guide to all the shapes and features SVG has to offer, but rather to cover the basic knowledge that will support your D3 journey.

 Data visualization tip: Geometric primitives

 Accomplished artists can draw anything with vector graphics, but you’re probably looking at D3 with more pragmatic goals in mind. From that perspective, it’s essential to understand the concept of geometric primitives (also known as graphical primitives). Geometric primitives are simple shapes such as points, lines, circles, and rectangles. These shapes, which can be combined to make more complex graphics, are particularly convenient for displaying information visually.

 Primitives are also useful for understanding complex information visualizations that you see in the real world. Tree layouts, like the ones we’ll build in chapter 11, are far less intimidating when you realize they’re only circles and lines. Interactive timelines are easier to understand and create when you think of them as collections of rectangles and points. Even geographic data, which primarily comes in the form of polygons, points, and lines, is less confusing when you break it down into its most basic graphical structures.

 Line

 The line element is probably the simplest of all SVG shapes. It takes the position of two points, set as attributes, and draws a straight line between them. Go back to the index.html file, and add a <line /> element inside the SVG container. Declare its attributes x1 and y1, and give them a value of 50 and 45, respectively. This means that the starting point of our line is positioned at (50, 45) in the coordinate system of the SVG container. If you start at the top-left corner of the SVG container and move 50 px to the right and 45 px down, you’ll meet the line’s starting point. Similarly, set the line’s endpoint to (140, 225) using the attributes x2 and y2, as in figure 1.12:

 <svg>
 <line x1="50" y1="45" x2="140" y2="225" />
</svg>

 [image: figure]

Figure 1.12 Positioning a line element in the coordinate system of an SVG container

 If you save and reload your project, your line won’t be visible, and you might wonder what’s going on. For an SVG line to be visible on the screen, we also need to set its stroke attribute, which controls the line’s color. The value of the stroke attribute is similar to the CSS color property. It can be a color name (black, blue, etc.), an RGB color (rgb(255,0,0)), or a hexadecimal value (#808080). Add a stroke attribute to your line, and give it the color of your choice (we used black). It should now be visible on the screen:

 <line x1="50" y1="45" x2="140" y2="225" stroke="black" />

 If we want to set the width of the line, we use the stroke-width attribute. This attribute accepts an absolute number, which translates into pixels, or a relative value (%). For example, the following line will have a stroke-width of 3 px. If the stroke-width attribute isn’t declared, the browser applies a default value of 1 px:

 <line x1="50" y1="45" x2="140" y2="225" stroke="black" stroke-width="3" />

 Open the inspector tool of your browser, and find the SVG node and the line it contains. Double-click on one of the attributes, change its value, and observe how the new value modifies the line’s starting or endpoint. Take the time to play with different values to confirm that you understand how the attributes x1, y1, x2, and y2 affect the position and length of the line.

 Now give a value of -20 to the x1 attribute. Do you see how the starting point of the line disappeared, as shown in figure 1.13? Any shape or portion of a shape that falls outside of the SVG viewBox is not visible on the screen. The element still exists in the DOM, though, so we can access and manipulate it. If an element in your SVG isn’t visible and you don’t know why, the first thing to check is if it’s outside of the SVG viewBox! Remember that you can always find it by using the developer tools to inspect the DOM. As we did earlier, if you pass your mouse over the element in the inspector tool, it will be highlighted in the viewport, even if it’s outside of the SVG viewBox.

 [image: figure]

Figure 1.13 SVG line partially hidden when outside of the SVG container

 Note Most SVG elements need only a self-closing tag (we use <line /> rather than <line></line>). Like some of the other HTML tags, the inherent structure of SVG elements provide all the required information within the self-closing tag. This will be different for SVG text elements, where the text is placed between an opening and a closing tag.

 Rectangle

 As its name suggests, the rectangle element <rect /> draws a rectangular shape on the screen. The <rect /> element requires four attributes to be visible. The attributes x and y declare the position of the rectangle’s top-left corner, while the attributes width and height respectively control its width and height, as shown in figure 1.14. Add the following <rect /> element and its attributes in your SVG container:

 <rect x="260" y="25" width="120" height="60" fill="#6ba5d7" />

 In our example, the top-left corner of the rectangle is positioned 260 px to the right and 25 px below the origin of the SVG container. It has a width of 120 px and a height of 60 px. As with other positional attributes, we can set these values using percentages instead of absolute numbers. For instance, if we set the width attribute to 50%, the rectangle will spread on half of the width of the SVG container.

 [image: figure]

Figure 1.14 Positioning and sizing a rectangle in the coordinate system of an SVG container

 You might have noticed that our rectangle is black at first. By default, browsers apply a black fill to most SVG shapes. We can change that color by setting the fill attribute and giving it any CSS color property. If we want to add a border to the rectangle, we add a stroke attribute. Figure 1.15 shows a few examples. Note how no border is drawn around the rectangle if you don’t declare a stroke attribute. In addition, in the last rectangle, the attributes fill-opacity and stroke-opacity are used to make both the fill and the stroke semitransparent. Like in CSS, the opacity can be set as an absolute value (between 0 and 1) or a percentage (30%). All the attributes related to the fill and the stroke can also be set or modified from a CSS file.

 [image: figure]

Figure 1.15 Different styling attributes applied to rectangle SVG shapes

 If you want your rectangle to have rounded corners, you simply need to add the rx and ry attributes, which, respectively, represent the horizontal and vertical corner radius. These attributes accept absolute (in pixels) and relative values (percentages). For example, each corner of the rectangle in the following code has a radius of 20 px. Add this rectangle to your gallery of shapes:

 <rect x="260" y="100" width="120" height="60" rx="20" ry="20"
fill="#6ba5d7" />

 At this point, you might wonder if there is an element to draw square shapes in SVG. We don’t need one! In SVG, we draw squares with <rect /> elements by giving them equal width and height attributes. For example, the following <rect /> element will draw a square of 60 px × 60 px. Add it to your gallery of shapes as well:

 <rect x="260" y="175" width="60" height="60" fill="transparent"
stroke="#6ba5d7" />

 As a reference, we now have three types of SVG rectangles in our gallery of shapes: a classic rectangle, a rectangle with rounded corners, and a square. For fun, we gave them a color of #6ba5d7 and played with their stroke and fill attributes. Note that only the stroke is visible on the square because its fill attribute has a value of transparent (none would be the same). Your rectangles should look similar to the ones in figure 1.16, unless you used different attributes, which we encourage you to do:

 <rect x="260" y="25" width="120" height="60" fill="#6ba5d7" />
<rect x="260" y="100" width="120" height="60" rx="20" ry="20"
↪ fill="#6ba5d7" />
<rect x="260" y="175" width="60" height="60" fill="transparent"
↪ stroke="#6ba5d7" />

 [image: figure]

Figure 1.16 Three types of SVG rectangles

 The position of SVG strokes

 Something to keep in mind when you’re trying to align shapes in a visualization is that strokes are drawn evenly over the inside and the outside border of SVG shapes by default. As you can see in the following figure, if a rectangle has a width attribute of 40 px, applying a stroke-width of 1 will visually add 0.5 px to the left and 0.5 px to the right of the rectangle (and not 1 px to each side like we might instinctively think), for an actual total width of 41 px. If the stroke-width is 2, it will add 1 px to each side, and so on.

