

 inside front cover

 [image:]

 [image:]

 Testing Web APIs

 Mark Winteringham

 Foreword by Janet Gregory and Lisa Crispin

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Sarah Miller

 	
 Technical development editor:

 	
 John Guthrie

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Karsten Strøbaek

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617299537

 dedication

 For Steph: I promise I’ll finish decorating the kitchen now.

contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 The value of web API testing

 1 Why and how we test web APIs

 1.1 What’s going on in your web APIs?

 Complexity within web APIs

 Complexity across many web APIs

 1.2 How does testing help us?

 Imagination

 Implementation

 The value of testing

 Being strategic with API testing

 2 Beginning our testing journey

 2.1 Introducing our product

 Introducing our sandbox API

 2.2 Familiarizing ourselves with restful-booker-platform

 Researching the product

 Researching beyond the product

 2.3 Capturing our understanding

 The power of models

 Building our own models

 2.4 Congratulations—you’re testing!

 3 Quality and risk

 3.1 Defining quality

 Quality characteristics

 Getting to know our users

 Setting quality goals for our strategy

 3.2 Identify risks to quality

 Learning to identify risk

 Headline game

 Oblique testing

 RiskStorming

 3.3 A strategy’s first steps

 Picking the right approach for testing a risk

 Part 2 Beginning our test strategy

 4 Testing API designs

 4.1 How do we test API designs?

 Tools for questioning

 Expanding your API design-testing techniques and tools

 4.2 Using API documentation tools to test designs

 Documenting APIs with Swagger/OpenAPI

 Beyond documentation

 4.3 Encouraging teams to test API designs

 Getting buy-in and initiating opportunities to test API designs

 Taking advantage of existing sessions

 Establishing your own sessions

 4.4 Testing API designs as part of a testing strategy

 5 Exploratory testing APIs

 5.1 The value of exploratory testing

 The testing cycle in exploratory testing

 5.2 Planning to explore

 Generating charters

 Charters and exploratory testing sessions

 Organizing our exploratory testing

 5.3 Exploratory testing: A case study

 Beginning the session

 Knowing when something isn’t right

 Coming up with ideas for testing

 Using tools

 Note-taking

 Knowing when to stop

 Running your own exploratory testing session

 5.4 Sharing your discoveries

 5.5 Exploratory testing as part of a strategy

 6 Automating web API tests

 6.1 Getting value from automation

 The illusion of automation

 Automation as change detection

 Letting risk be our guide

 6.2 Setting up a Web API automation tool

 Dependencies

 Structuring our framework

 6.3 Creating automated API checks

 Automated check 1: A GET request

 Automated check 2: A POST request

 Automated check 3: Combining requests

 Running your automated tests as integration tests

 6.4 Utilizing automation in our strategy

 7 Establishing and implementing a testing strategy

 7.1 Establishing a strategy for our context

 Identifying what’s a priority

 Different strategies for different contexts

 7.2 Turning a testing strategy into a testing plan

 Understanding your context’s testability

 Organizing and documenting a plan

 Executing and reflecting on a plan

 Evolving our strategy

 Part 3 Expanding our test strategy

 8 Advanced web API automation

 8.1 Acceptance test-driven development

 Setting up an automated acceptance testing framework

 Creating our failing automated check

 Getting our automated check to pass

 Beware of traps

 8.2 Web API mocking

 Getting set up

 Building our mocked check

 8.3 Running as part of a pipeline

 Integrated with codebase

 Separate to codebase

 9 Contract testing

 9.1 What contract testing is and how can it help

 9.2 Setting up a contract testing framework

 Introducing Pact

 9.3 Building a consumer contract test

 Adding Pact to our class

 Building the consumer check

 Setting up and publishing to a Pact Broker

 9.4 Building a provider contract test

 Building the provider contract test

 Testing out a change

 9.5 Contract testing as part of a testing strategy

 10 Performance testing

 10.1 Planning a performance test

 Types of performance tests

 Types of measurements for performance tests

 Establishing performance testing goals and key performance indicators (KPIs)

 Creating user flows

 10.2 Implementing a performance test

 Setting our performance testing tool

 Building our performance test script

 10.3 Executing and measuring a performance test

 Preparing and executing our performance test

 Analyzing results

 10.4 Setting performance testing expectations

 11 Security testing

 11.1 Working with threat models

 Creating a model

 Discovering threats with STRIDE

 Creating threat trees

 Mitigating threats

 11.2 Applying a security mindset to our testing

 Security testing in testing API design sessions

 Exploratory security testing

 Automation and security testing

 11.3 Security testing as part of a strategy

 12 Testing in production

 12.1 Planning out testing in production

 What to track

 Service-level objectives

 Service-level agreements

 Service-level indicators

 What to save

 12.2 Setting up testing in production

 Setting up a Honeycomb account

 Adding Honeycomb to APIs

 Advanced querying

 Building SLO triggers

 12.3 Taking testing in production further

 Testing with synthetic users

 Testing hypotheses

 12.4 Expanding your strategy by testing in production

 Appendix A Installing the sandbox API platform

 index

front matter

 foreword

 This book, Testing Web APIs, is much more than you might expect from a book on how to test APIs. It presents API testing as part of a holistic, risk-based testing strategy. Mark guides you with a range of helpful visual models, asking questions to make you think, and takes you along as a participant, not a passenger.

