

 [image: cover]

Oculus Rift in Action

 Bradley Austin Davis, Karen Bryla, and Phillips Alexander Benton

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Technical development editor Justin Chase
Copyeditor: Liz Welch
Proofreader: Elizabeth Martin
Technical proofreader: Frederik Vanhoutte
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN 9781617292194

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Dedication

 For Leo and Kesten

 B.D.

 For Sam, Ted, and Max

 K.B.

 For Antonia

 A.B.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Author Online

 About the Cover Illustration

 1. Getting started

 Chapter 1. Meet the Oculus Rift

 2. Using the Oculus C API

 Chapter 2. Creating your first Rift interactions

 Chapter 3. Pulling data out of the Rift: working with the head tracker

 Chapter 4. Sending output to the Rift: working with the display

 Chapter 5. Putting it all together: integrating head tracking and 3D rendering

 Chapter 6. Performance and quality

 3. Using Unity

 Chapter 7. Unity: creating applications that run on the Rift

 Chapter 8. Unity: tailoring your application for the Rift

 4. The VR user experience

 Chapter 9. UI design for VR

 Chapter 10. Reducing motion sickness and discomfort

 5. Advanced Rift integrations

 Chapter 11. Using the Rift with Java and Python

 Chapter 12. Case study: a VR shader editor

 Chapter 13. Augmenting virtual reality

 Appendix A. Setting up the Rift in a development environment

 Appendix B. Mathematics and software patterns for 3D graphics

 Appendix C. Suggested books and resources

 D. Glossary

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Author Online

 About the Cover Illustration

 1. Getting started

 Chapter 1. Meet the Oculus Rift

 1.1. Why support the Rift?

 1.1.1. The call of virtual reality

 1.1.2. But what about the Rift?

 1.2. How is the Rift being used today?

 1.3. Get to know the Rift hardware

 1.3.1. The DK2

 1.3.2. The DK1

 1.3.3. The GPU

 1.4. How the Rift works

 Conventional applications

 Rift applications

 1.4.1. Using head tracking to change the point of view

 1.4.2. Rendering an immersive view

 1.5. Setting up the Rift for development

 1.6. Dealing with motion sickness

 1.7. Development paths

 1.8. Summary

 2. Using the Oculus C API

 Chapter 2. Creating your first Rift interactions

 2.1. SDK interfaces

 2.1.1. Oculus runtime

 2.1.2. Oculus SDK

 2.2. Working with the SDK

 2.2.1. SDK management

 2.2.2. Managing the HMD

 2.3. Getting input from the head tracker

 2.3.1. Reserving a pointer to the device manager and locating the headset

 2.3.2. Fetching tracker data

 2.3.3. Reporting tracker data to the console

 2.3.4. Exiting and cleaning up

 2.3.5. Understanding the output

 2.4. A framework for demo code: the GlfwApp base class

 2.5. Rendering output to the display

 2.5.1. The constructor: accessing the Rift

 2.5.2. Creating the OpenGL window

 2.5.3. Rendering two rectangles, one for each eye

 2.6. What’s next?

 2.7. Summary

 Chapter 3. Pulling data out of the Rift: working with the head tracker

 3.1. The head tracker API

 3.1.1. Enabling and resetting head tracking

 3.1.2. Receiving head tracker data

 3.2. Receiving and applying the tracker data: an example

 3.2.1. Initial setup and binding

 3.2.2. Fetching orientation

 3.2.3. Applying the orientation to the rendered scene

 3.3. Additional features: drift correction and prediction

 3.3.1. Drift correction

 3.3.2. Prediction

 3.3.3. Using drift correction and prediction

 3.4. Summary

 Chapter 4. Sending output to the Rift: working with the display

 4.1. Targeting the Rift display

 4.1.1. Extended vs. Direct HMD mode

 4.1.2. Creating the OpenGL window: choosing the display mode

 4.1.3. Creating the OpenGL window: Extended Desktop mode

 4.1.4. Creating the OpenGL window: Direct HMD mode

 4.1.5. Full screen vs. windowed: extensions with glfwCreateWindow()

 4.1.6. Dispensing with the boilerplate

 4.2. How the Rift display is different: why it matters to you

 4.2.1. Each eye sees a distinct half of the display panel

 4.2.2. How the lenses affect the view

 4.3. Generating output for the Rift

 4.4. Correcting for lens distortion

 4.4.1. The nature of the distortion

 4.4.2. SDK distortion correction support

 4.4.3. Example of distortion correction

 4.5. Summary

 Chapter 5. Putting it all together: integrating head tracking and 3D rendering

 5.1. Setting the scene

 5.2. Our sample scene in monoscopic 3D

 5.3. Adding stereoscopy

 5.3.1. Verifying your scene by inspection

 5.4. Rendering to the Rift

 5.4.1. Enhanced data for each eye

 5.4.2. Improved user settings

 5.4.3. Setting up the SDK for distortion rendering

 5.4.4. The offscreen framebuffer targets

 5.4.5. The Oculus texture description

 5.4.6. Projection and modelview offset

 5.4.7. The Rift’s rendering loop

 5.5. Enabling sensors

 5.5.1. Implications of prediction

 5.5.2. Getting your matrices in order

 5.6. Summary

 Chapter 6. Performance and quality

 6.1. Understanding VR performance requirements

 Higher performance requirements

 Stricter performance requirements

 Higher rendering cost

 6.2. Detecting and preventing performance issues

 Follow the SDK guidelines

 Optimizing your rendering pipeline

 Detecting performance issues

 6.3. Using timewarp: catching up to the user

 The problem: pose and prediction diverge

 The solution: timewarp

 6.3.1. Using timewarp in your code

 6.3.2. How timewarp works

 6.3.3. Limitations of timewarp

 6.4. Advanced uses of timewarp

 6.4.1. When you’re running early

 6.4.2. When you’re running late

 6.5. Dynamic framebuffer scaling

 6.6. Summary

 3. Using Unity

 Chapter 7. Unity: creating applications that run on the Rift

 7.1. Creating a basic Unity project for the Rift

 7.1.1. Use real-life scale for Rift scenes

 7.1.2. Creating an example scene

 7.2. Importing the Oculus Unity 4 Integration package

 7.3. Using the Oculus player controller prefab: getting a scene on the Rift, no scripting required

