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               backdrop.


         Figure 9.9. Each line of our Paper node is scaled to create the optical effect of a surface curving away, to accompany the
               shading of the background Rectangle.


         Figure 9.10. Our Enigma machine in action, ready to keep all our most intimate secrets safe from prying eyes (providing they
               don’t have access to any computing hardware made after 1940).


         Figure 9.11. Our applet running inside Microsoft’s Internet Explorer


         Figure 9.12. Starting life in a web page, our Enigma emulator was then dragged onto the desktop to become an application (note
               the desktop icon) and finally relaunched from the desktop.


         Figure 9.13. Two buttons (left), each formed using four carefully labeled layers (demonstrated right), which are manipulated
               by JavaFX code to create functioning buttons
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         Figure 10.1. Get lost! This is our simple 3D maze game. The whole thing is constructed from the JavaFX scene graph, using
               basic shapes.


         Figure 10.2. The 3D in our maze is all fake. The grid defines the maze geometry without using any complex mathematics.


         Figure 10.3. The geometry of our maze. Using a flat 20 x 20 grid as the viewport, the regular numbers describe x coordinates,
               and the rotated numbers (underlined) describe y coordinates.


         Figure 10.4. A plan view of the scene graph pieces that have to be added, in order, from back (row 0) to front (row 3). The
               shaded area represents the player’s field of view.


         Figure 10.5. By plotting the points on our polygon, using the xPos and yPos tables for reference, we can created the illusion
               of perspective.


         Figure 10.6. Having created our scene graph walls, we need to be able to switch them off and on depending on which cells in
               the map are wall blocks, relative to the player’s location.


         Figure 10.7. The maze game, complete with radar in the bottom left-hand corner and a compass in the bottom right


         Figure 10.8. The scoreboard sits at the bottom of the display, showing the moves used and a “SUCCESS!” message once the end
               of the maze is reached


         Figure 10.9. Our maze game hits the small screen. More specifically, it’s running on the JavaFX 1.2 mobile emulator.


         Figure 10.10. The old JavaFX 1.1 mobile emulator (left) and its 1.2 update (right) in action. Strangely, the older version
               seems to reproduce the gradient paints better.


         Figure 10.11. A desktop version of the 3D maze, complete with bitmap walls using a perspective effect. Sadly, the bitmaps
               had to go when the project was adapted to fit a mobile platform.
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         Figure 11.1. A simple Java adventure game engine, using an isometric view. The control panel at the foot of the window, as
               well as the in-game events, will be written using JavaFX Script.


         Figure 11.2. Each cell in the game environment is created from up to five images: one floor tile, two wall tiles, and two
               faces that modify one side of a wall tile.


         Figure 11.3. This is room 1 (room IDs start at 0), which the fragment of data file in listing 11.1 refers to. The player stands
               on cell (3,1), in front of him is the event cell (4,1), and beyond that the door link cell (5,1).


         Figure 11.4. The panel at the foot of the game’s window is written entirely in compiled JavaFX Script.


         Figure 11.5. Java’s Game class and the JavaFX Script ControlPanelImpl.fx class communicate via a Java interface, ControlPanel.java.
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