

 Praise for the first edition

 “An incredible way to learn beyond the basic aspects of CSS.”

 —Andres Sacco, technical leader at TraveleX

 “If I had to start over learning CSS and could choose only one book, this would be it.”

 —Seth MacPherson, senior developer at Quote Factory

 “One of the best, if not the best book for CSS.”

 —Scott Ling, self-employed contractor

 “For novices in CSS, this book provides a gradual learning path, while seasoned engineers will find comprehensive coverage of advanced concepts, thoughtfully explained. Ultimately, this book serves as a guide toward mastery.”

 —Doyle Turner, software engineer at Incremental Systems

 “The most comprehensive and up-to-date book on CSS. Easily modernize your CSS skills with this painless, progressive training.”

 —Becky Huett, engineer at Maxar Intelligence

 [image: manning]

 CSS in Depth, Second Edition

 Keith J. Grant
Foreword by Chris Coyier

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Sarah Harter
 Technical editor: Chris Chinchilla
 Review editors: Isidora Isakov and Radmila Ercegovac
 Production editor: Andy Marinkovich
 Copy editor: Kari Lucke
 Proofreader: Katie Tennant
 Technical proofreader: Doyle Turner
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633437555

 Printed in the United States of America

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Reviewing the fundamentals

 1 Cascade, specificity, and inheritance

 1.1 The cascade

 1.1.1 Stylesheet origin

 1.1.2 Inline styles

 1.1.3 Selector specificity

 1.1.4 Source order

 1.2 Inheritance

 1.3 Special values

 1.3.1 The inherit keyword

 1.3.2 The initial keyword

 1.3.3 The unset keyword

 1.3.4 The revert keyword

 1.4 Shorthand properties

 1.4.1 Beware shorthands silently overriding other styles

 1.4.2 Remember the order of shorthand values

 1.5 Progressive enhancement

 1.5.1 Using the cascade for progressive enhancement

 1.5.2 Progressively enhancing selectors

 1.5.3 Feature queries using @supports()

 2 Working with relative units

 2.1 The power of relative units

 2.1.1 The rise of responsive design

 2.2 Ems and rems

 2.2.1 Using ems to define font-size

 2.2.2 Using rems for font-size

 2.3 Stop thinking in pixels

 2.3.1 Setting a sane default font size

 2.3.2 Making the panel responsive

 2.3.3 Resizing a single component

 2.4 Viewport-relative units

 2.4.1 Selecting from the newer viewport units

 2.4.2 Using viewport units for font size

 2.5 Unitless numbers and line-height

 2.6 Custom properties (aka CSS variables)

 2.6.1 Changing custom properties dynamically

 3 Document flow and the box model

 3.1 Normal document flow

 3.1.1 Centering content horizontally

 3.1.2 Using logical properties

 3.1.3 Adopting useful shorthand logical properties

 3.2 The box model

 3.2.1 Avoiding magic numbers

 3.2.2 Adjusting the box model

 3.2.3 Using universal border box sizing

 3.3 Element height

 3.3.1 Controlling overflow behavior

 3.3.2 Using alternatives to percentage-based heights

 3.3.3 Using min-height and max-height

 3.4 Negative margins

 3.5 Collapsed margins

 3.5.1 Collapsing between text

 3.5.2 Collapsing multiple margins

 3.5.3 Collapsing outside a container

 3.6 Spacing elements within a container

 3.6.1 Considering changing content

 3.6.2 Creating a more general solution

 Part 2 Mastering layout

 4 Flexbox

 4.1 Flexbox principles

 4.1.1 Building a basic flexbox menu

 4.1.2 Adding padding and spacing

 4.2 Flex item sizes

 4.2.1 Flex basis

 4.2.2 Flex grow

 4.2.3 Flex shrink

 4.2.4 Some practical examples

 4.3 Flex direction

 4.3.1 Changing the flex direction

 4.3.2 Styling the login form

 4.4 Alignment, spacing, and other details

 4.4.1 Understanding flex container properties

 4.4.2 Understanding flex item properties

 4.4.3 Using alignment properties

 5 Grid layout

 5.1 Building a basic grid

 5.2 Anatomy of a grid

 5.2.1 Numbering grid lines

 5.2.2 Working together with flexbox

 5.3 Alternate syntaxes

 5.3.1 Naming grid lines

 5.3.2 Naming grid areas

 5.4 Explicit and implicit grid

 5.4.1 Adding variety

 5.4.2 Adjusting grid items to fill the grid track

 5.5 Subgrid

 5.5.1 Additional options

 5.6 Alignment properties

 6 Positioning and stacking contexts

 6.1 Fixed positioning

 6.1.1 Creating a modal dialog with fixed positioning

 6.1.2 Preventing the screen from scrolling while the modal dialog is open

 6.1.3 Controlling the size of positioned elements

 6.2 Absolute positioning

 6.2.1 Absolutely positioning the Close button

 6.2.2 Positioning a pseudo-element

 6.3 Relative positioning

 6.3.1 Creating a dropdown menu

 6.3.2 Creating a CSS triangle

 6.4 Stacking contexts and z-index

 6.4.1 Understanding the rendering process and stacking order

 6.4.2 Manipulating stacking order with z-index

 6.4.3 Understanding stacking contexts

 6.5 Sticky positioning

 7 Responsive design

 7.1 Mobile first

 7.1.1 Creating a mobile menu

 7.1.2 Adding the viewport meta tag

 7.2 Media queries

 7.2.1 Understanding types of media queries

 7.2.2 Adding breakpoints to the page

 7.2.3 Adding responsive columns

 7.3 Fluid layouts

 7.3.1 Adding styles for a large viewport

 7.3.2 Dealing with tables

 7.4 Responsive images

 7.4.1 Using multiple images for different viewport sizes

 7.4.2 Using srcset to serve the correct image

 Part 3 Modern code organization

 8 Cascade layers and nesting

 8.1 Manipulating the cascade with layers

 8.1.1 Defining layers

 8.1.2 Layer order and priority

 8.1.3 The revert-layer keyword

 8.2 A recommended organization for cascade layers

 8.2.1 Reset layer

 8.2.2 Theme layer

 8.2.3 Global layer

 8.2.4 Layout layer

 8.2.5 Modules layer

 8.2.6 Utilities layer

 8.2.7 Additional layers

 8.3 The :is() and :where() pseudo-classes

 8.3.1 More forgiving selectors

 8.3.2 Manipulating specificity

 8.4 Nesting

 8.4.1 Using the nesting selector

 8.4.2 Understanding the nuances of the nesting selector

 8.4.3 Nesting media queries and other at-rules

 9 Modular CSS and scope

 9.1 Defining modules

 9.1.1 Modules and global styles

 9.1.2 A simple module

 9.1.3 Variations of a module

 9.1.4 Modules with multiple elements

 9.2 Modules composed into larger structures

 9.2.1 Dividing multiple responsibilities among modules

 9.2.2 Naming modules

 9.3 CSS scope

 9.3.1 Scope proximity

 9.3.2 Scoping limit

 9.3.3 Implicit scope

 9.3.4 Scope and layers

 9.4 Pattern libraries

 9.4.1 Using a CSS-first workflow

 9.4.2 Refactoring and breaking changes

 10 Container queries

 10.1 A basic example of a container query

 10.1.1 Using container size queries

 10.2 A closer look at containers

 10.2.1 Container types

 10.2.2 Container names

 10.2.3 Containers and modular CSS

 10.3 Container-relative units

 10.4 Container style queries

 10.4.1 Decoupling a module from its container

 10.4.2 Reducing code duplication

 Part 4 Visual enhancements

 11 Color and contrast

 11.1 Communicating with contrast

 11.1.1 Establishing patterns

 11.1.2 Implementing the design

 11.2 Defining color

 11.2.1 Gamuts and color spaces

 11.2.2 CSS color notations

 11.3 Using OKLCH to work with color

 11.3.1 Switching the stylesheet to OKLCH

 11.3.2 Naming color variables

 11.3.3 Selecting new colors for the palette

 11.3.4 Deriving colors from others on the page

 11.4 Considering contrast for font colors

 12 Typography and spacing

 12.1 Spacing

 12.1.1 Using ems vs. px

 12.1.2 Factoring in line height

 12.1.3 Spacing inline elements

 12.2 Web fonts

 12.3 Google fonts

 12.4 How @font-face works

 12.4.1 Font formats and fallbacks

 12.4.2 Multiple variants of the same typeface

 12.5 Performance considerations

 12.5.1 The font-display property

 12.5.2 Variable fonts

 12.6 Adjusting space for readability

 12.6.1 Body copy spacing

 12.6.2 Headings, small elements, and spacing

 13 Gradients, shadows, and blend modes

 13.1 Gradients

 13.1.1 Multiple color stops

 13.1.2 Color interpolation

 13.1.3 Radial gradients

 13.1.4 Conic gradients

 13.2 Shadows

 13.2.1 Adding depth with gradients and shadows

 13.2.2 Creating elements with a flat design

 13.2.3 Creating buttons with a hybrid look

 13.3 Blend modes

 13.3.1 Tinting an image

 13.3.2 Types of blend modes

 13.3.3 Adding texture to an image

 13.3.4 Mix blend modes

 14 Masks, shapes, and clipping

 14.1 Filters

 14.1.1 Types of filters

 14.1.2 Backdrop filter

 14.2 Masks

 14.2.1 Masking with a gradient

 14.2.2 Masking using luminance

 14.2.3 Other mask properties

 14.3 Clipping paths

 14.3.1 Polygon clipping paths

 14.3.2 Firefox clip-path tools

 14.3.3 Other clip-path types

 14.4 Floats and shapes

 14.4.1 Floating

 14.4.2 Defining a shape

 Part 5 Adding motion

 15 Transitions

 15.1 From here to there

 15.2 Timing functions

 15.2.1 Custom Bézier curves

 15.2.2 Steps

 15.3 Non-animatable properties

 15.3.1 Properties that cannot be animated

 15.3.2 Fading in and out

 15.4 Transitioning to auto height

 15.5 Transitioning custom properties

 16 Transforms

 16.1 Rotate, translate, scale, and skew

 16.1.1 Changing the transform origin

 16.1.2 Applying multiple transforms

 16.1.3 Individual transform properties

 16.2 Transforms in motion

 16.2.1 Scaling up the icon

 16.2.2 Creating “fly in” labels

 16.2.3 Staggering the transitions

 16.3 Animation performance

 16.3.1 Looking at the rendering pipeline

 16.4 3D transforms

 16.4.1 Controlling perspective

 16.4.2 Implementing advanced 3D transforms

 17 Animations

 17.1 Keyframes

 17.2 Animating 3D transforms

 17.2.1 Building the layout without animations

 17.2.2 Adding animation to the layout

 17.3 Animation delay and fill mode

 17.4 Conveying meaning through animation

 17.4.1 Responding to user interaction

 17.4.2 Drawing the user’s attention

 17.5 Scroll-based timelines

 17.6 One final piece of advice

 appendix A Selectors reference