 7.3.1. Adding the OVRPlayerController prefab to your scene

 7.3.2. Doing a test run: the Unity editor workflow for Rift applications

 7.3.3. The OVRPlayerController prefab components

 7.4. Using the Oculus stereo camera prefab: getting a scene on the Rift using your own character controller

 Create a scene

 Add a character controller

 Add the OVRCameraRig prefab to the character controller

 Change the mouselook script for use with the Rift

 7.4.1. The OVRCameraRig prefab components

 7.5. Using player data from the user’s profile

 7.5.1. Ensuring the user has created a profile

 7.6. Building your application as a full screen standalone application

 7.7. Summary

 Chapter 8. Unity: tailoring your application for the Rift

 8.1. Creating a Rift-friendly UI

 8.1.1. Using the Unity GUI tools to create a UI

 8.1.2. Creating an in-world UI

 8.2. Using Rift head tracking to interact with objects

 8.2.1. Setting up objects for detection

 8.2.2. Selecting and moving objects

 8.2.3. Using collision to put the selected object down

 8.3. Easing the user into VR

 8.3.1. Knowing when the health and safety warning has been dismissed

 8.3.2. Re-centering the user’s avatar

 8.3.3. Creating splash scenes

 8.4. Quality and performance considerations

 8.4.1. Measuring quality: looking at application frame rates

 8.4.2. Using timewarp

 8.4.3. (Not) Mirroring to the display

 8.4.4. Using the Unity project quality settings

 8.5. Summary

 4. The VR user experience

 Chapter 9. UI design for VR

 9.1. New UI paradigms for VR

 9.1.1. UI conventions that won’t work in VR and why

 9.1.2. Can your world tell your story?

 9.1.3. Getting your user from the desktop to VR

 9.1.4. Cutscenes

 9.2. Designing 3D user interfaces

 9.2.1. Criteria for a good UI

 9.2.2. Guidelines for 3D scene and UI design

 9.2.3. The mouse is mightier than the sword

 9.2.4. Using the Rift as an input device

 9.3. Animations and avatars

 9.3.1. Cockpits and torsos: context in the first person

 9.3.2. Character animations

 9.4. Tracking devices and gestural interfaces

 9.4.1. Beyond the gamepad

 9.4.2. Gestural interfaces

 9.5. Summary

 Chapter 10. Reducing motion sickness and discomfort

 10.1. What does causing motion sickness and discomfort mean?

 10.2. Strategies and guidelines for creating a comfortable VR environment

 10.2.1. Start with a solid foundation for your VR application

 10.2.2. Give your user a comfortable start

 10.2.3. The golden rule of VR comfort: the user is in control of the camera

 10.2.4. Rethink your camera work: new approaches for favorite techniques

 10.2.5. Make navigation as comfortable as possible: character movement and speed

 10.2.6. Design your world with VR constraints in mind

 10.2.7. Pay attention to ergonomics: eyestrain, neck strain, and fatigue

 10.2.8. Use sound to increase immersion and orient the user to action

 10.2.9. Don’t forget your user: give the player the option of an avatar body

 10.2.10. Account for human variation

 10.2.11. Help your users help themselves

 10.2.12. Evaluate your content for use in the VR environment

 10.2.13. Experiment as much as possible

 10.3. Testing your VR application for motion sickness potential

 10.3.1. Use standardized motion and simulator sickness questionnaires

 10.3.2. Test with a variety of users and as many as you can

 10.3.3. Test with new users

 10.3.4. Test with users who have set their personal profile

 10.3.5. Test in stages

 10.3.6. Test in different display modes

 10.4. Summary

 5. Advanced Rift integrations

 Chapter 11. Using the Rift with Java and Python

 11.1. Using the Java bindings

 Requirements

 JNA vs. JNI vs. Homebrew

 11.1.1. Meet our Java binding: JOVR

 11.1.2. The Jocular-examples project

 11.1.3. The RiftApp class

 11.1.4. The RiftDemo class

 11.2. Using the Python bindings

 11.2.1. Meet our Python binding: PyOVR

 11.2.2. Development environment

 11.2.3. The pyovr-examples project

 11.2.4. The RiftApp class

 11.2.5. The RiftDemo class

 11.3. Working with other languages

 11.4. Summary

 Chapter 12. Case study: a VR shader editor

 12.1. The starting point: Shadertoy

 12.2. The destination: ShadertoyVR

 12.3. Making the jump from 2D to 3D

 12.3.1. UI layout

 12.3.2. User inputs

 12.3.3. Project planning

 12.3.4. Picking our feature set

 12.3.5. UI design

 12.3.6. Windowing and UI libraries

 12.4. Implementation

 12.4.1. Supporting the Rift in Qt

 12.4.2. Offscreen rendering and input processing

 12.5. Dealing with performance issues

 Finding your target and reacting when you’re not hitting it

 Eye-per-frame mode and timewarp

 Dynamic framebuffer scaling

 Scaling texture in the VR scene, not the UI

 12.6. Building virtual worlds on the GPU

 12.6.1. Raycasting: building 3D scenes one pixel at a time

 12.6.2. Finding the ray direction in 2D

 12.6.3. Finding the ray direction in VR

 12.6.4. Handling the ray origin: stereopsis and head tracking

 12.6.5. Adapting an existing Shadertoy shader to run in ShadertoyVR

 12.7. Summary

 Chapter 13. Augmenting virtual reality

 13.1. Real-world images for VR: panoramic photography

 13.1.1. Panorama photos

 13.1.2. Photo spheres

 13.1.3. Photo spheres...in space!

 13.2. Using live webcam video in the Rift

 13.2.1. Threaded frame capture from a live image feed

 13.2.2. Image enhancement

 13.2.3. Proper scaling: webcam aspect ratio

 13.2.4. Proper ranging: field of view

 13.2.5. Image stabilization

 13.3. Stereo vision

 13.3.1. Stereo vision in our example code

 13.3.2. Quirks of stereo video from inside the Rift

 13.4. The Leap Motion hand sensor

 13.4.1. Developing software for the Leap Motion and the Rift

 13.4.2. The Leap, the Rift, and their respective coordinate systems

 13.4.3. Demo: integrating Leap and Rift

 13.5. Summary

 Appendix A. Setting up the Rift in a development environment

 A.1. Selecting a display mode: Direct HMD Access or Extended Desktop mode

 A.2. Configuring the displays in your OS for Extended Desktop mode

 A.2.1. Extending or cloning (mirroring): which should you choose?

