

JavaFX in Action

 Simon Morris

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830
email: orders@manning.com

 ©2010 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

	

 [image:]

 	

Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

Development Editor: Tom Cirtin
Copyeditor: Linda Recktenwald
Proofreader: Elizabeth Martin
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Dedication

 To my father, the coolest folk singer this side of the Mersey. (Be honest, Dad, if you’d known how obsessed I was going to
 get, would you have agreed to buy my first computer?)

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 Chapter 1. Welcome to the future: introducing JavaFX

 Chapter 2. JavaFX Script data and variables

 Chapter 3. JavaFX Script code and structure

 Chapter 4. Swing by numbers

 Chapter 5. Behind the scene graph

 Chapter 6. Moving pictures

 Chapter 7. Controls, charts, and storage

 Chapter 8. Web services with style

 Chapter 9. From app to applet

 Chapter 10. Clever graphics and smart phones

 Chapter 11. Best of both worlds: using JavaFX from Java

 Appendix A. Getting started

 Appendix B. JavaFX Script: a quick reference

 Appendix C. Not familiar with Java?

 Appendix D. JavaFX and the Java platform

 Index

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 Chapter 1. Welcome to the future: introducing JavaFX

 1.1. Introducing JavaFX

 1.1.1. Why do we need JavaFX Script? The power of a DSL

 1.1.2. Back to the future: the rise of the cloud

 1.1.3. Form follows function: the fall and rebirth of desktop Java

 1.2. Minimum effort, maximum impact: a quick shot of JavaFX

 1.3. Comparing Java and JavaFX Script: “Hello JavaFX!”

 1.4. Comparing JavaFX with Adobe AIR, GWT, and Silverlight

 1.4.1. Adobe AIR and Flex

 1.4.2. Google Web Toolkit

 1.4.3. Microsoft Silverlight

 1.4.4. And by comparison, JavaFX

 1.5. But why should I buy this book?

 1.6. Summary

 Chapter 2. JavaFX Script data and variables

 2.1. Annotating code with comments

 2.2. Data types

 2.2.1. Static, not dynamic, types

 2.2.2. Value type declaration

 2.2.3. Initialize-only and reassignable variables (var, def)

 2.2.4. Arithmetic on value types (+, -, etc.)

 2.2.5. Logic operators (and, or, not, <, >, =, >=, <=, !=)

 2.2.6. Translating and checking types (as, instanceof)

 2.3. Working with text, via strings

 2.3.1. String literals and embedded expressions

 2.3.2. String formatting

 2.3.3. String localization

 2.4. Durations, using time literals

 2.5. Sequences: not quite arrays

 2.5.1. Basic sequence declaration and access (sizeof)

 2.5.2. Sequence creation using ranges ([..], step)

 2.5.3. Sequence creation using slices ([..<])

 2.5.4. Sequence creation using a predicate

 2.5.5. Sequence manipulation (insert, delete, reverse)

 2.5.6. Sequences, behind the scenes

 2.6. Autoupdating related data, with binds

 2.6.1. Binding to variables (bind)

 2.6.2. Binding to bound variables

 2.6.3. Binding to a sequence element

 2.6.4. Binding to an entire sequence (for)

 2.6.5. Binding to code

 2.6.6. Bidirectional binds (with inverse)

 2.6.7. The mechanics behind bindings

 2.6.8. Bound functions (bound)

 2.6.9. Bound object literals

 2.7. Working nicely with Java

 2.7.1. Avoiding naming conflicts, with quoted identifiers

 2.7.2. Handling Java native arrays (nativearray of)

 2.8. Summary

 Chapter 3. JavaFX Script code and structure

 3.1. Imposing order and control with packages (package, import)

 3.2. Developing classes

 3.2.1. Scripts

 3.2.2. Class definition (class, def, var, function, this)

 3.2.3. Object declaration (init, postinit, isInitialized(), new)

 3.2.4. Object declaration and sequences

 3.2.5. Class inheritance (abstract, extends, override)

 3.2.6. Mixin inheritance (mixin)

 3.2.7. Function types

 3.2.8. Anonymous functions

 3.2.9. Access modifiers (package, protected, public, public-read, public-init)

 3.3. Flow control, using conditions

 3.3.1. Basic conditions (if, else)

 3.3.2. Conditions as expressions

 3.3.3. Ternary expressions and beyond

 3.4. Sequence-based loops

 3.4.1. Basic sequence loops (for)

 3.4.2. For loops as expressions (indexof)

 3.4.3. Rolling nested loops into one expression

 3.4.4. Controlling flow within for loops (break, continue)

 3.4.5. Filtering for expressions (where)

 3.5. Repeating code with while loops (while, break, continue)