 [image: sidebar figure]
 Effect of the stroke-width on the actual width of an SVG shape

 Circle and ellipse

 Circular shapes are used regularly in data visualization. They naturally attract the eye and make the visualization feel more friendly and playful. We draw SVG circles with the <circle /> element. Its required attributes are the position of the center of the circle (cx, cy) and its radius (r), as shown in figure 1.17. A circle’s radius is the length of a line drawn from its center to any point on its circumference. Add the following circle to your gallery of shapes. Position its center at (530, 80), and give it a radius of 50 px:

 <circle cx="530" cy="80" r="50" />

 [image: figure]

Figure 1.17 Positioning and sizing a circle and an ellipse in the coordinate system of an SVG container

 You can also play with the fill and the stroke attributes of the circle. To generate the one from our Gallery of shapes, we used a transparent fill and a stroke of 3 px with the color #81c21c.

 Similarly, the <ellipse /> element requires attributes for the position of the center of the shape (cx, cy). While circles have a constant radius, the radius of ellipses varies, giving them a flattened shape. We create this flattened effect by declaring a horizontal radius (rx) and a vertical radius (ry). Add the next snippet to your gallery. It will draw an ellipse below the circle, with a horizontal radius of 50 px and a vertical radius of 30 px:

 <ellipse cx="530" cy="205" rx="50" ry="30" />

 Path

 SVG paths are by far the most flexible of all the SVG elements. They are extensively used in D3 to draw pretty much all the complex shapes and curves that can’t be represented by one of the shape primitives discussed so far (line, rectangle, circle, and ellipse).

 We instruct the browser on how to draw a path by declaring its d attribute, which stands for “draw.” The d attribute contains a list of commands, from where to start drawing the path to the types of curves to use, up to specifying if we want the path to be a closed shape or not. As an example, add the following path element to your gallery of shapes:

 <path d="M680 150 C 710 80, 725 80, 755 150 S 810 220, 840 150" fill="none"
stroke="#773b9a" stroke-width="3" />

 In this example, illustrated in figure 1.18, the d attribute starts with M680 150, which means “move (M) to the coordinate (680, 150).” Then we draw a cubic Bézier curve from the starting point (680 150) to the endpoint specified by the last coordinate (840 150) in the d attribute. A cubic Bézier curve also needs control points to define how steep the curve is and the directions in which it bends. Those control points start right after the letter C (“cubic curve”) and stop right after the letter S (“stop”).

 [image: figure]

Figure 1.18 A simple SVG path and its control points

 Note For a deep dive into SVG paths, refer to MDN’s tutorial at http://mng.bz/amn7.

 Manually writing the d attribute is feasible for simple shapes but gets tedious as the shapes increase in complexity. Fortunately, D3 has powerful shape generators that calculate the d attribute for us. We’ll introduce them in chapter 4.

 Another important thing to remember about paths is that browsers will fill them with black color, unless we set their fill attribute to none or transparent. This is true even if the path isn’t closed, as in our example.

 Text

 One of the most significant advantages of inline SVG graphics is that the text they contain is available to screen readers. This is a big plus for accessibility. Because data visualizations often contain multiple labels, it’s necessary to understand how to manipulate SVG text using the <text> element. Let’s add labels to our gallery of shapes to understand the basic principles of SVG text.

 The SVG shapes discussed so far use a self-closing tag (<line />, <rect />, <path />, etc.). When working with SVG <text> elements, we need to use both an opening and a closing tag. We position the text to display in between these two tags. For example, let’s add a <text> element into our SVG that says “line”:

 <text>line</text>

 Save your file and reload the page. You might expect the text to appear at the top-left corner of the SVG container, but it’s nowhere to be seen. Why is that? By default, the position of SVG text is calculated in reference to its baseline, controlled by the dominant-baseline attribute. If the coordinate of the text’s baseline is (0, 0), you can see in figure 1.19 how the actual text ends up outside of the SVG container. Because any element positioned outside of the SVG container is invisible, we don’t see our text.

 [image: figure]

Figure 1.19 Text positioned outside of the SVG container

 Another point to consider when working with SVG text is how the content will flow. Regular HTML elements are positioned on the page following specific rules that control the flow of content. If you insert a bunch of <div> elements into your page, they will naturally stack one over another, and their text will break lines so that it never goes outside of their container. SVG text doesn’t flow at all, and we must set the x and y attributes of each text element individually. If we use these attributes to place our text at (60, 260), the label “line” will appear below the SVG line in our gallery of shapes:

 <text x="60" y="260">line</text>

 To practice, create a new text element that positions a label “rect” below the rectangle and square shapes.

 So far, we’ve used the x and y attributes to declare the position of the bottom-left corner of our text elements. But what if we want to set the position of the middle point of our text instead? We can do so by using the attribute text-anchor with a value of middle, as illustrated in figure 1.20. For example, we can center a text label for our circle shape using this attribute:

 <text x="530" y="155" text-anchor="middle">circle</text>

 [image: figure]

Figure 1.20 The text-anchor attribute affects the alignment of SVG text. Its default value is start. To align a text element based on its middle, we apply a text-anchor attribute of middle. Similarly, to align a text based on its end, we apply a text-anchor attribute of end.

 Finish by adding a label for the ellipse and another one for the path element. By default, SVG text is black. You can change its color with the fill attribute.

 Grouping elements

 The final SVG element that we’ll discuss in this section is the group element. The group or <g> element is distinct from the SVG elements we’ve discussed so far in that it has no graphical representation and doesn’t exist as a bounded space. Instead, it’s a logical grouping of elements. You’ll want to use groups extensively when creating visualizations made of several shapes and labels.

 If we want the square and the “rect” label to be displayed together and move as one within the SVG container, we can place them inside a <g> element, as in the following example. Note how the top-left corner of the <rect> element has been changed to (0, 0). The <text> is positioned at (0, 85) to maintain it below the <rect>:

 <g>
 <rect x="0" y="0" width="60" height="60" />
 <text x="0" y="85">rect</text>
</g>

 The group containing the square and its label now appear at the top-left corner of the SVG container. We can move this group and all the elements it contains wherever we want them within the SVG container while maintaining the alignment between the square and its label.