 Before he digs into details, Mark has a chapter on “why we test” and how to identify different types of risks. He takes this important topic one step further—matching risks with quality characteristics and how they relate to a test strategy.

 Mark lists a set of prerequisites for getting the most out of the book. Practitioners who are comfortable with coding, HTTP, and various developer and testing tools will learn great tools and techniques to understand all aspects of how their APIs behave. However, it is also a book for people who may not have all those prerequisites. A first read-through will give you insight and inspire you to try the well-explained learning activities during your second time around.

 The many examples in the book, as well as the exercises, are based on a realistic project using a real application. You can start exploring and learning about the product, its business domain, history, and existing bugs—just like in real life. You can even use the product’s UI to get more familiar with it.

 We love the way this book helps people apply a holistic approach to API testing. Have conversations about quality to agree on a level of quality you want and build a strategy to achieve it, collaborating with different stakeholders and disciplines. As he writes in chapter 4,

 A good testing strategy is a holistic one that focuses on the many places in which risk can creep into our work.

 We also like the way Mark gives equal value to exploratory testing and automation when thinking about that all-important API testing strategy. He takes a very pragmatic approach to both, listing pros and cons, and using concrete examples while recognizing that every team has its own context. Another aspect of the book we love is how it continually reminds you to use that physical or virtual whiteboard and visualize whatever is being discussed.

 The book guides you from strategy to implementation—planning for your context. The last five chapters are very specific for advanced API automation. They go broad and deep, covering contract testing, performance testing for web APIs, security testing, and testing in production. You can choose which of these topics you want to explore first.

 One of our favorite models, used extensively throughout the book, is based on a model created by James Lyndsay. It’s a Venn diagram of imagination—what we want in a product—and implementation—what we have in a product. It helps us think of questions like “Who will be consuming this API response” and “What if I hit that Add button a thousand times?” It’s one of the many ways this book helps us to think “outside the box.”

 The use of APIs continues to grow as more applications incorporate microservices and the cloud. Using the techniques and models in this book will produce high-quality, reliable APIs. These same models and techniques can be adapted to help with many other kinds of testing as well. Read this book, and you will strengthen your foundation of testing skills.

 —Janet Gregory, consultant, author, speaker, DragonFire Inc.; co-founder with Lisa Crispin of the Agile Testing Fellowship

 —Lisa Crispin, test consultant, author; co-founder with Janet Gregory of the Agile Testing Fellowship

preface

 I always felt that when I first started API testing, I was late to the game. Software as a Service was being widely adopted, and microservices were starting to gain traction. I had seen developers in my team working successfully with API testing in an automation context, but it wasn’t until I was fortunate enough to work with one that my API testing journey began. Thank you, Upesh!

 However, as I developed my skills and began to share my knowledge with video courses and in-person training, it became apparent that many are yet to start the journey—or have started but are looking to learn more. This was my motivation for this book: to create an expansive view of the many ways in which we can test web APIs and learn how they work.

 When I first began to teach others about API testing, my focus was to help testers understand and leverage the power of HTTP to help them test faster and deeper. But as I developed my material and began this book, I began to appreciate that there was so much more to cover. That’s why in this book we’ll explore a range of testing activities that we can take advantage of when working with web APIs that span the software development life cycle—ranging from asking questions before a single line of code is created to building sophisticated automation that gives us valuable feedback.

 I hope that by exploring these activities with you throughout this book, you’ll have the tools at your disposal to be better API testers, regardless of your background and role.

acknowledgments

 I would first like to thank those who actively helped me put this book together: my editors—Christina Taylor, who was so patient with me as I took a break to become a dad again, and Sarah Miller, who helped me get this book over the line, as well as to all the production staff at Manning. I’d also like to thank Abby Bangser and Bill Matthews who took the time to let me pick their brains about testing in production and security testing, respectively. Also a thanks to my Automation in Testing partner in crime, Richard Bradshaw, whose many discussions around testability and strategy helped inform the chapter on establishing testing strategies. Long may we continue to change attitudes towards test automation. Finally, thanks to all the people who have reviewed and given me feedback via MEAP and the review process: Alberto Almagro, Allen Gooch, Amit Sharad Basnak, Andres Sacco, Andy Kirsch, Andy Wiesendanger, Anne-Laure Gaillard, Anupam Patil, Barnaby Norman, Christopher Kardell, Daniel Cortés, Daniel Hunt, Ernesto Bossi, Ethien Daniel Salinas Domínguez, Hawley Waldman, Henrik Jepsen, Hugo Figueiredo, James Liu, Jaswanth Manigundan, Jeffrey M. Smith, Jonathan Lane, Jonathan Terry, Jorge Ezequiel Bo, Ken Schwartz, Kevin Orr, Mariyah Haris, Mark Collin, Marleny Nunez Alba, Mikael Dautrey, Dr. Michael Piscatello, Brian Cole, Narayanan Jayaratchagan, NaveenKumar Namachivayam, George Onofrei, Peter Sellars, Prashanth Palakollu, Rajinder Yadav, Raúl Nicolás, Rohinton Kazak, Roman Zhuzha, Ronald Borman, Samer Falik, Santosh Shanbhag, Shashank Polasa Venkata, Suman Bala, Thomas Forys, Tiziano Bezzi, Vicker Leung, Vladimir Pasman, Werner Nindl, William Ryan, Yvon Vieville, and Zoheb Ainapore. It’s been difficult but valuable reading.

