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preface


  Even as a young boy, I was stubborn. When people would suggest simple ways of doing things, I would ignore advice, choosing to always do things the hard way. Decades later, not much changed as I shifted through increasingly challenging careers, eventually landing in the realm of data science (DS) and machine learning (ML) engineering, and now ML software development. As a data scientist in industry, I always felt the need to build overly complex solutions, working in isolation to solve a given problem in the way that I felt was best.


  I had some successes but many failures, and generally left a trail of unmaintainable code in my wake as I moved from job to job. It’s not something that I’m particularly proud of. I’ve been contacted by former colleagues, years after leaving a position, to have them tell me that my code is still running every day. When I’ve asked each one of them why, I’ve gotten the same demoralizing answer that has made me regret my implementations: “No one can figure it out to make changes to it, and it’s too important to turn off.”


  I’ve been a bad data scientist. I’ve been an even worse ML engineer. It took me years to learn why that is. That stubbornness and resistance to solving problems in the simplest way created a lot of headaches for others, both in the sheer number of cancelled projects while I was at companies and in the unmaintainable technical debt that I left in my wake.


  It wasn’t until my most recent job, working as a resident solutions architect at Databricks (essentially a vendor field consultant), that I started to learn where I had gone wrong and to change how I approached solving problems. Likely because I was now working as an advisor to help others who were struggling with data science problems, I was able to see my own shortcomings through the abstract reflection of what they were struggling through. Over the past few years, I’ve helped quite a few teams avoid many pitfalls that I’ve experienced (and created through my own stubbornness and hubris). I figured that writing down some of this advice that I give people regularly could benefit a broader audience, beyond my individual conversations with isolated teams in the context of my job.


  After all, applying machine learning to a real-world use case is hard enough when following along with examples and books on the concepts of applied ML. When you introduce the staggering complexity of end-to-end project work (which is the focus of this book), it comes as little surprise that many companies fail to realize the potential of ML in their businesses. It’s just hard. It’s easier if you have a guide, though.


  This book doesn’t aim to be a guide to applied ML. We’re not going to be covering algorithms or theories on why one model is better than another for a particular use case, nor will we delve into all the details to solve individual problems. Rather, this book is a guide to avoid the pitfalls that I’ve seen so many teams fall into (and ones that I’ve had to claw my way out of as a practitioner). It is a generalized approach to using DS techniques to solve problems in a way that you, your customers (the internal ones at your company), and your peers will not regret. It’s a guide to help you avoid making some of the really stupid mistakes that I’ve made.


  In the words of two of my relatively recently acquired favorite proverbs:


  Ask the experienced rather than the learned.


  —Arab proverb


  It is best to learn wisdom by the experience of others.


  —Latin proverb
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about this book


  Machine Learning Engineering in Action is an extension of the recommendations, hard-earned wisdom, and general tips that I’ve been sharing with clients for the past few years. This isn’t a book on theory, nor is it going to make you build the best models for a given problem. Those books have already been, and continue to be, written by great authors. This is a book focused on the “other stuff.”


  
Who should read this book


  This book is intended to reach a rather large audience in the ML community. It is neither too in the weeds to be exclusive to ML engineers, nor too high-level to be exclusively written for the benefit of a layperson. My intention in writing it in the way that I did is to make it approachable for anyone who is involved in the process of using ML to solve business problems.


  I’ve been pleasantly surprised by some of the early-stage feedback during development of this book. One of the first questions that I ask people who have reached out is, “What do you do?” I’ve received a far wider range of job titles and industries than I ever would have imagined—venture capitalists with PhDs in economics, ML engineers with 20 years of industry experience at some of the most prestigious tech companies, product managers at Silicon Valley startups, and undergrad university students in their freshman year. This lets me know that the book offers a bit of something for everyone to learn in terms of using ML engineering to build something successful.


  
How this book is organized: A road map


  This book has three main parts that address milestones in any ML project. From the initial scoping stages of “What are we trying to solve?” to the final stage of “How are we keeping this solution relevant for years to come?,” the book moves through each of these major epochs in the same logical order that you would consider these topics while working through a project:


  
    	
Part 1 (chapters 1-8) is focused primarily on the management of ML projects from the perspective of a team lead, manager, or project lead. It lays out a blueprint for scoping, experimentation, prototyping, and inclusive feedback to help you avoid falling into solution-building traps.


    	
Part 2 (chapters 9-13) covers the development process of ML projects. With examples (both good and bad) of ML solution development, this section carries you through proven methods of building, tuning, logging, and evaluating an ML solution to ensure that you’re building the simplest and most maintainable code possible.


    	
Part 3 (chapters 14-16) focuses on “the after”: specifically, considerations related to streamlining production release, retraining, monitoring, and attribution for a project. With examples focused on A/B testing, feature stores, and a passive retraining system, you’ll be shown how to implement systems and architectures that can ensure that you’re building the minimally complex solution to solve a business problem with ML.

  


  
About the code


  This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/machine-learning-engineering-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/machine-learning-engineering-in-action, and from GitHub at https://github.com/BenWilson2/ML-Engineering.


  
liveBook discussion forum


  Purchase of Machine Learning Engineering in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/machine-learning-engineering-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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about the cover illustration
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  In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.


  
Part 1 An introduction to machine learning engineering


  I’m sure you’ve seen, like most people in the data science field, the statistics on project failures. Based on my experience, the numbers thrown around for a project getting into production (namely, by vendors promising that their tooling stack will improve your chances if you just pay them!) are ridiculously grim. However, some element of truth exists in the hyperbolic numbers that are referenced in the rates of project failure.


  Using machine learning (ML) to solve real-world problems is complex. The sheer volume of tooling, algorithms, and activities involved in building a useful model are daunting for many organizations. In my time working as a data scientist and subsequently helping many dozens of companies build useful ML projects, I’ve never seen the tooling or the algorithms be the reason a project fails to provide value to a company.


  The vast majority of the time, a project that fails to make its way to production for sustained utility has issues that are rooted in the very early phases. Before even a single line of code is written, before a serving architecture is selected and built out, and long before a decision on scalable training is made, a project is doomed to either cancellation or unused obscurity if planning, scoping, and experimentation are not done properly.


  From these early stages of project definition, subject-matter expertise review, and reasonable levels of research and testing validation, a coherent project plan and road map can be built that carries the idea of solving a problem to the phase in which an effective solution can be built. In part 1 of this book, we’ll go through blueprints showing how to evaluate, plan, and validate a plan for determining the most likely low-risk solution for a problem by using (or not using!) ML.


  
1 What is a machine learning engineer?


  This chapter covers


  
    	
The scope of knowledge and skills for machine learning engineers


    	
The six fundamental aspects of applied machine learning project work


    	
The functional purpose of machine learning engineers

  


  Machine learning (ML) is exciting. It’s fun, challenging, creative, and intellectually stimulating. It also makes money for companies, autonomously tackles overwhelmingly large tasks, and removes the burdensome task of monotonous work from people who would rather be doing something else.


  ML is also ludicrously complex. From thousands of algorithms, hundreds of open source packages, and a profession of practitioners required to have a diverse skill set ranging from data engineering (DE) to advanced statistical analysis and visualization, the work required of a professional practitioner of ML is truly intimidating. Adding to that complexity is the need to be able to work cross-functionally with a wide array of specialists, subject-matter experts (SMEs), and business unit groups—communicating and collaborating on both the nature of the problem being solved and the output of the ML-backed solution.


  ML engineering applies a system around this staggering level of complexity. It uses a set of standards, tools, processes, and methodology that aims to minimize the chances of abandoned, misguided, or irrelevant work being done in an effort to solve a business problem or need. It, in essence, is the road map to creating ML-based systems that can be not only deployed to production, but also maintained and updated for years in the future, allowing businesses to reap the rewards in efficiency, profitability, and accuracy that ML in general has proven to provide (when done correctly).


  This book is, at its essence, that very road map. It’s a guide to help you navigate the path of developing production-capable ML solutions. Figure 1.1 shows the major elements of ML project work covered throughout this book. We’ll move through these proven sets of processes (mostly a “lessons learned” from things I’ve screwed up in my career) to give a framework for solving business problems through the application of ML.
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  Figure 1.1 The ML engineering road map for project work


  This path for project work is not meant to focus solely on the tasks that should be done at each phase. Rather, it is the methodology within each stage (the “why are we doing this” element) that enables successful project work.


  The end goal of ML work is, after all, about solving a problem. The most effective way to solve those business problems that we’re all tasked with as data science (DS) practitioners is to follow a process designed around preventing rework, confusion, and complexity. By embracing the concepts of ML engineering and following the road of effective project work, the end goal of getting a useful modeling solution can be shorter, far cheaper, and have a much higher probability of succeeding than if you just wing it and hope for the best.


  
1.1 Why ML engineering?


  To put it most simply, ML is hard. It’s even harder to do correctly in the sense of serving relevant predictions, at scale, with reliable frequency. With so many specialties existing in the field—such as natural language processing (NLP), forecasting, deep learning, and traditional linear and tree-based modeling—an enormous focus on active research, and so many algorithms that have been built to solve specific problems, it’s remarkably challenging to learn even slightly more than an insignificant fraction of all there is to learn about the field. Understanding the theoretical and practical aspects of applied ML is challenging and time-consuming.


  However, none of that knowledge helps in building interfaces between the model solution and the outside world. Nor does it help inform development patterns that ensure maintainable and extensible solutions.


  Data scientists are also expected to be familiar with additional realms of competency. From mid-level DE skills (you have to get your data for your data science from somewhere, right?), software development skills, project management skills, visualization skills, and presentation skills, the list grows ever longer, and the volumes of experience that need to be gained become rather daunting. It’s not much of a surprise, considering all of this, that “just figuring it out” in reference to all the required skills to create production-grade ML solutions is untenable.