 3.6. Acting on variable and sequence changes, using triggers

 3.6.1. Single-value triggers (on replace)

 3.6.2. Sequence triggers (on replace [..])

 3.7. Trapping problems using exceptions (try, catch, any, finally)

 3.8. Summary

 Chapter 4. Swing by numbers

 4.1. Swing time: Puzzle, version 1

 4.1.1. Our initial puzzle data class

 4.1.2. Our initial GUI class

 4.1.3. Building the buttons

 4.1.4. Model/View/Controller, JavaFX Script style

 4.1.5. Running version 1

 4.2. Better informed and better looking: Puzzle, version 2

 4.2.1. Making the puzzle class clever, using triggers and function types

 4.2.2. Group checking up close: function types

 4.2.3. Firing the update: triggers

 4.2.4. Better-looking GUI: playing with the underlying Swing component

 4.2.5. Running version 2

 4.3. Game on: Puzzle, version 3

 4.3.1. Adding stats to the puzzle class

 4.3.2. Finishing off the puzzle grid GUI

 4.3.3. Adding a status line to our GUI with a label

 4.3.4. Running version 3

 4.4. Other Swing components

 4.5. Bonus: using bind to validate forms

 4.6. Summary

 Chapter 5. Behind the scene graph

 5.1. What is a scene graph?

 5.1.1. Nodes: the building blocks of the scene graph

 5.1.2. Groups: graph manipulation made easy

 5.2. Getting animated: LightShow, version 1

 5.2.1. Raindrop animations

 5.2.2. The RainDrop class: creating graphics from geometric shapes

 5.2.3. Timelines and animation (Timeline, KeyFrame)

 5.2.4. Interpolating variables across a timeline (at, tween, =>)

 5.2.5. How the RainDrop class works

 5.2.6. The LightShow class, version 1: a stage for our scene graph

 5.2.7. Running version 1

 5.3. Total transformation: LightShow, version 2

 5.3.1. The swirling lines animation

 5.3.2. The SwirlingLines class: rectangles, rotations, and transformations

 5.3.3. Manipulating node rendering with transformations

 5.3.4. The LightShow class, version 2: color animations

 5.3.5. Running version 2

 5.4. Lost in translation? Positioning nodes in the scene graph

 5.5. Bonus: creating hypertext-style links

 5.6. Summary

 Chapter 6. Moving pictures

 6.1. Taking control: Video Player, version 1

 6.1.1. The Util class: creating image nodes

 6.1.2. The Button class: scene graph images and user input

 6.1.3. The GridBox class: lay out your nodes

 6.1.4. The Player class, version 1

 6.1.5. Running version 1

 6.2. Making the list: Video Player, version 2

 6.2.1. The List class: a complex multipart custom node

 6.2.2. The ListPane class: scrolling and clipping a scene graph

 6.2.3. Using media in JavaFX

 6.2.4. The Player class, version 2: video and linear gradients

 6.2.5. Creating varying color fills with LinearGradient

 6.2.6. Running version 2

 6.3. Bonus: taking control of fonts

 6.4. Summary

 Chapter 7. Controls, charts, and storage

 7.1. Comments welcome: Feedback, version 1

 7.1.1. The Record class: a bound model for our UI

 7.1.2. The Feedback class: controls and panel containers

 7.1.3. Running version 1

 7.2. Chart topping: Feedback, version 2

 7.2.1. Cross-platform persistent storage

 7.2.2. How Storage manages its files

 7.2.3. Adding pie and bar charts

 7.2.4. Taking control of chart axes

 7.2.5. Other chart controls (area, bubble, line, and scatter)

 7.2.6. Running version 2

 7.3. Bonus: creating a styled UI control in JavaFX

 7.3.1. What is a stylesheet?

 7.3.2. Creating a control: the Progress class

 7.3.3. Creating a skin: the ProgressSkin class

 7.3.4. Using our styled control with a CSS document

 7.3.5. Further CSS details

 7.4. Summary

 Chapter 8. Web services with style

 8.1. Our project: a Flickr image viewer

 8.1.1. The Flickr web service

 8.1.2. Getting registered with Flickr

 8.2. Using a web service in JavaFX

 8.2.1. Calling the web service with HttpRequest

 8.2.2. Parsing XML with PullParser

 8.2.3. A recap

 8.2.4. Testing our web service code

 8.3. Picture this: the PhotoViewer application

 8.3.1. Displaying thumbnails from the web service: the GalleryView class

 8.3.2. The easy way to animate: transitions

 8.3.3. The main photo desktop: the PhotoViewer class

 8.3.4. Running the application

 8.4. Size matters: node bounds in different contexts

 8.5. Summary

 Chapter 9. From app to applet

 9.1. The Enigma project

 9.1.1. The mechanics of the Enigma cipher

 9.2. Programmer/designer workflow: Enigma machine, version 1