 A.3. Improving your development environment

 A.3.1. Fix it

 A.3.2. Fix it cheaply

 A.3.3. Clone it with a gadget

 A.3.4. Remote development

 A.4. Configuring the Rift for your use

 Adjusting the headset for a proper fit

 A.4.1. Create a user profile

 A.5. Verifying your setup and troubleshooting

 A.6. Developing without a Rift

 Appendix B. Mathematics and software patterns for 3D graphics

 B.1. Coordinate systems

 B.2. Introduction to matrices

 B.3. Matrix transforms

 B.4. Representing rotation

 B.4.1. Euler angles

 B.4.2. Quaternions

 B.4.3. Spherical linear interpolation (“slerp”)

 B.5. The scene graph software design pattern

 B.6. The matrix stack software design pattern

 B.7. The modelview software design pattern

 Appendix C. Suggested books and resources

 Books, research papers, and websites

 3D graphics programming

 OpenGL

 Developing for the Rift

 Motion sickness/simulator sickness

 UI design for VR

 Unity

 Demos, games, and apps

 VR demos, games, and applications worth a view

 Oculus Share

 D. Glossary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Two amazing advances from the smartphone arms race have come together to create the head-mounted display (HMD): light, cheap,
 high-resolution displays, and a new generation of super accurate and fast-motion sensor chips. Rather than display information
 or graphics on the surface in front of you, these displays rest on your head and update quickly enough to convince you that
 what you’re seeing is as real as the place you left behind. Although HMDs have existed for decades, they’ve never worked well
 enough to be more than aspirational prototypes destined for science museums. But with the Oculus Rift, the sensation of having
 a stable 3D world surround you as you move your head is a game-changing shift from peering into a 3D space through a desktop
 screen or handheld device.

 Within the next 10 years, improved devices like the Oculus Rift will replace many of the screens we surround ourselves with
 today as their resolution scales to eclipse our TVs and monitors. Ultimately, we will use them to replace as much or as little
 of the world around us as we choose, with digital content that is indistinguishable from reality. The impact of these first-generation
 devices on gaming and virtual worlds will be incredible.

 But along this road there are many changes to UI, experience, and computing paradigms that you’ll need to understand, and
 the authors of Oculus Rift in Action take you on a comprehensive overview of them. As a developer getting started with the Rift, you get a complete walkthrough
 of connecting to and rendering to the device.

 Beyond this, you’ll learn the important differences raised by such devices: How do you type without a keyboard? If Microsoft
 and the Mac revolutionized computing by putting things in windows, what will we do in an HMD? Why do we get sick using these
 devices, and how can we fix that? This book gives a complete and grounded overview of the specific technology and operation
 of the Oculus Rift, as well as the big picture topics that you’ll need to survive in a new world without monitors. Finally,
 it dives into the new and complex design factors around how to correctly control things, navigate, and build in the virtual
 world as an “avatar” given the capabilities and limitations of these new input devices for the head and body.

 PHILIP ROSEDALE CREATOR OF SECOND LIFE

Preface

 No matter what people have, they always dream of something more: more power, more influence, more knowledge, but perhaps most
 importantly, more possibilities. This drive is part of the human condition and is responsible for our going from the Wright
 brothers to Apollo 11 in a single century.

 If you want the future, you have to build it yourself. But the future I want, the one I think many of us want, isn’t something
 we can each build on our own, if only for lack of time and resources.

 We’ve written this book to lend a hand to those who want to help build the future in virtual reality (VR) but perhaps don’t
 know where to start.

 BRAD DAVIS SEATTLE, WA

 Virtual reality was not something I’d expected to ever get involved in. As fun as it was to daydream about having my own holodeck
 to simulate an environment as if I were really there, the technology never seemed to be there, and so I pursued other work.
 My coauthor Brad, though, paid more attention and spotted the Oculus Rift on Kickstarter. As an early backer, he was very
 enthusiastic about its potential to create truly commercial VR. Brad made it sound interesting enough that I ordered my own
 DK1 development kit. While I waited the two months for it to ship, I researched what others were doing and watched YouTube
 videos. When it finally arrived, nothing I’d seen or read could do justice to the actual experience.

 Like many people, my first experience was the Oculus World (also known as Tuscany) demo. In it you can meander around an old Tuscan villa. The graphics aren’t spectacular, and the low resolution on the DK1
 made it appear as though I was looking through a screen door, but those things didn’t matter one little bit when I tilted
 my head to look up and the scene changed to match where I was looking. I was overcome by giggly delight, looking up at the
 wooden rafters of the house. When I moved my avatar outside, I looked up to see the sky. This was immersion as I’d never felt
 before, and it was amazing.

 That first experience sent my mind racing with thoughts about the potential of VR. I could see the Rift being used for gaming,
 virtual tourism, storytelling, and science. But to me, education was the most interesting, and it’s where I first saw the
 Rift’s potential turned into reality. When my younger son came home from school telling me he was learning about Paris and
 the Eiffel Tower for multicultural day, I downloaded the Tower Eiffel demo by Didier Thery and let him see what it’s like to stand beneath the tower’s impressive metal arches.