  The aim of ML engineering is not to iterate through the lists of skills just mentioned and require that a data scientist (DS) master each of them. Instead, ML engineering collects certain aspects of those skills, carefully crafted to be relevant to data scientists, all with the goal of increasing the chances of getting an ML project into production and making sure that it’s not a solution that needs constant maintenance and intervention to keep running.


   ML engineers, after all, don’t need to be able to create applications and software frameworks for generic algorithmic use cases. They’re also not likely to be writing their own large-scale streaming ingestion extract, transform, and load (ETL) pipelines. They similarly don’t need to be able to create detailed and animated frontend visualizations in JavaScript.


  ML engineers need to know just enough software development skills to be able to write modular code and implement unit tests. The don’t need to know about the intricacies of non-blocking asynchronous messaging brokering. They need just enough data engineering skills to build (and schedule the ETL for) feature datasets for their models, but not to construct a petabyte-scale streaming ingestion framework. They need just enough visualization skills to create plots and charts that communicate clearly what their research and models are doing, but not to develop dynamic web apps that have complex user-experience (UX) components. They also need just enough project management experience to know how to properly define, scope, and control a project to solve a problem, but need not go through a Project Management Professional (PMP) certification.


  A giant elephant remains in the room when it comes to ML. Specifically, why—with so many companies going all in on ML, hiring massive teams of highly compensated data scientists, and devoting enormous amounts of financial and temporal resources to projects—do so many endeavors end up failing? Figure 1.2 depicts rough estimates of what I’ve come to see as the six primary reasons projects fail (and the rates of these failures in any given industry, from my experience, are truly surprising).
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  Figure 1.2 My estimation of why ML projects fail, from the hundreds I’ve worked on and advised others on


  Throughout this first part of the book, we’ll discuss how to identify the reasons so many projects fail, are abandoned, or take far longer than they should to reach production. We’ll also discuss the solutions to each of these common failures and cover the processes that can significantly lower the chances of these factors derailing your projects.


  Generally, these failures happen because the DS team is either inexperienced with solving a problem of the scale required (a technological or process-driven failure) or hasn’t fully understood the desired outcome from the business (a communication-driven failure). I’ve never seen this happen because of malicious intent. Rather, most ML projects are incredibly challenging, complex, and composed of algorithmic software tooling that is hard to explain to a layperson—hence the breakdowns in communication with business units that most projects endure.


  Adding to the complexity of ML projects are two other critical elements that are not shared by (most) traditional software development projects: a frequent lack of detail in project expectations and the relative industry immaturity in tooling. Both aspects are no different from the state of software engineering in the early 1990s. Businesses then were unsure of how to best leverage new aspects of technological capability, tooling was woefully underdeveloped, and many projects failed to meet the expectations of those who were commissioning engineering teams to build them. ML work is (from my biased view of working with only so many companies) at the same place now in the second decade of the 21st century that software engineering was 30 years ago.


  This book isn’t a doom-riddled treatise on the challenges of ML; rather, it’s meant to show how these elements can be a risk for projects. The intent is to teach the processes and tools that help minimize this failure risk. Figure 1.3 shows an overview of the detours that can arise in the execution of a project; each brings a different element of risk to a project’s successful execution.
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  Figure 1.3 ML project detours that lead to project failure


  The framework used in ML engineering is exactly dedicated to address each of these primary failure modes. Eliminating these chances of failure is at the heart of this methodology. It is done by providing the processes to make better decisions, ease communication with internal customers, eliminate rework during the experimentation and development phases, create code bases that can be easily maintained, and bring a best-practices approach to any project that is heavily influenced by DS work. Just as software engineers decades ago refined their processes from large-scale waterfall implementations to a more flexible and productive Agile process, ML engineering seeks to define a new set of practices and tools that will optimize the wholly unique realm of software development for data scientists.


  
1.2 The core tenets of ML engineering


  Now that you have a general idea of what ML engineering is, we can focus in a bit on the key elements that make up those incredibly broad categories from figure 1.2. Each of these topics is the focus of entire chapter-length in-depth discussions later in this book, but for now we’re going to look at them in a holistic sense by way of potentially painfully familiar scenarios to elucidate why they’re so important.


  
1.2.1 Planning


  Nothing is more demoralizing than building an ML solution that solves the wrong problem.


  By far the largest cause of project failures, failing to plan out a project thoroughly, is one of the most demoralizing ways for a project to be cancelled. Imagine for a moment that you’re the first-hired DS for a company. On your first week, an executive from marketing approaches you, explaining (in their terms) a serious business issue that they are having. They need to figure out an efficient means of communicating to customers through email to let them know of upcoming sales that they might be interested in. With very little additional detail provided to you, the executive merely says, “I want to see the click and open rates go up on our emails.”


  If this is the only information supplied, and repeated queries to members of the marketing team simply state the same end goal of increasing the clicking and opening rate, the number of avenues to pursue seems limitless. Left to your own devices, do you


  
    	
Focus on content recommendation and craft custom emails for each user?


    	
Provide predictions with an NLP-backed system that will craft relevant subject lines for each user?


    	
Attempt to predict a list of products most relevant to the customer base to put on sale each day?

  


  With so many options of varying complexity and approaches, and little guidance, creating a solution that is aligned with the expectations of the executive is highly unlikely. Instead, if a proper planning discussion delved into the correct amount of detail, avoiding the complexity of the ML side of things, the true expectation might be revealed. You’d then know that the only expectation is a prediction for when each user would most likely be open to reading email. The executive simply wants to know when someone is most likely to not be at work, commuting, or sleeping so that the company can send batches of emails throughout the day to different cohorts of customers.


  The sad reality is that many ML projects start off in this way. Frequently, little communication occurs with regards to project initiation, and the general expectation is that the DS team will just figure it out. However, without the proper guidance on what needs to be built, how it needs to function, and what the end goal of the predictions is, the project is almost certainly doomed to failure.


  After all, what would have happened if an entire content recommendation system were built for that use case, with months of development and effort wasted, when a simple analytics query based on IP address geolocation was what was really needed? The project would not only be cancelled, but many questions would likely come from on high as to why this system was built and why its development costed so much.


  Let’s look at the simplified planning discussion illustrated in figure 1.4. Even at the initial phase of discussion, we can see how just a few careful questions and clear answers can provide the one thing every data scientist should be looking for in this situation (especially as the first DS at a company working on the first problem): a quick win.
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  Figure 1.4 A simplified planning discussion diagram


  As you can see from the DS’s internal monologue shown at the right, the problem at hand is not at all in the list of original assumptions that were made. There is no talk of email content, relevancy to the subject line, or the items in the email. It’s a simple analytical query to figure out which time zone customers are in and to analyze historic opening in local times for each customer. By taking a few minutes to plan and understand the use case fully, weeks (if not months) of wasted effort, time, and money were saved.


  By focusing on what will be built and why it needs to be built, both the DS team and the business are able to guide the discussion more fruitfully. Eschewing a conversation focused on how it will be built keeps the DS members of the group focused on the problem. Ignoring when it will be built by helps the business keep its focus aligned on the needs of the project.


  Avoiding discussing implementation details at this stage of the project is not merely critical for the team to focus on the problem. Keeping the esoteric details of algorithms and solution design out of discussions with the larger team keeps the business unit members engaged. After all, they really don’t care how many eggs go into the mix, what color the eggs are, or even what species laid the eggs; they just want to eat the cake when it’s done. We will cover the processes of planning, having project expectation discussions with internal business customers, and general communications about ML work with a nontechnical audience at length and in much greater depth throughout the remainder of part 1.


  
1.2.2 Scoping and research


  If you switch your approach halfway through development, you’ll face a hard conversation with the business to explain that the project’s delays are due to you not doing your homework.


  After all, there are only two questions that your internal customers (the business unit) have about the project:


  
    	
Is this going to solve my problem?


    	
How long is this going to take?

  


  Let’s take a look at another potentially familiar scenario to discuss polar opposite ways that this stage of ML project development can go awry. Say we have two DS teams at a company, each being pitted against the other to develop a solution to an escalating incidence of fraud being conducted with the company’s billing system. Team A’s research and scoping process is illustrated in figure 1.5.
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  Figure 1.5 Research and scoping of a fraud-detection problem for a junior team of well-intentioned but inexperienced data scientists


  Team A comprises mostly junior data scientists, all of whom entered the workforce without an extensive period in academia. Their actions, upon getting the details of the project and the expectations of them, is to immediately go to blog posts. They search the internet for “detecting payment fraud” and “fraud algorithms,” finding hundreds of results from consultancy companies, a few extremely high-level blog posts from similar junior data scientists who have likely never put a model into production, and some rudimentary open source data examples.


  Team B, in contrast, is filled with a group of PhD academic researchers. Their research and scoping is shown in figure 1.6.
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  Figure 1.6 Research and scoping for an academia-focused group of researchers for the fraud-detection problem


  With Team B’s studious approach to research and vetting of ideas, the first actions are to dig into published papers on the topic of fraud modeling. Spending several days reading through journals and papers, these team members are now armed with a large collection of theory encompassing some of the most cutting-edge research being done on detecting fraudulent activity.


  If we were to ask either team to estimate the level of effort required to produce a solution, we would get wildly divergent answers. Team A would likely estimate about two weeks to build its XGBoost binary classification model, while team B would tell a vastly different tale. Those team members would estimate several months for implementing, training, and evaluating the novel deep learning structure that they found in a highly regarded whitepaper whose proven accuracy for the research was significantly better than any Perforce-implemented algorithm for this use case.