 9.2.1. Getting ready to use the JavaFX Production Suite

 9.2.2. Converting SVG files to FXZ

 9.2.3. The Rotor class: the heart of the encryption

 9.2.4. A quick utility class

 9.2.5. The Key class: input to the machine

 9.2.6. The Lamp class: output from the machine

 9.2.7. The Enigma class: binding the encryption engine to the interface

 9.2.8. Running version 1

 9.2.9. Shortcuts using NetBeans, Photoshop, or Illustrator

 9.3. More cryptic: Enigma machine, version 2

 9.3.1. The Rotor class, version 2: giving the cipher a visual presence

 9.3.2. The Paper class: making a permanent output record

 9.3.3. The Enigma class, version 2: at last our code is ready to encode

 9.3.4. Running version 2

 9.4. From application to applet

 9.4.1. The Enigma class: from application to applet

 9.4.2. The JavaFX Packager utility

 9.4.3. Packaging up the applet

 9.4.4. Dragging the applet onto the desktop

 9.5. Bonus: Building the UI in an art tool

 9.6. Summary

 Chapter 10. Clever graphics and smart phones

 10.1. Amazing games: a retro 3D puzzle

 10.1.1. Creating a faux 3D effect

 10.1.2. Using 2D to create 3D

 10.2. The maze game

 10.2.1. The MazeDisplay class: 3D view from 2D points

 10.2.2. The Map class: where are we?

 10.2.3. The Radar class: this is where we are

 10.2.4. The Compass class: this is where we’re facing

 10.2.5. The ScoreBoard class: are we there yet?

 10.2.6. The MazeGame class: our application

 10.2.7. Running the MazeGame project

 10.3. On the move: desktop to mobile in a single bound

 10.3.1. Packaging the game for the mobile profile

 10.3.2. Running the mobile emulator

 10.3.3. Emulator options

 10.3.4. Running the software on a real phone

 10.4. Performance tips

 10.5. Summary

 Chapter 11. Best of both worlds: using JavaFX from Java

 11.1. Different styles of linking the two languages

 11.2. Adventures in JavaFX Script

 11.2.1. Game engine events

 11.2.2. Calling the JavaFX Script event code from Java

 11.3. Adding FX to Java

 11.3.1. The problem with mixing languages

 11.3.2. The problem solved: an elegant solution to link the languages

 11.3.3. Fetching the JavaFX Script object from within Java

 11.4. Summary

 Appendix A. Getting started

 A.1. Downloading and installing

 A.1.1. The Java Development Kit (essential)

 A.1.2. NetBeans or other IDEs (optional)

 A.1.3. The IDE plug-ins (required, if using an IDE)

 A.1.4. The JavaFX SDK (essential)

 A.1.5. The JavaFX Production Suite (optional)

 A.1.6. Recap

 A.2. Compiling JavaFX

 A.2.1. Setting the path

 A.2.2. Running the compiler

 A.2.3. Running the code

 A.3. Useful URLs

 Appendix B. JavaFX Script: a quick reference

 B.1. Comments

 B.2. Variables and data types—the basics

 Variable declaration (def, var, Boolean, Integer, Number, String)

 Arithmetic (+, -, etc.)

 Logic operators (and, or, not, <, >, =, >=, <=, !=)

 Casting (as, instanceof)

 B.3. Strings

 String literals and embedded expressions

 String formating

 String localization

 B.4. Durations

 B.5. Sequences: lists of objects

 Basic sequence declaration and access (sizeof)

 Sequence creation using ranges ([..], step)

 Sequence creation using slices ([..<])

 Sequence creation using a predicate

 Sequence manipulation (insert, delete, reverse)

 B.6. Binds

 Binding to variables (bind)

 Binding to a sequence

 Binding to code

 Bidirectional binds (with inverse)

 Bound functions (bound)

 B.7. Cooperating with Java

 Quoted identifiers

 Java native arrays (nativearray of)

 B.8. Packages (package, import)

 B.9. Developing classes

 Scripts

 Class definition (class, def, var, function, this)

 Object declaration (init, postinit, isInitialized(), new)

 Class inheritance (abstract, extends, override)

 Mixin inheritance (mixin)

 Function types

 Anonymous functions

 Access modifiers (package, protected, public, public-read, public-init)

 B.10 Conditions

 Basic conditions (if, else)

 Ternary expressions and beyond

 B.11 Loops

 Basic sequence loops (for)

 Rolling nested loops into one expression

 Controlling flow within for loops (break, continue)

 Filtering for expressions (where)

 While loops (while, break, continue)

 B.12 Triggers

 Single-value triggers (on replace)

 Sequence triggers (on replace [..])

 B.13 Exceptions (try, catch, any, finally)

 B.14 Keywords

 B.15 Operator precedence

 B.16 Pseudo variables

 Appendix C. Not familiar with Java?