 Moving a group around the SVG container is done with the transform attribute. The transform attribute is a little more intimidating than the attributes discussed so far but is identical to the CSS transform property. It takes a transformation (translate, rotate, scale, etc.) or a stack of transformations as values. To move a group, we use the translate(x, y) transformation. If we want to move our <rect> and <text> elements back to their original position, we need to apply a translation of 260 pixels to the right and 175 pixels down. To do so, we set the transform attribute of the <g> element to transform="translate(260,175)":

 <g transform="translate(260,175)">
 <rect x="0" y="0" width="60" height="60" />
 <text x="0" y="85">rect</text>
</g>

 Another helpful aspect of the <g> element is that its children inherit its styling attributes. To illustrate this, let’s group all remaining text elements within a <g> element, except the label “rect”, which we’ve already grouped with the square:

 <g>
 <text x="60" y="260">line</text>
 <text x="530" y="155" style="text-anchor:middle">circle</text>
 <text x="530" y="260" style="text-anchor:middle">ellipse</text>
 <text x="730" y="260">path</text>
</g>

 If we apply a fill attribute of #636466 to the group, each <text> element inside that group will inherit the same color. Similarly, if we add a style attribute to the group, for instance, with the font-family and the font-size properties, the text inside the group will inherit these properties:

 <g fill="#636466" style="font-size:16px; font-family:monospace">
 <text x="60" y="260">line</text>
 <text x="530" y="155" style="text-anchor:middle">circle</text>
 <text x="530" y="260" style="text-anchor:middle">ellipse</text>
 <text x="730" y="260">path</text>
</g>

 Reload your page one last time, and observe how the labels inside the group inherit the group’s color and font, while the label that remained outside of that group kept its original look. This technique of applying shared attributes to a group element is quite handy and can help you apply the Don’t Repeat Yourself (DRY) coding principle to your work. It will also make your life easier when you need to update these attributes.

 Congrats on completing the first exercise of this book! You can find the complete code of the Gallery of SVG Shapes in the next listing and in the end folder of the coding files. Use this exercise as a reference when you build your first D3 projects.

Listing 1.2 Completed HTML for the Gallery of SVG Shapes exercise

 <!DOCTYPE html>
<html>
<head> [...] </head>
<body>
 <div style="width:100%; max-width:1200px; margin:0 auto;">
 <svg viewBox="0 0 900 300" style="border:1px solid black;">

 <line x1="50" y1="45" x2="140" y2="225" stroke="black" />

 <rect x="260" y="25" width="120" height="60" fill="#6ba5d7" />
 <rect x="260" y="100" width="120" height="60" rx="20" ry="20"
fill="#6ba5d7" />
 <g transform="translate(260, 175)">
 <rect x="0" y="0" width="60" height="60" fill="transparent"
stroke="#6ba5d7" />
 <text x="0" y="85">rect</text>
 </g>

 <circle cx="530" cy="80" r="50" fill="none" stroke="#81c21c" stroke-
width="3" />
 <ellipse cx="530" cy="205" rx="50" ry="30" fill="#81c21c" />

 <path d="M680 150 C 710 80, 725 80, 755 150 S 810 220, 840 150"
fill="none" stroke="#773b9a" stroke-width="3" />

 <g fill="#636466" style="font-size:16px; font-family:monospace">
 <text x="60" y="260">line</text>
 <text x="530" y="155" style="text-anchor:middle">circle</text>
 <text x="530" y="260" style="text-anchor:middle">ellipse</text>
 <text x="730" y="260">path</text>
 </g>

 </svg>
 </div>
</body>
</html>

 Exercise: Create an SVG graphic

 Now it’s your turn! Create the SVG graphic shown in the following figure. You can work in the start folder inside 02_SVG_exercise of this chapter’s code files. Here are a few guidelines:

 	 Create a responsive SVG container with a width and a height of 400 px (when there’s enough room on the screen).

 	 Draw a square shape with a width and a height of 200 px. Center it within the SVG container, and give it a transparent fill and a 5 px black stroke.

 	 Add a circle with a radius of 100 px to the center of the SVG container. Set its fill attribute to the CSS color name “plum.”

 	 Draw two diagonal black lines with a stroke of 5 px. One goes from the top-left corner of the square to its bottom-right corner. The other one goes from the top-right corner of the square to its bottom-left corner.

 	 Add the text “SVG is awesome!” above the square, and center it within the SVG container. Give the text the following style properties: a font-size of 18 px and a font-family of sans-serif.

 [image: sidebar figure]
 We encourage you to build this SVG graphic to reinforce the concepts discussed in this section.

 You’ll find the solution in section D.1.1 of appendix D and folder 02_SVG_exercise/end of this chapter’s code files. We encourage you to try to complete it on your own.

1.2.3 Canvas and WebGL

 Although we usually build D3 projects with SVG elements, we might occasionally need to create complex visualizations from large datasets, for which the traditional SVG approach can generate performance problems. It’s important to remember that D3 appends one or many SVG elements to the DOM for each graphical detail in a data visualization. A typical example is a large network visualization made of thousands of nodes and links. These may leave your browser huffing and puffing. Although the number of objects that browsers can comfortably handle is constantly increasing as they get more performant, a generally accepted rule of thumb is that we should consider using Canvas rather than SVG if a visualization contains more than 1,000 elements.

 Canvas is a client-side drawing API that uses a script, often JavaScript, to create visuals and animations. It doesn’t add XML elements to the DOM, which dramatically improves performance when building visualizations from large datasets. Canvas doesn’t provide the same crisp rendering as SVG and makes interactions more complex to handle, so we generally stick with SVG. It’s all a question of compromise.

 Canvas also allows you to use the Web Graphics Library (WebGL) API to create 3D objects. Although learning WebGL is outside this book’s scope, creating 3D data visualizations for the web is possible. At the moment, it’s mainly used in experimental projects. In chapter 15, we’ll cover how to build visualization with Canvas and discuss its pros and cons.

1.2.4 CSS

 CSS (which stands for Cascading Style Sheets) is the language that describes how DOM elements are displayed on the screen and what they look like. From the overall grid layout of a page to the family of fonts used for the text, up to the color of the circles in a scatterplot, CSS can turn a plain HTML file into an awe-inspiring web page. In D3 projects, we generally apply CSS styles using inline styles or via an external stylesheet.

 Inline styles are applied to elements with the style attribute. The style attribute can be used both on traditional HTML and SVG elements, and D3 has a handy method to set or modify this attribute that we’ll discuss in chapter 2. The following example shows the style attribute with inline styles:

 <div style="padding:10px; background:#00ced1;"> ... </div>
<text style="font-size:16px; font-family:serif;"> ... </text>

 Inline styles affect only the element to which they are applied. If we want to propagate the same design to multiple elements, we need to apply the same style attribute to every one of them (or to an SVG group that wraps all the elements together). It certainly works, but it’s not the most efficient way to go.