 I’m also indebted to Lisa Crispin and Janet Gregory for their kind words and their time spent writing this book’s foreword. Thank you also to James Lyndsay, Rob Meaney, and Ash Winter, whose work has helped frame my understanding of key aspects of testing and for letting me share and expand upon that work within this book.

 There are also people I’d like to thank who unknowingly helped me with this book: people like Upesh Amin, who kindly took the time many years ago to teach me HTTP one afternoon, and Alan Richardson, who started me on the journey of writing this book during a Marketing 101 course, of all places!

 This work is a culmination of my experiences working within the testing community, so thank you to everyone at Ministry of Testing and the many friends I’ve made over the years at various testing community events. Also, to everyone who has sarcastically asked, “Oh, are you writing a book?” I appreciate the free publicity and motivation.

 But most of all, I want to thank Steph, who has always supported me through all of the crazy projects I’ve pursued, and who patiently and politely congratulated me each night as I excitedly told that her I had written “three more pages!” . . . for a year.

about this book

 The intention of this book is twofold. The first goal is to get you, the reader, comfortable with a wide range of different testing activities that can be carried out against web APIs. As you go through many of the chapters, you’ll learn both how to execute these different testing activities and to appreciate what types of risks they mitigate and information they reveal. The second goal is to help you toward creating and communicating a test strategy that successfully combines the different testing activities you’ve learned about in a way that works for your context.

Who should read this book

 In writing this book, I’ve attempted to lay out each part and chapter in the book to help you build up a testing strategy brick by brick. However, in the spirit of different strategies for different contexts, I’ve suggested a few ways in which you might want to use this book to help you succeed with your testing.

 Regardless of your motivation, I highly encourage you to read the whole of part 1. Chapter 2 will get you set up with the role-play project that all the book’s examples are related to, which you will need if you want to try out a lot of the activities within this book. Chapter 3 is essential reading because it explores quality and risk in detail and how they inform how and what you test. I’m a firm believer that to be successful in testing, you need a clear understanding of what problem you’re trying to solve. If you don't know what the problem is, how can you be sure you’ve picked the right approach, and how can you measure success?

 The rest of the book is there for you to read at your leisure. My hope is that for some, the book will act as a guide through every step of building a testing strategy, and for others, it will act as a handy reference guide to remind you of specific techniques, resources, and skills as and when you need them.

 A newcomer to building an API testing strategy

 The book is structured so as to take you through the journey from starting with no strategy at all to building, implementing, and executing a successful testing strategy. Therefore, if you’re new to building test strategies and/or API testing, then simply follow along with each chapter to build up your knowledge and skills.

 Enhancing an existing API testing strategy

 Not everyone involved in a project is starting from scratch, and you might be a member of a team looking to bolster an existing testing strategy. In that case, I recommend you read the material about building a strategy and reflect on how it relates to your own strategy to better understand what gaps you might have. That analysis will then help you decide which activities you feel are required to help support your team.

 Interested in specific activities

 For some, you may be looking to learn more about how to get started with specific activities and aren’t necessarily thinking about the bigger picture (e.g., you might have been tasked with implementing specific activities for a wider strategy). If this is your motivation, I recommend that you focus on the case studies and example sections of each testing activity. For some, it’s easier to get a sense of where an activity sits within a strategy by trying it out and then working backward.

How this book is organized: A road map

 The book has been divided into three sections across 12 chapters.

 Part 1: Establishing our testing strategy

 In chapter 1, we’ll focus first on asking ourselves why we need testing and why understanding the value of testing can help kick-start our testing strategy. Chapter 2 familiarizes us with a role-playing project we’ll use as a guide throughout this book to learn a range of testing techniques to help us quickly establish an understanding of what we’re testing and who we’re testing for. Chapter 3 concludes this part of the book by exploring how to establish the goals we aim to achieve with our testing strategy, which helps us prioritize what type of testing we might want to do.

 Part 2: Introducing testing activities to our strategy

 In part 2, chapters 4 to 7, we'll begin to explore a range of testing activities available to us when testing web APIs. There are a range of activities to try out for yourself, examples to learn from, and case studies to reflect upon. I've ordered the chapters in this part of the book to follow the common software development life cycle starting with ideation to implementation to maintenance.

 This part of the book concludes with a chapter on how our working context informs our strategy and how we can go about implementing our strategy in a way that supports a team’s existing work. We’ll then use that knowledge to piece together our testing activities to form the meat of our testing strategy.