 C.1. Static types versus dynamic types

 C.2. Casts

 C.3. Packages

 C.3.1. Importing classes from a package

 C.3.2. Packages and physical files

 C.3.3. Creating packaged classes and dealing with name clashes

 C.4. Object orientation

 C.4.1. Modeling the world with classes

 C.4.2. Classes from classes: subclassing and overriding

 C.4.3. An object can be referenced in different ways: polymorphism

 C.4.4. Partial implementation: abstract functions and interfaces

 C.5. Access modifiers

 Appendix D. JavaFX and the Java platform

 D.1. How not to go native

 D.2. Java SE/ME/EE and JDK/JRE: three editions, two audiences

 D.3. Release versions: a rose by any other name

 Index

List of Figures

 Chapter 1. Welcome to the future: introducing JavaFX

 Figure 1.1. A complex GUI typical of modern desktop applications. Two windows host scrolling control palettes, while another
 holds an editable image and rulers.

 Figure 1.2. Google’s Gmail is an example of a website application that attempts to mimic the look and function of a desktop
 application.

 Figure 1.3. Google Docs runs inside a browser and has a much simpler GUI than Microsoft Office or OpenOffice.org. (Google
 Docs shown.)

 Figure 1.4. An applet (the game 3D-Blox) runs inside a web page, living alongside other web content like text and images.

 Figure 1.5. The StudioMOTO demo, one of the original JavaFX examples, shows off a glossy UI with animation, movement, and
 rotating elements all responding to the user’s interaction.

 Figure 1.6. The bouncing balls demo, with color shading, reflection effect, and a shaped window (that’s a text editor behind,
 with source code loaded, demonstrating the app’s transparency).

 Figure 1.7. Separated at birth: “Hello World!” as a JavaFX application and as a Java application

 Chapter 4. Swing by numbers

 Figure 4.1. A number puzzle grid, shown both empty and recently completed

 Figure 4.2. Groups are rows, columns, or boxes within the grid, which must hold unique values.

 Figure 4.3. The game as it appears after clicking on a few cells (note the highlight on the lower 3). Depending on your JRE
 version, you’ll get Ocean-(left) or Nimbus- (right) themed buttons.

 Figure 4.4. The text of each button is bound to the corresponding value in the puzzle’s grid sequence.

 Figure 4.5. Model/View/Controller is achieved in JavaFX Script largely by way of bound expressions. Here one such expression
 depends on two strings for the contents of its SwingLabel.

 Figure 4.6. Coordinate translations for column, row, and box groups

 Figure 4.7. The restyled user interface, with differentiated boxes using background color and duplicate warnings using foreground
 (text) color

 Figure 4.8. Elements inside a Flow are lined up in rows or columns, wrapping when necessary.

 Figure 4.9. The puzzle game with its status panel, implemented using Flow

 Figure 4.10. Age must be between 18 and 65 inclusive. Incorrect content shows a red circle and disables Send (left and right);
 correct content shows a light-green circle and enables Send (middle).

 Chapter 5. Behind the scene graph

 Figure 5.1. A symbolic representation of retained mode and immediate mode. The former sees the world as a hierarchy of graphical
 elements, the latter as just pixels.

 Figure 5.2. Elements in a scene graph can be manipulated without concern for how the actual pixels will be repainted. For
 example, hiding elements will trigger an automatic update onscreen.

 Figure 5.3. Grouping nodes in a scene graph allows them to be manipulated as one. The upper rocket has been rotated as a group;
 the lower rocket has been rotated as separate constituent nodes.

 Figure 5.4. Raindrops are constructed from several ripples. Each ripple expands outward, fading as it goes.

 Figure 5.5. Groups provide a local coordinate space for their children. The Group is laid out to (100,50) and the Circle (positioned
 around its center) to (80,50), giving an absolute position of (180,100).

 Figure 5.6. One use of key frames is to define milestones throughout an animation, recording the state scene graph objects
 should be in at that point.

 Figure 5.7. The master timeline awakes at regular intervals and fires off the next ripple’s timeline. The effect is a raindrop
 of several ripples with staggered start times.

 Figure 5.8. The SwirlingLines class creates a single ring of spokes, rotating around a central origin. Instances demonstrating
 different attribute settings are displayed.

 Figure 5.9. SwirlingLines creates a ring of rectangles, fully customizable from its instance variables.

 Figure 5.10. With and without centering: moving the Rectangle negatively in the y axis, by half its height, has the effect
 of centering it on its origin—in this case the radial spoke of a ring.

 Figure 5.11. Two examples of transformations: translate and then rotate (left), and rotate and then translate (right). The
 order of the operations results in markedly different results.

 Figure 5.12. Version 2 of the project application, featuring both swirling lines and raindrops

 Figure 5.13. A Rectangle with its own local coordinates, translated within a Group. The local coordinates are not affected
 when the node is transformed in its parent’s space, like a rotation by 270 degrees.