  The problem here with scoping and research is that these two polar opposites would both have their projects fail for two completely different reasons. Team A would fail because the solution to the problem is significantly more complex than the example shown in the blog post (the class imbalance issue alone is too challenging of a topic to effectively document in the short space of a blog). Team B, even though its solution would likely be extremely accurate, would never be allocated resources to build the risky solution as an initial fraud-detection service at the company.


  Project scoping for ML is incredibly challenging. Even for the most seasoned of ML veterans, conjecturing how long a project will take, which approach is going to be most successful, and the amount of resources required is a futile and frustrating exercise. The risk associated with making erroneous claims is fairly high, but structuring proper scoping and solution research can help minimize the chances of being wildly off on estimation.


  Most companies have a mix of the types of people in this hyperbolic scenario. Some are academics whose sole goal is to further the advancement of knowledge and research into algorithms, paving the way for future discoveries from within the industry. Others are “applications of ML” engineers who just want to use ML as a tool to solve a business problem. It’s important to embrace and balance both aspects of these philosophies toward ML work, strike a compromise during the research and scoping phase of a project, and know that the middle ground here is the best path to trod upon to ensure that a project actually makes it to production.


  
1.2.3 Experimentation


  Testing approaches is a Goldilocks activity; if you don’t test enough options, you’re probably not finding the best solution, while testing too many things wastes precious time. Find the middle ground.


  In the experimentation phase, the largest causes of project failure are either the experimentation taking too long (testing too many things or spending too long fine-tuning an approach) or an underdeveloped prototype that is so abysmally bad that the business decides to move on to something else.


  Let’s use a similar example from section 1.2.2 to illustrate how these two approaches might play out at a company that is looking to build an image classifier for detecting products on retail store shelves. The experimentation paths that the two groups take (showing the extreme opposites of experimentation) are shown in figures 1.7 and 1.8.
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  Figure 1.7 A rushed experimentation phase by a team of inexperienced data scientists


  Team A embodies the example of wholly inadequate research and experimentation in the early phases of a project. A project that glosses over these critical stages of solution development runs the risk, as shown in figure 1.7, of having a result that is so woefully underdeveloped that it becomes irrelevant to the business. Projects like these erode the business’s faith in the DS team, waste money, and needlessly expend precious resources of several groups.


  These inexperienced DS team members, performing only the most cursory of research, adapt a basic demo from a blog post. While their basic testing shows promise, they fail to thoroughly research the implementation details required for employing the model on their data. By retraining the pretrained model on only a few hundred images of two of the many thousands of products from their corpus of images, their misleading results hide the problem with their approach.


  This is the exact opposite situation to that of the other team. Team B’s approach to this problem is shown in figure 1.8.
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  Figure 1.8 A case of too much testing in the experimentation phase of a project


  Team B’s approach to solving this problem is to spend weeks searching through cutting-edge papers, reading journals, and understanding the theory involved in various convolutional neural network (CNN) and generative adversarial network (GAN) approaches. They settle on three broad potential solutions, each consisting of several tests that need to run and be evaluated against the entire collection of their training image dataset.


  It isn’t the depth of research that fails them in this case, as it does for the other group. Team B’s research is appropriate for this use case. The team members have an issue with their minimum viable product (MVP) because they are trying too many things in too much depth. Varying the structure and depth of a custom-built CNN requires dozens (if not hundreds) of iterations to get right for the use case that they’re trying to solve. This work should be scoped into the development stage of the project, not during evaluation, after a single approach is selected based on early results.


  While not the leading cause of project failure, an incorrectly implemented experimentation phase can stall or cancel an otherwise great project. Neither of these two extreme examples is appropriate, and the best course of action is a moderate approach between the two.


  
1.2.4 Development


  No one thinks that code quality matters until it’s 4 a.m. on a Saturday, you’re 18 hours into debugging a failure, and you still haven’t fixed the bug.


  Having a poor development practice for ML projects can manifest itself in a multitude of ways that can completely kill a project. Though usually not as directly visible as some of the other leading causes, having a fragile and poorly designed code base and poor development practices can make a project harder to work on, easier to break in production, and far harder to improve as time goes on.


  For instance, let’s look at a rather simple and frequent modification situation that comes up during the development of a modeling solution: changes to the feature engineering. In figure 1.9, we see two data scientists attempting to make a set of changes in a monolithic code base. In this development paradigm, all the logic for the entire job is written in a single notebook through scripted variable declarations and functions.


  Julie, in the monolithic code base, will likely have a lot of searching and scrolling to do, finding each individual location where the feature vector is defined and adding her new fields to collections. Her encoding work will need to be correct and carried throughout the script in the correct places as well. It’s a daunting amount of work for any sufficiently complex ML code base (as the number of code lines for feature engineering and modeling combined can reach to the thousands if developed in a scripting paradigm) and is prone to frustrating errors in the form of omissions, typos, and other transcription mistakes.


  Joe, meanwhile, has far fewer edits to do. But he is still subject to the act of searching through the long code base and relying on editing the hardcoded values correctly.


  The real problem with the monolithic approach comes when they try to incorporate each of their changes into a single copy of the script. As they have mutual dependencies on each other’s work, both will have to update their code and select one of their copies to serve as a master for the project, copying in the changes from the other’s work. This long and arduous process wastes precious development time and likely will require a great deal of debugging to get correct.


  Figure 1.10 shows a different approach to maintaining an ML project’s code base. This time, a modularized code architecture separates the tight coupling that is present within the large script from figure 1.9.
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  Figure 1.9 Editing a monolithic code base (a script) for ML project work


  This modularized code base is written in an integrated development environment (IDE). While the changes being made by the two DSs are identical in their nature to those being made in figure 1.9 (Julie is adding a few fields to the feature vector and updating encodings for these new fields, while Joe is updating the scaler used on the feature vector), the amount of effort and time spent getting these changes working in concert with one another is dramatically different.
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  Figure 1.10 Updating a modular ML code base to prevent rework and merge conflicts


  With a fully modularized code base registered in Git, each of them can check out a feature branch from the master, make small edits to the modules that are part of their features, write new tests (if needed), run their tests, and submit a pull request. Once their work is complete—because of the configuration-based code and the capability of the methods in each module class to act upon the data for their project through leveraging the job configuration—each feature branch will not impact the other and should just work as designed. Julie and Joe can cut a release branch of both of their changes in a single build, run a full integration test, and safely merge to the master, confident that their work is correct. They can, in effect, work efficiently together on the same code base, greatly minimizing the chance of errors and reducing the amount of time spent debugging code.


  
1.2.5 Deployment


  Not planning a project around a deployment strategy is like having a dinner party without knowing how many guests are showing up. You’ll either be wasting money or ruining experiences.


  Perhaps the most confusing and complex part of ML project work for newer teams is in how to build a cost-effective deployment strategy. If it’s underpowered, the prediction quality doesn’t matter (since the infrastructure can’t properly serve the predictions). If it’s overpowered, you’re effectively burning money on unused infrastructure and complexity.


  As an example, let’s look at an inventory optimization problem for a fast-food company. The DS team has been fairly successful in serving predictions for inventory management at region-level groupings for years, running large batch predictions for the per-day demands of expected customer counts at a weekly level, and submitting forecasts as bulk extracts each week. Up until this point, the DS team has been accustomed to an ML architecture that effectively looks like that shown in figure 1.11.
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  Figure 1.11 A basic batch-prediction-serving architecture


  This relatively standard architecture for serving up scheduled batch predictions focuses on exposing results to internal analytics personnel who provide guidance on quantities of materials to order. This prediction-serving architecture isn’t particularly complex and is a paradigm that the DS team members are familiar with. With the scheduled synchronous nature of the design, as well as the large amounts of time between subsequent retraining and inference, the general sophistication of their technology stack doesn’t have to be particularly high (which is a good thing; see the following sidebar).


  
    A brief note on simplistic architecture


    In the world of ML, always strive for the simplest design possible when building an architecture. If the project requires a periodicity of inference of one week, use a batch process (not real-time streaming). If the data volumes are in the megabytes, use a database and a simple virtual machine (not a 25-node Apache Spark cluster). If the runtime of training is measured in minutes, stick to CPUs (not GPUs).


    



    Using complex architecture, platforms, and technology simply for the sake of using them will create a condition that you will inevitably regret, as it introduces unnecessary complexity to an already complex solution. With each new complexity introduced, the chances rise that something is going to break (usually in a spectacularly complex manner). Keeping the technology, the stack, and the architecture as simple as is needed to solve the imminent business needs of the project is always a recommended best practice in order to deliver a consistent, reliable, and effective solution to a business.

  


  As the company realizes the benefits of predictive modeling over time with these batch approaches, its faith in the DS team increases. When a new business opportunity arises that requires near-real-time inventory forecasting at a per-store level, company executives ask the DS team to provide a solution for this use case.


  The ML team members understand that their standard prediction-serving architecture won’t work for this project. They need to build a REST application programming interface (API) to the forecasted data to support the request volume and prediction updating frequency. To adapt to the granular level of a per-store inventory prediction (and the volatility involved in that), the team knows that they need to regenerate predictions frequently throughout the day. Armed with these requirements, they enlist the help of some software engineers at the company and build out the solution.


  It isn’t until after the first week of going live that the business realizes that the implementation’s cloud computing costs are more than an order of magnitude higher than the cost savings seen from the more-efficient inventory management system. The new architecture, coupled with autoregressive integrated moving average (ARIMA) models needed to solve the problem, is shown in figure 1.12.
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  Figure 1.12 The far more complex pseudo-real-time serving architecture required to meet the business needs for the project


  It doesn’t take long for the project to get cancelled and a complete redesign of the architecture for this implementation to be commissioned to keep the costs down. This is a story that plays out time and again at companies implementing ML to solve new and interesting problems (and to be fair, one that I’ve personally caused three times in my career).