 When my boys and I watched the Nova television series with Neil deGrasse Tyson, I downloaded Titans of Space by DrashVR so that they could take their own trip through the solar system and feel how grand and vast the universe truly
 is. They, of course, now want to visit Paris and work for NASA, and I’m truly excited to see what the future brings.

 KAREN BRYLA TINTON FALLS, NJ

 A long time ago, I noticed that people are always looking around but they rarely look up. I guess it’s because there’s not usually a lot of stuff overhead to see. I thought that if I could help people learn to
 look up as often as they look around, then we would go to space sooner, because people would look up at the stars and the
 moon and think, “Hey, let’s go check that out.” And I want to go to the moon. Not just as a one-off thing where you leave
 your lander behind when you go home—I want humans to have real cities in space, with shops and streets and hot dog stands.

 So I got into computer graphics because of space. I figured that the best way I can get there (short of becoming an astronaut,
 which seems too much like real work) is to make virtual reality happen. I want to put people into virtual worlds that train
 them to expect more from the real one. In VR, there’s no reason for the world not to stretch as far above you as it does to
 either side. In VR, we can make worlds where all the best stuff is overhead, and you’ll always have to look up to find it.
 After a while, looking up will get to be a habit.

 And if we can teach people to look up, then someday I’ll eat a hot dog on the moon.

 ALEX BENTON LONDON, ENGLAND

Acknowledgments

 Creating this book was not an isolated effort by the writers. In fact, it took tremendous effort, patience, and support from
 a great many wonderful and talented people to make this book possible.

 Thank you to Dan Maharry, our development editor at Manning, who has the patience of a saint and excellent taste in ’90s sci-fi.
 His guidance throughout this process was invaluable. Thanks to Robin de Jongh for getting the ball rolling for us. And thank
 you to Mary Piergies, Liz Welch, Elizabeth Martin, Kevin Sullivan, Justin Chase, and Frederik Vanhoutte, and the rest of the
 team at Manning for all of their help getting this book to completion, something that at times felt like a Sisyphean task.
 It takes an amazing team to get that rock over the hill.

 We need to give special thanks to Iñigo Quilez and Pol Jeremias, authors of Shadertoy.com, for their advice and support on ShadertoyVR. And we also want to thank Philip Rosedale, creator of Second Life, for writing
 the foreword.

 We’d also like to thank our MEAP readers for their comments and corrections to our early draft chapters, and to the following
 reviewers who read the manuscript at various stages during development: Alex Lucas, Andrew Henderson, Bas van Oerle, Behram
 Patel, Çağatay Çatal, Daniel Walters, George Freeman, Jan-Jaap Severs, Joaquin Gracia, Jose San Leandro, Kathleen Estrada,
 Ken Fricklas, Mackenzie Zastrow, Marco Massenzio, and Scott Chaussée.

 Finally, none of us could have done this without the support of our families.

 BRAD DAVIS wishes to thank Leo and Kesten, for all their understanding and devotion.

 KAREN BRYLA wishes to thank her husband Sam Kass and her children, Ted and Max, for their patience and support. She particularly wants
 to thank them for so willingly testing out early versions of demos to help her better understand what triggers motion sickness
 in VR. She also needs to thank Sam for taking many of the photos used in this book and for his invaluable feedback on the
 text and examples.

 ALEX BENTON wishes to thank his amazing wife, Dr. Antonia Benton, for her constant support and encouragement, and Verna Coulson for her
 unwavering enthusiasm.

About this Book

 Oculus Rift in Action is designed to help you create comfortable and usable virtual reality (VR) applications that run on the Oculus Rift head-mounted
 display.

How this book is organized

 This book is organized into five parts:

 	
Part 1: Getting started— Part 1 introduces you to VR and the Oculus Rift hardware. We’ll cover why you’d want to support the Rift in your software and how
 the Rift works.

 	
Part 2: Using the Oculus C API— Part 2 covers how to develop Rift applications using the Oculus C API. Whether you’re looking to write applications using the API
 directly, to integrate Rift support into your own game engine, or simply to better understand how Rift support works in your
 game engine of choice (Unity, for example), this part of the book is for you.

 	
Part 3: Using Unity— Part 3 covers how to use Unity, a popular development IDE and 3D graphics engine, to develop Rift applications. Unity is a great
 way to jump-start creating 3D games as it handles just about every aspect of game development, such as graphics, audio, physics,
 interaction and networking. With the Unity integration package from Oculus, you can quickly get your application running on
 the Rift. If you want to use Unity for your VR development, you’ll find much value in part 3.

 	
Part 4: The VR user experience— In part 4, we turn our attention to the VR experience. No matter how you’ve created your VR application, you’re going to want to design
 your application so that it’s comfortable and easy to use in the VR environment. In this part of the book we look at the challenges
 of creating a usable UI for the VR environment. We cover some of the common pitfalls of designing a UI for VR along with the
 latest research into the key components to an immersive virtual experience. We also take a look at what you can do to maximize
 user comfort, including guidelines and examples of how to mitigate motion sickness triggers and other causes of physical discomfort
 such as fatigue and eyestrain.

 	
Part 5: Advanced Rift integrations— In the final chapters, we provide information and examples for work that goes beyond the core integration of the Rift APIs.
 Here you’ll learn to work with the Oculus C API using Java or Python, along with the basics of how to use the C APIs with
 any language. We also provide an example of creating a complete VR experience by building a VR version of an existing web
 application for use on the Rift. Finally, we cover integrating additional inputs into Rift apps, using modern hardware like
 web cameras and the Leap Motion.

 Wondering where to start? Every reader should start with part 1 because it introduces you to the hardware and to the virtual reality concepts we’ll be using throughout the book. After that,
 where you go depends on how you plan to develop your application. C/C++ developers will want to turn to part 2 and Unity developers to part 3. No matter how you’re going to develop, your next stop should be part 4, to learn how to ensure your users get the most out of your application. When you’re ready to move on to advanced Rift integrations
 and see a full-fledged VR app in action, turn to part 5.