 Part 3: Expanding our test strategy

 In the final part of the book, chapters 8 to 12, we’ll continue to learn more about different testing activities available to us, as well as expand upon some of the activities we’ve already learned about. It’s important to note that the activities we’ll cover in this section aren't necessarily more advanced or requiring more skill. However, they may perhaps require a greater investment in time and a more mature testing culture to establish them alongside what we will have already learned.

Prerequisites

 There will be an assumption that you are coming into this book with a range of preexisting skills and knowledge.

 HTTP

 To test web APIs, we will need to use HTTP extensively, and we will explore an aspect of HTTP in detail to leverage different test ideas. This book, however, doesn’t offer an introduction to HTTP. Therefore, it is assumed you have some knowledge of HTTP rules such as the following:

 	
 Uniform resource identifiers/locators

 	
 HTTP methods

 	
 HTTP headers

 	
 Status codes

 	
 Request and response payloads

 Java

 For the coding portions of this book, I’ve opted to use Java, based on its ubiquity in the API development world. Although this means we’ll have to deal with additional boilerplate code that comes with Java, the examples we’ll explore will reach the widest audience possible. Additionally, the examples contain a lot of design patterns for the automation code, and the approaches are universal across languages. So I encourage you to either read the exercises or give them a try. That said, to carry out these exercises, you should have a working knowledge of the following:

 	
 Libraries

 	
 Packages

 	
 Classes

 	
 Tests methods

 	
 Assertions

 Other tooling

 This book will also explore a range of tools that can be used to support various testing activities. Although previous knowledge of these tools is not required, it’s worth mentioning the following key tools to help you prepare/get the necessary tools installed:

 	
 DevTools—An extension found in most browsers to help you debug a web page (https://developer.chrome.com/docs/devtools)

 	
 Postman—A tooling platform that helps you build and test web APIs (https://www.postman.com)

 	
 Wireshark—An HTTP sniffing tool that allows you to intercept HTTP traffic between APIs (https://www.wireshark.org)

 	
 Swagger—An API documentation and design tool that provides living documentation that you can interact with to learn more about web APIs (https://swagger.io)

 	
 WireMock—A tool for mocking web APIs to increase the controllability of your API testing (https://wiremock.org)

 	
 Pact—A contract testing tool that checks the integration between web APIs (https://pact.io)

 	
 Apache JMeter—A performance and functional testing tool for web APIs (https://jmeter.apache.org)

 Feel free to research any of these tools before we begin our journey.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/testing-web-apis. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/testing-web-apis.

 Additionally, you should be aware of two supporting repositories that will be referenced multiple times throughout the book.

 Restful-booker-platform

 Restful-booker-platform is our sandbox API platform that we’ll be practicing different testing activities against. The codebase for this application can be found at https://github.com/mwinteringham/restful-booker-platform, and installation details can be found in the book’s appendix.

 API Strategy Book Resources

 Many of the chapters have resources such as testing notes, example code, and performance test scripts that can be reviewed in their own respective projects within the following repo: https://github.com/mwinteringham/api-strategy-book-resources. All code sections can be run locally.

liveBook discussion forum

 Purchase of Testing Web APIs includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/testing-web-apis/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Mark Winteringham is a tester, toolsmith, and COO of Ministry of Testing, with more than 10 years of experience providing testing expertise on award-winning projects across a wide range of technology sectors including BBC, Barclays, the UK government, and Thomson Reuters. He is an advocate for modern risk-based testing practices and trains teams in automation in testing, behavior-driven development, and exploratory testing techniques. He is also the cofounder of Ministry of Testing, a community raising awareness of careers in testing and improving testing education.

about the cover illustration

 The figure on the cover of Testing Web APIs is “Boucbar de Siberie”, or “Siberian Shepherd”, taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 The value of web API testing

 What is the point of testing? This might seem like a sarcastic question to ask at the start of a book about testing. But knowing the reason why we test and the value it brings can help guide us in how we approach it. If we assume that testing is just pushing buttons and breaking things, then that is the level of testing we’ll get. But we should appreciate that testing is a collection of skills, knowledge, and activities that, when brought together, can help elevate our team’s efforts in building high-quality work. That’s why, before we dive into specific testing activities, we need to learn the value of good testing and how to focus it in the right places at the right time.

 In part 1, we’ll explore why we test and how to begin the process of testing that delivers real value to both our teams and our customers. In chapter 1, we’ll discuss the challenges around delivering high-quality web APIs and a way of understanding how testing can help solve those challenges. Chapter 2 will explore some ways to begin our testing journey and establish some of the activities we’ll be carrying out within this book. Finally, chapter 3 will discuss in detail two key concepts that guide our testing: quality and risk.

1 Why and how we test web APIs

 This chapter covers

 	
The challenges of building complex API platforms

 	
The value and purpose of testing

 	
What an API testing strategy looks like and how it can help

 How do we ensure that what we’re building is of good quality and is valuable to our end users? The challenge we face when delivering a high-quality product is the sheer number of complex actions and activities that occur in our work. If we want to make informed choices that lead to improved quality, we need to overcome this complexity and develop an understanding of both how our systems work and what our users want from our products. This is why we need to adopt a valuable testing strategy to help us better understand what we’re actually building. So before we begin our API testing journey, let’s first reflect on why software is so complicated and how testing can help.