 A.1 Basic selectors

 A.2 Combinators

 A.3 Compound selectors

 A.4 Pseudo-class selectors

 A.4.1 General-purpose pseudo-classes

 A.4.2 Selecting based on position among sibling elements

 A.4.3 Form field pseudo-classes

 A.5 Pseudo-element selectors

 A.6 Attribute selectors

 appendix B Preprocessors

 B.1 Sass

 B.1.1 Installing Sass

 B.1.2 Running Sass

 B.1.3 Understanding important Sass features

 B.2 PostCSS

 B.2.1 Autoprefixer

 B.2.2 cssnano

 B.3 Lightning CSS

 index

 foreword

 “A minute to learn, lifetime to master.” That phrase might feel a little trite these days, but I still like it. It was popularized in modern times by being the tagline for the board game Othello. In Othello, players take turns placing white or black pieces onto a grid. If, for example, a white piece is played trapping a row of black pieces between two white, all the black pieces are flipped, and the row becomes entirely white.

 Like Othello, it isn’t particularly hard to learn the rules of CSS. You write a selector that attempts to match elements; then you write key–value pairs that style those elements. Even folks just starting out don’t have much trouble figuring out that basic syntax. The trick to getting good at CSS, as in Othello, is knowing exactly when to do what.

 CSS is one of the languages of the web, but it isn’t quite in the same wheelhouse as programming. CSS has little in the way of logic and loops. Math is limited to just a few functions. Only recently have variables become a possibility. Rarely do you need to consider security. CSS is closer to painting than Python. You’re free to do what you like with CSS. It won’t spit out any errors at you or fail to compile.

 The journey to getting good at CSS involves learning everything CSS is capable of. The more you know, the more natural it starts to feel. The more you practice, the more easily your brain will reach for that perfect layout and spacing method. The more you read, the more confident you’ll feel in tackling any design.

 Really good CSS developers aren’t deterred by any design. Every job becomes an opportunity to get clever—a puzzle to be solved. Really good CSS developers have that full and wide spectrum of knowledge of what CSS is capable of. This book is part of your journey to being that really good CSS developer. You’ll gain the spectrum of knowledge necessary to getting there.

 If you’ll permit one more metaphor, despite CSS going on a few decades old, it’s a bit like the Wild Wild West. You can do just about whatever you want to do, as long as it’s doing what you want. There aren’t any hard and fast rules. But because you’re all on your own, with no great metrics to tell you if you’re doing a good job—or not—you’ll need to be extra careful. Tiny changes can have huge effects. A stylesheet can grow and grow and become unwieldy. You can start to get scared of your own styles!

 Keith covers a lot of ground in the book, and every bit of it will help you become a better CSS developer and tame this Wild Wild West. You’ll dive deep into the language itself, learning what CSS is capable of. Then, just as importantly, you’ll learn about ideas around the language that level you up in other ways. You’ll be better at writing code that lasts and is understandable and performant.

 Even seasoned developers will benefit. If you find yourself reading about something that you already know, you’ll firm up your skills, affirm your knowledge, and find little “Oh!” bits that surprise you and extend that base.

 —Chris Coyier, cofounder of CodePen

 preface

 CSS was proposed in 1994 and first implemented (partially) by Internet Explorer 3 in 1996. It was somewhere around that time I discovered the wonderful View Source button and realized all the secrets of a web page were there for me to decipher in plain text. I taught myself HTML and CSS by playing in a text editor and seeing what worked. It was a fun excuse to spend as much time as possible on the internet.

 In the meantime, I needed to find a real career. I went on to earn a degree in computer science. Little did I know that the two would come crashing together in the 2000s as the concept of “web developer” emerged.

 I’ve been in tune with CSS since the very beginning. Even when I’m working, it’s play. I’ve worked on the backend and the frontend, yet I’ve always found myself to be the resident CSS expert on every team I’ve been on. It’s often the most neglected part of the web stack. Once you’ve been on a project with clean CSS, you never want to do without it again. After seeing it in action, even seasoned web developers ask, “How do I learn CSS?”

 There isn’t one concise, straightforward answer to this question. It’s not a matter of learning one or two quick tips. Rather, you need to understand all the disparate parts of the language and how they fit together. Some books make a good beginner-level introduction to CSS, but many developers already have a basic understanding. Some books teach a lot of useful tricks but assume the reader has mastery over the language.

 At the same time, the rate of change in CSS is accelerating. We’ve seen the rise of newer, modern layout methods and effects like blend modes, filters, transformations, transitions, and animations. Even in the last year or two, logical properties, cascade layers, and container queries have dramatically changed the way we write the language. There is a lot to keep up with.

 Whether you are relatively new to the industry or have been at it a while but need to advance or update your CSS skills, I have written this book to bring you up to speed. Everything in this book is here for one of three reasons:

 	 It’s essential. There are many fundamentals of the language that, sadly, many developers don’t fully understand. These include the cascade, page layout, and positioning. I’ll take a deep look at these, explaining how they work.

 	 It’s new. A lot of new features have emerged in the last few years or are just now emerging. I will cover the latest improvements to CSS and a few things that are just around the corner. This is a forward-thinking book. I will point out backward compatibility issues where relevant, but I am unabashedly optimistic about the future of CSS development, and my goal is to provide you with an understanding of the language that is ready for emerging changes.

 	 It’s not covered in most CSS books. The world of CSS is huge. There are important best practices and common approaches in the modern world of web application development. These are not strictly part of the CSS language but rather part of its culture. And they are vital for modern web development.

 So, how do you learn CSS? This book is an attempt to answer that question. It is a comprehensive guide intended to teach practical proficiency in the language.

 acknowledgments

 It takes an incredible amount of work to produce a book. I believe this is a great book—and hope you’ll agree—but it wouldn’t be nearly as strong as it is without the help of a few people along the way.

 First and foremost, I’d like to thank my wife, Courtney. You have been supportive and encouraging through the entire process. You have carried the burden of this book with me. You even provided editorial support in a number of key places. I could not have done this without you.

 The excellent staff at Manning worked hard with me to make this the best book it can be. Thanks go to Manning’s publisher, Marjan Bace, who saw the potential in this idea and the need for an updated edition. I thank my editors Toni Arritola and Sarah Harter for their commitment to quality. This is a much better book because of their input. Thanks go to my technical editor, Chris Chinchilla, for his insight throughout the writing process, and to Doyle Turner for a meticulous technical proofread of the final manuscript and all the code listings.

 I’d also like to thank the technical reviewers and friends who took the time to read through my drafts at various stages and offer feedback: Al Pezewski, Andres Sacco, Becky Huett, Craig Sharkie, Darek Kazik, Esref Durna, Harrison Maseko, Holger Voges, Joe Cuevas, Marlen Waaijer, Mikael Byström, Patrick Regan, Paulo Vieira, Rick Bunnell, Rodney Weis, Santosh Joseph, Sara Wallén, Scott Ling, Seth MacPherson, Simon Verhoeven, Stephan Max, Sudheer Kumar Reddy Gowrigari, and Yves Dorfsman. Your feedback offered valuable early insight into how the book would be received by developers of all skill levels.

 Finally, I feel enormous gratitude to the good people on the W3C CSS Working Group for your work on the CSS specifications. You work through a lot of really tough problems so that we developers don’t have to. Thanks for your continued efforts to make CSS, and the web as a whole, better. Keep up the good work!

 about this book

 The world of CSS is maturing. More and more web developers in the industry are realizing that while they “know” CSS, they don’t know it as deeply as they probably should. In recent years, the language has evolved, so even those developers who were once adept at CSS may find a whole new set of skills to catch up on—I said this when I wrote the first edition, and it’s true all over again now, in the second. This book aims to meet both of these needs: providing a deep mastery of the language and bringing you up to speed on recent developments and new features of CSS.

 This book is titled CSS in Depth, but it is also, in strategic places, a book of breadth. Where concepts are difficult or commonly misunderstood, I will explain in detail how they work and why they behave the way they do. In some chapters, I may not exhaust the topic, but I will give you enough knowledge to work effectively with it and point you in the right direction if you wish to further your knowledge. In all, this book will fill in your knowledge gaps and help you understand the world of CSS as a whole.

