

 [image: manning]

 DuckDB in Action

 Mark Needham, Michael Hunger, Michael Simons

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Rhonda Mason
 Technical editor: Jordan Tigani Review editor: Radmila Ercegovac
 Production editor: Kathy Rossland
 Copy editor: Christian Berk
 Proofreader: Melody Dolab
 Technical proofreader: Dirk Gomez
 Typesetter and cover designer: Marija Tudor

 ISBN 9781633437258

 Printed in the United States of America

 dedication

 To Rainer and Stefan

 —Michael Simons

 I dedicate this book to all the people who are suffering in the world from injustice, poverty, war, and disease. It is a shame that humanity wastes its future and the planet on greed for wealth and power instead of working together to create a better world for all. I will donate most of the royalties from this book to charities helping to make the world a better place.

 —Michael Hunger

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the cover illustration

 1 An introduction to DuckDB

 1.1 What is DuckDB?

 1.2 Why should you care about DuckDB?

 1.3 When should you use DuckDB?

 1.4 When should you not use DuckDB?

 1.5 Use cases

 1.6 Where does DuckDB fit in?

 1.7 Steps of the data processing flow

 1.7.1 Data formats and sources

 1.7.2 Data structures

 1.7.3 Developing the SQL

 1.7.4 Using or processing the results

 2 Getting started with DuckDB

 2.1 Supported environments

 2.2 Installing the DuckDB CLI

 2.2.1 macOS

 2.2.2 Linux and Windows

 2.3 Using the DuckDB CLI

 2.3.1 SQL statements

 2.3.2 Dot commands

 2.3.3 CLI arguments

 2.4 DuckDB’s extension system

 2.5 Analyzing a CSV file with the DuckDB CLI

 2.5.1 Result modes

 3 Executing SQL queries

 3.1 A quick SQL recap

 3.2 Analyzing energy production

 3.2.1 Downloading the dataset

 3.2.2 The target schema

 3.3 Data definition language queries

 3.3.1 The CREATE TABLE statement

 3.3.2 The ALTER TABLE statement

 3.3.3 The CREATE VIEW statement

 3.3.4 The DESCRIBE statement

 3.4 Data manipulation language queries

 3.4.1 The INSERT statement

 3.4.2 Merging data

 3.4.3 The DELETE statement

 3.4.4 The SELECT statement

 3.5 DuckDB-specific SQL extensions

 3.5.1 Dealing with SELECT

 3.5.2 Inserting by name

 3.5.3 Accessing aliases everywhere

 3.5.4 Grouping and ordering by all relevant columns

 3.5.5 Sampling data

 3.5.6 Functions with optional parameters

 4 Advanced aggregation and analysis of data

 4.1 Pre-aggregating data while ingesting

 4.2 Summarizing data

 4.3 On subqueries

 4.3.1 Subqueries as expressions

 4.4 Grouping sets

 4.5 Window functions

 4.5.1 Defining partitions

 4.5.2 Framing

 4.5.3 Named windows

 4.5.4 Accessing preceding or following rows in a partition

 4.6 Conditions and filtering outside the WHERE clause

 4.6.1 Using the HAVING clause

 4.6.2 Using the QUALIFY clause

 4.6.3 Using the FILTER clause

 4.7 The PIVOT statement

 4.8 Using the ASOF JOIN

 4.9 Using table functions

 4.10 Using LATERAL joins

 5 Exploring data without persistence

 5.1 Why use a database without persisting any data?

 5.2 Inferring file type and schema

 5.2.1 A note on CSV parsing

 5.3 Shredding nested JSON

 5.4 Translating CSV to Parquet

 5.5 Analyzing and querying Parquet files

 5.6 Querying SQLite and other databases

 5.7 Working with Excel files

 6 Integrating with the Python ecosystem

 6.1 Getting started

 6.1.1 Installing the Python package

 6.1.2 Opening up a database connection

 6.2 Using the relational API

 6.2.1 Ingesting CSV data with the Python API

 6.2.2 Composing queries

 6.2.3 SQL querying

 6.3 Querying pandas DataFrames

 6.4 User-defined functions

 6.5 Interoperability with Apache Arrow and Polars

 7 DuckDB in the cloud with MotherDuck

 7.1 Introduction to MotherDuck

 7.1.1 How it works

 7.1.2 Why use MotherDuck?

 7.2 Getting started with MotherDuck

 7.2.1 Using MotherDuck through the UI

 7.2.2 Connecting to MotherDuck with DuckDB via token-based authentication

 7.3 Making the best possible use of MotherDuck

 7.3.1 Uploading databases to MotherDuck

 7.3.2 Creating databases in MotherDuck

 7.3.3 Sharing databases

 7.3.4 Managing S3 secrets and loading Data from S3 buckets

 7.3.5 Optimizing data ingestion and MotherDuck usage

 7.3.6 Querying your data with AI

 7.3.7 Integrations

 8 Building data pipelines with DuckDB

 8.1 Data pipelines and the role of DuckDB

 8.2 Data ingestion with dlt

 8.2.1 Installing a supported source

 8.2.2 Building a pipeline

 8.2.3 Exploring pipeline metadata

 8.3 Data transformation and modeling with dbt

 8.3.1 Setting up a dbt project

 8.3.2 Defining sources

 8.3.3 Describing transformations with models

 8.3.4 Testing transformations and pipelines

 8.3.5 Transforming all CSV files

 8.4 Orchestrating data pipelines with Dagster

 8.4.1 Defining assets

 8.4.2 Running pipelines

 8.4.3 Managing dependencies in a pipeline

 8.4.4 Advanced computation in assets

 8.4.5 Uploading to MotherDuck

 9 Building and deploying data apps

 9.1 Building a custom data app with Streamlit

 9.1.1 What is Streamlit?

 9.1.2 Building our app

 9.1.3 Using Streamlit components

 9.1.4 Visualizing data using plot.ly

 9.1.5 Deploying our app on the Community Cloud

 9.2 Building a BI dashboard with Apache Superset

 9.2.1 What is Apache Superset?

 9.2.2 Superset’s workflow

 9.2.3 Creating our first dashboard

 9.2.4 Creating a dataset from an SQL query

 9.2.5 Exporting and importing dashboards

 10 Performance considerations for large datasets

 10.1 Loading and querying the full Stack Overflow database

 10.1.1 Data dump and extraction

 10.1.2 The data model

 10.1.3 Exploring the CSV file data

 10.1.4 Loading the data into DuckDB

 10.1.5 Fast exploratory queries on large tables

 10.1.6 Posting on weekdays

 10.1.7 Using enums for tags

 10.2 Query planning and execution

 10.2.1 Planner and optimizer

 10.2.2 Runtime and vectorization

 10.2.3 Visualizing query plans with Explain and Explain Analyze

 10.3 Exporting the Stack Overflow data to Parquet

 10.4 Exploring the New York Taxi dataset from Parquet files

 10.4.1 Configuring credentials for S3 access

 10.4.2 Auto-inferring file types

 10.4.3 Exploring Parquet schema

 10.4.4 Creating views

 10.4.5 Analyzing the data

 10.4.6 Making use of the taxi dataset

 11 Conclusion

 11.1 What we have learned in this book

 11.2 Upcoming stable versions of DuckDB

 11.3 Aspects we did not cover

 11.4 Where can you learn more?

 11.5 What is the future of data engineering with DuckDB?