1.1 What’s going on in your web APIs?

 In 2013, the UK government set out a digital strategy to move each department to a “Digital by Default Service Standard,” which included Her Majesty’s Revenue and Customs (also known as HMRC). HMRC’s goal was to bring all the UK tax services online to improve services and cut costs.

 By 2017, the HMRC tax platform boasted more than 100 digital services, created by 60 delivery teams across five different delivery centers. Each of these digital services is supported by a platform of interconnected web APIs that were, and still are, constantly growing. The number of APIs created to support these services is dizzying. Even when I joined the project in 2015 and there were approximately half the services, teams, and delivery centers that there are now, the platform contained well over 100 web APIs. That number has undoubtedly increased since then, which begs the question: How does a project of this size and complexity deliver high-quality services to end users?

 I mention the HMRC project because it helps highlight the following two “levels” of complexity that we face regularly when building web APIs:

 	
 The complexity that exists within a web API

 	
 The complexity of many web APIs working together in a platform

 By understanding both of these categories, we can begin to appreciate why we need testing and how it can help.

1.1.1 Complexity within web APIs

 It might seem a bit simple to start with this question: What is a web API? But if we take the time to dive into the makeup of a web API, we can discover not only what a web API is but also where its complexity lies. Take, for example, this visualization of a bookings web API that we’ll test later in this book, shown in figure 1.1.

 [image: CH01_F01_Winteringham]

 Figure 1.1 This visual model depicts a web API, its components, and how it works.

 Using this diagram, we can see that a web API works by receiving bookings in the form of HTTP requests from clients, which trigger different layers within the API to execute. Once the execution is complete and the booking has been stored, the web API responds via HTTP. But if we take a more granular step through the API, we start to get a sense of just how much is going on within a single web API.

 First, the presentation layer receives a booking HTTP request and translates it into content that can be read by the other layers. Next, the service layer takes the booking information and applies business logic to it. (E.g., is it a valid booking, and does it conflict with other bookings?) Finally, if the processed booking needs to be stored, it is prepared for storage within the persistence layer and then stored within a database. If all of that is successful, each layer has to respond to the other to create the response the web API is going to send to whomever sent the request.

 Each of these layers can be built in different ways, depending on our requirements and tastes. For example, we have the option to design web APIs using a range of approaches such as the REST architecture pattern, GraphQL, or SOAP, all of which have their own patterns and rules that require our understanding.

 Working with REST

 Throughout this book, we’ll predominantly work with web APIs that are built using REST architecture. Many different architectural styles exist, but REST is currently the most widely used. However, it is worth noting that although approaches such as GraphQL and SOAP use different approaches, the testing activities we will explore are equally applicable when you are working with any of these architecture types. Throughout the book, we’ll discuss briefly how what we’re learning can be applied to any architecture style.

 The services layer also contains our business logic, which, depending on our context, will have many specific custom rules to follow. A similar case applies to the persistence layers. Each of these layers relies on dependencies that have their own active development life cycles. We need to be aware of a vast amount of information to help us deliver high-quality work.

 Understanding what is going on in our web APIs and how they help others is an exercise that requires time and expertise. Yes, we might be able to develop some level of understanding by testing parts individually (which I encourage teams to do; check out J. B. Rainsberger’s talk “Integrated Tests Are a Scam” to learn more: https://youtu.be/VDfX44fZoMc), but that knowledge gives us only a piece of the puzzle, not all of it.

1.1.2 Complexity across many web APIs

 Think about the HMRC platform with its more than 100 web APIs, mentioned earlier. How do we maintain an understanding of how each one works and how they relate to one another? Approaches such as microservice architecture help reduce the complexity within singular web APIs by making them smaller and more focused. But, on the other hand, they can lead to even more web APIs being added to a platform. How do we ensure that our knowledge of a platform of web APIs is up to date? And how do we keep up with how each API talks to others and confirm that their connections to each other are working within expected parameters?

 To build a high-quality product, we have to make informed choices, which means our knowledge of how our web APIs work and how they relate to each other and our end users is vital. If we don’t make informed choices, we risk issues appearing in our products when we misinterpret how our systems work due to our lack of knowledge. It’s from this perspective that we can begin to appreciate how testing can help us establish and maintain that understanding.

1.2 How does testing help us?

 If we’re going to be successful as a team with our testing, we require a shared understanding of the purpose and value of testing. Sadly, there are a lot of misconceptions about what testing is and what it offers, so to help us all get on the same page, let me introduce you to a model of testing that I use to better understand what testing is and how it helps, as shown in figure 1.2.

 [image: CH01_F02_Winteringham]

 Figure 1.2 A model of testing helps to describe the value and purpose of testing.

 The model, based on one created by James Lyndsay in his paper “Why Exploration has a Place in any Strategy” (http://mng.bz/o2vd), comprises two circles. The left circle represents imagination, or what it is that we want in a product, and the right circle represents implementation, or what it is that we have in a product. The purpose of testing is to learn as much as possible about what’s going on in each of these circles by carrying out testing activities. The more we test in these two circles, the more we learn and the more we achieve the following:

 	
 Discovering potential issues that might impact the quality

 	
 Overlapping these two circles of information, ensuring that we understand what we are building and can be confident that it is the product or service we want to build

 To examine this further, let’s look at an example in which a team is delivering a hypothetical search feature that we want to ensure is of a high degree of quality.