 Some of the topics could warrant entire books on their own: animation, typography, even flexbox and grid layout. My goal is to flesh out your knowledge, help you bolster your weak spots, and imbue you with a love for the language.

 Who should read this book?

 First and foremost, this book is for developers who are tired of fighting with CSS and are ready to really understand how it works. You may be a beginner, or you may have fifteen years of experience.

 I expect you to have a cursory understanding of HTML, CSS, and—in a few places—JavaScript. As long as you’re familiar with the basic syntax of CSS, you’ll probably be able to follow along with this book, but it’s primarily written for developers who have spent time with CSS, run into walls, and come out frustrated. In the places where I use JavaScript, I have kept it as simple as possible, so, as long as you can follow along with a few short code snippets, you should be in good shape.

 If instead you’re a designer looking to move into the world of web design, I suspect you too will learn a lot from CSS in Depth —though I haven’t written it with you particularly in mind. The book may also provide some insight into the perspective of the developers you’ll be working with.

 How this book is organized: A roadmap

 The book is 17 chapters long, divided into five parts. In part 1, “Reviewing the fundamentals,” we’ll go back to the basics, with a focus on some details you likely missed the first time around:

 	 Chapter 1 covers the cascade and inheritance. These concepts control which styles are applied to which elements on the page.

 	 Chapter 2 discusses relative units, with an emphasis on em and rem. Relative units are versatile and important tools in CSS, and this chapter will get you familiar with working with them.

 	 Chapter 3 covers document flow and the box model. This involves understanding how the HTML elements are laid out in a page and how you can control the size of those elements and the amount of space between them.

 In part 2, “Mastering layout,” I’ll walk you through the key tools for laying out elements on the page:

 	 Chapter 4 teaches flexbox, which is used for laying out a series of elements on the page. It begins with the fundamental concepts and moves on to practical layout examples.

 	 Chapter 5 introduces grid layout. This allows you to structure the contents of the page into rows and columns—an indispensable part of modern page layout.

 	 Chapter 6 goes deep into positioning using the position property: absolute positioning, fixed positioning, and more. This is an area that gets a lot of developers in trouble, and a solid understanding is essential.

 	 Chapter 7 covers responsive design. We’ll look at three key principles to building websites that work on a wide array of screen sizes and device types.

 In part 3, “Modern code organization,” you’ll look at some new and upcoming features of the language, as well as some coding best practices. It’s one thing to make the elements look how you want on the page. It’s another thing to organize your code so it can be understood and maintained into the future as your web app grows and evolves. These chapters will teach you some important techniques for managing your code:

 	 Chapter 8 covers cascade layers and nesting, which are essential tools for organizing your code.

 	 Chapter 9 teaches how to organize your CSS in a modular way, so that your code is reusable and maintainable. I also introduce scope, which is a new feature of CSS that helps with this.

 	 Chapter 10 walks you through container queries. This builds on the responsive design principles from chapter 7.

 In part 4, “Visual enhancements,” I’ll acquaint you with the world of design. We’ll look at important considerations when working with a designer and how to do a bit of the design work yourself—because sometimes you will need to:

 	 Chapter 11 shows how to work with color and visual contrast. Attention to these details goes a long way toward making a good design a great one.

 	 Chapter 12 is about web typography: using online font files to bring a unique personality to your site or app.

 	 Chapter 13 discusses shadows, gradients, and blend modes. These work together to build an elegant user interface.

 	 Chapter 14 looks at more advanced visual effects using filters, masks, clipping, and shapes.

 Finally, in part 5, “Adding motion,” you’ll learn how to bring your page to life with movement:

 	 Chapter 15 brings motion to the page with transitions, changing the shape, color, or size of an element on the page.

 	 Chapter 16 covers transforms, which are a vital tool to use in conjunction with transitions and animations. This chapter also discusses performance implications of motion on the page.

 	 Chapter 17 discusses keyframe animations. You’ll learn how to use complex motion to communicate meaning to the user.

 There are also two appendixes:

 	 Appendix A is a reference of all the types of CSS selectors.

 	 Appendix B is an introduction to preprocessors.

 I’ve put a lot of effort into the progression of the topics in this book. I start with absolute essentials you have to know. From there, the topics build upon one another. In many places, I refer to earlier concepts and work to tie them together when relevant. While I’ve included helpful reference material in places, I encourage you to read the chapters in order.

 Code conventions and repository

 This book contains many examples of source code, both in numbered listings and in-line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; I’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Code annotations accompany many of the listings, highlighting important concepts.

 CSS is meant to be paired with HTML; I always provide a code listing for the HTML and another for the CSS. In most chapters, I reuse the same HTML for multiple CSS listings. I guide you through editing a stylesheet in many stages, and I’ve tried to make it clear how I expect you to edit your stylesheet from one CSS listing to the next.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/css-in-depth-second-edition. The complete code for the examples in the book is available for download from the Manning website at www.manning.com and from GitHub at https://github.com/cssindepth/css-in-depth-2. At first glance, it may appear that some listings are missing—because working examples require both HTML and CSS, I’ve put most listings in an HTML file, using <style> tags for the CSS. This means that both an HTML listing and a CSS listing are combined in one file in the repository.

 For example, in chapter 1, listing 1.1 is HTML code and listing 1.2 is CSS that is meant to be applied to that HTML. I have included both in the repository in a file named listing-1.2.html. Changes are made to this CSS in listing 1.3; these are included in listing-1.3.html, along with the corresponding HTML from listing 1.1.

 liveBook discussion forum

 Purchase of CSS in Depth, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/css-in-depth-second-edition/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 Browser versions

 Cross-browser testing is an important part of web development. Most of the code in this book is supported in recent versions of Chrome, Firefox, Safari, Microsoft Edge, and most mobile browsers. Newer features will not work in all of these browsers; I indicate when this is the case.

 Just because a feature is not supported in a particular browser doesn’t mean you can’t use it. You can often provide fallback behavior for older browsers as an acceptable compromise. I show examples of this in several places.

 If you’re following along with the code examples on your computer, I recommend you use the latest version of Firefox or Chrome.

 about the author

 [image: figure]

 Keith J. Grant is currently a principal software engineer at Red Hat, where he works on frontend code for the Ansible Automation Platform using JavaScript and CSS.

 He is self-taught in HTML and CSS, and he had several years of informal experience working with the technology before graduating with a degree in computer science from Gonzaga University. He has 18 years of professional experience building and maintaining web applications and websites using HTML, CSS, and JavaScript.

 Though Keith has primarily been a JavaScript developer, he has become an important CSS instructor at every company he’s worked for. He writes about CSS and other web development topics at https://keithjgrant.com.

 About the technical editor

 Chris Chinchilla is a technical writer, podcaster, and video maker. Chris has worked for small and large technical projects and companies and creates fiction, interactive fiction, and games in his spare time.

 about the cover illustration

 The figure on the cover of CSS in Depth, Second Edition, is taken from a nineteenth-century collection of works by many artists, edited by Louis Curmer and published in Paris in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Reviewing the fundamentals

 Part 1 takes a deep look into the most essential parts of CSS—the cascade, relative units, document flow, and box model. These fundamentals, covered in these first three chapters, control what styles apply to the elements on the page and how the sizes of those elements are determined. A comprehensive understanding of these subjects is foundational to everything else in this book and beyond.

1 Cascade, specificity, and inheritance

 This chapter covers

 	The six criteria that make up the cascade

 	The difference between the cascade and inheritance

 	How to control which styles apply to which elements

 	Common misunderstandings about shorthand declarations

 	Working with new and upcoming CSS features

 CSS is unlike a lot of things in the world of software development. It’s not a programming language in the conventional sense, but it does require abstract thought. It’s not purely a design tool, but it does require some creativity. It provides a deceptively simple declarative syntax, but if you’ve worked with it on any large projects, you know it can grow into unwieldy complexity.

 When you need to learn to do something in conventional programming, you can usually figure out what to search for (for example, “How do I find items of type x in an array?”). With CSS, it’s not always easy to distill the problem down to a single question. Even when you can, the answer is often, “It depends.” The best way to accomplish something is often contingent on your particular constraints and how precisely you’ll want to handle various edge cases.

 While it’s helpful to know some tricks or useful recipes you can follow, mastering the language requires an understanding of the principles that make those practices possible. This book is full of examples, but it is primarily a book of principles.

 A quick review of terminology

 Depending on where you learned CSS, you may or may not be familiar with all the names of the various parts of CSS syntax. I won’t belabor the point, but because I’ll be using these terms throughout the book, it’s best to be clear about what they mean.

 Following is a line of CSS. This is called a declaration. The following declaration comprises a property (color) and a value (black):

 color: black;

 Properties aren't to be confused with attributes, which are part of the HTML syntax. For example, in the element , href is an attribute of the a tag.

 A group of declarations inside curly braces is called a declaration block. A declaration block is preceded by a selector. The selector indicates the element or elements on the page where the declarations will be applied. See appendix A for a comprehensive reference of selector types. Here is an example with a body selector, targeting the <body> element:

 body {
 color: black;
 font-family: Helvetica;
}

 Together, the selector and declaration block are called a ruleset. A ruleset is also called a rule—although, it’s my observation that rule is rarely used so precisely and is usually used in the plural to refer to a broader set of styles.

 Finally, at-rules are language constructs beginning with an “at” symbol, such as @import rules or @media queries.