 appendix Client APIs for DuckDB

 A.1 Officially supported languages

 A.2 A word on concurrency

 A.3 Use cases

 A.4 Importing large amounts of data

 A.5 Using DuckDB from Java via the JDBC Driver

 A.5.1 Understanding the general usage pattern

 A.5.2 Using multiple connections from several threads

 A.5.3 Using DuckDB as a tool for data processing from Java

 A.5.4 Inserting large amounts of data

 A.6 Additional connection options

 index

 foreword

 Welcome, dear reader, to this book about DuckDB. It feels somewhat surreal to write a foreword for this book about DuckDB because it seems like everything has happened so quickly. The world of data management systems moves slowly—software projects started in the 70s are still in strong positions on the market.

 It has only been a few short years since we sat at the Joost bar in Amsterdam one evening in 2018 and decided we were going to build a new system. We had been toying with the idea previously but had been hesitant, as we knew it was a daft idea. The common wisdom is that it takes “ten million dollars” to make a new database system successful. But we decided on an equally daft plan: we would create a new kind of data management system—one that had never been built before—an in-process analytical system. Maybe the usual rules did not apply to this new kind of system. After some more beers, we had pretty much decided on the first rough draft of DuckDB’s architecture. The very next day, we started hacking.

 Only a year later, in 2019, we opened up our repository and started telling people about it. We showed our first demo of DuckDB at the 2019 SIGMOD conference, coincidentally in Amsterdam. Since we co-organized the conference, we snuck stickers in the goodie bags in an early attempt at a type of viral marketing. At the same time, we also opened up the source code repository to the public. The “duck was out of the bag,” so to speak.

 But thousands of open source projects are started every day, and the vast majority will—regrettably or not—never gain any traction. This was also our expectation—that, most likely, nobody was going to care about our “DuckDB.” But an amazing thing happened: little by little, the stars on the GitHub repository started to accumulate. We think this came about because of another design goal of DuckDB: ease of use. We had observed that the prevailing sentiment in data systems seemed to have been that the world should be grateful to be allowed to use the hard-won results of database systems research and the systems we build. We had observed a worrying effect, however: the results of decades of research were simply being ignored because they were hard to use. In somewhat of a paradigm shift for data systems, one design goal of DuckDB was to make it as easy to use as possible and to fix some of the biggest gripes we had heard from practitioners.

 Somehow, people seem to have noticed. Big popularity gains came from activity on the social network formerly known as Twitter and most notably from regularly being featured on Hacker News. Now DuckDB is downloaded millions of times each month and used everywhere from the biggest companies to the smallest embedded devices. MotherDuck offers practitioners a hosted version but in DuckDB style and with a strong local component. Heck, people are even writing books about DuckDB.

 We’re glad that Mark and the two Michaels are the ones who bring this book to you. It’s an honor for us that such an excellent team is writing this book. They are experts in explaining challenging data technology to developers in a fun, engaging, but still deeply competent way. We hope you enjoy this book and, of course, that you enjoy working with DuckDB.

 —Mark Raasveldt and Hannes Mühleisen Creators of DuckDB, 2023

 preface

 This book covers DuckDB—a modern, fast, embedded analytical database. It runs on your machine and can easily process many gigabytes of data from a variety of sources, including JSON, CSV, Parquet, SQLite, and Postgres. DuckDB integrates well into the Python and R ecosystems and allows you to query in-memory data frames without copying the data. You don’t need to spin up cloud data warehouses for your day-to-day data processing anymore; you can just run DuckDB on your data, locally or in the cloud.

 With DuckDB, you can solve your relational data analytics tasks without friction. It is really user friendly and easy to learn. Best of all, you can use it embedded in your Python environments and applications, much like SQLite. We strongly believe that we hit the sweet spot in teaching DuckDB, covering its CLI-embedded mode, Python integrations, and capabilities for building data pipelines as well as processing data—all while also guiding readers through a painless deep-dive into modern SQL with DuckDB.

 While we all are longtime data expert practitioners and educators, we come from different corners of this spectrum—graph, real-time columnar, and relational databases—yet we all find something of value in DuckDB that we think is worth speaking about. We enjoy using DuckDB a lot, both outside our expertise but also as a useful tool in our respective areas of work.

 acknowledgments

 Thanks go out to Jordan Tigani, cofounder and CEO of MotherDuck, who was our technical editor. His diligent work and feedback made our examples and writing a lot better. Big thanks also to all the other technical reviewers who diligently worked through the chapters and left their feedback, especially to Marcos Ortiz, Georg Heiler, and Jacob Matson for reviewing the original proposal, and to Dirk Gomez for checking all the code.

 The writings and explanations by Mark Raasveldt, Hannes Mühleisen, and Alex Monahan helped us a lot, teaching us more about the inner workings of DuckDB, the ideas behind it, and some SQL gymnastics we had no idea were possible before. Thank you!

 Many thanks to Ryan Boyd and Mehdi Ouazza. They not only gave valuable feedback but helped us a lot in making more people aware of the book.

 We also thank the editing team at Manning, especially Rhonda Mason and Jonathan Gennick, for dealing so positively with us, and Christian Berk for his diligent copy editing and fast feedback loop. Michael Hunger and Michael Simons are happy about our colleagues at Neo4j, who may have raised an eyebrow or two but have enough self-confidence to acknowledge that both the graph and relational approach can coexist. DuckDB has been influential for us when thinking about empathy for users of our software.