 On the other hand, external CSS stylesheets are perfect for applying styles globally. A strategy is to ask D3 to add the same class name to multiple elements. We then use this class name as a selector in an external stylesheet and apply the same styling properties to the targeted group of elements, as in the following examples in the stylesheet

 .my-class {
 font-size: 16px;
 font-family: serif;
}

 and in the DOM:

 <text class="my-class"> ... </text>

 This approach is much more efficient, especially when maintaining large projects. It also follows the separation of concerns principle, where we separate behaviors, controlled with JavaScript, from styles, regulated with CSS. Note that CSS preprocessors such as Syntactically Awesome Stylesheets (SASS) and Leaner Stylesheets (LESS) are part of the external stylesheet approach described here.

 tip Remember that inline styles take precedence over the ones applied from an external stylesheet. In any frontend development project, it’s important to plan the architecture of your CSS styles with the cascading order in mind.

1.2.5 JavaScript

 D3 is a JavaScript library that adds new methods on top of the existing core features of JavaScript. This means that a little bit of prior experience with JavaScript is helpful when working with D3. In addition, when building D3 projects, you have access to all the existing JavaScript features.

 A real introduction to JavaScript deserves its own book. In this section, we’ll only discuss two JavaScript topics that are used extensively in D3 projects: method chaining and object manipulation.

 Method chaining

 If you search for examples of D3 projects on the web, you’ll notice that methods are called one after another on the same selection. This technique is what we call method chaining and helps to keep the code concise and readable.

 We can think of method chaining as we would of a car assembly line. Let’s say we write the script that runs such an assembly line. As you can see in the following example, we would first declare a car variable that creates a new Car() object. We then call the function putOnHood(), which puts a hood on top of the car, and we continue by calling the functions that handle wheels, tires, and lights. Each successive call adds an element to the Car() object, and, once all the methods have been executed, the car has a hood, wheels, tires, and lights. Each method passes the updated car object to the next, thus the ”chaining.” Note that each call is separated by a dot and that the methods are executed in the order in which they are chained. In our car assembly line example, we need the wheels to be installed before we can put tires on them. The example looks like this:

 let car = new Car().putOnHood().putOnWheels().putOnTires().putOnLights();

 Let’s now look at how we would use method chaining in D3. Imagine that we want to grab all the <div>s from the DOM and add a paragraph element into each of them. The paragraph elements should have a class attribute of my-class and contain the text “Wow”. We then want to insert a element into each paragraph, with the text “Even More Wow” in bold. Without method chaining, we would need to store each action into a constant, and then call this constant when performing the next action, as shown here (it’s exhausting just to look at it):

 const mySelection = d3.selectAll("div");
const myParagraphs = mySelection.append("p");
const myParagraphsWithAClass = myParagraphs.attr("class", "my-class");
const myParagraphsWithText = myParagraphsWithAClass.text("Wow");
const mySpans = myParagraphsWithText.append("span");
const mySpansWithText = mySpans.text("Even More Wow")
const myBoldSpans = mySpansWithText.style("font-weight", "900");

 Thanks to method chaining, the same example becomes much more concise:

 d3.selectAll("div").append("p").attr("class", "my-class").text("Wow")
↪ .append("span").text("Even More Wow").style("font-weight", "900");

 In D3, it’s very common to break lines, which JavaScript ignores, and to indent the chained methods. This makes the code easier to read, and the indentation helps us see which element we’re working on:

 d3.selectAll("div")
 .append("p")
 .attr("class", "my-class")
 .text("Wow")
 .append("span")
 .text("Even More Wow")
 .style("font-weight", "900");

 Don’t worry if you don’t fully understand yet how the previous code works. For now, we only want you to get familiar with how methods can be chained in JavaScript. We’ll cover the D3-specific jargon in chapter 2.

 Arrays and objects manipulation

 D3 is all about data, and data is often structured as JavaScript objects. Understanding the construction of these objects and how to access and manipulate the data they contain will be a tremendous help as you build visualizations.

 Let’s first talk about simple arrays, which are a list of elements. In data-related projects, arrays are usually an ordered list of numbers or strings:

 const arrayOfNumbers = [17, 82, 9, 500, 40];
const arrayOfStrings = ["blue", "red", "yellow", "orange"];

 Each element in an array has a numeric position, called the index, and the first element has an index of 0 (we say that JavaScript arrays are zero-indexed):

 arrayOfNumbers[0] // => 17
arrayOfStrings[2] // => "yellow"

 Arrays have a length property that, for nonsparse arrays, specifies the number of elements they contain. Because arrays are zero-indexed, the last element in an array has an index corresponding to the array’s length minus 1:

 arrayOfNumbers.length; // => 5
arrayOfStrings[arrayOfStrings.length - 1] // => "orange"

 We can also determine if an array contains a specific value with the method includes(). This method returns true if one of the elements from the array corresponds exactly to the value passed as an argument; otherwise, it returns false:

 arrayOfNumbers.includes(9) // => true
arrayOfStrings.includes("pink") // => false
arrayOfStrings.includes("ellow") // => false

 However, most datasets aren’t simple lists of numbers or strings, and each of their data points is usually composed of multiple properties. Let’s imagine a database of employees from a fictional agency, represented in table 1.1. The table contains four columns: the ID, name, and position of each employee, and whether the employee works with D3 or not.

Table 1.1 A small dataset with employees and their position

 	

 ID

 	

 Name

 	

 Position

 	

 Works_with_d3

 	 1

 	 Zoe

 	 Data analyst

 	 False

 	 2

 	 James

 	 Frontend developer

 	 True

 	 3

 	 Alice

 	 Fullstack developer

 	 True

 	 4

 	 Hubert

 	 Designer

 	 False

 Each row in the dataset, or data point, can be represented by a JavaScript object such as row1:

 const row1 = {
 id:"1",
 name:"Zoe",
 position:"Data analyst",
 works_with_d3:false
 };

 We can easily access the value of each property in the object with dot notation:

 row1.name // => "Zoe"
row1.works_with_d3 // => false

 We can also access these values with bracket notation. Bracket notation is handy if the property name contains special characters, such as empty spaces, or if we previously saved the property name in a constant or a variable:

 row1["position"] // => "Data analyst"

const myProperty = "works_with_d3";
row1[myProperty] // => false

 In real life, datasets are generally formatted as arrays of objects. For example, if we load the dataset contained in table 1.1 with D3, as you’ll learn to do in chapter 3, we obtain the following array of objects that we can save in a constant named data:

 const data = [
 {id:"1", name:"Zoe", position:"Data analyst", works_with_d3:false},
 {id:"2", name:"James", position:"Frontend developer", works_with_d3:true},
 {id:"3", name:"Alice", position:"Fullstack developer",works_with_d3:true},
 {id:"4", name:"Hubert", position:"Designer", works_with_d3:false}
];

 We can iterate through each element, or datum, in the data array with a loop. More specifically, the JavaScript forEach loop is convenient and easy to write and read. A common use case for iterating through a dataset is data wrangling. When we load an external CSV file, the numbers are often formatted as strings. Let’s take our data array as an example and convert the values of the property id from strings into numbers.