1.2.1 Imagination

 The imagination circle represents what we want from our product, which includes expectations that are both explicit and implicit. In this circle, our testing is focused on learning as much as possible about those explicit and implicit expectations. By doing this, we learn not just what has been explicitly stated in writing or verbally shared, but we also dig down into the details and remove ambiguity over terms and ideas. For example, let’s say a representative of the business or a user, such as a product owner, has shared this requirement with their team: “Search results are to be ordered by relevance.”

 The explicit information shared here tells us that the product owner wants search results, and they want them ordered by relevance. However, we can uncover a lot of implied information by testing the ideas and concepts behind what is being asked. This might come in the form of a series of questions we could ask, such as the following:

 	
 What is meant by relevant results?

 	
 Relevant to whom?

 	
 What information is shared?

 	
 How do we order by relevancy?

 	
 What data should we use?

 By asking these questions, we get a fuller picture of what is wanted, remove any misunderstandings in our team’s thinking, and identify potential risks that could impact those expectations. If we know more about what we are being asked to build, we‘re more likely to build the right thing the first time.

1.2.2 Implementation

 By testing the imagination, we get a stronger sense of what we are being asked to build. But just because we might know what to build doesn’t mean we will end up with a product that matches those expectations. This is why we also test the implementation to learn the following:

 	
 Whether the product matches our expectations

 	
 How the product might not match our expectations

 Both goals are of equal importance. We want to ensure that we have built the right thing, but side effects—such as unintended behavior, vulnerabilities, missed expectations, and downright weirdness that might appear in our products—will always exist. With our search results example, we could not only test that the feature delivers results in the relevant order, but we could also ask the product

 	
 What if I enter different search terms?

 	
 What if the relevant results don’t match the behavior of other search tools?

 	
 What if part of the service is down when I search?

 	
 What if I request results 1,000 times in less than 5 seconds?

 	
 What happens if there are no results?

 By exploring beyond our expectations, we become more aware of what is going on in our product, warts and all. This ensures that we don’t end up making incorrect assumptions about how our product behaves and releasing a poor-quality product. It also means that if we find unexpected behavior, we have the choice to attempt to remove or readjust our expectations.

1.2.3 The value of testing

 The model of testing the imagination and implementation demonstrates that the testing goes beyond a simple confirmation of expectations and challenges our assumptions. The more we learn through testing about what we want to build and what we have built, the more these two circles align with one another. And the more they align, the more accurate our perception of quality becomes.

 Surprise—you’re already testing!

 Because the goal of testing is to understand and learn about what we want our products to do and how they should work, it’s worth mentioning that you’re probably already doing some form of testing. It can be argued that in any activity that you do, whether it’s debugging code, loading an API and casually sending some requests, or sending some questions about how your API should work to a client, you’re learning; therefore, you’re testing.

 This is why testing is sometimes assumed to be an easy task to carry out. But there is a difference between ad hoc, informal testing and focused, intentional testing. We’ve learned how our product’s complexity can overwhelm us, and it’s only with a strategic approach to testing that we can really start to see a difference.

 A team that is well informed about their work has a better idea of the quality of their product. They are also better equipped to decide what steps to take to improve quality, enabling us to decide to focus our attention on specific risks, make changes in our product to closer align with user’s expectations, or determine what issues we want to invest time in to fix and which to leave. This is the value of good testing: it helps teams get into a position where they can make these informed decisions and feel confident in the steps they are taking to develop a high-quality product.

1.2.4 Being strategic with API testing

 I find this model to be an excellent way to describe the purpose and value of testing; however, it can feel somewhat abstract. How does this model apply to API testing? What would an API testing strategy look like using this approach? One of the goals of this book is to teach you exactly that. To help us better understand this model, let’s look at an example API testing strategy that could have been used for a different project than the HMRC project that I was part of.

 The project was a service that allowed users to search and read regulatory documents as well as create reports on the back of said documents. The architecture of the system is summarized briefly in the model in figure 1.3.

 [image: CH01_F03_Winteringham]

 Figure 1.3 An informal visualization of the system architecture of a web API platform

 Just for clarity, this is a stripped-down version of the application I worked on. But it gives us a sense of the types of applications we might work with if we’re tasked with creating a strategy for API testing. We’ll discuss this model further in chapter 2, but here it shows us that this application was made up of a series of web APIs that provided services to the UI and to each other. For example, the Search API could be queried by the UI, but it could also be queried by another API, such as the Report API. So, we have our example application, but how do we apply the testing model we learned about to this context? Once again, this can best be explained visually with the model shown in figure 1.4.