 To all the reviewers—Andrej Abramušić, Abhilash Babu Jyotheendra Babu, Anjan Bacchu, Chris Bolyard, Thiago Britto Borges, Nadir Doctor, Didier Donsez, Dirk Gómez, Simon Hewitt, Andrew Judd, Madiha Khalid, Simeon Leyzerzon, Noel Llevares, Sebastian Maier, Eli Mayost, Sumit Pal, Anup K. Parikh, Sasha Sankova, William Jamir Silva, Ganesh Swaminathan, Mary Anne Thygesen, Rohini Uppuluri, Ankit Virmani, Wondi Wolde, and Heng Zhang—your suggestions helped make this a better book.

 And, of course, a book such as this, written in addition and parallel to the duties at work, takes a toll on spare time and private lives. We thank our families for their continuous support of our crazy ideas.

 about this book

 We didn’t want to write a reference book (that’s what the docs are for), but rather, to share the excitement and joy we experienced when working with DuckDB so that you’ll learn something new on every page, while having the same fun we had when writing. The book is fast-paced, information-rich, hands-on, and informative, with easy-to-understand and practical examples.

 Who should read this book

 The ideal reader for this book is a data engineer, data scientist, or developer who is interested in analyzing existing structured data efficiently without having to set up infrastructure. They should be familiar and comfortable with command-line tools and preferably some Python. We will cover a lot of SQL, starting with simple clauses and working our way toward advanced, analytical statements. DuckDB is available on all major operating systems and does not require any installation process; downloading and running the executable is enough. Our chapter on MotherDuck, the serverless analytic platform, requires creating an account if you want to try it out.

 How this book is organized: A road map

 We start with a gentle introduction to DuckDB in chapters 1 and 2, presenting its use cases and its place in modern data pipelines. First, we will make sure you are able to use the DuckDB CLI before we proceed with an introduction to SQL in chapter 3. We will cover the basic clauses and statements before entering the world of advanced data analysis with SQL in chapter 4, using advanced aggregations, window functions, recursive SQL, and more. Of course, we will include the vendor-specific, developer-friendly extensions that DuckDB brings to the table.

 DuckDB has many facets to it, with one of them being the fact that it does not force its persistence storage upon you. We spend the whole of chapter 5 discussing how you can actually use the SQL engine on top of many different file formats for your purpose, without ingesting the data into tables.

 Chapter 6 will dive deep into DuckDB’s Python integration before we move to the cloud with MotherDuck in Chapter 7.

 After that, we will have all the tools ready to build effective data pipelines (chapter 8) and deploy data applications (chapter 9).

 In chapter 10, we will take a step back and discuss some considerations for large datasets and apply what we’ve learned so far.

 DuckDB not only offers a CLI and a fantastic Python integration but also Java, C, C++, Julia, Rust, and many other language integrations. In the appendix, we will have a look at these, especially how to use DuckDB from Java.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature is added to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). In those cases, you might need to remove an extra space introduced by that marker to make the code work or fix long URLs.

 Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/duckdb-in-action. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/duckdb-in-action, and from GitHub at https://github.com/duckdb-in-action/examples.

 liveBook discussion forum

 Purchase of DuckDB in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/duckdb-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the authors

 Mark Needham

 [image: figure]

 Mark is a product marketing engineer at ClickHouse, where he creates short-form videos and writes blog posts about real-time data warehouses. He also works on developer experience, simplifying the getting-started experience by making product tweaks and improvements to the documentation.

 Mark has worked in the data infrastructure field for the last decade, first at Neo4j on graph databases and then at StarTree on real-time analytics with Apache Pinot. He has been blogging about his experiences with writing software for the last 15 years at markhneedham.com and has created many short educational videos on data and AI topics at https://www.youtube.com/@learndatawithmark.

 He tweets as @markhneedham.

 Michael Hunger

 [image: figure]

 Michael Hunger has been passionate about software development for more than 35 years. For the last 14 years, he has been working on the open source Neo4j graph database, filling many roles, most recently as head of product innovation and developer product strategy. Before joining Neo4j, he consulted in large Java projects and wrote his fair share of SQL code for Oracle, Informix, and MySQL databases. He also created the Jequel SQL DSL in 2006, which was later merged into similar efforts.

 As a developer, Michael enjoys many aspects of programming languages, tools, and technologies, learning new things every day, participating in exciting and ambitious open source projects, and contributing to and writing software-related books and articles. His interests span Java, Kotlin, GraphQL, Graph Databases, Generative AI, and modern data analytics. Michael has spoken at numerous conferences and helped organized several of them. His efforts got him accepted to the Java Champions program; he’s been writing a bi-monthly column on “Effective Java” for the Java Spektrum print magazine for more than 12 years. Michael helps kids learn to program by running weekly girls-only coding classes at local schools.

 You can find more about Michaels’s writing and projects on his blog at https://www.jexp.de.

 Michael Simons

 [image: figure]

 Michael Simons is a Java champion and senior staff software engineer at Neo4j and has been working professionally as a developer for more than 20 years. In his role at Neo4j, he is a vital part of Neo4j’s integration into the broader Java ecosystem.

 Before entering the graph space, he worked in the German utility sector, using SQL to compute and predict energy usage for large German transport grid operators and energy producers, way before analytical databases became more mainstream. To this day, he enjoys using the declarative nature of SQL (and, of course, Cypher) to ask machines for answers instead of instructing them to produce a result.

 Michael is a known speaker at conferences, bridging Java and databases—relational and graph alike—for many years. Michael is the author of the bestselling book Spring Boot 2 and co-author of arc42 by Example, a book about software architecture documentation. He also writes a blog at info.michael-simons.eu.

 In the spare time that is left, Michael still dreams about becoming an amateur athlete, and when he isn’t training for the next marathon, he uses DuckDB to document his progress at biking.michael-simons.eu/history.

 about the cover illustration

 The figure on the cover of DuckDB in Action is “Paisanne Dequito,” or “A peasant woman from Quito,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 An introduction to DuckDB

 This chapter covers

 	Why DuckDB, a single node in-memory database, emerged in the era of big data

 	DuckDB’s capabilities

 	How DuckDB works and fits into your data pipeline

 We’re excited that you’ve picked up this book and are ready to learn about a technology that seems to go against the grain of everything that we’ve learned about big data systems over the last decade. We’ve had a lot of fun using DuckDB, and we hope you will be as enthused as we are after reading this book. This book’s approach to teaching is hands-on, concise, and fast paced and will include lots of code examples.

 After reading the book, you should be able to use DuckDB to analyze tabular data in a variety of formats. You will also have a handy new tool in your toolbox for data transformation, cleanup, and conversion. You can integrate it into your Python notebooks and processes to replace pandas DataFrames in situations where they are not performing. You will be able to build quick applications for data analysis using Streamlit with DuckDB. Let’s get started!