 Part 1 begins with the most fundamental principles of CSS: the cascade, the box model, and the wide array of unit types available. Most web developers know about the cascade and the box model. They know about pixel units and may have heard that they “should use ems instead.” The truth is, there’s a lot to these topics, and a cursory understanding of them gets you only so far. If you’re ever to master CSS, you must first know the fundamentals and know them deeply.

 I know you’re excited to start learning the latest and greatest CSS has to offer. That is the exciting stuff. But first, we’ll go back to the fundamentals. I’ll quickly review the basics, which you’re likely already familiar with, and then dive deep into each topic. My aim is to strengthen the foundation on which the rest of your CSS is built.

 In this chapter, I’ll begin with the C in CSS—the cascade. I’ll articulate how it works and then show you how to work with it practically. I’ll then look at a related topic, inheritance. I’ll follow that with a look at shorthand properties and some common misunderstandings surrounding them.

 Together, these topics are all about applying the styles you want to the elements you want. There are a lot of “gotchas” here that often trip up developers. A good understanding of these topics will give you better control over making your CSS do what you want it to do. With any luck, you’ll also better appreciate and even enjoy working with CSS.

1.1 The cascade

 Fundamentally, CSS is about declaring rules: under various conditions, you want certain things to happen. If this class is added to that element, apply these styles. If element X is a child of element Y, apply those styles. The browser then takes these rules, figures out which ones apply where, and uses them to render the page.

 When you look at small examples, this process is usually straightforward. But as your stylesheet grows, or the number of pages you apply it to increases, your code can become complex surprisingly quickly. There are often several ways to accomplish the same thing in CSS. Depending on which solution you use, you may get wildly different results when the structure of the HTML changes or when the styles are applied to different pages. A key part of CSS development comes down to writing rules in such a way that they’re predictable.

 The first step toward this is understanding how, exactly, the browser makes sense of your rules. Each rule may be straightforward on its own, but what happens when two rules provide conflicting information about how to style an element? You may find one of your rules doesn’t do what you expect because another rule conflicts with it. Predicting how rules behave requires an understanding of the cascade.

 To illustrate, you’ll build a basic page header like one you might see at the top of a web page (figure 1.1). It has the website title atop a series of teal navigational links. The last link is colored orange to make it stand out as a sort of featured link.

 As you build this page header, you’ll probably be familiar with most of the CSS involved. This will allow us to focus on aspects of CSS you might take for granted or only partially understand.

 [image: figure]

Figure 1.1 Page heading and navigation links you will build in this chapter

 To begin, create an HTML document and a stylesheet named styles.css. Add the code in listing 1.1 to the HTML.

 Note A repository containing all code listings in this book is available for download at https://github.com/CSSInDepth/css-in-depth-2. The repository has all CSS embedded with the corresponding HTML in a series of HTML files.

Listing 1.1 Markup for the page header

 <!doctype html>
<html lang=”en-US”>
<head>
 <meta charset="utf-8" />
 <link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <header class="page-header">
 <h1 id="page-title" class="title">Wombat Coffee Roasters</h1> #1
 <nav>
 <ul id="main-nav" class="nav"> #2
 Home
 Coffees
 Brewers
 Specials #3

 </nav>
 </header>
</body>
</html>

 #1 Page title

#2 List of navigation links

#3 Featured link

 When two or more rules target the same element on your page, the rules may provide conflicting declarations. The next listing shows how this is possible. It shows three rulesets, each specifying a different font style for the page title. The title can’t have three different fonts at one time. Which one will it be? Add the following code to your CSS file to see.

Listing 1.2 Conflicting declarations

 h1 { #1
 font-family: serif;
}

#page-title { #2
 font-family: sans-serif;
}

.title { #3
 font-family: monospace;
}

 #1 Tag (or type) selector

#2 ID selector

#3 Class selector

 Rulesets with conflicting declarations can appear one after the other, or they can be scattered throughout your stylesheet. Either way, given your HTML, these all target the same element.

 All three rulesets attempt to set a different font family to this heading. Which one will win? To determine the answer, the browser follows a set of rules, so the result is predictable. In this case, the rules dictate that the second declaration wins due to the ID in its selector; the title will have a sans serif font (figure 1.2).

 [image: figure]

Figure 1.2 The ID selector wins over the other rulesets, producing a sans serif font for the title.

 This set of rules is called the cascade. It determines how conflicts are resolved, and it’s a fundamental part of how the language works. Although most experienced developers have a general sense of the cascade, parts of it are sometimes misunderstood.

 Let’s unpack the cascade. When declarations conflict, the cascade considers six criteria in the following order to resolve the difference. We will look at each of these in depth:

 	 Stylesheet origin—Where the styles come from. Your styles are applied in conjunction with the browser’s default styles.

 	 Inline styles—Whether a declaration is applied to an element via the HTML style attribute or a CSS selector.

 	 Layer—Styles can be defined in layers, each with a different priority.

 	 Selector specificity—Which selectors take precedence over which.

 	 Scope proximity—Whether the styles are scoped to a portion of the DOM.

 	 Source order—Order in which styles are declared in the stylesheet.

 Some of these criteria are influenced by the use of the !important annotation, which we will look at later in the chapter. Figure 1.3 shows how the rules are applied at a high level.

 [image: figure]

Figure 1.3 High-level flowchart of the cascade showing declaration precedence

 These rules allow browsers to behave predictably when resolving any ambiguity in the CSS. In the previous example, the #page-title selector received precedence over the other selectors due to these rules—in particular, the criteria of selector specificity, which I’ll explain in detail shortly.

 Layers and scope are new additions to CSS that provide more explicit control over the cascade. We will look at these in greater depth in chapters 8 and 9.

 Without any layers or scoped styles in your stylesheets, the remaining four aspects of the cascade continue to behave as they have for years, and that is where I’ll focus first. I’ll step you through them one at a time: origin, inline styles, specificity, and source order.

1.1.1 Stylesheet origin

 The stylesheets you add to your web page aren’t the only ones the browser applies. There are three different types, or origins, of stylesheets. The styles you add to your page are called author styles. There are also user styles, which are customizations added by the end user, and user-agent styles, which are the browser’s default styles. User-agent styles have lower priority, so your styles override them. User styles are rare, but if present, they have a priority between user-agent styles and author styles.

 Note  User stylesheets can only be defined in certain browsers or with the use of browser extensions. User styles are not commonly used and beyond your control, so you generally don’t need to worry about them when styling a page.

 User-agent styles vary slightly from browser to browser, but generally, they do the same things: headings (<h1> through <h6>) and paragraphs (<p>) are given a top and bottom margin, lists (and) are given a left padding, and link colors and default font sizes are set.

 User-agent styles

 Let’s look again at the example page (figure 1.4). The title is sans serif because of the styles you added. A number of other things are determined by the user-agent styles: the list has a left padding and a list-style-type of disc to produce the bullets. Links are blue and underlined. The heading and the list have top and bottom margins, and the heading has a large font size.

 [image: figure]

Figure 1.4 User-agent styles set defaults for your web page header.

 After user-agent styles are considered, the browser applies your styles—the author styles. This allows declarations you specify to override those set by the user-agent stylesheet. If you link to several stylesheets in your HTML, they all have the same origin: the author.

 The user-agent styles set things you typically want, so they don’t do anything entirely unexpected. They also tend to be very consistent across recent versions of all modern browsers. When you don’t like what they do to a certain property, set your own value in your stylesheet. Let’s do that now. You can override some of the user-agent styles that aren’t what you want so your page will look like figure 1.5.

 [image: figure]

Figure 1.5 Author styles override user-agent styles because they have higher priority.

 In the following listing, I’ve removed the conflicting font-family declarations from the earlier example and added new ones to set colors and override the user-agent margins and the list padding and bullets. Edit your stylesheet to match these changes.

Listing 1.3 Overriding user-agent styles

 h1 {
 color: #2f4f4f;
 margin-bottom: 10px; #1
}

#main-nav {
 margin-top: 10px; #1
 list-style: none; #2
 padding-left: 0; #2
}

#main-nav li {
 display: inline-block; #3
}

#main-nav a {
 color: white; #4
 background-color: #13a4a4; #4
 padding: 5px; #4
 border-radius: 2px; #4
 text-decoration: none; #4
}

 #1 Reduces the margins

#2 Removes user-agent list styles

#3 Makes list items appear side by side rather than stacked

#4 Provides a button-like appearance for the navigational links

 If you’ve worked with CSS for long, you’re probably used to overriding user-agent styles. When you do, you’re using the origin part of the cascade. Your styles will always override the user-agent styles because the origins are different.

 Note  You may notice I used ID selectors in this code. There are reasons to avoid doing this, which I’ll cover in a bit.

 Important declarations

 There’s an exception to the style origin rules: declarations that are marked as important. A declaration can be marked important by adding !important to the end of the declaration before the semicolon:

 color: red !important;

 Declarations marked !important are treated as a higher-priority origin, so they will always override normal (nonimportant) styles from any origin. All taken together, the overall order of preference, in decreasing order, is as follows:

 	 Important user-agent

 	 Important user

 	 Important author

 	 Normal author

 	 Normal user

 	 Normal user-agent

 Declarations from origins earlier in this list will always win over declarations from later origins. Also, notice that the order of important origins is inverted from that of normal origins—we’ll see this concept again when we get to cascade layers in chapter 8.

 Note  Transitions and keyframe animations (covered in chapters 15 and 17) add two additional origins. These effects create “virtual” rules for dynamically changing values that receive special consideration in the cascade so they behave predictably.