  Without focusing on the deployment and serving at the start of a project, the risk of building a solution that is under-engineered—doesn’t meet service-level agreement (SLA) or traffic-volume needs—or is overengineered—exceeds technical specifications at an unacceptably high cost—is high. Figure 1.13 shows some (not all, by any stretch of the imagination) elements to think about with regards to serving prediction results and the costs associated with the extremes of the ranges of those paradigms.
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  Figure 1.13 Deployment cost considerations


  It may not seem particularly exciting or important to think about cost when faced with a novel problem to solve in a clever way with an algorithm. While the DS team might not be thinking of total cost of ownership for a particular project, rest assured that executives are. By evaluating these considerations early enough in the process of building a project, analyses can be conducted to determine whether the project is worth it.


  It’s better to cancel a project in the first week of planning than to shut off a production service after spending months building it, after all. The only way to know whether a relatively expensive architecture is worth the cost of running it, however, is by measuring and evaluating its impact to the business.


  
1.2.6 Evaluation


  If you can’t justify the benefits of your project being in production, don’t expect it to remain there for very long.


  The worst reason for getting an ML project cancelled or abandoned is budget. Typically, if the project has gotten into production to begin with, the up-front costs associated with developing the solution were accepted and understood by the leadership at the company. Having a project cancelled after it’s already in production because of a lack of visibility of its impact to the company is a different matter entirely. If you can’t prove the worth of the solution, you face the real possibility of someone telling you to turn it off to save money someday.


  Imagine a company that has spent the past six months working tirelessly on a new initiative to increase sales through the use of predictive modeling. The DS team members have followed best practices throughout the project’s development—making sure that they’re building exactly what the business is asking for and focusing development efforts on maintainable and extensible code—and have pushed the solution to production.


  The model has been performing wonderfully over the past three months. Each time the team has done post hoc analysis of the predictions to the state of reality afterward, the predictions turn out to be eerily close. Figure 1.14 then rears its ugly head with a simple question from one of the company executives who is concerned about the cost of running this ML solution.
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  Figure 1.14 A nearly flawless ML project getting cancelled because of a lack of A/B testing and statistically valid attribution measurement


  The one thing that the team forgot about in creating a great ML project is thinking of how to tie their predictions to some aspect of the business that can justify its existence. The model that they’ve been working on and that is currently running in production was designed to increase revenue, but when scrutinized for the cost of using it, the team realized that they hadn’t thought of an attribution analytics methodology to prove the worth of the solution.


  Can they simply add up the sales and attribute it all to the model? No, that wouldn’t be even remotely correct. Could they look at the comparison of sales versus last year? That wouldn’t be correct either, as far too many latent factors are impacting sales.


  The only thing that they can do to give attribution to their model is to perform A/B testing and use sound statistical models to arrive at a revenue lift calculation (with estimation errors) to show how much additional sales are due to their model. However, the ship has already sailed, as the solution has already been deployed for all customers. The team lost its chance at justifying the continued existence of the model. While the project might not be shut off immediately, it certainly will be on the chopping block if the company needs to reduce its budgetary spending.


  It’s always a good idea to think ahead and plan for this case. Whether it’s happened to you yet or not, I can assure you that at some point it most certainly will (it took me two very hard lessons to learn this little nugget of wisdom). It is far easier to defend your work if you have the ammunition at the ready in the form of validated and statistically significant tests showing the justification for the model’s continued existence. Chapter 11 covers approaches to building A/B testing systems, statistical tests for attribution, and associated evaluation algorithms.


  
1.3 The goals of ML engineering


  In the most elemental sense, the primary goal of any DS is to solve a difficult problem through the use of statistics, algorithms, and predictive modeling that is either too onerous, monotonous, error-prone, or complex for a human to do. It’s not to build the fanciest model, to create the most impressive research paper about their approach to a solution, or to search out the most exciting new tech to force into their project work.


  We’re all here in this profession to solve problems. Among a vast quantity of tools, algorithms, frameworks, and core responsibilities that a DS has at their disposal to solve those problems, it’s easy to become overwhelmed and focus on the technical aspects of the job. Without a process guide to wrangle the complexity of ML project work, it’s incredibly easy to lose sight of the real goal of solving problems.


  By focusing on the core aspects of project work highlighted in section 1.2 and covered in greater detail throughout this book, you can get to the true desired state of ML work: seeing your models run in production and having them solve a real business problem.


  
    You can do this


    An entire industry out there is designed to convince you that you can’t—that you need to hire them to do all of this complex work for you. They make a great deal of money doing this.


    



    But trust me, you can learn these core concepts and can build a team that follows a methodology for approaching ML work that can dramatically increase the success rate of a project. The work may be complex and rather confusing at first, but following the guidelines and using the right tooling to help manage the complexity can help any team develop sophisticated ML solutions that won’t require massive budgets or consume all the free time that a DS team has to keep the lights on for poorly implemented solutions. You’ve got this.

  


  Before delving into the finer details of each of these methodologies and approaches for ML engineering work, see the outline detailed in figure 1.15. This is effectively a process flow plan for production ML work that I’ve seen prove successful for any project with any team.
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  Figure 1.15 The ML engineering methodology component map


  Throughout this book, we’ll cover these elements, focusing not only on discussions and implementations of each, but also on why they’re so important. This path—focusing on the people, processes, and tools to support successful ML projects—is paved over the corpses of many failed projects I’ve seen in my career. However, by following the practices that this book outlines, you will likely see fewer of these failures, allowing you to build more projects that not only make their way to production, but get used and stay in production.


  
Summary


  
    	
ML engineers need to know aspects of data science, traditional software engineering, and project management to ensure that applied ML projects are developed efficiently, focus on solving a real problem, and are maintainable.


    	
Focusing on best practices throughout the six primary project phases of applied ML work—planning, scoping and research, experimentation, development, deployment, and evaluation—will greatly help a project minimize risk of abandonment.


    	
Shedding concerns about technical implementation details, tooling, and novelty of approaches will help focus project work on what really matters: solving problems.

  


  
2 Your data science could use some engineering


  This chapter covers


  
    	
Elucidating the differences between a data scientist and an ML engineer


    	
Focusing on simplicity in all project work to reduce risk


    	
Applying Agile fundamentals to ML project work


    	
Illustrating the differences and similarities between DevOps and MLOps

  


  In the preceding chapter, we covered the components of ML engineering from the perspective of project work. Explaining what this approach to DS work entails from a project-level perspective tells only part of the story. Taking a view from a higher level, ML engineering can be thought of as a recipe involving a trinity of core concepts:


  
    	
Technology (tools, frameworks, algorithms)


    	
People (collaborative work, communication)


    	
Process (software development standards, experimentation rigor, Agile methodology)

  


  The simple truth of this profession is that project work that focuses on each of these elements are generally successful, while those that omit one or many of them tend to fail. This is the very reason for the hyperbolic and oft-quoted failure rates of ML projects in industry (which I find to be rather self-serving and panic-fueled when coming from vendor marketing materials).


  This chapter covers, at a high level, this trio of components for successful projects. Employing the appropriate balance of each, focused on creating maintainable solutions that are co-developed with internal customers in a collaborative and inclusive fashion, will greatly increase the chances of building ML solutions that endure. After all, the primary focus of all DS work is to solve problems. Conforming work patterns to a proven methodology that is focused on maintainability and efficiency translates directly to solving more problems with much less effort.


  
2.1 Augmenting a complex profession with processes to increase project success


  In one of the earliest definitions of the term data science, as covered in Data Science, Classification, and Related Methods (Springer, 1996), compiled by C. Hayashi et al., the three main focuses are as follows:


  
    	
Design for data—Specifically, the planning surrounding how information is to be collected and in what structure it will need to be acquired to solve a particular problem


    	
Collection of data—The act of acquiring the data


    	
Analysis on data—Divining insights from the data through the use of statistical methodologies to solve a problem

  


  A great deal of modern data science is focused mostly on the last of these three items (although in many cases, a DS team is forced to develop its own ETL), as the first two are generally handled by a modern data engineering team. Within this broad term, analysis on data, a large focus of the modern DS resides: applying statistical techniques, data manipulation activities, and statistical algorithms (models) to garner insights from and to make predictions upon data.


  The top portion of figure 2.1 illustrates (in an intentionally brief and high-level manner) the modern data scientist’s focus from a technical perspective. These are the elements of the profession that most people focus on when speaking about what we do: from data access to building complex predictive models utilizing a dizzying array of algorithmic approaches and advanced statistics. It isn’t a particularly accurate assessment of what a data scientist actually does when doing project work, but rather focuses on some of the tasks and tools that are employed in solving problems. Thinking of data science in this manner is nearly as unhelpful as classifying the job of a software developer by listing languages, algorithms, frameworks, computational efficiency, and other technological considerations of their profession.
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  Figure 2.1 The merging of software engineering skills and DS into the ML engineer role


  We can see in figure 2.1 how the technological focus of DS from the top portion (which many practitioners focus on exclusively) is but one aspect of the broader system shown in the bottom portion. It is in this region, ML engineering, that the complementary tools, processes, and paradigms provide a framework of guidance, foundationally supported by the core aspects of DS technology, to work in a more constructive way.


  ML engineering, as a concept, is a paradigm that helps practitioners focus on the only aspect of project work that truly matters: providing solutions to problems that actually work. Where to start, though?