1.1 What is DuckDB?

 DuckDB is a modern embedded analytics database that runs on your machine and lets you efficiently process and query gigabytes of data from different sources. Embedded databases run within another process, like your application or notebook, and are not accessed over a network. DuckDB was created in 2018 by Mark Raasveldt and Hannes Mühleisen, who, at the time, were researchers in database systems at Centrum Wiskunde & Informatica (CWI)—the national research institute for mathematics and computer science in the Netherlands.

 The founders and the CWI spun DuckDB Labs off as a startup to further develop DuckDB. Its engineering team focuses on making DuckDB more efficient, user friendly, and better integrated.

 The nonprofit DuckDB Foundation governs the DuckDB Project by safeguarding the intellectual property and ensuring the continuity of the open source project under the MIT license. The foundation’s operations and DuckDB’s development are supported by commercial members, while association members can inform the development road map.

 While DuckDB focuses on the local processing of data, another startup, MotherDuck, aims to extend DuckDB to a distributed, self-serve analytics system that can process data in the cloud and on the edge. It adds collaboration and sharing capabilities to DuckDB and supports processing data from all kinds of cloud storage.

 The DuckDB ecosystem is quite broad, allowing many people and organizations to create integrations and generally useable applications as well as get excited about its possibilities. Fortunately, the DuckDB community is very helpful and friendly—you can find them on Discord (https://discord.duckdb.org/) and GitHub (https://github.com/duckdb/duckdb). The documentation is comprehensive and detailed enough to answer most questions.

 DuckDB lets you process and join local or remote files (e.g., from cloud buckets or URLs) in different formats, including CSV, JSON, Parquet, and Apache Arrow, as well as several databases, like MySQL, SQLite, and Postgres. You can even query pandas or Polars DataFrames from your Python scripts or Jupyter notebooks. A diagram showing conceptually how DuckDB is typically used is shown in figure 1.1.

 Unlike the pandas and Polars DataFrame libraries, DuckDB is a real analytics database, implementing more efficient data-processing mechanisms that can handle large volumes of data in seconds. With its SQL dialect, even complex queries can be expressed more succinctly. Its expressiveness allows you to handle more operations inside a single database query, avoiding multiple executions, which would be more costly.

 The architecture of the core database engine is the basis for efficient processing and memory management. You can see a diagram showing the way that a query is processed in figure 1.2.

 [image: figure]

Figure 1.1 DuckDB and other tools in the ecosystem

 [image: figure]

Figure 1.2 A high-level overview of DuckDB’s query-processing pipeline

 We can see that DuckDB processes queries the same way as other databases, with an SQL parser, query execution planner, and query runtime. The query engine is vectorized, which means it processes chunks of data in parallel and benefits from modern multicore CPU architectures. DuckDB supports several extensions that add new capabilities to the system, as well as user-defined functions, and has a variety of user interfaces, including a CLI, API, and lower-level integration into other systems, like data processing libraries.

1.2 Why should you care about DuckDB?

 DuckDB makes data analytics fast and fun again, without the need to set up large Apache Spark clusters or run a cloud data warehouse just to process a few hundred gigabytes of data. Accessing data from many different sources directly and running the processing where the data resides without copying it over the wire makes your work faster, simpler, and cheaper. This not only saves time, but also a lot of money, and reduces frustration.

 For example, we recently had to process AWS access log files residing in S3. Usually, we would run AWS Athena SQL queries against the compressed JSON files. This tends to get expensive, with a large part of the cost being based on the amount of data scanned by the analytics service. Now we can instead deploy DuckDB to an EC2 VM and query the files close to the data for a fraction of the cost, as we only pay for the VM, not for the processed data volume.

 With DuckDB, you can run lots of experiments and validate your ideas and hypotheses quickly and locally, all simply by using SQL. In addition to supporting the ANSI SQL standard, DuckDB’s SQL dialect extends the standard with innovations like the following:

 	 Simplifying SELECT * queries with SELECT * EXCLUDE() and SELECT * REPLACE()

 	 Ordering by and grouping results by ALL columns (e.g., GROUP BY ALL saves the user from typing out all field names)

 	 Using PIVOT and UNPIVOT to transpose rows and columns

 	 The STRUCT data type and associated functions, which make it easy to work with complex nested data

 We are excited about DuckDB because it helps to simplify data pipelines and data preparation, allowing more time for the actual analysis, exploration, and experimentation.

 In this book, we hope to convince you of the following about DuckDB:

 	 It is faster than SQLite for analytical workloads.

 	 It is easier to set up than a Spark cluster.

 	 It has lower resource requirements than pandas.

 	 It doesn’t throw weird Rust errors like Polars.

 	 It is easier to set up and use than PostgreSQL, Redshift, and other relational databases.

 	 It is faster and more powerful for data transformations than Talend.

1.3 When should you use DuckDB?

 You can use DuckDB for all analytics tasks that can be expressed in SQL and work on structured data (i.e., tables or documents) as long as your data is already available (not streaming) and data volumes don’t exceed a few hundred gigabytes. Its columnar engine can deal well with both wide tables with many columns as well as large tables with many rows. DuckDB can process a variety of data formats, as previously outlined, and can be extended to integrate with other systems.

 As the data doesn’t leave your system (local or privacy-compliant hosting), it’s also great for analyzing private data, like health information, home automation data, patient data, personal identifying information, financial statements, and similar datasets.

 Here are some examples of some common analysis tasks that DuckDB is well placed to solve:

 	 Analyzing log files where they are stored, without needing to copy them to new locations

 	 Quantifying personal medical data about one’s self, such as a runner might do when monitoring heart rates

 	 Reporting on the power generation and consumption using data from smart meters

 	 Optimizing ride data from modern transport operations for bikes and cars

 	 Preprocessing and pre-cleaning of user-generated data for machine learning training

 A great use of DuckDB is for more efficiently processing data that is already available in pandas or Polars DataFrames because it can access the data directly without having to copy the data from the DataFrame representation. The same is true for outputs and tables generated by DuckDB. These can be used as DataFrames without additional memory usage or transfer.

1.4 When should you not use DuckDB?

 As DuckDB is an analytics database, it has minimal support for transactions and parallel write access. Therefore, you couldn’t use it in applications and APIs that process and store input data arriving arbitrarily.

 The data volumes you can process with DuckDB are mostly limited by the main memory of your computer. While it supports spilling over memory (out-of-memory processing) to disk, that feature is aimed more at exceptional situations, where the final portion of processing won’t fit into memory. In most cases, that means you’ll have a limit of a few hundred gigabytes for processing, with not all of it needing to be in memory at the same time, as DuckDB optimizes loading only what’s needed.