 In the following example, the array iterator d gives us access to each datum. Using dot notation, we convert each id into a number using the + operator:

 data.forEach(d => {
 d.id = +d.id;
});

 JavaScript provides many array iterator methods that help us interact with data and even reshape it when needed. Let’s say we want to position each employee from our dataset onto a visualization. Creating a simple array that only contains the names of the employees might come in handy, and we’d use the map() method for that:

 data.map(d => d.name); // => ["Zoe", "James", "Alice", "Hubert"]

 Similarly, if we want to isolate only the employees that work with D3, we could use the filter() method:

 data.filter(d => d.works_with_d3);

// => [
 {id:2, name:"James", position:"Frontend developer", works_with_d3:true},
 {id:4, name:"Hubert", position:"Designer", works_with_d3:true}
];

 Finally, we could find the employee with an ID of 3 with the find() method. Note that the find() method stops iterating after finding the value it’s looking for. We can only use this method when searching for one unique data point:

 data.find(d => d.id === 3);

// => {id:"3", name:"Alice", position:"Fullstack developer",
works_with_d3:true}

 The methods discussed in this section are far from covering all the array and object manipulation techniques that JavaScript offers, but they are probably the ones you’ll keep coming back to when working with data. Whenever you need to find another way to access or manipulate your data, MDN Web Docs (https://developer.mozilla.org/) is always a solid reference with plenty of examples.

1.2.6 Node and JavaScript frameworks

 JavaScript has seen major changes in the past decade. The two most significant trends in modern JavaScript are the rise of node.js and the establishment of JavaScript frameworks as the standard for most projects.

 The major node technology we want to know for D3 projects is Node Package Manager (NPM). NPM allows you to install “modules,” or small libraries of JavaScript code, to use in your projects. You don’t have to include a bunch of <script> tag references to individual files, and if the module has been built so that it’s not one monolithic structure, modules can reduce the amount of code shipped by your application.

 D3.js Version 7, which came out in mid-2021, takes advantage of module importing. Throughout this book, you’ll see examples of using D3 in one of two ways. Either we’ll load the entire D3 library, as we’ll do in chapter 2, or we’ll include only the individual parts of D3 that we need, as you’ll see in later examples. We can do so with script tags, but starting in section 2, we’ll import D3 modules using NPM because this is considered standard practice today. You’ll likely need to get familiar with it if you ship professional D3 projects.

 If you already participate in professional web projects, there’s also a good chance that you’re working with JavaScript frameworks, such as React, Angular, Vue, or Svelte. Frameworks provide developers with the foundation to build web projects with modular, reusable, and testable code. These frameworks are in charge of building and updating the DOM, which is what the D3 library does as well. In chapter 8, we’ll discuss strategies to avoid conflicts when building D3 visualization within JavaScript frameworks.

 Finally, in a professional working environment, you might use D3 in combination with TypeScript. TypeScript is a syntactical superset of JavaScript that enhances project scalability and code maintainability. Although we won’t discuss it in detail in this book, D3 methods’ types can be installed with the NPM package @types/d3 (www.npmjs.com/package/@types/d3). In chapter 8, we’ll use such types in an Angular project.

1.2.7 Observable notebooks

 If you search for examples of D3 projects on the web, you’ll undoubtedly come across Observable notebooks (https://observablehq.com). Observable is a collaborative playground for data science and visualization, similar to Jupyter Notebook for Python. The Observable platform was created by Mike Bostock and replaced blocks, the previous online D3 sandbox. All the official D3 examples now live on Observable, and the D3 community is quite active over there.

 It’s important to know that Observable requires you to learn a way to handle D3 projects that is specific to this platform. In addition, you can’t directly copy and paste an Observable notebook into a frontend development environment (although Observable 2.0 is making it easier). Because the focus of this book is to build D3 visualizations in an environment that resembles how we ship D3 projects for production, we won’t cover Observable notebooks. If you’re interested in learning Observable, there is an excellent series of tutorials at https://observablehq.com/tutorials. Most of the techniques and concepts that you’ll learn in this book can be translated into Observable notebooks.

1.3 Data visualization best practices

 Data visualization has never been as popular as it is today. The wealth of maps, charts, and complex representations of systems and datasets is present not only in the workplace but also in our entertainment and our everyday lives. With this popularity comes a growing library of data visualizations, as well as aesthetic rules to promote legibility and comprehension. Your audience, whether the general public, academics, or decision-makers, has grown accustomed to what we once considered incredibly abstract and complicated representations of trends in data. This makes libraries such as D3 popular not only among data scientists but also with journalists, artists, scholars, IT professionals, and even data visualization enthusiasts.

 Such a wealth of options can seem overwhelming, and the relative ease of modifying a dataset to appear in a streamgraph, treemap, or histogram tends to promote the idea that information visualization is more about style than substance. Fortunately, well-established rules dictate which charts and methods to use for different data types. This book doesn’t aim to cover every best practice in data visualization, but we’ll touch on a few. Although developers use D3 to revolutionize the use of color and layout, most want to create visual representations of data that support practical concerns.

 As you build your first visualization projects—and when in doubt, simplify—it’s often better to present a histogram than a violin plot, or a hierarchical network layout (e.g., a dendrogram) than a force-directed one. The more visually complex methods of displaying data tend to inspire more excitement, but they can also lead an audience to focus on the aesthetics of the graphics rather than the data. There’s nothing wrong with creating cool and jaw-dropping visualizations, but we should never forget that the primary goal of any data visualization is to tell a story. Asking around to see if people understand your visualization and how they interpret it is a crucial step. Do they need explanation? Which conclusions can they draw from interacting with your project? Does the story get told?

 Still, to properly deploy information visualization, you should know what to do and what not to do. You need to have a firm understanding of your data and your audience. D3 grants us immense flexibility, but remember, “With great power comes great responsibility.” While it’s good to know that certain charts are better suited to represent a specific type of data, it’s even more important to remember that data visualizations can carry misinformation when not architected with care and from an informed perspective. If you plan to design your own visualizations, educating yourself on data visualization best practices is essential.

 The best way to learn this is to review the work of established designers and information visualization practitioners. Although an entire library of works deals with these best practices, here are a few resources that we’ve found useful and that can get you oriented on the basics. These are by no means the only texts for learning data visualization, but they are a great place to start:

 	 Better Data Visualizations (Columbia University Press, 2021), Jonathan Schwabish

 	 The Functional Art (New Riders, 2013), The Truthful Art (New Riders, 2016), and How Charts Lie (W.W. Norton, 2020), Alberto Cairo

 	 Data Visualisation: A Handbook for Data Driven Design (SAGE, 2019), Andy Kirk

 	 The Visual Display of Quantitative Information Envisioning Information (Graphics Press, 2001), Edward Tufte

 	 Design for Information (Rockport, 2013), Isabel Meirelles

 	 “Pattern Recognition” (published thesis, 2008, Rhode Island School of Design), Christian Swinehart

 	 Visualization Analysis and Design (A K Peters, 2014), Tamara Munzner

 One thing to keep in mind while reading about data visualization is that the literature is often focused on static charts. With D3, you’ll be making interactive and dynamic visualizations. A few interactions can make a visualization not only more readable but also significantly more engaging. Users who feel like they’re exploring rather than reading, even if only with a few mouse events, might find the content of the visualization more compelling and memorable than if they read the static equivalent. But this added complexity requires learning about user experience. We’ll get into this in more detail in chapter 7.