 Figure 5.14. The link text depicted in three states: idle (left), underlined when hovered over (center), and red upon a mouse
 button press (right)

 Chapter 6. Moving pictures

 Figure 6.1. A preview of the simple video player we’ll be building in this chapter

 Figure 6.2. The interface for version 1 of our application

 Figure 6.3. The button is constructed from two bitmap images: a background (blue circle) and icon (arrow). When the button
 is pressed, a ghost of its icon expands and fades.

 Figure 6.4. Ignoring the invisible Rectangle (used for sizing), there are three layers in our button.

 Figure 6.5. The GridBox node positions its children into a grid, with flexible column and row sizes.

 Figure 6.6. Our custom button and layout nodes on display

 Figure 6.7. Lift off! Our control panel (bottom) is combined with a new list (left-hand side) and video node (center) to create
 the final player.

 Figure 6.8. The List and ListPane classes will allow us to present a selection of movie files for the user to pick from.

 Figure 6.9. A closer look at our List and ListPane, with hover effect visible on the background of the list items

 Figure 6.10. Like other JavaFX user interface elements, video is played via a dedicated MediaView scene graph node. (Note:
 MediaPlayer is not a visual element; the control icons are symbolic.)

 Figure 6.11. The video area layout and sizing are controlled by variables, some at the script level and others local to the
 scene graph node itself.

 Figure 6.12. A gradient paint is one where the pixel tone changes over the course of a given area. Colors are set at stops
 along a line, and the paint transitions between them as a shape is drawn.

 Figure 6.13. A proportional (P) gradient scaled to full height. Then three nonproportional examples, gradient (0,0) to (0,100),
 painted onto 200 x 200 sized rectangles with various cycle (C) methods.

 Figure 6.14. You’ll never walk alone: relive favorite moments with your own homemade video player (like your soccer team lifting
 the Champion’s League trophy).

 Figure 6.15. Text rendered using an embedded TrueType font file

 Chapter 7. Controls, charts, and storage

 Figure 7.1. A bar chart, with 3D effect, showing feedback scores from contributors

 Figure 7.2. Our project’s simple feedback form, complete with text fields, radio buttons, and sliders. Oh, and a Next button
 in the corner!

 Figure 7.3. The flow of updates between the model and the UI: the data and text box are bidirectionally bound, the validity
 boolean is bound to the data, and the validity label is bound to the validity boolean.

 Figure 7.4. To update the model from a ToggleGroup we bind a variable against the group’s selected button and then use a trigger
 to translate any changes into the button’s index value.

 Figure 7.5. The createRow() function is a convenience for manufacturing each part of the feedback form. Each row consists
 of three parts: a text label and two nodes (controls).

 Figure 7.6. Version 1 of the application, running

 Figure 7.7. JavaFX has a powerful library of chart controls, including a 3D pie chart.

 Figure 7.8. A bar chart and a pie chart, as drawn in 3D by the JavaFX 1.2 chart library

 Figure 7.9. This is what the project’s bar chart would look like if it used two data series rather than one. Each category
 has two bars, and the key at the foot of the chart shows two labels.

 Figure 7.10. An area chart (left) and a standard 2D bar chart (right)

 Figure 7.11. A bubble chart (left) and a line chart (right)

 Figure 7.12. A standard 2D pie chart (left) and a scatter chart (right)

 Figure 7.13. Version 2 of the Feedback application runs, complete with form (main image) and two charts (thumbnails).

 Figure 7.14. Two style rules and two HTML paragraph elements. The first rule applies to both paragraphs, while the second
 applies only to paragraphs of class myClass.

 Figure 7.15. The data from the control (Progress) and the CSS from the stylesheet are combined inside the skin (ProgressSkin)
 to produce a displayable UI control, in this example, a progress bar.

 Figure 7.16. Three examples of our progress bar in action

 Chapter 8. Web services with style

 Figure 8.1. Our photo viewer will allow us to contact the online photo service, view thumbnails from a gallery, and then select
 and toss a full-sized image onto a desktop as if it were a real photo.

 Figure 8.2. When start() is called on an HttpRequest object, a second thread takes over and communicates its progress through
 callback events, allowing the GUI thread to get back to its work.

 Figure 8.3. Photos selected from the thumbnail bar fly onto the desktop.

 Figure 8.4. The custom scene graph node we are creating

 Figure 8.5. The thumbnail bar scene graph is made up on three core components: a group of frame rectangles in the background,
 a group of images over it, and a text node to display the thumb titles.

 Figure 8.6. All three transitions, translate (movement), scale, and rotate, are performed at the same time to the same scene
 graph node.