 DuckDB focuses on the long tail of data analytics use cases, so if you’re in an enterprise environment with a complex setup of data sources, tools, and applications processing many terabytes of data, DuckDB might not be the right choice for you. DuckDB does not support processing live data streams that update continuously. Data updates should happen in bulk by loading new tables or large chunks of new data at once. DuckDB is not a streaming, real-time database; you would have to implement a batching approach yourself by setting up a process to create mini-batches of data from the stream and store those mini-batches somewhere that could then be queried by DuckDB.

1.5 Use cases

 There are many use cases for a tool like DuckDB. Of course, the most exciting is when it can be integrated with existing cloud, mobile, desktop, and command-line applications and do its job behind the scenes. In these cases, it would be the equivalent of the broad usage of SQLite today, only for analytical processing instead of transactional data storage. When analyzing data that shouldn’t leave the user’s device, such as health, training, financial or home automation data, an efficient local infrastructure comes in handy. The local analytics and preprocessing also reduce the volume of data that has to be transported from edge devices, like smart meters or sensors.

 DuckDB is also useful for fast analysis of larger datasets, such as log files, where computation and reduction can be done where the data is stored, saving high data transfer time and costs. Currently, cloud vendors offer expensive analytics services, like BigQuery, Amazon Redshift, and AWS Athena, which charge by processed data volume to process this kind of data. You can replace many of those uses with scheduled cloud functions processing the data with DuckDB. You can also chain those processing functions by writing out intermediate results to cloud storage, which can then also be used for auditing.

 For data scientists, using DuckDB’s state-of-the-art query engine can make data preparation, analysis, filtering, and aggregation more efficient than using pandas or other DataFrame libraries—and all of this without leaving the comfortable environment of a notebook with Python or R APIs. This will put more advanced data analytics capabilities in the hands of data science users so that they can make better use of larger data volumes while being faster and more efficient. We will show several of these later in the book. Also, the complexity of the setup can be greatly reduced, removing the need to involve a data operations group.

 A final exciting use case will be the distributed analysis of data between cloud storage, the edge network, and the local device. This is, for instance, currently being worked on by MotherDuck, which allows you to run DuckDB both in the cloud and locally.

1.6 Where does DuckDB fit in?

 This book assumes you have some existing data that you want to analyze or transform. That data can reside in flat files like CSV, Parquet, or JSON, or another database system, like PostgreSQL or SQLite. For the book, we provide example data in the book’s GitHub repository: https://github.com/duckdb-in-action/examples.

 Depending on your use case, you can use DuckDB transiently to transform, filter, and pass the data through to another format (figure 1.3). In most cases, though, you will create tables for your data to persist it for subsequent high-performance analysis. When doing that, you can also transform and correct column names, data types, and values. If your input data is nested documents, you can unnest and flatten the data to make relational data analysis easier and more efficient.

 [image: figure]

Figure 1.3 Using DuckDB in a data pipeline

 In the next step, you need to determine which SQL capabilities or DuckDB features can help you perform that analysis or transformation. You can also perform exploratory data analysis (EDA) to quickly get an overview of the distribution, ranges, and relationships in your data.

 After getting acquainted with the data, you can proceed to the actual analytics tasks. Here, you will build the relevant SQL statements incrementally, verifying at each step that the sample of the results produced matches your expectations. At this stage, you might create additional tables or views before using advanced SQL features, like window functions, common table expressions, and pivots. Finally, you need to decide which way the results are consumed: by turning them into files or databases again, serving them to users through an application or API, or visualizing them in a Jupyter notebook or dashboard.

1.7 Steps of the data processing flow

 In the following sections, we will describe some specific aspects of DuckDB’s architecture and feature set at a high level to give you an overall understanding and appreciation. We have ordered the sections in the sequence of how you would use DuckDB, from loading data to populating tables and writing SQL for analysis to visualizing those results, as shown in figure 1.4.

 [image: figure]

Figure 1.4 The data processing flow

1.7.1 Data formats and sources

 DuckDB supports a large number of data formats and data sources, and it lets you inspect and analyze their data with little ceremony. Unlike other data systems, such as SQL Server, you don’t need to first specify schema details up front. When reading data, the database uses sensible defaults and inherent schema information from the data, which you can override when needed.

 NOTE With DuckDB, you can focus more on the data processing and analysis you need to do and less on upfront data engineering. Because it is an open source project built by practitioners, there is a lot of emphasis on usability—if something is too hard to use, someone in the community will propose and submit a fix. And if the built-in functionality does not reach far enough, there’s probably an extension that addresses your needs (e.g., geospatial data or full-text search).

 DuckDB supports a variety of data formats:

 	 CSV files can be loaded in bulk and parallel, and their columns are automatically mapped.

 	 DataFrames’ memory can be handled directly by DuckDB inside the same Python process without the need to copy data.

 	 JSON formats can be destructured, flattened, and transformed into relational tables. DuckDB also has a JSON type for storing this type of data.

 	 Parquet files, along with their schema metadata, can be queried. Predicates used in queries are pushed down and evaluated at the Parquet storage layer to reduce the amount of data loaded. This is the ideal columnar format to read and write for data lakes.

 	 Apache Arrow columnar-shaped data can be read via Arrow Database Connectivity (ADBC) without data copying and transformations.

 	 Accessing data in cloud buckets, like S3 or GCP, reduces transfer and copy infrastructure and allows for cheap processing of large data volumes.

1.7.2 Data structures

 DuckDB handles a variety of tables, views, and data types. For table columns, processing, and results, there are more data types available than just the traditional data types, like string (varchar), numeric (integer, float, and decimal), dates, timestamps, intervals, Boolean, and binary large objects (BLOBs).

 DuckDB also supports structured data types like enums, lists, maps (dictionaries), and structs:

 	 Enums —Indexed, named elements of a set that can be stored and processed efficiently.

 	 Lists or arrays —These hold multiple elements of the same type, and there are a variety of functions for operating on these lists.

 	 Maps —Efficient key–value pairs that can be used for keeping keyed data points. They are used during JSON processing and can be constructed and accessed in several ways.

 	 Structs —Consistent key–value structures, where the same key always has values of the same data type. That allows for more efficient storage, reasoning, and processing of structs.

 DuckDB also allows you to create your own types and database extensions, which can provide additional data types. DuckDB can also create virtual or derived columns that are created from other data via expressions.