 This concludes our first chapter! Although we haven’t used D3 yet, you now have all the knowledge you need to get started. Keep coming back to this chapter when you’re unsure about which SVG element you should use in your visualizations or if you need a reminder on how to manipulate data with JavaScript. From the next chapter, we’ll roll up our sleeves and create D3 visualizations.

 Interview with Hesham Eissa and Lindsey Poulter

 Eissa and Poulter are data visualization designers and developers.

 In one of your blog posts, you wrote that before the Ben & Jerry’s project, you both had experience designing data visualizations in Tableau. What made you want to learn D3 instead of other data visualization tools? (https://heshameissa.com/blog/learn-d3/)

 We both enjoyed the work we saw from The Pudding, Nadieh Bremer, the Information is Beautiful Awards, and various news outlets producing data journalism pieces. We had taken note that D3 was the common thread behind all the work we enjoyed.

 Additionally, we both had a passion for finding creative ways to display data and didn’t want to be tied to the visualizations that a particular software allowed for. With D3, and web-based visualizations in general, we felt that we could create anything we wanted. The only barrier was our own ability to make it! About the same blog post, I love how you have structured your learning process, given that you had no prior experience with frontend development and that you had the patience to do it step by step. What did you find the hardest in this learning journey? What did you enjoy the most?

 The hardest part in the learning journey was that there were so many different parts to learn and understand. On top of that, the world of frontend development is changing so quickly that we also had to learn how to keep up and get used to adapting examples from different versions. We sometimes found ourselves jumping ahead, so having patience to fully understand a concept before moving on was also difficult in its own way.

 The most enjoyable part was when we finally reached the stage where we could directly apply our learnings to data visualization. Seeing our first SVG render on the page was a big moment of joy. As we dug into the different D3 modules, we thoroughly enjoyed understanding all the powerful ways each one could be used in the future. Modules like d3-force had so much flexibility and applicability and really expanded the way we thought about approaching data visualization.

 Where did you find help when you got stuck?

 The best part about learning alongside someone else is having a built-in partner to ask questions. If we didn’t understand a concept, we would ask each other. This either reaffirmed we both were confused and needed to spend more time on it, or it allowed one person the opportunity to explain it in a completely different way.

 Outside of each other, we spent a lot of time trying to understand the code of other people in the field or how they executed a specific concept. One of the best parts about the data visualization community is the willingness to share. Mike Bostock’s examples on Observable and the greater Observable community were lifesavers. Usually, the first place we looked when creating a new chart was his examples—99% of the time he had what we were looking for. The Pudding and Nadieh Bremer had a lot of code on their respective GitHubs, so oftentimes we would say “How are they doing transitions?” and find real working examples. Funnily enough, we also bought the first edition of this book one weekend when we were confused about a concept and couldn’t find the answers online.

 However, we will say there were definitely times where we really got stuck. Part of it was that our vocabulary wasn’t expansive enough yet to properly Google what we needed, and part of it was that we were trying to find very niche things. We weren’t afraid to spend several days (or weeks) in a row just trying out whatever we could and experimenting. Ultimately, not having easy access to everything about web-based data visualization really forced us to learn and understand (and not just copy and paste).

 Is there something you particularly like and/or dislike about D3.js, maybe compared to other data visualization tools?

 D3 takes more time up front to learn how to use. Instead of taking a few clicks to create a bar chart, it can sometimes take 50+ lines of code. However, ultimately that is what we love the most about D3—we can control everything!

 Featured project: “The Inside Scoop of Ben & Jerry’s” (https://benjerry.heshlindsdataviz.com/)

 [image: sidebar figure]
 “The 98 flavors of Ben & Jerry’s” project

 You worked on the Ben & Jerry’s project together. How did you split the work? Did one of you focus more on design and the other one on development, or did you both work on these two aspects?

 We probably approached this unconventionally, and given that we were in the middle of peak lockdown in a global pandemic, we had a lot of time to kill. Our approach to this was not to split the work but to both learn and both focus on the entire process from start to finish. We would storyboard and explore the data together and then set out on a goal. We would say “Let’s build a chord diagram that shows the combination of ice cream add-ins,” and then both separately try to figure out how to build it. Once we were both done, we would compare our code to see if one person had found a better method, merge it together, and set out on the next task. Once we started to feel confident in our abilities, probably about half of the way through, we did begin to divide and conquer. We didn’t necessarily divide it up so that one person did XYZ and the other did ABC—we both just did whatever needed to be done!

 This project uses both graphics made of SVG elements and Canvas. Some visualizations are SVG-based, such as “The Complete Ben & Jerry’s Flavor Guide,” whereas others are mainly Canvas-based, such as “The 98 Flavors of Ben & Jerry’s.” The chord diagram of “The 79 Additions of Ben & Jerry’s” even uses a combination of both. How did you decide when to use SVG versus Canvas graphics? Did you have this structure in mind from the start, or did you opt for canvas during the implementation, maybe for performance purposes?

 We did not have the structure in mind from the start! Honestly, we probably didn’t even know what Canvas was when we started. Once we had determined what visualizations we wanted to do, we began working on adding the transitions and quickly realized that the performance was really bad. This led us to research different performance options, which led us to Canvas.

 [image: sidebar figure]
 “The 79 Additions of Ben & Jerry’s” project chord diagram

 You have managed to make your whole project work well on mobile, including your rich radial visualizations. Do you remember if you had to make hard decisions like tweaks to your original ideas to accommodate smaller touch screens? Do you have a preference between the mobile-first or desktop-first approaches when it comes to web-based visualizations?

 Once we got to the divide and conquer phase, mobile was one of the last things we did. We definitely learned the hard way that saving it for last wasn’t the best approach, as there were compromises we had to make. We had to deal not just with what we need to change—but how do we actually do that? Utilizing scrollytelling (http://mng.bz/g7MV) helped us on mobile, both because we could have the text scroll on top of the visuals and because it allowed us to replace interactions with highlighting important data points.

 A desktop-first approach gives you a lot more real estate to play with, which can allow for more intricate interactions and designs. However, mobile forces you to distill each visualization down to its core purpose, which can be helpful when trying to create clarity.

 Roughly, how long did it take to build this project? Was one step much longer or harder than the others?

 Between this being our first real D3 project and learning on the fly, making sure everything was perfect, and redoing every section multiple times, we spent about four solid months working on it daily. We eventually had to give ourselves a deadline because we knew if we didn’t, we would continue to redo, refine, and find problems.