 Figure 8.7. The coordinate system of a node always matches the rotation of the node itself. The gray rectangle has been rotated
 30 degrees clockwise, yet its local coordinate system is unaffected.

 Chapter 9. From app to applet

 Figure 9.1. Tracing one path inside the Enigma, forming a circuit linking key A with lamp W and key W with lamp A. But as
 the rotors move, the circuit changes to provide a different link.

 Figure 9.2. Our initial version of the Enigma machine will provide only basic encryption, input, and output, served up with
 a splash of visual flare, naturally!

 Figure 9.3. SVG images are formed from a collection of shapes; the key is two circles painted with gradient fills. JavaFX
 also supports layered bitmaps from Photoshop and vector images from Illustrator.

 Figure 9.4. The SVG Converter takes SVG files, using the W3C’s vector format, and translates them into FXZ files, using JavaFX’s
 declarative scene graph markup.

 Figure 9.5. Two disks, with left/right faces. The rotor wiring is not symmetrical (left), but we can create a reflector from
 a rotor by ensuring 13 of the wires mirror the path of the other 13 (right).

 Figure 9.6. The lamp image is constructed from two layers. The lower layer shows the rim of the lamp and its dormant (off)
 graphic; the upper layer, invisible by default, shows the active (on) graphic.

 Figure 9.7. This is what we should see when compiling and running version 1. It works, but not in a very practical way. The
 stylized button and lamp nodes help lend the application an authentic feel.

 Figure 9.8. Quite an improvement: the Enigma emulator acquires a printout display and rotors, as well as an attractive shaded
 backdrop.

 Figure 9.9. Each line of our Paper node is scaled to create the optical effect of a surface curving away, to accompany the
 shading of the background Rectangle.

 Figure 9.10. Our Enigma machine in action, ready to keep all our most intimate secrets safe from prying eyes (providing they
 don’t have access to any computing hardware made after 1940).

 Figure 9.11. Our applet running inside Microsoft’s Internet Explorer

 Figure 9.12. Starting life in a web page, our Enigma emulator was then dragged onto the desktop to become an application (note
 the desktop icon) and finally relaunched from the desktop.

 Figure 9.13. Two buttons (left), each formed using four carefully labeled layers (demonstrated right), which are manipulated
 by JavaFX code to create functioning buttons

 Chapter 10. Clever graphics and smart phones

 Figure 10.1. Get lost! This is our simple 3D maze game. The whole thing is constructed from the JavaFX scene graph, using
 basic shapes.

 Figure 10.2. The 3D in our maze is all fake. The grid defines the maze geometry without using any complex mathematics.

 Figure 10.3. The geometry of our maze. Using a flat 20 x 20 grid as the viewport, the regular numbers describe x coordinates,
 and the rotated numbers (underlined) describe y coordinates.

 Figure 10.4. A plan view of the scene graph pieces that have to be added, in order, from back (row 0) to front (row 3). The
 shaded area represents the player’s field of view.

 Figure 10.5. By plotting the points on our polygon, using the xPos and yPos tables for reference, we can created the illusion
 of perspective.

 Figure 10.6. Having created our scene graph walls, we need to be able to switch them off and on depending on which cells in
 the map are wall blocks, relative to the player’s location.

 Figure 10.7. The maze game, complete with radar in the bottom left-hand corner and a compass in the bottom right

 Figure 10.8. The scoreboard sits at the bottom of the display, showing the moves used and a “SUCCESS!” message once the end
 of the maze is reached

 Figure 10.9. Our maze game hits the small screen. More specifically, it’s running on the JavaFX 1.2 mobile emulator.

 Figure 10.10. The old JavaFX 1.1 mobile emulator (left) and its 1.2 update (right) in action. Strangely, the older version
 seems to reproduce the gradient paints better.

 Figure 10.11. A desktop version of the 3D maze, complete with bitmap walls using a perspective effect. Sadly, the bitmaps
 had to go when the project was adapted to fit a mobile platform.

 Chapter 11. Best of both worlds: using JavaFX from Java

 Figure 11.1. A simple Java adventure game engine, using an isometric view. The control panel at the foot of the window, as
 well as the in-game events, will be written using JavaFX Script.

 Figure 11.2. Each cell in the game environment is created from up to five images: one floor tile, two wall tiles, and two
 faces that modify one side of a wall tile.

 Figure 11.3. This is room 1 (room IDs start at 0), which the fragment of data file in listing 11.1 refers to. The player stands
 on cell (3,1), in front of him is the event cell (4,1), and beyond that the door link cell (5,1).

 Figure 11.4. The panel at the foot of the game’s window is written entirely in compiled JavaFX Script.

 Figure 11.5. Java’s Game class and the JavaFX Script ControlPanelImpl.fx class communicate via a Java interface, ControlPanel.java.