1.7.3 Developing the SQL

 When analyzing data, you usually start by gaining an understanding of the shape of the data. Then, you work from simple queries to creating more and more complex ones from the basic building blocks. You can use DESCRIBE to learn about the columns and data types of your data sources, tables, and views. Armed with that information, you can get basic statistics and distributions of a dataset by running count queries, count(*), globally or grouped by interesting dimensions like time, location, or item type. That gives you some good insights into what to expect from the data available.

 DuckDB even has a SUMMARIZE clause (https://duckdb.org/docs/guides/meta/summarize.html) that gives you statistics per column:

 	 count

 	 min, max, avg, and std (deviation)

 	 approx_unique (estimated count of distinct values)

 	 percentiles (q25, q50, q75)

 	 null_percentage (part of the data being null)

 To write your analytics query, you can start working on a subset of the data by using LIMIT or by only looking at a single input file. Start by outlining the result columns that you need (these may sometimes be converted—e.g., for dates using strptime). Those are the columns you would group by. Then, apply aggregations and filters to your data as needed. There are many different aggregation functions available in DuckDB (https://duckdb.org/docs/sql/aggregates.html), from traditional ones, like min, avg, and sum, to more advanced ones like histogram, bitstring_agg, list, or approximations like approx_count_distinct. There are also advanced aggregations, including percentiles, entropy or regression computation, and skewness. For running totals and comparisons with previous and next rows, you would use window functions aggregation OVER (PARTITION BY column ORDER BY column2 [RANGE …]). Repeatedly used parts of your analytics statement can be extracted into named common table expressions (CTEs) or views. Often, it also helps for readability to move parts of the computation into subqueries and use their results to check for existence or do some nested data preparation.

 While you’re building up your analytical statement, you can check the results at any time to make sure they are still correct and you’ve not taken an incorrect detour. This takes us to our next and last section on using the results of your queries.

1.7.4 Using or processing the results

 You’ve written your statement and gotten the analytics results quickly from DuckDB. Now what?

 It would be useful to keep your results around (e.g., by storing them in a file or a table). Creating a table from your results is straightforward with CREATE TABLE <name> AS SELECT …. DuckDB can write a variety of formats, including CSV, JSON, Parquet, Excel, and Apache Arrow. It also supports other database formats, like SQLite, Postgres, and others, via custom extensions. For smaller results sets, you can also use the DuckDB CLI to output the data as CSV or JSON.

 But because a picture tells more than 1,000 rows, often the preferred choice is data visualization. With the built-in bar function, you can render inline bar charts of your data. You can also use command-line plotting tools, like youplot, for some quick results in your terminal.

 In most cases, though, you would use the large Python and JavaScript ecosystem to visualize your results. For those purposes, you can turn your results into DataFrames, which then can be rendered into a variety of charts with matplotlib; ggplot in Python; ggplot2 in R; or d3, nivo, or observable in JavaScript. A visual representation showing this is provided in figure 1.5.

 [image: figure]

Figure 1.5 Visualizing data in a dashboard or Jupyter Notebook

 As DuckDB is so fast, you can serve the results directly from your queries on the data via an API that web, command-line, or mobile clients can consume. You only really need a traditional client–database server setup if your source data is too big to move around and your results are comparatively small (much less than 1% of the volume). Otherwise, you can embed DuckDB into your application (e.g., built with Streamlit) or dashboarding tool and have it run on local raw data or a local DuckDB database.

 Summary

 	 DuckDB is a newly developed analytical database that excels at in-memory processing.

 	 The database supports an extended dialect of SQL and gains new capabilities with extensions.

 	 DuckDB can read a variety of formats natively from local and remote sources.

 	 The integration in Python, R, and other languages is seamless and efficient.

 	 As an in-process database, it can process data efficiently without copying.

 	 In addition to the traditional data types, DuckDB also supports lists, maps, structs, and enums.

 	 DuckDB provides a lot of functions on data types and values, making data processing and shaping much easier.

 	 Building up your SQL queries step by step after learning about the shape of your data helps you stay in control.

 	 You can use the results of your query in a variety of ways, from generating reports and visualizing in charts to outputting in new formats.

2 Getting started with DuckDB

 This chapter covers

 	Installing and learning how to use the DuckDB command-line interface

 	Executing commands in the DuckDB CLI

 	Querying remote files

 Now that we have an understanding of what DuckDB is and why it came into prominence in the early 2020s, it’s time to get familiar with it. This chapter will be centered on the DuckDB command-line interface (CLI). We’ll learn how to install it on various environments, before learning about the its built-in commands. We’ll conclude by querying a remote CSV file.

2.1 Supported environments

 DuckDB is available for a range of different programming languages and operating systems (Linux, Windows, and macOS) both for Intel/AMD and ARM architectures. At the time of writing, there is support for the command line, Python, R, Java, JavaScript, Go, Rust, Node.js, Julia, C/C++, ODBC, JDBC, WASM, and Swift. In this chapter, we will focus on the DuckDB command line exclusively, as we think that is the easiest way to get you up to speed. The DuckDB CLI does not require a separate server installation, as DuckDB is an embedded database, and in the case of the CLI, it is embedded in the CLI executable.

 The command-line tool is published to GitHub releases, and there are a variety of packages for different operating systems and architectures. You can find the full list on the installation page: https://duckdb.org/docs/installation/index.

2.2 Installing the DuckDB CLI

 The installation is a “copy to” installation, meaning no installers or libraries are needed. The CLI consists of a single binary named duckdb. Let’s learn how to go about installing DuckDB.

2.2.1 macOS

 On macOS, the official recommendation is to use the Homebrew (https://brew.sh) package installer, as shown in the following listing.

Listing 2.1 Installing DuckDB on macOS via Homebrew

 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/\

Homebrew/install/HEAD/install.sh)" #1

brew install duckdb

 #1 This is only necessary to install the Homebrew package manager itself—don’t run it if you already have it.

2.2.2 Linux and Windows

 There are several different packages available for Linux and Windows, depending on the particular architecture and version that you’re using. You can find a full listing on the GitHub releases page (https://github.com/duckdb/duckdb/releases). In the following listing, we learn how to get the DuckDB CLI running on Linux with an AMD64 architecture.

Listing 2.2 Getting DuckDB running on Linux

 wget https://github.com/duckdb/duckdb/releases/download/v0.10.0/\

duckdb_cli-linux-amd64.zip #1

unzip duckdb_cli-linux-amd64.zip

./duckdb -version

 #1 Don’t forget to update this link to the latest version from the GitHub releases page

2.3 Using the DuckDB CLI

 The simplest way to launch the CLI is as follows—and yes, it’s that short, and it’s quick:

 duckdb

 This will launch DuckDB and the CLI. You should see something like the following output:

 v0.10.0 20b1486d11

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

 The database will be transient, with all data held in memory. It will disappear when you quit the CLI, which you can do by typing .quit or .exit.