What this book doesn’t do

 This book doesn’t cover how to use OpenGL, nor does it discuss the basics of 3D programming. It also doesn’t cover C or C++
 or how to use any particular development environment. If you’re unfamiliar with these topics, you’ll find some good references
 listed in appendix C.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts,
 and numbered bullets are sometimes used in the text to provide additional information about the code.

 We have tried to format the code so that it fits within the available page space in the book by adding line breaks and using
 indentation carefully. Sometimes, however, very long lines include line-continuation markers. Bold fixed-width font like this in listings indicates new code.

 Source code for all the working examples in this book is available online in our GitHub repository at github.com/OculusRiftInAction/OculusRiftInAction.

 If you’re using Unity (part 3 of this book), you don’t need to download the entire example repository. The scripts and the example scenes for part 3 are in /examples/unity.

 If you’re using the C API (part 2 of this book), details of how to download and build the C++ and Java example applications are discussed next.

SDK version

 All of our C++, Java, and Python examples have been tested against Oculus SDK version 0.5.0. The Oculus SDK will continue
 to evolve, through the release of the Rift and afterward. As the code in this book gradually drifts further out of date, you
 should check back on our GitHub repository for updates and improvements.

 Unity’s Oculus Rift support is updated on a separate track and may be independently maintained.

Required tools: Git, CMake, and a build environment

 To access the example source code, you need to use a source control tool called Git. Git binaries for Microsoft Windows, Mac
 OS X, and Linux are available at git-scm.com.

 To make it easier to work with the examples across a variety of platforms, we use a tool called CMake. CMake allows you to
 create meta-project files that describe how your code is organized into libraries and executables, and it can be used to create
 project files for a given platform, such as Xcode (on OS X), Visual Studio (on Windows), and Make or Ninja on Linux. CMake
 binaries are available at cmake.org.

 If you plan to run the examples, you’ll need to install both CMake and Git.

 To build the code, you’ll need a build environment on your platform, such as Xcode, Visual Studio, or Make or Ninja. Although
 the examples listed are the defaults used by CMake, CMake does allow you to specify a different generator if you want to use
 something other than the default. To see a list of all the generators supported on the current platform, run cmake –h. Note that we don’t know if every generator supported will work; we’ve only tested with the latest free versions of the default
 for each platform (and Eclipse CDT4 using Ninja, because we like it).

Required libraries

 Unless otherwise specified, for the examples we’ll be showing throughout the book all of the libraries required are included
 in the example code repository.

 This includes the Oculus VR SDK. Although you may want to get the latest version of the SDK directly from the Oculus website
 before you start any real-world projects, you don’t need it for the example code in the book. The steps we’ll describe for
 setting up your development environment will cover how to download everything you need to get started.

 Note that the SDK version here is what we refer to as the “community SDK,” because it’s a copy of the official SDK with some
 minor changes and bug fixes. The differences between the community SDK and the official SDK are negligible as of this writing,
 and intended to remain so. (If any example code hinges on some difference between the official SDK and the community SDK,
 then we’ve failed to do our jobs.) Therefore, for the purposes of the code in this book, unless explicitly stated otherwise,
 please assume the code we’re teaching would work just as well with either version.

 The libraries on which our example demos depend are connected to the repository as Git submodules. Submodules are a mechanism
 by which one repository can refer to another, making it easier for the submodules to be updated as needed without disrupting
 the overall project. For the most part this should all be transparent to you when you do the checkout.

Checking out the example code and creating the project files

 To build the example code, you first need to clone the example code repository using Git. After the clone is complete, create
 the project files using CMake. After you’ve run CMake successfully, you can go to your development environment of choice (Xcode,
 Eclipse, Visual Studio, etc.) and open the project files.

Cloning the repository with Git

 To clone the repository, complete the following steps:

 1. Choose the directory where you want to work. You can select any directory that you want, but keep in mind that when you
 check out a Git repository, it’ll automatically create a folder for it.

 2. Open a command prompt[1] and change to your working directory.

To change to your working directory, enter:

 cd <directory>

 where <directory> is the path and directory of where you plan to do your work.

 1

To open a command prompt on Windows, press Windows-R to open the Run dialog box, type cmd, and press Enter. To open a command prompt on Mac OS X, in the Finder go into Applications, and then Utilities, and start
 the Terminal application. This should open a console window in your home directory. On Linux, press Ctrl-Alt-T.

 3. On the command line, run Git to fetch the files.

git clone --recursive
[image:] https://github.com/OculusRiftInAction/OculusRiftInAction.git

 The --recursive flag is very important here. It tells Git to check out not only the specified repository, but all of the Git submodules as
 well.

 By default this will create an OculusRiftInAction folder underneath the current folder. If you want to use a different name,
 you can add it to the end of the command.

 After the clone is complete, the next step is to create the project files using CMake.

Creating the project files with CMake

 To create the project files, complete the following steps:

 1. Change directories so that you’re in the newly checked-out repository.

cd OculusRiftInAction

 2. Create and then change to a build directory:

mkdir build
cd build

 3. Run CMake to create the project files. If you’re using the default build environment for your platform, run this command:

cmake ..

 This will create project files for the default build environment on your platform. This is Xcode for OS X, Visual Studio for
 Windows, and Makefiles for Unix. But you can customize this by telling CMake to use a different generator. Run cmake –h to print out a list of command-line switches, as well as the list of generators supported on the current platform. For example,
 when running in Linux, we use the following command:

 cmake .. –G "Eclipse CDT4 – Ninja"

 	

 Note

 Even if a generator is listed as supported, it doesn’t mean it’ll work. You’ll need to have it already installed on your system,
 at the very least, and we’ve only tested with the latest free versions of the default for each platform.

 	

 Once you’ve run CMake successfully and it hasn’t reported any errors, you can go into your development environment and open
 the project files. From there, you can use your chosen environment to build the examples.

About the Authors

 BRAD DAVIS is a software developer for High Fidelity, a startup working on open source, social VR applications. He’s an active participant
 in the Oculus VR developer forums and maintains a set of example Rift applications on GitHub. His ultimate dream is to create
 a portable VR rig that allows you to watch Inception anywhere you want and then to wear it to a theater during a showing of Inception.