 The cascade independently resolves conflicts for every property of every element on the page. For instance, if you set a bold font on a paragraph, the top and bottom margins from the user-agent stylesheet can still apply. The !important annotation is an interesting quirk of CSS, which we’ll come back to shortly.

1.1.2 Inline styles

 If conflicting declarations can’t be resolved based on their origin, the browser next considers whether they are added to an element via inline styles. When you use an HTML style attribute to apply styles, the declarations are applied only to that element. These will override any declarations applied from your stylesheet or a <style> tag. Inline styles have no selector because they are applied directly to the element they target.

 On your page, let’s make the Specials link in the navigation menu orange, as shown in figure 1.6. I’ll evaluate several ways you can accomplish this, beginning with inline styles in listing 1.4.

 [image: figure]

Figure 1.6 Applying inline styles overrides the styles applied using selectors.

 To see this in your browser, edit your page to match the code given here. (You’ll undo this change in a moment.)

Listing 1.4 Inline styles overriding declarations applied elsewhere

 <a href="/specials" class="featured"
 style="background-color: orange;"> #1
 Specials

 #1 Inline style applied via the style attribute

 To override inline declarations in your stylesheet, you’ll need to add an !important to the declaration, shifting it into a higher-priority origin. If the inline styles are marked as important, then nothing can override them. It’s preferable to do this from within the stylesheet. Delete the style attribute in listing 1.4 from your page, and we’ll look at better approaches.

1.1.3 Selector specificity

 Specificity is a feature of CSS that is often not readily apparent when learning the language, but understanding it is essential. You can go a long way without an understanding of stylesheet origin because most of the styles will be ones you add, all belonging to the author origin. But if you don’t understand specificity, it will almost certainly cause problems.

 If the previous aspects of the cascade cannot resolve a conflict between declarations, the browser seeks to resolve them by looking at the specificity of their selectors. For instance, a selector with two class names has a higher specificity than a selector with only one. If one declaration sets a background to orange but another with higher specificity sets it to teal, the browser applies the teal color.

 To illustrate, let’s see what happens if you try to turn the featured link orange with a simple class selector. Update the final part of your stylesheet so it matches the code given here.

Listing 1.5 Selectors with different specificities

 #main-nav a { #1
 color: white;
 background-color: #13a4a4; #2
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

.featured { #3
 background-color: orange;
}

 #1 Higher-specificity selector

#2 Teal background color

#3 The orange background declaration won’t override the teal due to selector specificity.

 It doesn’t work! All the links remain teal. Why? The first selector here is more specific than the second. It’s made up of an ID and a tag name, whereas the second is made up of a class name. There’s more to this than merely seeing which selector is longer, however.

 Different types of selectors also have different specificities. An ID selector has a higher specificity than a class selector, for example. In fact, a single ID has a higher specificity than a selector with any number of classes. Similarly, a class selector has a higher specificity than a tag selector (also called a type selector).

 The exact rules of specificity are

 	 If a selector has more IDs, it wins (that is, it’s more specific).

 	 If that results in a tie, the selector with the most classes wins.

 	 If that results in a tie, the selector with the most tag names wins.

 Consider the selectors shown in the following listing (but don’t add them to your page). These are written in order of increasing specificity.

Listing 1.6 Selectors with increasing specificities

 html body header h1 { #1
 color: blue;
}

body header.page-header h1 { #2
 color: orange;
}

.page-header .title { #3
 color: green;
}

#page-title { #4
 color: red;
}

 #1 Four tags

#2 Three tags and one class

#3 Two classes

#4 One ID

 The most specific selector here is #page-title, with one ID, so its color declaration of red is applied to the title. The next specific is .page-header .title, with two class names. This would be applied if the ID selector were absent. The third selector, .page-header .title, has a higher specificity than the second (body header.page-header h1) despite its length: two classes are more specific than one class. Finally, the first selector (html body header h1) is the least specific, with four element types (that is, tag names) but no IDs or classes.

 Note  Pseudo-class selectors (for example, :hover) and attribute selectors (for example, [type="input"]) each have the same specificity as a class selector. The universal selector (*) and combinators (>, +, ~) have no effect on specificity. See appendix A for more on these types of selectors.

 If you add a declaration to your CSS and it seems to have no effect, often it’s because a more specific rule is overriding it. Many times, developers write selectors using IDs, without realizing this creates a higher specificity, one that is hard to override later. If you need to override a style applied using an ID, you have to use another ID.

 It’s a simple concept, but if you don’t understand specificity, you can drive yourself mad trying to figure out why one rule works and another doesn’t.

 A notation on specificity

 A common way to indicate specificity is in a number form, often with commas between each number. For example, 1,2,2 indicates a specificity of one ID, two classes, and two tags. IDs, having the highest priority, are listed first, followed by classes and then tags.

 The selector #page-header #page-title has two IDs, no classes, and no tags. We can say this has a specificity of 2,0,0. The selector ul li, with two tags but no IDs or classes, has a specificity of 0,0,2. Table 1.1 shows the selectors from listing 1.6.

Table 1.1 Various selectors and their corresponding specificities

 	

 Selector

 	

 IDs

 	

 Classes

 	

 Tags

 	

 Notation

 	 html body header h1

 	 0

 	 0

 	 4

 	 0,0,4

 	 body header.page-header h1

 	 0

 	 1

 	 3

 	 0,1,3

 	 .page-header .title

 	 0

 	 2

 	 0

 	 0,2,0

 	 #page-title

 	 1

 	 0

 	 0

 	 1,0,0

 It now becomes a matter of comparing the numbers to determine which selector is more specific. A specificity of 1,0,0 takes precedence over a specificity of 0,2,2 and even over 0,10,0 (although I don’t recommend ever writing selectors with 10 classes) because the first number (IDs) is of the higher priority.

 Occasionally, people use a four-number notation with a 0 or 1 in the most significant digit to represent whether a declaration is applied via inline styles because inline styles were originally defined as a subset of specificity in earlier versions of the CSS specification. In this case, an inline style has a notation of 1,0,0,0. This would override styles applied via selectors, which could be indicated as having specificities of 0,1,2,0 (one ID and two classes) or something similar.

 Specificity considerations

 When you tried to apply the orange background using the .featured selector, it didn’t work. The selector #main-nav a has an ID that overrides the class selector (specificities 1,0,1 and 0,1,0). To correct this, you have some options to consider. Let’s look at several possible fixes.

 The quickest fix is to add an !important to the declaration you want to favor. Change the declaration to match the following code.

Listing 1.7 Possible fix number one

 #main-nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

.featured {
 background-color: orange !important; #1
}

 #1 Makes the declaration important; it’s now a higher-priority origin.

 This works because the !important annotation raises the declaration to a higher-priority origin. Sure, it’s easy, but it’s also a naive fix. It may do the trick now, but it can cause you problems down the road. If you start adding !important to multiple declarations, what happens when you need to override something already set as important? When you give several declarations an !important, then the origins match and the regular specificity rules apply. This ultimately will leave you back where you started.

 Let’s find a better way. Instead of trying to get around the rules of selector specificity, let’s try to make them work for us. What if you raised the specificity of your selector? Update the rulesets in your CSS to match this listing.

Listing 1.8 Possible fix number two

 #main-nav a { #1
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

#main-nav .featured { #2
 background-color: orange; #3
}

 #1 Specificity remains 1,0,1

#2 Increases the specificity to 1,1,0

#3 The !important annotation is no longer necessary.

 This fix also works. Now, your selector has one ID and one class, giving it a specificity of 1,1,0, which is higher than #main-nav a (a specificity of 1,0,1), so the background color orange is applied to the element.

 You can still make this better, though. Instead of raising the specificity of the second selector, let’s see if you can lower the specificity of the first. The element has a class as well: <ul id="main-nav" class="nav">, so you can change your CSS to target the element by its class name rather than its ID. Change #main-nav to .nav in your selectors as shown here.

Listing 1.9 Possible fix number three

 .nav { #1
 margin-top: 10px;
 list-style: none;
 padding-left: 0;
}

.nav li { #1
 display: inline-block;
}

.nav a { #2
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

.nav .featured { #3
 background-color: orange;
}

 #1 Changes #main-nav to .nav throughout the stylesheet

#2 Lowers the first specificity (0,1,1)

#3 Increases the second specificity (0,2,0)

 You’ve brought the specificity of the selectors down. The orange background is high enough to override the teal.

 As you can see from these examples, specificity tends to become a sort of arms race. This is particularly the case with large projects. It is generally best to keep specificity low when you can, so when you need to override something, your options are open.

1.1.4 Source order

 The final step to resolving the cascade is source order, sometimes referred to as order of appearance. If all other criteria are the same, then the declaration that appears later in the stylesheet—or appears in a stylesheet included later on the page—takes precedence.

 This means you can manipulate the source order to style your featured link. If you make the two conflicting selectors equal in specificity, then whichever appears last wins. Let’s consider the fourth option shown in the following listing. This uses a compound selector, a.featured, without a space. This selector targets an element that matches both criteria: an <a> that has the featured class.

Listing 1.10 Possible fix number four

 .nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

a.featured { #1
 background-color: orange;
}

 #1 Makes the specificities equal (0,1,1)

 In this solution, the specificities are equal. Source order determines which declaration is applied to your link, resulting in an orange featured button.

 This addresses your problem but, potentially, also introduces a new one: although a featured button inside the nav looks correct, what happens if you want to use the featured class on another link elsewhere on the page, outside of your nav? For example, if you added our specials elsewhere on the page, you’d get an odd blend of styles: the orange background but not the text color, padding, or border radius of the navigational links (figure 1.7).

 [image: figure]

Figure 1.7 The featured class used outside the nav produces odd results.