 Appendix D. JavaFX and the Java platform

 Figure D.1. From compile time to runtime: the lifecycle of a typical Java application

List of Tables

 Chapter 2. JavaFX Script data and variables

 Table 2.1. JavaFX Script value types

 Table 2.2. List of arithmetic operators

 Chapter 3. JavaFX Script code and structure

 Table 3.1. Basic access modifiers

 Table 3.2. Additive access modifiers

 Chapter 6. Moving pictures

 Table 6.1. JavaFX media support on various operating systems

 Chapter 9. From app to applet

 Table 9.1. JavaFXPackager options

 Chapter 10. Clever graphics and smart phones

 Table 10.1. Emulator options

 Appendix B. JavaFX Script: a quick reference

 Table B.1. Basic access modifiers

 Table B.2. Additive access modifiers

 Table B.3. Keywords and reserved words

 Table B.4. Operators

 Table B.5. Pseudo variables

List of Listings

 Chapter 1. Welcome to the future: introducing JavaFX

 Listing 1.1. The bouncing ball demo

 Listing 1.2. Hello World as JavaFX Script

 Listing 1.3. Hello World as Java

 Chapter 2. JavaFX Script data and variables

 Listing 2.1. JavaFX Script comments

 Listing 2.2. Defining value types

 Listing 2.3. Defining value types using defaults

 Listing 2.4. Defining value types using type inference

 Listing 2.5. Declaring variables with def

 Listing 2.6. Arithmetic on value types

 Listing 2.7. Further examples of arithmetic operations

 Listing 2.8. Logic operators

 Listing 2.9. Casting types

 Listing 2.10. Basic string definitions

 Listing 2.11. Multiline strings, double- and single-quoted strings

 Listing 2.12. Strings with embedded expressions

 Listing 2.13. String formatting

 Listing 2.14. String localization: the <classname>_en_UK.fxproperties file

 Listing 2.15. String localization

 Listing 2.16. Declaring Duration types

 Listing 2.17. Arithmetic on duration types

 Listing 2.18. Sequence declaration

 Listing 2.19. Referencing a sequence element

 Listing 2.20. Sequence creation using a range

 Listing 2.21. Sequence creation using a stepped range

 Listing 2.22. Expanding one sequence inside another

 Listing 2.23. Sequence declaration using a slice

 Listing 2.24. Sequence declaration using a predicate

 Listing 2.25. Sequence manipulation: insert

 Listing 2.26. Sequence manipulation: delete

 Listing 2.27. Sequence manipulation: reverse

 Listing 2.28. Binding into a string

 Listing 2.29. Binding between variables

 Listing 2.30. Binding to bound variables

 Listing 2.31. Binding against a sequence element

 Listing 2.32. Binding to a sequence itself

 Listing 2.33. Binding to a ternary expression

 Listing 2.34. A more complex binding example

 Listing 2.35. Bidirectional binding

 Listing 2.36. Minimal recalculation

 Listing 2.37. Bound functions

 Listing 2.38. Binding and object literals

 Listing 2.39. Quoted identifiers

 Listing 2.40. Native arrays

 Chapter 3. JavaFX Script code and structure

 Listing 3.1. Using the package statement to shorten class names

 Listing 3.2. Including a class inside a package

 Listing 3.3. Scripts and classes

 Listing 3.4. Class definition, with variables and functions

 Listing 3.5. A closer look at functions

 Listing 3.6. Object declaration, using declarative syntax or the new keyword

 Listing 3.7. Sequence declaration

 Listing 3.8. Class inheritance, part 1

 Listing 3.9. Class inheritance, part 2

 Listing 3.10. Class inheritance, part 3

 Listing 3.11. Virtual functions demonstrated

 Listing 3.12. Mixins

 Listing 3.13. Function types

 Listing 3.14. Passing functions as parameters to other functions

 Listing 3.15. Anonymous functions

 Listing 3.16. Access modifiers on a class

 Listing 3.17. Testing access modifiers

 Listing 3.18. Conditions

 Listing 3.19. Conditions as expressions

 Listing 3.20. Ternary expressions

 Listing 3.21. Beyond ternary expressions

 Listing 3.22. Condition expressions taken to an extreme

 Listing 3.23. Basic for loops

 Listing 3.24. Sequence creation using for expressions

 Listing 3.25. Nested loops within one for expression

 Listing 3.26. Flow control within for, with break and continue

 Listing 3.27. Filtered for expression

 Listing 3.28. Basic while loops

 Listing 3.29. Trigger on variable change

 Listing 3.30. Shorter trigger syntax

 Listing 3.31. Triggers on a sequence

 Listing 3.32. Exception handling

 Chapter 4. Swing by numbers

 Listing 4.1. PuzzleGrid.fx (version 1)

 Listing 4.2. Game.fx (version 1)

 Listing 4.3. PuzzleGrid.fx (version 2)