 The harder and longer parts were definitely those things that are more frontend development specific and less visualization related. We had all the visualizations and story exactly as we wanted but then realized we had to spend even more time to make it work across all devices and browsers—and perform well on them as well.

 [image: sidebar figure]
 “The Complete Ben & Jerry’s Flavor Guide” project

 Is there a specific D3 feature or module that you wish to explore and/or master better in the near future?

 There are definitely a few things where we are more in the “copy and paste” phase instead of fully understanding how it works. Chords, Sankeys, and geography modules are all on that list! Additionally, mastering more mathematical functions in general can help us better make use of what D3 has to offer.

 Summary

 	 D3 is the tool of choice when you want to have total creative and technical freedom with your data visualizations.

 	 D3 applications are styled and served like traditional web content.

 	 D3 is never used alone but is rather part of an ecosystem of technologies and tools that we combine to create rich web interfaces: HTML, CSS, JavaScript, SVG, Canvas, and frameworks such as React or Svelte.

 	 The SVG shapes that we use most often as we build data visualizations are lines, rectangles, circles, ellipses, paths, and text.

 	 You need a basic understanding of these shapes and their main attributes to work with D3.

 	 Before working with D3, you should familiarize yourself with two JavaScript subjects—method chaining and object manipulation:

 	 Method chaining is a pattern where multiple methods are called one after the other on the same object.

 	 In D3, datasets are often structured as arrays of objects. JavaScript offers multiple methods to access and manipulate the data within these structures.

 	 As a D3 developer, it’s important to develop a solid understanding of data visualization best practices. Multiple resources can help you start your learning journey.

2 Manipulating the DOM

 This chapter covers

 	Setting up a local development environment for D3 projects

 	Selecting elements from the DOM

 	Adding HTML or SVG elements to a selection

 	Setting and modifying the attributes and styles of DOM elements

 Now that we’ve discussed D3’s ecosystem, it’s time to get to work! In this chapter, we’ll set the foundations of our first visualization while learning how to manipulate the document object model (DOM) with D3.

 DOM manipulation is a foundational feature of D3, and the techniques that you’ll learn in this chapter are probably the ones you’ll use most often as a D3 developer (as long as you’re not working with a JavaScript framework like React or Svelte, which we’ll discuss in chapter 8). First, we’ll cover selections, which allow us to grab a single element or multiple elements from the DOM. You’ll see that D3 makes selections very easy and intuitive. Then, once we have a selection, we’ll want to do something with it. An action that we regularly perform in D3 projects is adding HTML or Scalable Vector Graphics (SVG) elements to a selection. For example, to create a visualization, we often append SVG shapes inside an SVG container. Finally, we adjust the positions, sizes, and colors of these SVG shapes by setting their attributes and styles.

 Because this book focuses on building projects in a local development environment, you’ll need to have one before we dive into D3 techniques. In section 2.2, we’ll explain how to use Visual Studio Code (VS Code) and its Live Server extension to have a local environment ready to go within a few minutes.

2.1 Your first D3 visualization

 In this chapter and the next, you’ll develop your first D3 visualization: the bar chart shown in figure 2.1. Although we’ve mentioned in chapter 1 that D3 isn’t necessarily the most efficient tool for making simple, classical charts, a bar chart is perfect for introducing D3’s fundamental concepts. Stick with us, and soon you’ll have a solid foundation that will allow you to build complex visualizations with ease.

 [image: figure]

Figure 2.1 Most popular technologies among data visualization practitioners. We’ll start building this bar chart in this chapter. (Source: Data Visualization State of the Industry Survey 2021, Data Visualization Society)

 The data behind our bar chart comes from the 2021 Data Visualization State of the Industry Survey, hosted by the Data Visualization Society (www.datavisualizationsociety.org).

 The 2021 State of the Industry Survey was answered by 2,181 data visualization practitioners, from professionals to students to hobbyists. We’ll visualize the answers to one question from the survey—“What technologies do you use often to visualize data?”—for which the respondents could select all the tools that apply from a predefined list. In figure 2.1, you can see the resulting bar chart, where the tools are listed vertically, and the length of each bar represents the number of respondents that selected this tool. According to this survey, D3 closes the top 10 of data visualization tools. Let’s get started!

 Note The Data Visualization Society runs a state of the industry survey every year. To get the latest insights from our industry, access fresh data at www.datavisualizationsociety.org/survey.

2.2 Preparing your environment

 Before we start using D3, we need to decide where we’ll build and run our projects. We could work with an online code editor, such as Observable (https://observablehq.com) or CodePen (https://codepen.io), which are great for quickly testing and sharing code. But because the goal of this book is to help you get ready to ship D3 projects into websites and web apps, we’ll opt for a local development environment.

 Now, if the idea of setting up a development environment makes you cringe, don’t worry. Far gone are the days where you had to spend half a day sweating and crying through this process. Thanks to modern tools, your whole setup shouldn’t take more than a few minutes the first time, and then you’ll be up and running with the click of a button.

 At this point, you might wonder why we can’t simply open our HTML files with a browser like we did for the Gallery of SVG Shapes exercise in chapter 1. Although this approach could sometimes work just fine, it will eventually lead to the browser refusing to perform specific tasks and throwing errors. Some browsers prevent loading local files with JavaScript for security reasons and require loading them via a web server instead. In D3 projects, we usually have to load a data file, so we do need a web server.

 Throughout this book, we’ll be using VS Code as our code editor, often combined with its Live Server extension, which provides a local web server. But if you already have a preferred setup, feel free to use it and skip to section 2.2.1.

 note The project structure we’ll use in the first part of this book is trivial and a little old school. Our goal is to keep the environment as simple as possible so you can focus on learning D3. But if you’re a more advanced developer and want to work with module-based projects, you can totally do so. Refer to chapter 8, section 8.2, for instructions on installing D3 via Node Package Manager (NPM) and importing the library into files.

 VS Code is wildly popular among developers. It’s free, open source, and easy to use—yet powerful. It has built-in Git commands (no need to have a terminal window open on the side!) and is highly customizable. If you don’t have VS Code already installed on your computer, you can download it from the VS Code website at https://code.visualstudio.com/Download. Once you have VS Code, you’ll want to install its Live Server extension. Refer to appendix A if you need help with the installation. This appendix also contains explanations on how to start and stop your local web server using the Live Server extension.

 note If you haven’t already, download the code files from the book’s GitHub repository (http://mng.bz/Xqjv). In this chapter, we’ll work with the start folder of this chapter’s code files. If you get stuck and need to look at the solution, you’ll find it in the end folder. When working with the chapter’s code files, open only one start or one end folder in your code editor. If you open them all at once and use the Live Server extension to serve the project, some paths won’t work as expected, especially when loading a dataset into the project. The code files are broken down into sections, so when we move to a new section in the book, you can keep working in your initial code files or start anew with the folder dedicated to that section. Both options will lead to the same result.