  
2.2 A foundation of simplicity


  When it comes down to truly explaining what data scientists do, nothing can be more succinct than, “They solve problems through the creative application of mathematics to data.” As broad as that is, it reflects the wide array of solutions that can be developed from recorded information (data).


  Nothing is prescribed regarding expectations of what a DS does regarding algorithms, approaches, or technology while in the pursuit of solving a business problem. Quite the contrary, as a matter of fact. We are problem solvers, utilizing a wide array of techniques and approaches.


  Unfortunately for newcomers to the field, many data scientists believe that they are providing value to a company only when they are using the latest and “greatest” tech that comes along. Instead of focusing on the latest buzz surrounding a new approach catalogued in a seminal whitepaper or advertised heavily in a blog post, a seasoned DS realizes that the only thing that really matters is the act of solving problems, regardless of methodology. As exciting as new technology and approaches are, the effectiveness of a DS team is measured in the quality, stability, and cost of a solution it provides.


  As figure 2.2 shows, one of the most important parts of ML work is navigating the path of complexity when facing any problem. By approaching each new ask from a business with this mindset as the veritable cornerstone of ML principles (focusing on the simplest solution possible that solves the business’s problem), the solution itself can be focused on, rather than a particular approach or fancy new algorithm.
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  Figure 2.2 Guide for building the simplest solution to an ML problem


  Having a focus built around this principle—of pursuing the simplest possible implementation to solve a problem—is the foundation upon which all other aspects of ML engineering are built. It is by far the single most important aspect of ML engineering, as it will inform all other aspects of project work, scoping, and implementation details. Striving to exit the path as early as possible can be the single biggest driving factor in determining whether a project will fail.


  
    “But it’s not data science work if the solution doesn’t use AI”


    I never entered this career path with expectations of using technology, a specific algorithm, framework, or methodology. I’ve met plenty of people who have, and many I’ve known throughout their career journeys have ended up being amazed at how little they’ve ended up using a particular oft-mentioned framework or library for their work. Most of them have been especially surprised at how much time they’ve spent writing SQL, performing statistical analyses of their data, and cleaning messy data to solve a problem.


    



    I suppose that I never had that seemingly demoralizing experience that many of my peers have had regarding their infrequent application of cutting-edge approaches in the “real world” because I started in analytics before moving into ML much later. I learned early in my time transitioning to this field that the simplest solutions to problems were always the best approach.


    



    The unsophisticated reason for this is quite simple: I had to maintain the solution. Whether monthly, daily, or in real time, my solution and code were things that I would need to debug, improve, troubleshoot inconsistencies in, and frankly, just keep running. The more sophisticated a given solution, the longer it took to diagnose failures, the harder it was to troubleshoot, and the more frustrating it was to change its internal logic for added features.


    



    The point of pursuing simplicity in solutions (the simplest design and approach that still solves the problem, that is) translates directly to less time spent maintaining solutions to problems that you’ve solved. That frees you up to solve more problems, bring more value to your company, and generally give you exposure to more problems.


    



    I’ve seen the passion that people have for using exciting algorithms play out poorly many times. One of the more notable ones was a GAN for image-resolution upscaling that took a team of 12 data scientists 10 months to get to a state that was production ready and scalable. When talking with their C-level staff, they said that they were hiring the consultants on staff to build a churn model, a fraud model, and a revenue-forecasting model. They felt that they had to hire outside consultants to do the important critical modeling work because their internal team was too busy working on an R&D project. Within the 12 weeks of working with that company, they entire DS team was let go, and the image project was abandoned.


    



    Sometimes working on the basic things that bring incredible value to a company can help you keep your job (which isn’t to say that forecasting, churn, and fraud modeling are simple, even if they don’t seem particularly interesting).

  


  
2.3 Co-opting principles of Agile software engineering


  Development operations (DevOps) brought guidelines and a demonstrable paradigm of successful engineering work to software development. With the advent of the Agile Manifesto, seasoned industry professionals recognized the failings of the way software had been developed. Some of my fellow colleagues and I took a stab at adapting these guiding principles to the field of data science, shown in figure 2.3.
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  Figure 2.3 Agile Manifesto elements adapted to ML project work


  With this slight modification to the principles of Agile development, we have a base of rules for applying DS to business problems. We’ll cover all of these topics, including why they are important, and give examples of how to apply them to solve problems throughout this book. While some are a significant departure from the principles of Agile, the applicability to ML project work has provided repeatable patterns of success for us and many others.


  However, two critical points of Agile development can, when applied to ML project work, dramatically improve the way that a DS team approaches its work: communication and cooperation, and embracing and expecting change. We’ll take a look at these next.


  
2.3.1 Communication and cooperation


  As discussed many times throughout this book (particularly in the next two chapters), the core tenets of successful ML solution development are focused on people. This may seem incredibly counterintuitive for a profession that is so steeped in mathematics, science, algorithms, and clever coding.


  The reality is that quality implementations of a solution to a problem are never created in a vacuum. The most successful projects that I’ve either worked on or have seen others implement are those that focus more on the people and the communications regarding the project and its state rather than on the tools and formal processes (or documentation) surrounding the development of the solution.


  In traditional Agile development, this rings very true, but for ML work, the interactions between the people coding the solution and those for whom the solution is being built are even more critical. This is due to the complexity of what is involved in building the solution. Since the vast majority of ML work is rather foreign to the general layperson, requiring years of dedicated study and continual learning to master, we need to engage in a much greater effort to have meaningful and useful discussions.


  The single biggest driving factor in making a successful project that has the least amount of rework is collaborative involvement between the ML team and the business unit. The second biggest factor to ensure success is communication within the ML team.


  Approaching project work with a lone-wolf mentality (as has been the focus for most people throughout their academic careers) is counterproductive to solving a difficult problem. Figure 2.4 illustrates this risky behavior (which I’ve done early in my career and seen done dozens of times by others).


  [image: 02-04]



  Figure 2.4 The hard-learned lesson of working on a full ML solution in isolation. It rarely ends well.


  The reasons for this development style can be many, but the end result is typically the same: either a lot of rework, or a lot of frustration on the part of the business unit. Even if the DS team has no other members (a “team” of a single person), it can be helpful to ask for peer reviews and demonstrate the solution to other software developers, an architect, or SMEs from the business unit department that the solution is being built for.


  The absolute last thing that you want to do (trust me, I’ve done it, and it’s ugly) is to gather requirements and head off to a keyboard to solve a problem without ever talking to anyone. The chances of meeting all of the project requirements, getting the edge cases right, and building what the customer is expecting are so infinitesimally small that, should it work out well, perhaps you should look into buying some lottery tickets with all of the excess luck that you have to spare.


  A more comprehensive and Agile-aligned development process for ML bears a close resemblance to Agile for general software development. The only main difference is the extra levels of internal demonstrations that won’t necessarily be required for software development (a peer review feature branch typically suffices there). For ML work, it’s important to show the performance as a function of how it affects the data being passed into your code, demonstrate functionality, and show visualizations of the output. Figure 2.5 shows a preferable Agile-based approach to ML work, focused heavily on collaboration and communication, both internally and externally.
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  Figure 2.5 ML Agile feature creation process, focusing on requirement gathering and feedback


  The greater level of interaction among team members will nearly always contribute to more ideas, perspectives, and challenges to assumed facts, leading to a higher-quality solution. If you choose to leave either your customers (the business unit requesting your help) or your peers out of the discussions (even around minute details in development choices), the chances that you're building something that they weren't expecting, or desiring, go up.


  
2.3.2 Embracing and expecting change


  It is of utmost importance, not only in experimentation and project direction, but also in project development, to be prepared and expect inevitable changes to occur. In nearly every ML project I've worked on, the goals defined at the beginning of the project never turned out to be exactly what was built by the end. This applies to everything from specific technologies, development languages, and algorithms, to assumptions or expectations about the data—and, sometimes, even to the use of ML to solve the problem in the first place (a simple aggregation dashboard to help people solve a problem more efficiently, for example).


  If you plan for the inevitable change, you can help focus on the most important goal in all DS work: solving problems. This expectation can also help remove focus from the insignificant elements (which fancy algorithm, cool new technology, or amazingly powerful framework to develop a solution in).


  Without expecting or allowing for change to happen, decisions about a project’s implementation may be made that make it incredibly challenging (or impossible) to modify without a full rewrite of all work done up to that point. By thinking about how the direction of the project could change, the work is forced more into a modular format of loosely coupled pieces of functionality, reducing the impact of a directional pivot on other parts of the already completed work.


  Agile embraces this concept of loosely coupled design and a strong focus on building new functionality in iterative sprints so that even in the face of dynamic and changing requirements, the code still functions. By applying this paradigm to ML work, abrupt and even late-coming changes can be relatively simplified—within reason, of course. (Moving from a tree-based algorithm to a deep learning algorithm can’t happen in a two-week sprint.) While simplified, this doesn’t guarantee simplicity, though. The fact simply stands that anticipating change and building a project architecture that supports rapid iteration and modification will make the development process much easier.


  
2.4 The foundation of ML engineering


  Now that you’ve seen the bedrock of DS work in the form of adapting Agile principles to ML, let’s take a brief look at the entire ecosystem. This system of project work has proven to be successful through my many encounters in industry with building resilient and useful solutions to solve problems.