 [image: CH01_F04_Winteringham]

 Figure 1.4 An instance of the testing model describes specific testing activities as part of an API test strategy

 As we can see, both the imagination and implementation portions have been filled with a range of testing activities that can help us learn about how our web APIs work. On the imagination side, we have activities such as the following:

 	
 Testing API designs—Allow us to question ideas and create a shared understanding around what problems we’re attempting to solve

 	
 Contract testing—Supports teams in ensuring that their web APIs speak to each other and are updated correctly when changes occur

 On the implementation side, we have activities such as these:

 	
 Exploratory testing—Enables us to learn how our web APIs are behaving and discover potential issues

 	
 Performance testing—Helps us to better understand how our web APIs behave when under load

 And finally, we have automated API checks that cover the areas where our knowledge of what we want to build (imagination) and what we have built (implementation) overlap. These checks can confirm whether our knowledge of how our APIs work is still correct and bring to our attention any potential regression in quality.

 We will learn more about these activities throughout this book, along with other testing activities. But this model demonstrates how different testing activities focus on different areas of our work and reveal different information. It also shows us that a successful testing strategy for APIs is holistic in its approach, a combination of many different activities all working together to help keep ourselves and our teams informed. To create this strategy, we need to do the following:

 	
 Understand our context and its risks—Who are our users? What do they want? How does our product work? How do we work? What does quality mean to them?

 	
 Appreciate the types of testing activities available to us—Do we know how to use automation effectively? Are we aware that we can test ideas and API designs before coding begins? How can we get value from testing in production?

 	
 Use our context knowledge to pick the right testing activities—What risks matter the most to us, and what testing activities should we use to mitigate them?

 This book will explore these three points to give you the necessary skills and knowledge to identify and deliver a testing strategy that works for you, your team, and your organization. As we progress through the book, we’ll use the testing model to first help us understand which testing activities work best where and then establish a testing strategy that works for us. Before we dive too deeply into the many API testing opportunities that are available, let’s first get comfortable with a few approaches that can help us rapidly learn about our web API platforms.

Summary

 	
 Web APIs contain a range of layers. Each carries out complex tasks of its own that are made all the more complex when combined.

 	
 Complexity scales even further when multiple web APIs work together to create services for an end user on a platform.

 	
 Overcoming this complexity and understanding it are key to delivering a high-quality product.

 	
 To establish understanding, we require a focused testing strategy.

 	
 Testing can be thought of as focusing on two areas: imagination and implementation.

 	
 We test imagination to learn more about what we want to build, and we test implementation to learn more about what we have built.

 	
 The more we know about both the imagination and the implementation areas, the more the two overlap and the better informed we are about the quality of our work.

 	
 The testing model can be used to show how different testing activities work in the imagination and implementation areas.

 	
 A successful testing strategy will be made up of many testing activities that all work together to support a team.

2 Beginning our testing journey

 This chapter covers

 	
Introducing our product

 	
Setting up our product

 	
Learning about what we’re testing from our teams, the product, and its source code

 	
Capturing our understanding visually to share with others

 Imagine it’s our first day on an established project. We’ve joined a team, and we’ve been tasked with implementing a testing strategy to help the team and improve quality. Where do we begin, or what are our next steps for furthering an existing test strategy? We want to help our teams build high-quality products, but what is the best course of action to take? Are there new tools, techniques, or activities we should adopt?

 This is the situation in which we find ourselves in this book right now. In the upcoming chapters, we’ll learn different ways to test web APIs and how to build an API testing strategy, and to help us learn, we’ll practice with an example product. Just like that imaginary first day, we’re tasked with building an API testing strategy for an application and a context we’re unfamiliar with. Therefore, in this chapter, we’ll learn not only about our product that we’ll be testing throughout the book but also how to begin our journey toward establishing a successful API testing strategy.

 Getting set up

 Before you begin this chapter, I strongly encourage you to download and install the sandbox API platform, restful-booker-platform, which we’ll use throughout this chapter and beyond. You can find details on how to install the application in the appendix of this book.

2.1 Introducing our product

 When beginning testing on a new product, it can be tempting to just dive in right away. However, we can get a lot of value from taking a step back and learning about the history of the product we’re responsible for. By taking the time to learn about the journey our team and our product have been on, we’ll reveal information on how the product works, what our teams hope to achieve, and what problems we’re trying to solve for our users, all of which will help us become more familiar with testing the product and form our initial ideas on what our testing strategy should look like.

 Already working on a product?

 Although this chapter is framed as a situation in which we’ll start fresh on a project without a testing strategy, many of us are more likely to be working on existing projects. However, the tools and techniques you’ll learn in this chapter are of use to us regardless of our context. This chapter is here to help kick-start and accelerate your ability to understand how your API platform works and communicate that understanding to others.

 To help us appreciate what we might learn, let’s get acquainted with restful-booker-platform and learn what it does, why it was built, and what we are going to do to help improve its quality.