 Listing 1.11 shows the markup that creates this behavior. There’s now an element targeted only by the second selector but not the first, which produces an undesirable result. You’ll have to decide whether you want this orange button style to work outside of the nav, and if you do, you’ll need to make sure all the desired styles apply to it as well.

Listing 1.11 Featured link outside of nav

 <header class="page-header">
 <h1 id="page-title" class="title">Wombat Coffee Roasters</h1>
 <nav>
 <ul id="main-nav" class="nav">
 Home
 Coffees
 Brewers
 Specials

 </nav>
</header>
<main>
 <p>
 Be sure to check out
 our specials. #1
 </p>
</main>

 #1 Featured link outside nav will be partially styled.

 With no other information about your needs on this site, I’d be inclined to stick with fix number three (listing 1.9). Ideally, on your websites, you’ll be able to make some educated guesses about your needs elsewhere. Perhaps you know that you are likely to need a featured link in other places. In that case, perhaps fix number four (listing 1.10) would be what you want, with the addition of styles to support the featured class elsewhere on the page.

 Very often in CSS, as I said earlier, the best answer is, “It depends.” There are many paths to the same end result. It’s worth considering several options and thinking about the ramifications of each. When facing a styling problem, I often tackle it in two phases: first, figure out what declarations will get it looking right, and second, think through the possible ways to structure the selectors and choose the one that best fits your needs.

 Link styles and source order

 When you began studying CSS, you may have learned that your selectors for styling links should go in a certain order. That’s because source order affects the cascade. This listing shows styles for links on a page in the “correct” order. Add this to the beginning of your stylesheet, before the nav styles.

Listing 1.12 Link styles

 a:link {
 background-color: blue;
 color: white;
 text-decoration: none;
 padding: 2px;
}
a:visited {
 background-color: purple;
}
a:hover {
 background-color: transparent;
 color: blue;
 text-decoration: underline;
}

a:active {
 color: red;
}

 The cascade is the reason this order matters: given the same specificity, later styles override earlier styles. If two or more of these states are true of one element at the same time, the last one can override the others. If the user hovers over a visited link, the hover styles take precedence. If the user activates the link (that is, clicks it) while hovering over it, the active styles take precedence.

 A helpful mnemonic to remember this order is LoVe/HAte—link, visited, hover, active. Note that if you change one of the selectors to have a different specificity than the others, this will break down, and you may get unexpected results.

 Tip  You can also use the :any-link pseudo-class to target links that match either :link or :visited.

 Cascaded values

 The browser follows these steps to resolve every property for every element on the page. A declaration that “wins” the cascade is called a cascaded value. There is at most one cascaded value per property per element. A particular paragraph (<p>) on the page can have a top margin and a bottom margin, but it can’t have two different top margins or two different bottom margins. If the CSS specifies different values for one property, the cascade will choose only one when rendering the element. This is the cascaded value.

 Definition  A cascaded value is a value for a particular property applied to an element as a result of the cascade.

 If a property is never specified for an element, it has no cascaded value for that property. The same paragraph, for instance, may not have a border or padding specified.

 The cascade is getting easier to work with

 Historically, there are two common rules of thumb for working with the cascade. First, don’t use IDs in your selectors. Second, don’t use !important. These both make it difficult to override styles in the future should the need arise.

 These two rules can be good advice, but things are changing. There are many situations where using them can be acceptable—using layers and scope, specifically. However, it’s important to never use them as a knee-jerk reaction to win a specificity battle. In part 3, we will examine modern tools for controlling the cascade, and I will show you examples where it is appropriate to break these rules.

 An important note about importance

 If you’re creating a JavaScript module for distribution (such as an npm package), I strongly urge you not to apply styles inline via JavaScript if it can be avoided. If you do, you’re forcing developers using your package to either accept your styles npm or use !important for every property they want to change.

 Instead, include a stylesheet in your package. If your component needs to make style changes dynamically, it’s almost always preferable to use JavaScript to add and remove classes to the elements. Then users can use your stylesheet, and they have the option to edit it however they like without battling specificity.

1.2 Inheritance

 There’s one last way that an element can receive styles: inheritance. The cascade is frequently conflated with the concept of inheritance. Although the two topics are related, you should understand each individually.

 If an element has no cascaded value for a given property, it may inherit one from an ancestor element. It’s common to apply a font-family to the <body> element. All the descendant elements within will then inherit this font; you don’t have to apply it explicitly to each element on the page. Figure 1.8 shows how inheritance flows down the DOM tree.

 [image: figure]

Figure 1.8 Inherited properties are passed down the DOM tree from parent nodes to their descendants.

 Not all properties are inherited, however. By default, only certain ones are. In general, these are the properties you’ll want to be inherited. They are primarily properties pertaining to text: color, font, font-family, font-size, font-weight, font-variant, font-style, line-height, letter-spacing, text-align, text-indent, text-transform, white-space, and word-spacing.

 A few others inherit as well, such as the list properties: list-style, list-style-type, list-style-position, and list-style-image. The table border properties border-collapse and border-spacing are also inherited; note that these control the border behavior of tables, not the more commonly used properties for specifying borders for non-table elements. (We wouldn’t want a <div> passing its border down to every descendant element.) This is not quite a comprehensive list but very nearly. You can use inheritance in your favor on your page by applying a font to the body element, allowing its descendant elements to inherit that value (figure 1.9).

 [image: figure]

Figure 1.9 Applying a font-family to the body allows all descendant elements to inherit the same value.

 Add this code to the top of your stylesheet to apply this principle to your page.

Listing 1.13 Applying font-family to a parent element

 body {
 font-family: sans-serif; #1
}

 #1 An inherited property will pass down to descendant elements.

 This is applied to the entire page by adding it to the body. But you can also target a specific element on the page, and the value will be inherited by its descendant elements. The inheritance will pass from element to element until it’s overridden by a cascaded value.

 Use your DevTools!

 A complicated nest of values inheriting and overriding one another can quickly become difficult to keep track of. If you’re not already familiar with your browser’s developer tools, get in the habit of using them.

 DevTools provide visibility into exactly which rules are applying to which elements and why. The cascade and inheritance are abstract concepts; DevTools are the best way I know to get my bearings. Open them by right-clicking an element and choosing Inspect or Inspect Element from the context menu. The following figure is an example of what you’ll see.

 [image: sidebar figure]
 Browser DevTools are the best way to see which styles apply to an element.

 The style inspector shows every selector targeting the inspected element, ordered by specificity. Below that are all inherited properties. This shows all the cascade and inheritance for the element at a glance.

 There are lots of subtle features to help you make sense of what's happening with an element's styles. Styles closer to the top override those below. Overridden styles are crossed out. The stylesheet and line number for each ruleset are shown on the right, so you can find them in your source code. This tells you exactly which element inherited which styles and where they originated. You can also type in the Filter box at the top to hide all but a certain set of declarations.

1.3 Special values

 There are some special values that you can apply to any property to help manipulate the cascade: inherit, initial, unset, and revert. Let’s take a look at these.

 You may have noticed I provided slightly unusual styles for links back in listing 1.12: rather than a more traditional blue text, I specified white text and a blue background color. I did this intentionally to help illustrate the behavior of these keywords.

1.3.1 The inherit keyword

 Sometimes, you’ll want inheritance to take place when a cascaded value is preventing it. To do this, you can use the keyword inherit. You can override another value with this, and it will cause the element to inherit that value from its parent.

 Suppose you add a light gray footer to your page. In the footer, there may be some links, but you don’t want them to stand out too much because the footer isn’t an important part of the page. So you’ll make the links in the footer dark gray (figure 1.10).

 [image: figure]

Figure 1.10 The Terms of Use link when it inherits the gray text color

 Listing 1.14 shows the markup for this footer. Add this to the end of your page, just before the closing </body> tag. A normal page would have more content between this and the header, but this will serve the purpose.

Listing 1.14 Footer with a link

 <footer class="footer">
 © 2023 Wombat Coffee Roasters —
 Terms of use
</footer>

 Earlier, you applied some styles to all links on the page, and they will be applied to the Terms of Use link as well. To make the link in the footer gray, you’ll need to override it. Add this code to your stylesheet to do that.

Listing 1.15 The inherit value

 .footer {
 color: #666; #1
 background-color: #ccc;
 padding: 15px 0;
 text-align: center;
 font-size: 14px;
}

.footer a {
 color: inherit; #2
 background-color: transparent; #3
 text-decoration: underline;
}

 #1 Footer text color set to gray

#2 Specifies that font color should inherit from the footer

#3 Overrides blue background color

 The second ruleset here overrides the link color, giving the link in the footer a cascaded value of inherit. Thus, it inherits the color from its parent, <footer>.

 The benefit here is that the footer link will change along with the rest of the footer should anything alter it. (Editing the second ruleset can do this, or another style elsewhere could override it.) If, for example, the footer text on certain pages is a darker gray, then the link will change to match. You can also use the inherit keyword to force inheritance of a property not normally inherited, such as border or padding, though you will likely not find many practical uses for this.

1.3.2 The initial keyword

 Sometimes you’ll find you have styles applied to an element that you want to undo, as you did with the background color in listing 1.15. You can do this by specifying the keyword initial.

 Every CSS property has an initial, or default, value. If you assign the value initial to that property, then it effectively resets to its default value. It’s like a hard reset of that value.

 Instead of setting background-color: transparent, you can use initial. This is done in the following listing. Because transparent is the initial value for the background-color property, this accomplishes the same thing as the previous listing.