  As mentioned in the introduction to this chapter, the idea of ML operations (MLOps) as a paradigm is rooted in the application of similar principles that DevOps has to software development. Figure 2.6 shows the core functionality of DevOps.
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  Figure 2.6 The components of DevOps


  Comparing these core principles, as we did in section 2.3 to Agile, figure 2.7 shows the data science version of DevOps: MLOps. Through the merging and integration of each of these elements, the most catastrophic events in DS work can be completely avoided: the elimination of failed, cancelled, or non-adopted solutions.
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  Figure 2.7 Adaptation of DevOps principles to ML project work (MLOps)


  Throughout this book, we’ll cover not only why each of these elements is important, but also show useful examples and active implementations that you can follow along with to further cement these practices in your own work. The goal of all of this, after all, is to make you successful. The best way to do that is to help you make your business successful by giving a guideline of how to address project work that will get used, provide value, and be as easy as possible to maintain for you and your fellow DS team members.


  
Summary


  
    	
ML engineering brings the core functional capabilities of a data scientist, a data engineer, and a software engineer into a hybrid role that supports the creation of ML solutions focused on solving a problem through the rigors of professional software development.


    	
Developing the simplest possible solution helps reduce development, computational, and operational costs for any given project.


    	
Borrowing and adapting Agile fundamentals to ML project work helps shorten the development life cycle, forces development architectures that are easier to modify, and enforces testability of complex applications to reduce maintenance burdens.


    	
Just as DevOps augments software engineering work, MLOps augments ML engineering work. While many of the core concepts are the same for these paradigms, additional aspects of managing model artifacts and performing continuous testing of new versions introduce nuanced complexities.

  


  
3 Before you model: Planning and scoping a project


  This chapter covers


  
    	
Defining effective planning strategies for ML project work


    	
Using efficient methods to evaluate potential solutions to an ML problem

  


  The two biggest killers in the world of ML projects have nothing to do with what most data scientists ever imagine. These killers aren’t related to algorithms, data, or technical acumen. They have absolutely nothing to do with which platform you’re using, nor with the processing engine that will be optimizing a model. The biggest reasons for projects failing to meet the needs of a business are in the steps leading up to any of those technical aspects: the planning and scoping phases of a project.


  Throughout most of the education and training that we receive leading up to working as a DS at a company, emphasis is placed rather heavily on independently solving complex problems. Isolating oneself and focusing on showing demonstrable skill in the understanding of the theory and application of algorithms trains us to have the expectation that the work we will do in industry is a solo affair. Given a problem, we figure out how to solve it.


  The reality of life in a DS capacity couldn’t be further than the academic approach of proving one’s knowledge and skill in solving problems alone. This profession is, in actuality, far more than just algorithms and amassing knowledge of how to use them. It’s a highly collaborative and peer-driven field; the most successful projects are built by integrated teams of people working together, communicating throughout the process. Sometimes this isolation is imposed by company culture (intentionally walling off the team from the rest of the organization under the misguided intention of “protecting” the team from random requests for projects), and other times it is self-imposed.


  This chapter covers why this paradigm shift that has ML teams focusing less on the how (algorithms, technology, and independent work) and more on the what (communication about and collaboration in what is being built) can make for a successful project. This shift helps reduce experimentation time, focus the team on building a solution that will work for the company, and plan out phased project work that incorporates SME knowledge from cross-functional teams to help dramatically increase the chances of a successful project.


  The start of this inclusive journey, of bringing together as many people as possible to create a functional solution that works to solve a problem, is in the scoping phase. Let’s juxtapose an ML team’s workflow that has inadequate or absent scoping and planning (figure 3.1) with a workflow that includes proper scoping and planning (figure 3.2).
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  Figure 3.1 A lack of planning, improper scoping, and a lack of process around experimentation


  Through absolutely no fault of their own (unless we want to blame the team for not being forceful with the business unit to get more information, which we won’t), these ML team members do their best to build several solutions to solve the vague requirements thrown their way. If they’re lucky, they’ll end up with four MVPs and several months of effort wasted on three that will never make it to production (a lot of wasted work). If they’re terribly unlucky, they’ll have wasted months of effort on nothing that solves the problem that the business unit wants solved. Either way, no good outcome results.


  With the adequate scoping and planning shown in figure 3.2, the time spent building a solution is reduced considerably. The biggest reason for this change is that the team has fewer total approaches to validate (and all are time-boxed to two weeks), mostly because “early and often” feedback is received by the internal customer. Another reason is that at each phase of new feature development, a quick meeting and demonstration of the added functionality is shown for acceptance testing by the SMEs.
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  Figure 3.2 A thoroughly scoped, planned, and collaborative ML MVP project road map


  To add to the substantial efficiency improvement, the other large benefit to this methodology of inclusiveness with the internal customer is a significantly increased probability of the end solution meeting the business’s expectations. Gone is the extreme risk shown in figure 3.1: delivering demonstrations of multiple solutions after months of work, only to find that the entire project needs to be restarted from scratch.


  
    Isn’t planning, scoping, brainstorming, and organizing meetings a project manager thing?


    Some ML practitioners may balk at including planning, communication, brainstorming, and other project-management-focused elements in a discussion on ML projects. In response, I can only muster another piece of anecdotal evidence: in the most successful projects that I’ve been involved in, the ML team lead has worked closely with not only any other involved team leads and the project manager, but also representatives of the department requesting the solution.


    



    Because the leads are involved with the project management aspects of the solution, the team(s) typically endure far less work-related churn and rework. Team members can focus on development with a holistic approach to get the best possible solution shipped to production.


    



    Comparatively, teams that operate in silos typically struggle to make a project work. That struggle may be due to a failure to keep discussions in abstract terms, thereby isolating others from contributing ideas to the solution (for example, the ML team focusing discussions around implementation details or getting too far into the weeds about algorithms during meetings). Additionally, an attitude of “we’re not PMs . . . our job is to build models” may play a role. The end result of working in a cross-functional team without proper and effective communication patterns invariably leads to scope creep, confusion, and a general social antagonism among the warring factions of subteams within a project.


    



    By approaching these early phases with an open mind (and a very open set of ears and eyes to the opinions and thoughts of others, regardless of their technical acumen) and a generous embrace of all of the myriad viewpoints in a cross-functional team, you may find that a far simpler solution to the problem at hand can arise. As I will state ad nauseam (for it bears repetition as a general words-to-live-by mantra for ML practitioners), the simplest approach is the best approach. Most of the time, I’ve found, these revelations happen in the early planning and scoping phases.

  


  Throughout this chapter (and the next), we’ll go through approaches to help with these discussions, a rubric that I’ve used to guide these phases, and some lessons that I’ve learned after messing up this phase so many times.


  
    But what if all of our tests are garbage?


    I received some pretty consistent feedback on figure 3.2. Nearly everyone who has ever worked on a real-world ML project asked this exact question: “OK, Ben, limiting the scope of testing is definitely a good idea. But what if none of it works? What then?”


    



    I responded to everyone in the same way: “What else could you be working on?”


    



    This may seem like the most obtuse answer possible, but it opens up the larger meta-question around the project. If all of the research into the most promising testing approaches runs into unsuccessful results, the problem that you’re trying to solve is probably going to be rather expensive in terms of development effort and time. If the project is sufficiently important, the business is adamant about incurring the delays associated with additional testing, and the team has sufficient bandwidth to support this additional work, then go for it. Start a new round of testing. Figure it out. Ask for help if need be.


    



    If the project doesn’t meet those requirements, however, it is of paramount importance to explain to the business that a monumental amount of risk is being taken on by continuing the work. This stage of evaluation is critical for no greater reason than to make this adjudication: “Can we actually build this?” or “Do we even know if we can build this?”


    



    If the answer isn’t a resounding “yes” with quantitative evidence to support that assertion, it’s time for a whole lot of honesty with the business unit, further proof-of-concept work, and a risk-focused discussion held collaboratively with the project owner about any unknown elements surrounding the project.

  


  
3.1 Planning: You want me to predict what?!


  Before we get into how successful planning phases for ML projects are undertaken, let’s go through a simulation of a typical project’s genesis at a company that doesn’t have an established or proven process for initiating ML work. Let’s imagine that we work at an e-commerce company that is just getting a taste for wanting to modernize its website.


  After seeing competitors tout massive sales gains by adding personalization services to their websites for years, the C-level staff is demanding that the company needs to go all in on recommendations. No one in the C-suite is entirely sure of the technical details about how these services are built, but they all know that the first group to talk to is the ML nerds. The business (in this case, the sales department leadership, marketing, and product teams) calls a meeting, inviting the entire ML team, with little added color to the invitation apart from the title, “Personalized Recommendations Project Kickoff.”


  Management and the various departments that you’ve worked with have been happy with the small-scale ML projects that your team has built (fraud detection, customer valuation estimation, sales forecasting, and churn probability risk models). Each of the previous projects, while complex in various ways from an ML perspective, were largely insular—handled within the ML team, which came up with a solution that could be consumed by the various business units. None of these projects required subjective quality estimations or excessive business rules to influence the results. The mathematical purity of these solutions simply was not open to argument or interpretation; either they were right, or they were wrong.


  Victims of your own success, the team is approached by the business with a new concept: modernizing the website and mobile applications. The executives have heard about the massive sales gains and customer loyalty that comes along with personalized recommendations, and they want your team to build a system for incorporation to the website and the apps. They want each and every user to see a unique list of products greet them when they log in. They want these products to be relevant and interesting to the user, and, at the end of the day, they want to increase the chances that the user will buy these items.


  After a brief meeting during which examples from other websites are shown, they ask how long it will be before the system will be ready. You estimate about two months, based on the few papers that you’ve read in the past about these systems, and set off to work. The team creates a tentative development plan during the next scrum meeting, and everyone sets off to try to solve the problem.