 KAREN BRYLA is a graduate of Carnegie Mellon University and an experienced writer, developer, and usability analyst. Of particular interest
 to her is how users adapt to new technology and how she can help developers design applications for new mediums that are both
 functional and intuitive.

 ALEX BENTON holds a PhD in applied mathematics from the University of Cambridge, where he is an Associate Lecturer in Advanced Graphics.
 He was a pioneering author of the original VRML (Virtual Reality Modeling Language) browser for Netscape in 1996. He has since
 worked at a number of Silicon Valley startups, including multiple 3D gaming companies, and holds patents in three-dimensional
 orthodontic software. He’s currently a Senior Software Engineer at Google in London, England, where he lives with his wife
 and two cats.

 All three authors are contributing writers to Rifty-Business, rifty-business.blogspot.com, a blog focused on Rift software development.

Author Online

 Purchase of Oculus Rift in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/bdavis. This page provides information on how to get on the forum after you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the Author Online remains voluntary (and unpaid).

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The caption for the illustration on the cover of Oculus Rift in Action is “Veiled Dancer.” The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1,
 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable
 to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration
 bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front
 cover of a computer programming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with
 the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds
 the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that
 might have happened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Getting started

 Part 1 of Oculus Rift in Action introduces you to the Oculus Rift hardware and to virtual reality (VR). We begin with an exploration of what VR is and why
 you’d want to develop for the Rift. From there, we move on to an overview of the Rift hardware and how it works. Next you’ll
 learn about the development paths you can take for creating your Rift application.

 One unusual aspect to working with the Rift is that using it can be physically uncomfortable, because it can sometimes trigger
 symptoms of motion sickness. To help you have a more pleasant working experience, part 1 also includes tips on what you can do to deal with motion sickness.

 When you are done with part 1, you’ll be ready to start building Rift applications using your chosen development path, either working directly with the
 C API (part 2) or with Unity (part 3).

Chapter 1. Meet the Oculus Rift

 This chapter covers

 	Supporting the Rift

 	Understanding how the Rift is being used today

 	Understanding the Rift hardware and how it works

 	Setting up your hardware

 	Dealing with motion sickness

 	Choosing a development path: C, Java, Python, or Unity

 Because you picked up this book, you probably already know that the Rift is a virtual reality head-mounted display (VR HMD).
 You may have one of your own, or perhaps you’ve tried one out and were, like us, blown away by the intense immersion. Even
 if you’ve only read about the Rift in passing, if you watch demo videos and reaction shots you can often see the look of incredulous
 delight on people’s faces the first time they use the Rift.

 With its vast field of view (more than double what you get with a typical monitor) and head tracking (the wearer just turns
 their head to see what they want, with no need to use a mouse or joystick to orient), the Rift represents an opportunity for
 people to view your work in a way they never could before.

 In this book, we’ll show you how to build immersive environments that run on the Rift. The first steps are rendering to the
 device and tracking the user’s head movements. After that we’ll discuss the unique usability challenges of VR and the steps
 you can take to avoid causing motion sickness for some users.

 Before we get started, let’s talk a bit about why you should support the Rift.

1.1. Why support the Rift?

 There are really two questions here: whether you should support VR in general and whether you should support the Rift specifically.

 1.1.1. The call of virtual reality

 If you’ve ever seen an episode of Star Trek: The Next Generation and imagined what you could do with your own personal holodeck, or wished you were the greatest swordfighter in the Metaverse,
 then this book is for you. Perhaps you’ve played games where you controlled a giant robot and wished you could look out on
 the war-torn landscape by turning your head, or maybe you’ve wished you could build cities with a wave of your hand. If so,
 you’ve felt the call of VR, and this book is for you.

 Maybe you have more practical interests, such as saving money or increasing safety. For years, VR has been used in specialized
 niches where immersion in an environment, without actually being in the environment, was critical. The canonical example is the flight simulator. When you’re training a pilot to operate a piece
 of machinery that costs tens or hundreds of millions of dollars, spending a few hundred thousand, or even a few million, on
 creating an artificial environment in which to train without the risks associated with a real aircraft can be a wise investment.

 1.1.2. But what about the Rift?

 What’s special about the Rift is that it can deliver nearly the same level of immersion as existing commercial setups costing
 orders of magnitude more, but at a price that makes it available, if not to the average consumer, at least to the average
 consumer who would already have the kind of computing or gaming system that can support the Rift.[1]

 1

The first development kit was sold for $300, a price comparable to high-end video cards. Oculus has repeatedly said it’s trying
 to hit the same price point for the consumer version, albeit with vastly improved specifications.

 	

 Immersion and presence

 Two key terms we use to describe VR are immersion and presence.

 Immersion is the art and technology of surrounding the user with a virtual context, such that there’s world above, below, and all around
 you.

 Presence is the visceral reaction to a convincing immersion experience. It’s when immersion is so good that the body reacts instinctively
 to the virtual world as though it’s the real one.

 When you turn your head to look up at the attacking enemy bombers, that’s immersion; when you can’t stop yourself from ducking
 as they roar by overhead, that’s presence.

 	

 The appeal of applying VR to the field of gaming should be obvious, and indeed gaming is the area that’ll almost certainly
 drive mass-market adoption. But the exciting thing to us is the potential the Rift brings. By democratizing the use and development
 of VR, it has the potential to radically alter the world in ways we can’t yet imagine.

 But all this cheerleading might not be assuaging your doubts. Maybe you feel the call of VR, but you (or your manager) don’t
 know whether your project has the budget to include such frivolous features as virtual reality. Well, here’s the great part:
 supporting the Rift is cheap and easy, and we’re going to show you how to do it.

 Need more inspiration? Let’s look at what people are already doing with the Rift.

1.2. How is the Rift being used today?

 Developers around the world are taking the Rift and doing amazing things with it, either displacing previous VR solutions
 at a fraction of the price or creating innovative applications that weren’t possible or practical before. The examples that
 follow are just a small sample of what’s going on in VR right now, but we hope they provide some inspiration as you start
 your own projects.