2.1.1 Introducing our sandbox API

 To help us get into the mindset of building an API testing strategy, let’s imagine that restful-booker-platform is a real-life product that we’re responsible for. In our role-play, restful-booker-platform has been created for bed-and-breakfast (B&B) owners to manage their websites and bookings, with the following features:

 	
 Creating branding to market the B&B

 	
 Adding rooms with details for guests to book

 	
 Enabling guests to create bookings

 	
 Viewing reports for bookings to assess availability

 	
 Allowing guests to send messages to contact the B&B host

 The platform was initially built as a hobby project for a single B&B owner but has since grown and is now used by multiple B&B owners to take bookings. The project is slowly expanding both in scope and customer base but has suffered issues of late during its growth. Some B&B owners have expressed frustration with bugs, downtime, and incorrectly implemented features. Our goal is to provide a testing strategy that helps the team improve the quality of restful-booker-platform and ensures that both B&B owners and guests are happy with the product.

2.2 Familiarizing ourselves with restful-booker-platform

 By reading about restful-booker-platform’s short history, we’ve learned the following:

 	
 The application is built for B&Bs, meaning we have two different user types, guests and B&B managers, to consider when designing our APIs.

 	
 It contains multiple different features, which imply that multiple services are likely being processed by multiple APIs.

 	
 The core of the product is built using Java, which suggests what languages and tools we might want to use to automate some of our testing.

 But most important, we’ve learned that we’re required to identify and implement an API testing strategy that can help our team improve the quality of our product.

 We could dive right in and begin to use some preexisting techniques and tooling or just start sending requests to various web APIs on our platform to see what happens. This might deliver some value, but it’s not really going to push forward our goal of creating an effective API testing strategy. A good strategy requires an understanding of what we’re being asked to write a strategy for. Without knowledge of how our system works, how it is implemented, and by whom and for whom is it being built, how are we going to identify the right activities for our strategy?

 Before we start making snap decisions, we need to build up our understanding of the product and project. This means researching various sources of information and using tools to help us learn more about the product for which we’re going to build a strategy. As we begin our research, it’s important to note that there isn’t any priority on what to research first. Depending on our own preferences or learning style, we might want to start by reading documentation or source code first, ask for a demonstration from a team member, or play around with the product. Whatever we pick first, it’s important to remember two things: first, the goal is to expand our understanding of the context for which we’re being asked to build a strategy. This means focusing on learning and not on pushing systems to their limits to find issues (although sometimes finding issues will naturally occur). Second, we should take the time to research all facets of our products and project. The more we learn, the clearer our strategic choices will become when it comes to implementing our strategy. However, we do need to pick one place to start, so let’s begin our research by looking at the product itself.

2.2.1 Researching the product

 Because our focus for this book is on implementing an API testing strategy, we won’t put too much of our testing attention on the user interface. However, that doesn’t mean we can’t use it to help our research. By using our product as a user would, we can begin to learn more about both the needs of our users as well as how our product is currently addressing them.

 Activity

 Take some time to book a room and contact the B&B as a guest. Also, try logging in as a B&B manager and creating rooms, updating the branding, reading reports, and accessing messages. The login credentials for a default administrator can be found in the README file. You can access restful-booker-platform via either http://local host:8080 or https://automationintesting.online, depending on whether or not you’re running the application locally. Take notes about what you learn.

 There’s a UI in my API book!

 By now you’ll have discovered that our sandbox comes with a user interface because restful-booker-platform is used for teaching a range of activities beyond API testing. We’ll take advantage of the UI initially in this chapter to demonstrate that if your API platform does have a UI, you can use it to help learn how your application works. But as we progress, the UI is out of scope for this book. If you require a test strategy that includes both API and UI testing, take some time to research testing activities that are relevant in the UI space.

OEBPS/OEBPS/Images/CH01_F02_Winteringham.png
Imagination

What we want
in a product

* Requirements
¢ Discussions
¢ Desires

Our
understanding
of what we're

building

Implementation

What we have
in a product

* Code
e Infrastructure
e Data

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F04_Winteringham.png
Testing API
designs

Automated
API checks

Contract
testing

Imagination

Exploratory
testing

Performance
testing

Implementation

OEBPS/cover.jpeg
Testin
Web Al

Mark Winteringham

Foreword by Janet Gregory and Lisa Grispin

/ll MANNING

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F01_Winteringham.png
HTTP request
POST /booking/

HTTP response
201 created

Presentation layer

Service layer

N Y S

Persistence layer

S Y S

Database

HTTP requests and
responses to other
web APIs

OEBPS/OEBPS/Images/CH01_F03_Winteringham.png
repository|

Cloud Layers «— Connections —— Build collection - Build report Search docs report behaviors
Se, 0\
o Car 3 (e? S
YU g Soc ul 2u® on &
Cum, e
ul Snts Jew 0 Chrome,
CSS, HTML
Js JavaScript Dojo
T
API Collections Report Search Documents Spring Boot,
API API API API Java
"1
. Collections Report Search Documents |Third
Service service service service service [party Java
il
|
|
H
DB w w ' PostgreSQL
1
H
|
|
L o XML

OEBPS/OEBPS/Images/IFC_F01_Winteringham.png
Imagination Implementation

What we want Our What we have
in a product understanding in a product

of what we're
* Requirements building e Code

* Discussions * Infrastructure
* Desires * Data

‘A model describing the goal and value of testing. It demonstrates how testing what we want from a
product and what we have in a product increases our understanding of what we're building and
helps improve quality.