  You and the rest of the ML team assume that management is looking for the behavior shown in so many other websites, in which products are recommended on a main screen. That, after all, is personalization in its most pure sense: a unique collection of products that an algorithm has predicted will have relevance to an individual user. This approach seems pretty straightforward, you all agree, and the team begins quickly planning how to build a dataset that shows a ranked list of product keys for each of the website’s and mobile app’s users, based solely on the browsing and purchase history of each member.


  
    Hold up a minute. Isn’t planning a project at odds with Agile?


    Well, yes, and no. To quote Scott Ambler (one of the most prolific writers on foundational processes for Agile), “A project plan is important, but it must not be too rigid to accommodate changes in technology or the environment, stakeholders’ priorities, and people’s understanding of the problem and its solution” (http://www.ambysoft .com/essays/agileManifesto.html).


    



    I’ve seen the misinterpretation of this sentiment come up rather frequently in my career. Ambler and the original creators of the Agile Manifesto were pointing out that a project should not be dictated by a preplanned and immutable script of elements that need to be constructed. The intention is not, and never was, to not plan at all. It is simply to be flexible in the plans that are created, to enable them to be changed when the needs arise.


    



    If a simpler way to implement something arises, a better way that reduces complexity while still achieving the same end result, then a project plan should change. In the world of ML, this is a frequent occurrence.


    



    Perhaps, at the start of the project (before a thorough research phase is completed), the cross-functional team determines that the only possible solution is a highly complex and complicated modeling approach. After conducting experiments, however, the team finds that a simple linear equation could be developed to solve the problem with acceptable accuracy at a fraction of the development time and cost. Although the initial plan was to use, say, deep learning to solve the problem, the team can, should, and must shift directions to the much simpler approach. The plan changed, certainly, but without a plan in the first place, the research and experimentation phase would be like a ship lost in the night—unguided, directionless, and chaotically moving about in the dark.


    



    Planning is good in ML. It’s just critical to not set those plans in stone.

  


  For the next several sprints, you all studiously work in isolation. You test dozens of implementations that you’ve seen in blog posts, consume hundreds of papers’ worth of theory on different algorithms and approaches to solving an implicit recommendation problem, and finally build out an MVP solution using alternating least squares (ALS) that achieves a root mean squared error (RMSE) of 0.2334, along with a rough implementation of ordered scoring for relevance based on prior behavior.


  Brimming with confidence that you have something amazing to show the business team sponsor, you head to the meeting armed with the testing notebook, graphs showing the overall metrics, and sample inference data that you believe will truly impress the team. You start by showing the overall scaled score rating for affinity, displaying the data as an RMSE plot, as shown in figure 3.3.
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  Figure 3.3 A fairly standard loss chart of RMSE for the affinity scores to their predicted values


  The response to showing the chart is lukewarm at best. A bevy of questions arise, focused on what the data means, what the line that intersects the dots means, and how the data was generated. Instead of a focused discussion about the solution and the next phase you’d like to be working on (increasing the accuracy), the meeting begins to devolve into a mix of confusion and boredom. In an effort to better explain the data, you show a quick table of rank effectiveness using non-discounted cumulative gain (NDCG) metrics to illustrate the predictive power of a single user chosen at random, as shown in figure 3.4.
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  Figure 3.4 NDCG calculations for a recommendation engine for a single user. With no context, presenting raw scores like this will do nothing beneficial for the DS team.


  The first chart created a mild sense of perplexity, but the table brings complete and total confusion. No one understands what is being shown or can see the relevance to the project. The only thing on everyone’s mind is, “Is this really what weeks of effort can bring? What has the data science team been doing all this time?”


  During the DS team’s explanation of the two visualizations, one of the marketing analysts begins looking up the product recommendation listing for one of the team members’ accounts in the sample dataset provided for the meeting. Figure 3.5 illustrates the results along with the marketing analyst’s thoughts while bringing up the product catalog data for each recommendation in the list.
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  Figure 3.5 Using visual simulation for SME qualitative acceptance testing


  The biggest lesson that the DS team learns from this meeting is not, in fact, the necessity of validating the results of its model in a way that would simulate the way an end user of the predictions would react. Although an important consideration, and one that is discussed in the following sidebar, it is trumped quite significantly by the realization that the reason that the model was received so poorly is that the team didn’t properly plan for the nuances of this project.


  
    Don’t blindly trust your metrics


    When doing particularly large-scale ML, relying heavily on error metrics and validation scores for models is incredibly tempting. Not only are they the only truly realistic means of measuring objective quality for predictions on large datasets (which many of us deal with frequently these days), but they’re often the only real, valid quantitative means of adjudicating the predictive quality of a particular implementation.


    



    However, it is important to not rely on these model-scoring metrics alone. Do use them (the appropriate ones for the work at hand, that is), but supplement them with additional means of getting subjective measurements of the prediction’s efficacy. As shown in figure 3.5, a simple visualization of the predictions for an individual user uncovered far more objective and subjective quality assessments than any predictive ordering scoring algorithm or estimation of loss could ever do.


    



    Keep in mind that this additional end-use simulation sample evaluation shouldn’t be done by the DS team members, unless they are adjudicating the prediction quality for data for which they themselves are considered SMEs. For the use case that we’re discussing, it would behoove the DS team to partner with a few of the marketing analysts to do a bit of informal quality assurance (QA) validation before showing results to the larger team.

  


  The DS team simply hadn’t understood the business problem from the perspective of the other team members in the room who knew where all of the proverbial “bodies were buried” in the data and who have cumulative decades of knowledge around the nature of the data and the product. The onus of this failure doesn’t rest solely on the project manager, the DS team lead, or any single team member. Rather, this is a collective failure of every member of the broader team in not thoroughly defining the scope and details of the project. How could they have done things differently?


  The analyst who looked up their own predictions for their account uncovered a great many problems that were obvious to them. They saw the duplicated item data due to the retiring of older product IDs and likewise instantly knew that the shoe division used a separate product ID for each color of a style of shoe, both core problems that caused a poor demo. All of the issues found, causing a high risk of project cancellation, were due to improper planning of the project.


  
3.1.1 Basic planning for a project


  The planning of any ML project typically starts at a high level. A business unit, executive, or even a member of the DS team comes up with an idea of using the DS team’s expertise to solve a challenging problem. While typically little more than a concept at this early stage, this is a critical juncture in a project’s life cycle.


  In the scenario we’ve been discussing, the high-level idea is personalization. To an experienced DS, this could mean any number of things. To an SME of the business unit, it could mean many of the same concepts that the DS team could think of, but it may not. From this early point of an idea to before even basic research begins, the first thing everyone involved in this project should be doing is having a meeting. The subject of this meeting should focus on one fundamental element: Why are we building this?


  It may sound like a hostile or confrontational question to ask. It may take some people aback when hearing it. However, it’s one of the most effective and important questions, as it opens a discussion into the true motivations for why people want the project to be built. Is it to increase sales? Is it to make our external customers happier? Or is it to keep people browsing on the site for longer durations?


  Each of these nuanced answers can help inform the goal of this meeting: defining the expectations of the output of any ML work. The answer also satisfies the measurement metric criteria for the model’s performance, as well as attribution scoring of the performance in production (the very score that will be used to measure A/B testing much later).


  In our example scenario, the team fails to ask this important why question. Figure 3.6 shows the divergence in expectations from the business side and the ML side because neither group is speaking about the essential aspect of the project and is instead occupied in mental silos of their own creating. The ML team is focusing entirely on how to solve the problem, while the business team has expectations of what would be delivered, wrongfully assuming that the ML team will “just understand it.”


  Figure 3.6 sums up the planning process for the MVP. With extremely vague requirements, a complete lack of thorough communication about expectations for the prototype’s minimum functionality, and a failure to reign in the complexity of experimentation, the demonstration is considered an absolute failure. Preventing outcomes like this can be achieved only in these early meetings when the project’s ideas are being discussed. Widening the overlap between these regions of expectation gap is the responsibility of the DS team lead and project manager. At the conclusion of planning meetings, an ideal state is alignment of everyone’s expectations (without anyone focusing on implementation details or specific out-of-scope functionality to potentially be added in the future).
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  Figure 3.6 Project expectation gap driven by ineffective planning discussions


  Continuing with this scenario, let’s look at the MVP demonstration feedback discussion to see the sorts of questions that could have been discussed during that early planning and scoping meeting. Figure 3.7 shows the questions and the underlying root causes of the present misunderstandings.
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  Figure 3.7 The results of the MVP presentation demo. Questions and their subsequent discussions could have happened during the planning phase to prevent all five core issues that are shown.


  Although this example is intentionally hyperbolic, I’ve found elements of this confusion present in many ML projects (those outside of primarily ML-focused companies), and this is to be expected. The problems that ML is frequently intended to solve are complex, full of details that are specific and unique to each business (and business unit within a company), and fraught with disinformation surrounding the minute nuances of these details.


  It’s important to realize that these struggles are going to be an inevitable part of any project. The best way to minimize their impact is to have a thorough series of discussions that aim to capture as many details about the problem, the data, and the expectations of the outcome as possible.


  Assumption of business knowledge


  Assumption of business knowledge is a challenging issue, particularly for a company that’s new to utilizing ML, or for a business unit at a company that has never worked with its ML team before. In our example, the business leadership’s assumption was that the ML team knew aspects of the business that the leadership considered widely held knowledge. Because no clear and direct set of requirements was set out, this assumption wasn’t identified as a clear requirement. With no SME from the business unit involved in guiding the ML team during data exploration, there simply was no way for them to know this information during the process of building the MVP either.