2.3.1 SQL statements

 You can enter or paste SQL statements directly in the command line and end them with a semicolon and a newline. While there is no semicolon, you can enter newlines. They will be executed directly and output the results in compact table format. You can change the output formats as explained in section 2.5.1. For longer running operations, a progress bar will be shown. The following listing provides a simple example selecting a few constant values.

Listing 2.3 A simple select statement

 select v.* from values (1),(3),(3),(7) as v;

 By default, it will be printed in a tabular format:

 ┌───────┐

│ col0 │

│ int32 │

├───────┤

│ 1 │

│ 3 │

│ 3 │

│ 7 │

└───────┘

2.3.2 Dot commands

 In addition to SQL statements and commands, the CLI has several special commands that are only available in the CLI: the special dot commands. To use one of these commands, begin the line with a period (.) immediately followed by the name of the command you wish to execute. Additional arguments to the command are entered, space separated, after the command. Dot commands must be entered on a single line, and no whitespace may occur before the period. No semicolon is required at the end of the line in contrast to a normal SQL statement or command.

 Some of the most popular dot commands are described as follows:

 	 .open closes the current database file and opens a new one.

 	 .read allows reading SQL files to execute from within the CLI.

 	 .tables lists the currently available tables and views.

 	 .timer on/off toggles SQL timing output.

 	 .mode controls output formats.

 	 .maxrows controls the number of rows to show by default (for duckbox format).

 	 .excel shows the output of next command in spreadsheet.

 	 .exit, .quit or ctrl-d exit the CLI.

 A full overview can be retrieved via .help.

2.3.3 CLI arguments

 The CLI takes in arguments that can be used to adjust the database mode, control the output format, or decide whether the CLI is going to enter interactive mode. The usage is duckdb [OPTIONS] FILENAME [COMMANDS].

 Some of the most popular CLI arguments are described as follows:

 	 -readonly opens the database in read-only mode.

 	 -json sets the output mode to json.

 	 -line sets the output mode to line.

 	 -unsigned allows for the loading of unsigned extensions.

 	 -s COMMAND or -c COMMAND runs the provided command and then exits. This is especially helpful when combined with the .read dot command, which reads input from the given filename.

 The following is an example that demonstrates how the CLI can be parameterized to output the results of a query as JSON:

 duckdb --json -c 'select v.* from values (1),(3),(3),(7) as v;'

[{"col0":1},

{"col0":3},

{"col0":3},

{"col0":7}]

 To get a list of the available CLI arguments, call duckdb -help.

2.4 DuckDB’s extension system

 DuckDB has an extension system used to house functionality that isn’t part of the core of the database. You can think of extensions as packages that you can install with DuckDB.

 DuckDB comes preloaded with several extensions, which vary depending on the distribution that you’re using. You can get a list of all the available extensions, whether installed or not, by calling the duckdb_extensions function. Let’s start by checking the fields returned by this function.

Listing 2.4 The format of duckdb_extensions output

 DESCRIBE

SELECT *

FROM duckdb_extensions();

 The duckdb_extensions function returns, among other information, the name of the extension and whether it is installed and actually loaded:

 ┌────────────────┬─────────────┐

│ column_name │ column_type │

│ varchar │ varchar │

├────────────────┼─────────────|

│ extension_name │ VARCHAR │

│ loaded │ BOOLEAN │

│ installed │ BOOLEAN │

│ install_path │ VARCHAR │

│ description │ VARCHAR │

│ aliases │ VARCHAR[] │

└────────────────┴─────────────┴

 Let’s check which extensions we have installed on our machine:

 SELECT extension_name, loaded, installed

from duckdb_extensions()

ORDER BY installed DESC, loaded DESC;

 The results of running the query are as follows:

 ┌──────────────────┬─────────┬───────────┐

│ extension_name │ loaded │ installed │

│ varchar │ boolean │ boolean │

├──────────────────┼─────────┼───────────┤

│ autocomplete │ true │ true │

│ fts │ true │ true │

│ icu │ true │ true │

│ json │ true │ true │

│ parquet │ true │ true │

│ tpch │ true │ true │

│ httpfs │ false │ false │

│ inet │ false │ false │

│ jemalloc │ false │ false │

│ motherduck │ false │ false │

│ postgres_scanner │ false │ false │

│ spatial │ false │ false │

│ sqlite_scanner │ false │ false │

│ tpcds │ false │ false │

│ excel │ true │ │

├──────────────────┴─────────┴───────────┤

│ 15 rows 3 columns │

└──┘

 You can install any extension by typing the INSTALL command followed by the extension’s name. The extension will then be installed in your database but not loaded. To load an extension, type LOAD followed by the same name. The extension mechanism is idempotent, meaning you can issue both commands several times without running into errors.

 NOTE Since version 0.8 of DuckDB, the database autoloads installed extensions if it can determine they are needed, so you might not need the LOAD command.

 By default, DuckDB cannot query files that live elsewhere on the internet, but that capability is available via the official httpfs extension. If it is not already in your distribution, you can install and load the httpfs extension:

 INSTALL httpfs;

LOAD httpfs;

 This extension lets us directly query files hosted on an HTTP(S) server without having to download the files locally, and it supports S3 as well as a few other cloud storage providers. We can then check where that’s been installed by entering the following:

 FROM duckdb_extensions()

SELECT loaded, installed, install_path

WHERE extension_name = 'httpfs';

 You should see this output:

 ┌─────────┬───────────┬─────────────────────────────────----┐

│ loaded │ installed │ install_path │

│ boolean │ boolean │ varchar │

├─────────┼───────────┼─────────────────────────────────────┤

│ true │ true │ /path/to/httpfs.duckdb_extension │

└─────────┴───────────┴─────────────────────────────────────┘

 We can see that this extension has now been loaded and installed and also view the location where it’s been installed.

2.5 Analyzing a CSV file with the DuckDB CLI

 We’re going to start with a demonstration of the CLI for a common task for any data engineer—making sense of the data in a CSV file! It doesn’t matter where our data is stored, be it on a remote HTTP server or cloud storage (S3, GCP, or HDFS), DuckDB can now process it directly without having to do a manual download and import process. As the ingestion of many supported file formats, such as CSV and Parquet, is parallelized by default, it should be lightning quick to get your data into DuckDB.