2.2.1 The structure of our first D3 project

 The D3 projects that we’ll work on in the next chapters will all have a similar structure, represented in figure 2.2.

 [image: figure]

Figure 2.2 Folder structure of our first D3 project

 At the root of the project, we have an index.html file, where the initial markup of our project lives. This is also where, in the first section of this book, we’ll load the D3 library, our JavaScript file(s), and our CSS file(s) into the project. We then have three folders:

 	 The /css folder contains any CSS file relevant to the project. Although this book doesn’t focus on CSS, we’ll use it occasionally. For simplicity, we’ll also group our styles in a minimal number of files. But keep in mind that in professional projects, the structure of the CSS folder can be much more sophisticated and often involves a CSS preprocessor such as Syntactically Awesome Stylesheets (SASS) or Leaner Stylesheets (LESS).

 	 The /data folder contains our dataset(s). For the bar chart, our dataset is a CSV file, where values are separated with a comma. Each line of the dataset contains a technology, followed by the count, that is, how many times the survey respondents have selected this technology.

 	 Finally, the /js folder contains our JavaScript file(s). To keep things simple, we’ll write our D3 code in one single file, main.js. But later, we’ll discuss how you can split the code into multiple files, or components, for better maintainability and testability.

2.2.2 Loading D3 into a project

 Before we start, check that your web server is running by looking at the lower-right corner of the VS Code window. You should see Port 5500 (or another port number) indicating that the server is running. If you see Go Live instead, click it to start the live server. Your project can now be accessed in a browser at http://localhost:5500/ or whichever port the server is using.

 Now that we have a web server up and running, there’s one more thing we need to do before we can start coding with D3: load the D3 library into our project. In this book, there are two main approaches that we’ll use. The first one is to add a script tag to index.html that links to the latest version of D3. We can use this approach to load the entire D3 library or only specific modules. The second approach is to load D3 as NPM modules; this approach is mainly suited to sites built with React or another JavaScript framework.

 In this chapter, we’ll opt for the first approach because it’s the simplest. As the book progresses, we’ll start using the second approach, which is more representative of how professional D3 projects are built today.

 In VS Code or in your code editor of choice, open the index.html file, located at the root of the folder. Just before the closing body tag (</body>), load version 7 of the D3 library, the latest version at the time of writing this book, using a script tag. Add another script tag to load the main.js file located in the /js folder, and save your project. You can see how to proceed in listing 2.1:

 <script src="https://d3js.org/d3.v7.min.js"></script>
<script src="js/main.js"></script>

 The browser reads the JavaScript files in the same order as the script tags are listed in index.html. We must load the D3 library before main.js. Otherwise, the browser won’t have access to the D3 methods used in main.js. It will throw errors, and the code won’t execute.

 We also want the scripts to be the last thing to load on a web page, so we position the script tags just before the closing body tag (</body>). With this approach, we reduce the loading time of our page, not having to wait for the scripts to execute before the DOM is displayed. It also ensures that the DOM is available before we try to manipulate it from the script files.

 Note During local development, you might want to consider loading the non-minified library instead (https://d3js.org/d3.v7.js) to give you access to a readable version of the source code. For performance purposes, you’ll want to swap it for the minified version when you ship your code to production.

Listing 2.1 Loading the entire D3 library in a script tag: index.html

 <!DOCTYPE html>
<html>
<head> ... </head>
<body>
 <div class="container">
 <h1>You are about to start working with D3!</h1>
 </div>

 <script src="https://d3js.org/d3.v7.min.js"></script> #1

 <script src="js/main.js"></script> #2

</body> #3
</html>

 #1 Script tag loading the minified D3 library

#2 Script tag loading the file main.js

#3 Closing body tag

 Now let’s test that the D3 library and the main.js file are properly loaded into our project. In your code editor, go to the /js folder, and open main.js. Copy the following code snippet into main.js, and save the file:

 d3.select("h1").style("color", "plum");

 In the next section, we’ll explain in detail what the D3 methods from this code snippet are for, but for now, we’ve selected the title h1 and changed its color to the CSS color name "plum". If you look at your project in the browser, the color of the title should have changed, like in figure 2.3.

 [image: figure]

Figure 2.3 Title color modified with D3

 Now that we’ve confirmed that D3 is loaded into our project, you can delete the snippet from main.js and the h1 title from index.html. In the next section, we’ll introduce D3 selections.

 Note Selecting and manipulating the DOM with D3 is a little old-fashioned. Nowadays, we generally build frontend projects with a framework such as React or Svelte and let the framework handle changes to the DOM. We’re teaching you these methods because they will help you understand how D3 works and because you’ll likely use them in smaller, sandbox-like projects. From chapter 8 onward, we’ll use a more modern approach.

OEBPS/OEBPS/Images/CH01_F19_Dufour2.png

OEBPS/OEBPS/Images/CH01_UN02_Dufour2.png

OEBPS/OEBPS/Images/CH01_F16_Dufour2.png

OEBPS/OEBPS/Images/CH01_F03_Dufour2.png

OEBPS/OEBPS/Images/CH01_UN04_Dufour2.png

OEBPS/cover.jpg

OEBPS/OEBPS/Images/CH01_UN01_Dufour2.png

OEBPS/OEBPS/Images/CH01_UN05_Dufour2.png

OEBPS/OEBPS/Images/CH02_F02_Dufour2.png

OEBPS/OEBPS/Images/CH01_F15_Dufour2.png

OEBPS/OEBPS/Images/CH01_UN03_Dufour2.png

OEBPS/OEBPS/Images/CH02_F03_Dufour2.png

OEBPS/OEBPS/Images/CH01_UN06_Dufour2.png

OEBPS/OEBPS/Images/CH01_F08_Dufour2.png

OEBPS/OEBPS/Images/CH01_F02_Dufour2.png

OEBPS/OEBPS/Images/CH01_F11_Dufour2.png

OEBPS/OEBPS/Images/CH01_F04_Dufour2.png

OEBPS/OEBPS/Images/CH01_F07_Dufour2.png

OEBPS/OEBPS/Images/CH01_F09_Dufour2.png

OEBPS/OEBPS/Images/CH01_F12_Dufour2.png

OEBPS/OEBPS/Images/CH01_F14_Dufour2.png

OEBPS/OEBPS/Images/CH01_F06_Dufour2.png

OEBPS/OEBPS/Images/CH01_F01_Dufour2.png

OEBPS/OEBPS/Images/CH01_F17_Dufour2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/cover.jpg

OEBPS/OEBPS/Images/manning_m.jpg

OEBPS/OEBPS/Images/CH01_F05_Dufour2.png

OEBPS/OEBPS/Images/CH01_F13_Dufour2.png

OEBPS/OEBPS/Images/CH01_F10_Dufour2.png

OEBPS/OEBPS/Images/CH01_F20_Dufour2.png

OEBPS/OEBPS/Images/CH01_F18_Dufour2.png

OEBPS/OEBPS/Images/CH02_F01_Dufour2.png