  An assumption of business knowledge is often a dangerous path to tread for most companies. At many companies, the ML practitioners are insulated from the inner workings of a business. With their focus mostly in the realm of providing advanced analytics, predictive modeling, and automation tooling, scant time can be devoted to understanding the nuances of how and why a business is run. While some obvious aspects of the business are known by all (for example, “we sell product x on our website”), it is not reasonable to expect that the modelers should know that a business process exists in which some suppliers of goods would be promoted on the site over others.


  A good solution for arriving at these nuanced details is to have an SME from the group that is requesting a solution be built for them (in this case, the product marketing group) explain how they decide the ordering of products on each page of the website and app. Going through this exercise would allow for everyone in the room to understand the specific rules that may be applied to govern the output of a model.


  Assumption of data quality


  The onus of duplicate product listings in the demo output is not entirely on either team. While the ML team members certainly could have planned for this to be an issue, they weren’t aware of it precisely in the scope of its impact. Even had they known, they likely would have wisely mentioned that correcting for this issue would not be a part of the demo phase (because of the volume of work required and the request that the prototype not be delayed for too long).


  The principal issue here is in not planning for it. By not discussing the expectations, the business leaders’ confidence in the capabilities of the ML team erodes. The objective measure of the prototype’s success will largely be ignored as the business members focus solely on the fact that for a few users’ sample data, the first 300 recommendations show nothing but 4 products in 80 available shades and patterns.


  For our use case, the ML team believed that the data they were using was, as told to them by the DE team, quite clean. Reality, for most companies, is a bit more dire than what most would think when it comes to data quality. Figure 3.8 summarizes two industry studies, conducted by IBM and Deloitte, indicating that thousands of companies are struggling with ML implementations, specifically noting problems with data cleanliness. Checking data quality before working on models is pretty important.
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  Figure 3.8 The impact of data quality issues on companies engaging in ML project work. Data quality issues are common, and as such, should always be vetted during the early stages of project work.


  It’s not important to have “perfect” data. Even the companies in figure 3.8 that are successful in deploying many ML models to production still struggle with data quality issues regularly (75% as reported). These problems with data are just a byproduct of the frequently incredibly complex systems that are generating the data, years (if not decades) of technical debt, and the expense associated with designing “perfect” systems that do not allow an engineer to generate problematic data. The proper way to handle these known problems is to anticipate them, validate the data that will be involved in any project before modeling begins, and ask questions about the nature of the data to the SMEs who are most familiar with it.


  For our recommendation engine, the ML team members failed to not only ask questions about the nature of the data that they were modeling (namely, “Do all products get registered in our systems in the same way?”), but also validate the data through analysis. Pulling quick statistical reports may have uncovered this issue quite clearly, particularly if the unique product count of shoes was orders of magnitude higher than any other category. “Why do we sell so many shoes?,” posed during a planning meeting, could have instantly uncovered the need to resolve this issue, but also resulted in a deeper inspection and validation of all product categories to ensure that the data going into the models was correct.


  Assumption of functionality


  In this instance, the business leaders are concerned that the recommendations show a product that was purchased the week before. Regardless of the type of product (consumable or not), the planning failure here is in expressing how off-putting this would be to the end user to see this happen.


  The ML team’s response of ensuring that this key element needs to be a part of the final product is a valid response. At this stage of the process, while it is upsetting to see results like this from the perspective of the business unit, it’s nearly inevitable. The path forward in this aspect of the discussion should be to scope the feature addition work, make a decision on whether to include it in a future iteration, and move on to the next topic.


  To this day, I have not worked on an ML project where this has not come up during a demo. Valid ideas for improvements always come from these meetings—that’s one of the primary reasons to have them, after all: to make the solution better! The worst things to do are either dismiss them outright or blindly accept the implementation burden. The best thing to do is to present the cost (time, money, and human capital) for the addition of the improvement and let the internal customer decide if it’s worth it.


  Curse of knowledge


  The ML team, in this discussion point, instantly went “full nerd.” Chapter 4 covers the curse of knowledge at length, but for now, realize that, when communicating, the inner details of things that have been tested will always fall on deaf ears. Assuming that everyone in a room understands the finer details of a solution as anything but a random collection of pseudo-scientific buzzword babble is doing a disservice to yourself as an ML practitioner (you won’t get your point across) and to the audience (they will feel ignorant and stupid, frustrated that you assume that they would know such a specific topic).


  The better way to discuss your numerous attempts at solutions that didn’t pan out: simply speak in as abstract terms as possible: “We tried a few approaches, one of which might make the recommendations much better, but it will add a few months to our timeline. What would you like to do?”


  Handling complex topics in a layperson context will always work much better than delving into deep technical detail. If your audience is interested in a more technical discussion, gradually ease into deeper technical aspects until the question is answered. It’s never a good idea to buffalo your way through an explanation by speaking in terms that you can’t reasonably expect them to understand.


  Analysis paralysis


  Without proper planning, the ML team will likely just experiment on a lot of approaches, likely the most state-of-the-art ones that they can find in the pursuit of providing the best possible recommendations. Without focusing on the important aspects of the solution during the planning phase, this chaotic approach of working solely on the model purity can lead to a solution that misses the point of the entire project.


  After all, sometimes the most accurate model isn’t the best solution. Most of the time, a good solution is one that incorporates the needs of the project, and that generally means keeping the solution as simple as possible to meet those needs. Approaching project work with that in mind will help alleviate the indecisions and complexity that can arise from trying to choose the best model.


  
3.1.2 That first meeting


  As we discussed earlier, our example ML team approached planning in a problematic way. How did the team get to that state of failing to communicate what the project should focus on, though?


  While everyone on the ML team was quietly thinking about algorithms, implementation details, and where to get the data to feed into the model, they were too consumed to ask the questions that should have been posited. No one was asking details about the way the implementation should work, the types of restrictions needing to be in place on the recommendations, or whether products should be displayed in a certain way within a sorted ranked collection. They were all focused on the how instead of the why and what.


  
    Focusing on the “how” during cross-functional meetings


    While it may be tempting to discuss potential solutions during the planning and scoping phases of a project, I urge you to resist. It’s not that the discussion is dangerous to have in front of your internal customers. Far from it. It’s just that they don’t care (nor should they). For some ML practitioners (I’m speaking to you, younger me), the idea that people wouldn’t want to immediately discuss all of the cool algorithms and fancy feature engineering that will be involved in the how of the project solution is just unthinkable. Surely, everyone must find these topics as exciting as we do, right?


    



    Wrong. If you don’t believe me, I challenge you to discuss your next project with your spouse, significant other, children, friends, non-DS colleagues, hairstylist (or barber), mailperson, or dog. I can assure you that the only one interested would be your dog.


    



    And that’s only if you’re eating something while telling them. Especially if it’s a cheeseburger. Dogs love cheeseburgers. Especially my dog.


    



    The time to discuss the how is internally, later, within the DS team. Have brainstorming sessions. Debate with one another (civilly). But for your sake, and the sake of your business unit members, I recommend not doing it while they are in the room.

  


  Conversely, the internal marketing team members bringing the project to the ML team did not clearly discuss their expectations. With no malicious intent, their ignorance of the methodology of developing this solution, coupled with their intense knowledge of the customer and the way they want the solution to behave, created a perfect recipe for a perfect implementation disaster.


  How could this have been handled differently? How could that first meeting have been orchestrated to ensure that the greatest number of hidden expectations that the business unit team members hold (as we discussed in section 3.1.1) can be openly discussed in the most productive way? It can be as easy as starting with a single question: “What do you do now to decide which products to display in which places?” In figure 3.9, let’s look at what posing that question may have revealed and how it could have informed the critical feature requirements that should have been scoped for the MVP.
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  Figure 3.9 An example scoping and planning meeting that focuses on the problem to define features


  As you can see, not every idea is a fantastic one. Some are beyond the scope of budget (time, money, or both). Others are simply beyond the limits of our technical capabilities (the “things that look nice” request). The important thing to focus on, though, is that two key critical features were identified, and a potential additive future feature that can be put in the backlog for the project.


  Although this figure’s dialogue may appear to be quite caricatural, this is a nearly verbatim transcription of an actual meeting I was part of. Although I was stifling laughter a few times at some of the requests, I found the meeting to be invaluable. Spending a few hours discussing all of the possibilities that SMEs see was able to give me and my team a perspective that we hadn’t considered, in addition to revealing key requirements about the project that we never would have guessed or assumed without hearing them from the team.


  The one thing to make sure to avoid in these discussions is speaking about the ML solution. Keep notes so that you and fellow DS team members can discuss later. It’s critical that you don’t drag the discussion away from the primary point of the meeting (gaining insight into how the business solves the problem currently).


  One of the easiest ways to approach this subject is, as shown in the following sidebar, by asking how the SMEs currently solve the problem. Unless the project is an entirely greenfield moon-shot project, someone is probably solving it in some way or another. You should talk to them. This methodology is precisely what informed the line of questioning and discussion in figure 3.9.


  
    Explain how you do it so I can help automate this for you


    Although not every piece of ML is a direct replacement for boring, error-prone, or repetitive work done by humans, I’ve found that the overwhelmingly vast majority of it is. Most of these solutions are either being done to replace this manual work, or, at the very least, do a more comprehensive job at what people have been attempting to do without the aid of algorithms.


    



    For this recommendation engine we’ve been discussing, the business had been attempting to work on personalization; it was just personalization by way of attempting to appeal to as many people (or themselves) as much as they could when selecting products for prominent feature and display. This applies to ML projects as far ranging as from supply-chain optimization to sales forecasts. At the root of most projects that will come your way is likely someone at the company who is making their best effort to accomplish the same thing (albeit without the benefit of an algorithm that can sift through billions of data points and draw an optimized solution from relationships that are far too complex for our minds to recognize in an acceptable amount of time).













































