 Listing 4.4. Game.fx (version 2)

 Listing 4.5. PuzzleGrid.fx (version 3)

 Listing 4.6. Game.fx (version 3)

 Listing 4.7. Using bind for form validation

 Chapter 5. Behind the scene graph

 Listing 5.1. RainDrop.fx

 Listing 5.2. LightShow.fx (version 1)

 Listing 5.3. SwirlingLines.fx

 Listing 5.4. LightShow.fx (version 2)

 Listing 5.5. Link.fx

 Chapter 6. Moving pictures

 Listing 6.1. Util.fx

 Listing 6.2. Button.fx (part 1)

 Listing 6.3. Button.fx (part 2)

 Listing 6.4. GridBox.fx

 Listing 6.5. Player.fx (version 1)

 Listing 6.6. List.fx (part 1)

 Listing 6.7. List.fx (part 2)

 Listing 6.8. ListPane.fx (part 1)

 Listing 6.9. ListPane.fx (part 2)

 Listing 6.10. Player.fx (version 2, part 1)

 Listing 6.11. Player.fx (version 2, part 2)

 Listing 6.12. Player.fx (version 2, part 3)

 Listing 6.13. fonts.mf

 Listing 6.14. FontTest.fx

 Chapter 7. Controls, charts, and storage

 Listing 7.1. Record.fx (version 1)

 Listing 7.2. Feedback.fx (version 1, part 1)

 Listing 7.3. Feedback.fx (version 1, part 2)

 Listing 7.4. Feedback.fx (version 1, part 3)

 Listing 7.5. Feedback.fx (version 1, part 4)

 Listing 7.6. Record.fx (version 2)

 Listing 7.7. Feedback.fx (version 2, part 1)

 Listing 7.8. Feedback.fx (version 2, part 2)

 Listing 7.9. Feedback.fx (version 2, part 3)

 Listing 7.10. Progress.fx

 Listing 7.11. ProgressSkin.fx (part 1)

 Listing 7.12. ProgressSkin.fx (part 2)

 Listing 7.13. TestCSS.fx

 Listing 7.14. Test.css

 Chapter 8. Web services with style

 Listing 8.1. FlickrService.fx (part 1)

 Listing 8.2. FlickrService.fx (part 2)

 Listing 8.3. FlickrService.fx (part 3)

 Listing 8.4. FlickrResult.fx (part 1)

 Listing 8.5. FlickrResult.fx (part 2)

 Listing 8.6. FlickrPhoto.fx

 Listing 8.7. TestWS.fx

 Listing 8.8. GalleryView.fx (part 1)

 Listing 8.9. GalleryView.fx (part 2)

 Listing 8.10. GalleryView.fx (part 3)

 Listing 8.11. GalleryView.fx (part 4)

 Listing 8.12. PhotoViewer.fx (part 1)

 Listing 8.13. PhotoViewer.fx (part 2)

 Listing 8.14. PhotoViewer.fx (part 3)

 Listing 8.15. PhotoViewer.fx (part 4)

 Chapter 9. From app to applet

 Listing 9.1. Rotor.fx (version 1)

 Listing 9.2. Util.fx

 Listing 9.3. Key.fx

 Listing 9.4. Lamp.fx

 Listing 9.5. Enigma.fx (version 1, part 1)

 Listing 9.6. Enigma.fx (version 1, part 2)

 Listing 9.7. Enigma.fx (version 1, part 3)

 Listing 9.8. Rotor.fx (version 2—changes only)

 Listing 9.9. Paper.fx

 Listing 9.10. Enigma.fx (version 2, part 1 – changes only)

 Listing 9.11. Enigma.fx (version 2, part 2)

 Listing 9.12. Enigma.fx (version 2, part 3 – changes only)

 Listing 9.13. Enigma.fx (version 3 – changes only)

 Listing 9.14. Enigma_browser.jnlp

 Listing 9.15. UI.fx

 Chapter 10. Clever graphics and smart phones

 Listing 10.1. MazeDisplay.fx (part 1)

 Listing 10.2. MazeDisplay.fx (part 2)

 Listing 10.3. MazeDisplay.fx (part 3)

 Listing 10.4. MazeDisplay.fx (part 4)

 Listing 10.5. Map.fx (part 1)

 Listing 10.6. Map.fx (part 2)

 Listing 10.7. Radar.fx

 Listing 10.8. Compass.fx

 Listing 10.9. ScoreBoard.fx

 Listing 10.10. MazeGame.fx

 Chapter 11. Best of both worlds: using JavaFX from Java

 Listing 11.1. A fragment of the game data file

 Listing 11.2. Map.java: calling JavaFX Script from Java

 Listing 11.3. ControlPanel.java

 Listing 11.4. Game.java (part 1): adding JavaFX UIs to Java code