Listing 1.16 The initial value

 .footer a {
 color: inherit;
 background-color: initial; #1
 text-decoration: underline;
}

 #1 Resets the background color to its initial value

 The benefit of this is you don’t have to think about it as much. If you want to remove a border from an element, set border: initial. If you want to restore an element to its default width, set width: initial.

 You may be in the habit of using the value auto to do this sort of reset. In fact, you can use width: auto to achieve the same result. This is because the default value of width is auto.

 It’s important to note, however, that auto isn’t the default value for all properties. It’s not even valid for many properties; for example, border-width: auto and padding: auto are invalid and therefore have no effect. You could take the time to dig up the initial value for these, but it’s often easier to use initial.

 Note  Declaring display: initial is equivalent to display: inline. It won’t evaluate to display: block regardless of what type of element you apply it to. That’s because initial resets to the initial value for the property, not the element; inline is the default value for the display property. In this case, consider using the revert keyword instead.

1.3.3 The unset keyword

 The inherit and initial keywords are useful for clearing values you’ve set on properties that are either inherited or noninherited. The unset keyword is a combination of the two. When applied to an inherited property, it sets the value to inherit, and when applied to a noninherited property, it sets the value to initial.

 You can, of course, do this with inherit and initial, respectively, but using unset instead makes it a little simpler and helps you avoid using the wrong keyword by mistake. In this footer, you can use unset to fix both the font color and background color of links.

Listing 1.17 The unset value

 .footer a {
 color: unset; #1
 background-color: unset; #2
 text-decoration: underline;
}

 #1 Sets an inherited property to inherit

#2 Sets a noninherited property to initial

 This sets the color to inherit, allowing it to inherit the same gray color as the rest of the footer. But the background color is set to transparent, the initial value for the background-color property.

 You will notice I still had to declare text-decoration: underline to restore link underlines. In this case, unset would not work, because the initial value of the text-decoration property is none, not underline. Remember, this is the initial value for the CSS property itself, which is always the same. It does not consider the element type it’s being applied to. To “undo” the text decoration style we’ve set, we need one more keyword.

1.3.4 The revert keyword

 The initial and unset keywords essentially override all styles, from both author and user-agent stylesheets. Sometimes what you want is to override your previously set author styles but leave the user-agent styles intact. This is what the revert keyword does.

 In our footer, if you set all three properties to revert, it would revert all the way back to a blue link with an underline (the browser’s default styles). But since we like the design we have with the gray link, you can use the keyword more selectively, applying it only to text-decoration. Update your page to match listing 1.18 to see this.

Listing 1.18 The revert value

 .footer a {
 color: unset;
 background-color: unset;
 text-decoration: revert; #1
}

 #1 Reverts back to user-agent styles

 These keywords may seem like overkill in this example, where the properties are probably familiar to you; you likely know the values you hope for here and could declare them explicitly. But when working with newer CSS features or something like flexbox properties that have multiple keyword values, you may not know off the top of your head what the default values are. When this occurs, these keywords come in handy. There is also the added benefit of subtly indicating to future authors of the stylesheet that your goal is to effectively undo styles applied elsewhere in the stylesheet.

 Warning  These keywords are normal cascaded values. That means it is still possible to override them with other values when another selector with higher specificity targets the same element.

1.4 Shorthand properties

 Shorthand properties are properties that let you set the values of several other properties at one time. For example, font is a shorthand property that lets you set several font properties. This declaration specifies font-style, font-weight, font-size, line-height, and font-family:

 font: italic bold 18px/1.2 "Helvetica", "Arial", sans-serif;

 Here are some other common shorthand properties:

 	 background is a shorthand for multiple background properties: background-color, background-image, background-size, background-repeat, background-position, background-origin, background-clip, and background-attachment.

 	 border is a shorthand for border-width, border-style, and border-color, which are each, in turn, shorthand properties as well.

 	 border-width is shorthand for the top, right, bottom, and left border widths.

 Shorthand properties are useful for keeping your code succinct and clear, but a few quirks about them aren’t readily apparent.

1.4.1 Beware shorthands silently overriding other styles

 Most shorthand properties let you omit certain values and only specify the bits you’re concerned with. It’s important to know, however, that doing this still sets the omitted values; they’ll be set implicitly to their initial value. This can silently override styles you specify elsewhere. If, for example, you were to use the shorthand font property for the page title without specifying a font-weight, a font weight of normal would still be set (figure 1.11).

 [image: figure]

Figure 1.11 Using the shorthand font: 32px sans-serif sets font-weight and other omitted values to their initial value.

 Add the code from this listing to your stylesheet for an example of how this works.

Listing 1.19 Shorthand property specifying all associated values

 h1 {
 font-weight: bold;
}
.title {
 font: 32px Helvetica, Arial, sans-serif;
}

 At first glance, it may seem that <h1 class="title"> would result in a bold heading, but it doesn’t. These styles are equivalent to the following code.

Listing 1.20 Expanded equivalent to the shorthand in listing 1.19

 h1 {
 font-weight: bold;
}

.title {
 font-style: normal; #1
 font-variant: normal; #1
 font-weight: normal; #1
 font-stretch: normal; #1
 line-height: normal; #1
 font-size: 32px; #1
 font-family: Helvetica, Arial, sans-serif;
}

 #1 Initial values of these properties

 This means that applying these styles to <h1> results in a normal font weight, not bold. It can also override other font styles that would otherwise be inherited from an ancestor element. Of all the shorthand properties, font is the most egregious for causing problems because it sets such a wide array of properties. For this reason, I avoid using it except to set general styles on the <body> element. You can still encounter this problem with other shorthand properties, so be aware of this possibility.

1.4.2 Remember the order of shorthand values

 Shorthand properties try to be lenient when it comes to the order of the values you specify. You can set border: 1px solid black or border: black 1px solid, and either will work. That’s because it’s clear to the browser which value specifies the width, which specifies the color, and which specifies the border style.

 But there are many properties where the values can be more ambiguous. In these cases, the order of the values is significant. It’s important to understand this order for the shorthand properties you use.

 Top, right, bottom, left

 Shorthand property order particularly trips up developers when it comes to properties like margin and padding or some of the border properties that specify values for each of the four sides of an element. For these properties, the values are in clockwise order, beginning at the top.

 Remembering this order can keep you out of trouble. In fact, the word TRouBLe is a mnemonic you can use to remember the order: top, right, bottom, left.

 You can use this mnemonic to set padding on the four sides of an element. The links shown in figure 1.12 have a top padding of 10 px, right padding of 15 px, bottom padding of 0, and left padding of 5 px. This looks uneven, but it illustrates the principle.

 [image: figure]

Figure 1.12 Declaring padding: 10px 15px 0 5px applies different paddings to each side.

 The following listing shows the CSS for these links.

Listing 1.21 Specifying padding on each side of an element

 .nav a {
 color: white;
 background-color: #13a4a4;
 padding: 10px 15px 0 5px; #1
 border-radius: 2px;
 text-decoration: none;
}

 #1 Top, right, bottom, and left padding

 Properties whose values follow this pattern also support truncated notations. If the declaration ends before one of the four sides is given a value, that side takes its value from the opposite side. Specify three values, and the left and right sides will both use the second value. Specify two values, and the top and bottom will use the first value, while the right and left will use the second value. If you specify only one value, it will apply to all four sides. Thus, the following declarations are all equivalent:

 padding: 1em 2em;
padding: 1em 2em 1em;
padding: 1em 2em 1em 2em;

 These are equivalent to one another as well:

 margin: 1em;
margin: 1em 1em;
margin: 1em 1em 1em;
margin: 1em 1em 1em 1em;

 For many developers, the most problematic of these is when three values are given. Remember, this specifies the top, right, and bottom. Because no left value is given, it will take the same value as the right; the second value will be applied to both the left and right sides. Thus, padding: 10px 15px 0 applies 15 px padding to both the left and right sides, whereas the top padding is 10 px and the bottom padding is 0.

 Most often, however, you’ll need two values. On smaller elements in particular, it’s often better to have more padding on the sides than on the top and bottom. This approach looks good on buttons or, on our page, navigational links (figure 1.13).

 [image: figure]

Figure 1.13 Many elements look better with more horizontal padding.

 Update your stylesheet to match this listing. It uses the property shorthand to apply the vertical padding first, then the horizontal.

Listing 1.22 Specifying two padding values

 .nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px 15px; #1
 border-radius: 2px;
 text-decoration: none;
}

 #1 Top/bottom padding, followed by left/right padding

 Because so many common properties follow this pattern, it’s worth committing this order to memory.

 Horizontal, vertical

 The TRouBLe mnemonic only applies to shorthand properties that apply individually to all four sides of the box. Other properties only support up to two values. These include properties like background-position, box-shadow, and text-shadow (which aren’t shorthand properties, strictly speaking). Compared to the four-value properties like padding, the order of these values is reversed. Whereas padding: 1em 2em specifies the vertical top/bottom values first, followed by the horizontal right/left values, background-position: 25% 75% specifies the horizontal value first, followed by the vertical value.

 Although it seems counterintuitive that these are opposite, the reason for this is straightforward: the two values represent a Cartesian grid. Cartesian grid measurements are typically given in the order x, y (horizontal and then vertical). If, for example, you wanted to apply a shadow like the one shown in figure 1.14, you’d specify the x (horizontal) value first.

 [image: figure]

Figure 1.14 Box shadow positioned at 10px 2px

 The styles for this element are given here.