 One obvious application of VR is virtual tourism. In our opinion, no other media comes as close to making you feel like you’re
 somewhere else quite like VR. We’d even say that if a picture is worth a thousand words, a VR experience is worth a million
 words. One virtual tourism demo that can give you a taste for what VR can do is Tower Eiffel (share.oculus.com/app/tower-eiffel) by Didier Thery (figure 1.1). You can look at a picture of the Eiffel Tower or watch a movie, you can read about how tall it is and about how it was
 constructed, but none of that will convey to you what it feels like to look up and see the metal arches of the tower above
 you.

 Figure 1.1. Tower Eiffel by Didier Thery

 [image:]

 Visiting the Eiffel Tower is possible in real life, but visiting outer space is a bit out of reach for most people. That brings
 us to another one of our favorite demos, Titans of Space (share.oculus.com/app/titans-of-space) by DrashVR LLC (figure 1.2). In Titans of Space, you can get a feel for the beauty and vastness of space.

 Figure 1.2. Titans of Space by DrashVR LLC

 [image:]

 VR can do more than just make you feel what it’s like to be someplace else: it can provide an experience so visceral that
 it’ll make you break out in goose bumps, jump with fright, or duck to avoid an oncoming object. Don’t Let Go! (share.oculus.com/app/dont-let-go) by Skydome Studios, shown in figure 1.3, is a fun example of the chills and thrills of VR.

 Figure 1.3. Don’t Let Go! by Skydome Studios

 [image:]

 When you combine a virtual world with thrills and goals, you’ve got what some consider the ultimate experience: immersive
 gaming. Valve’s Team Fortress 2 (store.steampowered.com/app/440/), shown in figure 1.4, was one of the first existing games to be updated with Oculus Rift support and is well worth a look.

 Figure 1.4. Team Fortress 2: one of the first games to be updated with Oculus Rift support

 [image:]

 Of course, not all Rift experiments are fun and games. The Rift has also facilitated some serious work. One of the more interesting
 experiments we’ve seen using the Rift is by the research group BeAnotherLab (www.themachinetobeanother.org). Their experiment uses the Rift, multiple cameras, and human actors to allow users to view what it’d be like to be someone
 else, as shown in figure 1.5. The BeAnotherLab experiment allows researchers to get a view into human empathy that previously wasn’t affordable to a lab
 on a modest budget.

 Figure 1.5. Two subjects in an experiment by BeAnotherLab look down and see themselves as the other person, thanks to a set of cameras
 and the Rift as seen in the BeAnotherLab promotional video found on its website (www.themachinetobeanother.org/?page_id=764).

 [image:]

 In even more practical terms, we think the Norwegian army is taking an intriguing approach to using the Rift (figure 1.6) to increase the safety of soldiers during combat (http://mng.bz/0tzo). In this experimental use of the Rift, cameras are mounted on all sides of the tank. The images are then fed to a driver
 wearing the Rift inside the tank. The intent is to allow the driver to drive the tank with the hatch closed during combat
 situations.

 Figure 1.6. An experiment using the Rift to allow tank drivers to drive with the hatch closed, as seen in a report on Norwegian TV station
 TUTV

 [image:]

 Ready to meet the Rift? Let’s go!

1.3. Get to know the Rift hardware

 So far, two models of the Rift have been made commercially available: the first and second developer kits, known as DK1 and
 DK2. The DK1 has been discontinued and replaced with the DK2. We’ll cover the hardware for both versions.

 1.3.1. The DK2

 The DK2 kit includes:

 	A headset.

 	An infrared USB camera for positional tracking.

 	Two pairs of lenses, referred to as A and B lenses (plus a cloth to clean them). The A lenses come preinstalled in the headset.

 	
A paired HDMI/USB cable.

 	A positional tracker sync cable.

 	A DVI-to-HDMI adapter.

 	A 5V DC power adapter for U.S.-style power, with international adapters for other countries.

 In addition, the kits include the Oculus Rift Development Kit Instruction Manual. This manual covers basic usage of the headset along with important health and safety notes. Please read and observe all
 precautions before using the Rift. For the most up-to-date health and safety information, check the Oculus VR website (developer.oculus.com/documentation/).

 The following sections provide more information on the bits and pieces that make up the DK2.

The headset

 The headset, shown in figure 1.7, is formed of black molded plastic. It has small adjustment wheels on the left and right sides that allow you to move the
 display closer to or farther from your face. There’s foam padding on the surfaces intended to rest against the skin and straps
 that secure the Rift to your head. In addition to the normal “around the sides” strap that you might find on any pair of ski
 goggles, another strap goes over the top of your head. This third strap provides additional support for the headset, which,
 though light, can be front-heavy enough to cause fatigue during extended use. Perhaps more important, the third strap reduces
 the need to secure the side straps as tightly, alleviating another potential source of discomfort and fatigue.

 Figure 1.7. The DK2 headset: front, side, and back views

 [image:]

 The headset’s display power button is located on the top edge of the headset next to the power indicator light. The indicator
 light glows blue when the headset is powered on and receiving a video signal, and it glows orange when the headset is on but
 not receiving a video signal. (If you’re not getting a signal, see the troubleshooting section in appendix A.)

 The headset incorporates the following:

 	A single 1920 × 1080 display

 	An inertial measurement unit (IMU) that reports linear and angular acceleration as well as magnetic field strength and direction

 	Several infrared lights that are tracked by the included tracking camera to provide user position data

 	A built-in latency tester

 The display is split between both eyes (each eye can see only half of the display), yielding 960 × 1080 per eye, as shown
 in figure 1.8.

 Figure 1.8. The DK2 display is split between both eyes.

 [image:]

 The display panel itself isn’t particularly remarkable, except in the sense that such a lightweight and high-density display
 would’ve been remarkable 10 years ago and an astonishing 10 years before that. The mobile computing industry has driven the
 commodification of small, high-resolution panels at an amazing pace, and the recent rounds of competition between the primary
 tablet and display manufacturers on the basis of pixels per inch will only drive this trend in a favorable direction.