 We went looking for CSV files on GitHub and came across a dataset containing the total population figures for several countries (https://mng.bz/KZKZ). We can write the following query to count the number of records:

 SELECT count(*)

FROM 'https://github.com/bnokoro/Data-Science/raw/master/'

 'countries%20of%20the%20world.csv';

 If we run this query, we should see the following output indicating we’ve got population data for over 200 countries:

 ┌──────────────┐

│ count_star() │

│ int64 │

├──────────────┤

│ 227 │

└──────────────┘

 If, as is the case here, our URL or filename ends in a specific extension (e.g., .csv), DuckDB will automatically process it. But what if we try to automatically process a short link of that same CSV file?

 SELECT count(*)

FROM 'https://bit.ly/3KoiZR0';

 Running this query results in the following error:

 Error: Catalog Error: Table with name https://bit.ly/3KoiZR0 does not exist!

Did you mean "Player"?

LINE 1: select count(*) from 'https://bit.ly/3KoiZR0';

 Although it’s a CSV file, DuckDB doesn’t know that because it doesn’t have a .csv suffix. We can solve this problem by using the read_csv_auto function, which processes the provided URI as if it was a CSV file, despite its lack of .csv suffix. The updated query is shown in the following listing.

Listing 2.5 Specifying the format of a remote file

 SELECT count(*)

FROM read_csv_auto("https://bit.ly/3KoiZR0");

 This query will return the same result as the query that used the canonical link from which the format could be deduced.

2.5.1 Result modes

 For displaying the results, you can choose between different modes using .mode <name>. You can see a list of available modes by typing .help mode.

 Throughout this chapter, we’ve been using duckbox mode, which returns a flexible table structure. DuckDB comes with a series of different modes, which broadly fit into two categories:

 	 Table based —These types of modes work well with few columns and include duckbox, box, csv, ascii, table, list, and column.

 	 Line based —These types of modes work well with many columns and include json, jsonline, and line.

 There are some others that don’t fit into those categories, including html, insert, and trash (no output).

 Our first query counted the number of records in the CSV file, but it’d be interesting to know what columns it has. Many columns would get truncated if we were to use the default mode, so we’re going to change to line mode before running the query:

 .mode line #1

SELECT *

FROM read_csv_auto("https://bit.ly/3KoiZR0")

LIMIT 1;

 #1 Changing to line mode

 The results of running this query are shown in the following listing.

Listing 2.6 A result in line mode

 Country = Afghanistan

 Region = ASIA (EX. NEAR EAST)

 Population = 31056997

 Area (sq. mi.) = 647500

 Pop. Density (per sq. mi.) = 48,0

 Coastline (coast/area ratio) = 0,00

 Net migration = 23,06

Infant mortality (per 1000 births) = 163,07

 GDP ($ per capita) = 700

 Literacy (%) = 36,0

 Phones (per 1000) = 3,2

 Arable (%) = 12,13

 Crops (%) = 0,22

 Other (%) = 87,65

 Climate = 1

 Birthrate = 46,6

 Deathrate = 20,34

 Agriculture = 0,38

 Industry = 0,24

 Service = 0,38

 As you can see from the output, line mode takes up a lot more space than duckbox, but we’ve found it to be the best mode for doing initial exploration of datasets that have plenty of columns. You can always change back to another mode once you’ve decided on a subset of columns you’d like to use.

 The dataset has lots of interesting information about various countries. Let’s write a query to count the number of countries and find the maximum population average area across all countries. This query only returns a few columns, so we’ll switch back to duckbox mode before running the query:

 .mode duckbox

SELECT count(*) AS countries,

 max(Population) AS max_population,

 round(avg(cast("Area (sq. mi.)" AS decimal))) AS avgArea

FROM read_csv_auto("https://bit.ly/3KoiZR0");

┌───────────┬────────────────┬──────────┐

│ countries │ max_population │ avgArea │

│ int64 │ int64 │ double │

├───────────┼────────────────┼──────────┤

│ 227 │ 1313973713 │ 598227.0 │

└───────────┴────────────────┴──────────┘

 So far, no tables have been created in the process, and we’ve just touched the tip of the iceberg of demonstrating what DuckDB actually can do. While the previous examples have all been run in interactive mode, the DuckDB CLI can also run in a noninteractive fashion. It can read from standard input and write to standard output. This makes it possible to build all sorts of pipelines.

 Let’s conclude with a script that extracts the population, birth rate, and death rate in countries in Western Europe and creates a new local CSV file containing that data. We can either .exit from the DuckDB CLI or open another tab before running the following command:

 duckdb -csv \

 -s "SELECT Country, Population, Birthrate, Deathrate

 FROM read_csv_auto('https://bit.ly/3KoiZR0')

 WHERE trim(region) = 'WESTERN EUROPE'" \

 > western_europe.csv

 The first few lines of western_europe.csv can be viewed with a command-line tool or text editor. If we use the head tool, we can find the first six lines—the header and five rows of data—like this:

 head -n6 western_europe.csv

 The output would then look like table 2.1.

Table 2.1 The first six lines of western_europe.csv, showing population, birth rate, and death rate of some countries in Western Europe

 	

 Country

 	

 Population

 	

 Birthrate

 	

 Deathrate

 	 Andorra

 	 71,201

 	 8,71

 	 6,25

 	 Austria

 	 8,192,880

 	 8,74

 	 9,76

 	 Belgium

 	 10,379,067

 	 10,38

 	 10,27

 	 Denmark

 	 5,450,661

 	 11,13

 	 10,36

OEBPS/Images/cover0001.jpg
Duc
INACTI

Mark Needham
Michael Hunger
Michael Simons

ihleisen

/'l MANNING

OEBPS/Images/CH01_F01_Needham.png
it

esessgsaztassi)e

3

Data sources

e

SELECT year, avg(a.value)
FROM read csv(...) as a
JOIN sales as b

ON a.region = b.region
GROUP BY year

0%

DuckDB

Output data formats

OEBPS/Images/CH01_F05_Needham.png

OEBPS/Images/1.png

OEBPS/Images/CH01_F04_Needham.png
Analyze
with Use

results

OEBPS/Images/CH01_F02_Needham.png
Parser Planner Optimizer Physical planner

Unoptimized Optimized Physical
(SaL j [Statementj [Iogical planj [Iogical plan] [plan }

OEBPS/Images/CH01_F03_Needham.png
// / Programming
//'l (languages
(// (4

Parquet

Data sources

@u\a/@
| ™~

Optional persistence

OEBPS/Images/3.png

OEBPS/Images/2.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