Listing 1.23 box-shadow specifies x value and then y value

 .nav .featured {
 background-color: orange;
 box-shadow: 10px 2px #6f9090; #1
}

 #1 Shadow offset 10px to the right and 2px down

 The first (larger) value applies to the horizontal offset, whereas the second (smaller) value applies to the vertical.

 If you’re working with a property that specifies two measurements from a corner, think “Cartesian grid.” If you’re working with one that specifies measurements for each side all the way around an element, think “clock.”

1.5 Progressive enhancement

 CSS is constantly evolving, and an important part of working in an evolving language is keeping tabs on which features are still relatively new to the language. In particular, it is good to know when a feature is only supported by a subset of common browsers.

 The language is intentionally designed to be both forward and backward compatible, and it provides you with the tools to keep your code working in both old and new browsers at the same time. With a little forethought, you can use cutting-edge features in your CSS even when you know they won’t work for all of your users.

 To do this, you can add the CSS needed to provide an acceptable (but less full-featured) experience to older browsers, and then you can layer on CSS using newer features, knowing those particular features will only work in the newest browsers. The benefit of this is that it means your code is future compatible, and as more of your users receive browser upgrades, these new features will begin working for them as well. This approach is called progressive enhancement.

 Tip  To see which browser versions support a given feature, check https://caniuse.com or the relevant documentation page on MDN at https://developer.mozilla.org/en-US/docs/Web.

 Some developers have an expectation that brand-new CSS features won’t be available to use for years because, in the early days of the web, browser updates were slow. But now all major browsers are evergreen, meaning updates are frequent and mostly automatic. Some new features go from 0% support to 80% in just a few months. Progress after that is usually slower, as some users put off clicking that Install Update button (or they are prevented from doing so based on corporate policy). However, unless you have a particular need to support an older browser, you can often expect to rely on a new feature within a year or two after all major browsers add support.

 With appropriate progressive enhancement, you often don’t even need to wait that long to begin using it—though this will vary depending on the nature of the feature in question and how essential it is to the effect you wish to accomplish.

1.5.1 Using the cascade for progressive enhancement

 The simplest way to use progressive enhancement is built into the cascade itself. If a browser encounters a declaration it does not understand, it simply ignores it. Consider the following code:

 aside {
 background-color: #333333; #1
 background-color: #333333aa; #2
}

 #1 Specifies a safe, broadly supported hex code

#2 Overrides the first value with a newer hex code format

 Because the second declaration appears after the first, the cascade uses it to determine the cascaded value of background-color for these elements. The second declaration uses a relatively new 8-digit hex color code format (the seventh and eighth digits specify an alpha value, indicating partial transparency). This syntax is supported in most browsers but not some older browsers, including Internet Explorer (IE). So, if a user happens to be using IE, their browser simply ignores that rule, and the first declaration remains the cascaded value. That user doesn’t get the full-featured experience with a bit of transparency, but they still see a perfectly usable result. The page doesn’t “break” or throw an error for them; the browser simply continues parsing the CSS and discards the unrecognized declaration.

 This may seem odd from a debugging perspective because the language never throws errors. But it’s an essential part of how the language works, and this is intentional for this very purpose: progressive enhancement.

1.5.2 Progressively enhancing selectors

 This approach is not limited to new properties or value syntaxes. It can also be applied with new selector syntaxes. Browsers that understand the selector will use it, and those that don’t will ignore the entire ruleset.

 However, there is an important nuance to be aware of: when a ruleset has multiple selectors, the browser will ignore the entire ruleset if any of the selectors are unsupported or invalid. Consider what that means for the following CSS:

 input.invalid,
input:user-invalid {
 border: 1px solid red;
}

 At the time of writing, the :user-invalid pseudo-class is a new addition to CSS (see appendix A for more details on this selector). A browser that is a few versions behind may understand input.invalid, but because it doesn’t know what :user-invalid means, it will never apply these styles, even when the first selector matches. When you want to use a new selector like this, the best approach is to separate the two selectors into their own rulesets:

 input.invalid {
 border: 1px solid red;
}
input:user-invalid {
 border: 1px solid red;
}

 This requires unfortunate duplication, but it is the best option. This is important to keep in mind when using new pseudo-classes, pseudo-elements, or attribute selectors (see appendix A).

 In simple cases like the previous example, this only requires a few lines of duplicated code, but occasionally this might require repeating a large block of CSS. Some developers who prefer to avoid the duplication will opt not to use the new feature until browsers reach a comfortable level of support for the selector in question.

1.5.3 Feature queries using @supports()

 Relying on the previously mentioned techniques is sufficient when the effect of using a new feature is small and only affects one or two CSS rules, but occasionally you will need to specify multiple different declarations for browsers that support a feature compared with those that don’t. In this case, you can use a feature query to provide a larger set of styles depending on whether or not the browser supports a given feature.

 A feature query looks like this:

 @supports (display: grid) { ... }

 The @supports rule is followed by a declaration in parentheses. If the browser understands the declaration (in this case, it supports grid), it applies any rulesets that appear between the braces. If it doesn’t understand this, it will ignore them.

 This means you can provide one set of styles using older layout technologies like floats. These will not necessarily be ideal styles (you’ll have to make some compromises), but it will get the job done. Then, using a feature query, apply the full-featured layout using a grid.

 Grid is now broadly supported in all modern browsers, but this was not always the case. I can use it to illustrate the behavior of @supports. Let’s add a small grid of links to our page and lay them out in a grid, as shown in figure 1.15.

 [image: figure]

Figure 1.15 A grid of links you will define inside a @supports block

 First, add the HTML shown in listing 1.24 to <main> between your page header and footer.

Listing 1.24 Adding a series of links to the page

 <p>Try some of our newest coffees:</p>
<div class="coffees">
 Costa Rica
 Ethiopia
 Guatemala
 Kenya
 Mexico
</div>

 Then you can add some styles to lay these links out in a grid. First, you will provide a fallback behavior for old browsers, followed by a feature query that gives a full-featured grid layout. Add these styles to your stylesheet.

Listing 1.25 Using a feature query for progressive enhancement

 .coffees {
 margin: 20px 0;
}

.coffees a {
 display: inline-block; #1
 min-width: 300px; #1
 padding: 10px 15px;
 margin-right: 10px;
 margin-bottom: 10px;
 color: black;
 background-color: transparent;
 border: 1px solid gray;
 border-radius: 5px;
}

@supports (display: grid) { #2
 .coffees {
 display: grid; #3
 grid-template-columns: 1fr 1fr 1fr; #3
 gap: 10px; #3
 }

 .coffees a {
 margin: unset; #4
 min-width: unset; #4
 }
}

 #1 Provides a fallback behavior for legacy browsers

#2 Targets only browsers that understand grid layout

#3 Defines the grid layout for modern browsers

#4 Overrides the unneeded fallback styles so they don’t apply in our grid

 The fallback and other basic styles, such as colors, are outside of the feature query block, so they’ll apply in all browsers. If you open the page in a browser that doesn’t support grid, you’ll see the fallback layout, which is similar to the grid layout. All styles relating to the grid-based layout are within the feature query block, so they’ll only apply if the browser supports grid. We will take a closer look at grid layouts in chapter 5, so don’t worry too much about these specific declarations if they’re unfamiliar.

 You can imagine how the styles might apply if the @supports block is ignored, or you can even momentarily comment it out in your stylesheet to test the fallback behavior in a modern browser and adjust it as necessary. The @supports rule can be used to query for all sorts of CSS features. Use @supports (mix-blend-mode: overlay) to query for blend mode support (see chapter 13) or @supports (color: color-mix(in oklab, red, white)) to query for color-mix support (see chapter 11). Feature queries may be constructed in a few other ways as well:

 	 @supports not(<declaration>)—Only apply rules in the feature query block if the queried declaration isn’t supported.

 	 @supports (<declaration>) or (<declaration>)—Apply rules if either queried declaration is supported.

 	 @supports (<declaration>) and (<declaration>)—Apply rules only if both queried declarations are supported.

 	 @supports selector(<selector>)—Apply rules only if the given selector is understood by the browser (for example, @supports selector(:user-invalid)).

 Using progressive enhancement, you can define the user experience for a full spectrum of users across multiple browsers, including future browsers. A browser that understands the new code will use it, and one that doesn’t will not. Web designer and educator Jen Simmons half-jokingly calls this “Quantum CSS.” You can take a feature of CSS and “use it and not use it at the same time. It works and it doesn’t work at the same time.”

 This feature of the language is known as resilience. CSS (and, similarly, HTML) are designed to be fault tolerant. As new features continue to roll out in CSS in the future, you can use this to your advantage.

 Enabling experimental features

 The W3C develops the CSS specifications in conjunction with browser development. This often means one or more browsers will begin to develop support for a feature before the specification is finalized. To discourage the use of unstable CSS in production websites, these experimental features only work for developers who intentionally turn them on in their browser settings. This allows for early experimentation and feedback while a specification is still being finalized. It’s important to know how to access experimental features should you want to learn those in the future.

OEBPS/Images/Grant_author-photo.png

OEBPS/Images/cover0001.jpg

OEBPS/Images/1-7.png

OEBPS/Images/1-10.png

OEBPS/Images/1-12.png

OEBPS/Images/1-9.png

OEBPS/Images/1-4.png

OEBPS/Images/1-unnumb.png

OEBPS/Images/1-8.png

OEBPS/Images/1-15.png

OEBPS/Images/1-1.png

OEBPS/Images/1-3.png

OEBPS/Images/1-6.png

OEBPS/Images/1-11.png

OEBPS/Images/1-5.png

OEBPS/Images/1-13.png

OEBPS/Images/1-2.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/1-14.png