 The head-tracking hardware is somewhat more specialized. It’s designed to report both acceleration and rotational velocity
 at a rate of 1,000 times per second. Even though impressive, this doesn’t represent any sort of quantum leap over the commodity
 hardware found in most modern game controllers and mobile devices.

The lenses

 The DK2 model includes two pairs of lenses, termed the A and B lenses. The A lenses are for those with 20/20 vision and are
 installed in the headset by default. The B lenses (shown in figure 1.9) are for those who are very nearsighted.

 Figure 1.9. The DK2 B lenses

 [image:]

 The lens pairs are identical in terms of how they transmit light. How they differ is that they place the lens at slightly
 different distances from the actual display. Combined with the headset distance-adjustment knobs, this allows the user to
 vary the distance between the screen and the lenses, as well as between the lenses and the eyes (commonly referred to as “eye
 relief”), in order to accommodate a wide variety of facial characteristics as well as users who require prescription glasses.

 Note that the DK2 doesn’t allow you to change the distance between the lenses, which is fixed at 63.5 mm apart, but this isn’t
 as much of an issue as you might expect. The lenses are designed to present the same image to the user regardless of exactly
 where the eyes are located. If you move an image-capturing device (your eye, for instance) off the center axis of the lens,
 the image captured doesn’t itself move laterally. As long as they’re within an area of about 1.5 × 1.5 cm across and 0.5 cm
 deep, your eyes will perceive the same image from the screen, barring a small amount of distortion at the edges, with the
 same pixel appearing “directly ahead.” This allows the Rift to support a broad swath of users with varying interpupillary
 distances. This remarkable property is called collimated light and will be discussed in detail in chapter 4.

The positional camera

 To track the user’s head position, the DK2 uses a camera (figure 1.10) to detect infrared lights located in the headset (hidden behind the front of the headset). You’ll notice that the lens of
 the camera is mirrored, because it tracks only infrared light.

 Figure 1.10. The DK2 positional camera

 [image:]

 The camera is connected to your computer via USB and to the headset using the included camera sync cable. The placement of
 the camera is critical to how well positional tracking will work. The camera should be placed about 5 feet from the headset,
 and you should make sure that the camera has an unobstructed view of the headset at all times. The camera can be placed on
 your desk or on top of your monitor, or because it also includes a standard tripod attachment, you can attach it to a tripod,
 which gives you more options for placement.

 It’s important that nothing blocks the camera’s view of the headset, so you shouldn’t place any stickers or other objects
 on the headset that could block the lights from detection by the positional camera.

 Now let’s look at the original development kit for those who are still using DK1 hardware.

 1.3.2. The DK1

 The DK1 kit includes the following:

 	A headset with an attached control box

 	Three pairs of lenses, referred to as A, B, and C lenses (plus a cloth to clean the lenses)

 	A USB cable with male A to mini B connectors

 	A 5V DC power adapter for U.S.-style power, with international adapters for various other countries

 	DVI and/or HDMI cables[2]
 2

The number and type of cables shipped with the DK1 varied over time.

 Like the DK2, the kit includes an Oculus Rift Development Kit Instruction Manual that covers basic usage of the headset, along with health and safety notes. Again, read and observe all precautions before
 using the Rift. For the most up-to-date health and safety information, please check the Oculus VR website (developer.oculus.com/documentation/).

 Now let’s take a look at the parts of the DK1.

The headset

 The DK1 headset, shown in figure 1.11, is formed of black molded plastic, has small adjustment wheels on the left and right sides that allow you to move the display
 closer to or farther from your face, has foam padding on the surfaces intended to rest against the skin, and has straps that
 secure the Rift to your head. You’ll also note that the DK1 adjustment buckles on the straps include a handy gripper for the
 wire running between the Rift and the control box.

 Figure 1.11. The DK1 headset: front, side, and back views

 [image:]

 The DK1 headset incorporates a single 1280 × 800 display at the heart of the device, as well as motion-tracking hardware that
 reports acceleration, rotation rate, and magnetic field strength and direction. The display is split between the two eyes
 (each eye can see only half of the display), yielding 640 × 800 per eye, as shown in figure 1.12. This resolution does cause what some call the “screen door” effect—that is, it looks like you’re looking through a screen
 door. The grid of individual pixels can become visible to the naked eye, especially when viewing static content. This effect
 improved dramatically in the DK2 should continue to be less of a problem in later versions of the Rift as screen resolution
 improves, reducing inter-pixel spacing.

 Figure 1.12. The DK1 display is split between both eyes.

 [image:]

 The headset contains the head-tracking hardware that reports both acceleration and rotational velocity at a rate of 1,000
 times per second.

The control box

 In addition to the cable extending to the headset, the control box has a DC power connector, a USB mini-B female port, and
 DVI and HDMI female ports (see figure 1.13). It has five buttons: one for power, and two each for controlling brightness and contrast on the display. It also has a
 small blue LED in the center of the Oculus VR logo that glows blue when the Rift display is active.

 Figure 1.13. The DK1 control box: front and back views

 [image:]

The lenses

 The DK1 model includes three pairs of lenses, pictured in figure 1.14. The pairs are all identical in terms of how they transmit light. They differ in placing the lenses at slightly different
 distances from the LCD display. (You can see this in figure 1.14 by comparing their heights; the C lenses are visibly shallower than the A lenses.) Combined with the headset distance-adjustment
 knobs, this allows the user to vary the distance between the screen and the lenses, as well as between the lenses and the
 eyes, in order to accommodate a wide variety of facial characteristics as well as users who require prescription glasses.

 Figure 1.14. The DK1 lenses

 [image:]

 The DK1 lenses are fixed at 64 mm apart and cannot be adjusted. As with the DK2, not being able to adjust the distance between
 the lenses does not present a major constraint, because the lenses transmit collimated light. For more on collimated light,
 see chapter 4.

