

 [image: cover]

 Objective-C Fundamentals

 Christopher K. Fairbairn, Johannes Fahrenkrug & Collin Ruffenach

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	Development editor:
Technical editor:
Copyeditor:
Proofreader:
Typesetter:
Cover designer:

 	Troy Mott
Amos Bannister
Linda Kern
Katie Tennant
Dennis Dalinnik
Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Cover Illustration

 1. Getting started with Objective-C

 Chapter 1. Building your first iOS application

 Chapter 2. Data types, variables, and constants

 Chapter 3. An introduction to objects

 Chapter 4. Storing data in collections

 2. Building your own objects

 Chapter 5. Creating classes

 Chapter 6. Extending classes

 Chapter 7. Protocols

 Chapter 8. Dynamic typing and runtime type information

 Chapter 9. Memory management

 3. Making maximum use of framework functionality

 Chapter 10. Error and exception handling

 Chapter 11. Key-Value Coding and NSPredicate

 Chapter 12. Reading and writing application data

 Chapter 13. Blocks and Grand Central Dispatch

 Chapter 14. Debugging techniques

 Appendix A. Installing the iOS SDK

 Appendix B. The basics of C

 Appendix C. Alternatives to Objective-C

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Cover Illustration

 1. Getting started with Objective-C

 Chapter 1. Building your first iOS application

 1.1. Introducing the iOS development tools

 1.1.1. Adapting the Cocoa frameworks for mobile devices

 1.2. Adjusting your expectations

 1.2.1. A survey of hardware specifications, circa mid-2011

 1.2.2. Expecting an unreliable internet connection

 1.3. Using Xcode to develop a simple Coin Toss game

 1.3.1. Introducing Xcode—Apple’s IDE

 1.3.2. Launching Xcode easily

 1.3.3. Creating the project

 1.3.4. Writing the source code

 1.4. Hooking up the user interface

 1.4.1. Adding controls to a view

 1.4.2. Connecting controls to source code

 1.5. Compiling the Coin Toss game

 1.6. Taking Coin Toss for a test run

 1.6.1. Selecting a destination

 1.6.2. Using breakpoints to inspect the state of a running application

 1.6.3. Running the CoinToss game in the iPhone simulator

 1.6.4. Controlling the debugger

 1.7. Summary

 Chapter 2. Data types, variables, and constants

 2.1. Introducing the Rental Manager application

 2.1.1. Laying the foundations

 2.2. The basic data types

 2.2.1. Counting on your fingers—integral numbers

 2.2.2. Filling in the gaps—floating-point numbers

 2.2.3. Characters and strings

 2.2.4. Boolean truths

 2.3. Displaying and converting values

 2.3.1. NSLog and Format Specifiers

 2.3.2. Type casts and type conversions

 2.4. Creating your own data types

 2.4.1. Enumerations

 2.4.2. Structures

 2.4.3. Arrays

 2.4.4. The importance of descriptive names

 2.5. Completing Rental Manager v1.0, App Store here we come!

 2.6. Summary

 Chapter 3. An introduction to objects

 3.1. A whirlwind tour of object-oriented programming concepts

 3.1.1. What’s wrong with procedural-based languages such as C?

 3.1.2. What are objects?

 3.1.3. What are classes?

 3.1.4. Inheritance and polymorphism

 3.2. The missing data type: id

 3.3. Pointers and the difference between reference and value types

 3.3.1. Memory maps

 3.3.2. Obtaining the address of a variable

 3.3.3. Following a pointer

 3.3.4. Comparing the values of pointers

 3.4. Communicating with objects

 3.4.1. Sending a message to an object

 3.4.2. Sending a message to a class

 3.4.3. Sending nonexistent messages

 3.4.4. Sending messages to nil

 3.5. Strings

 3.5.1. Constructing strings

 3.5.2. Extracting characters from strings

 3.5.3. Modifying strings

 3.5.4. Comparing strings

 3.6. Sample application

 3.7. Summary

 Chapter 4. Storing data in collections

 4.1. Arrays

 4.1.1. Constructing an array

 4.1.2. Accessing array elements

 4.1.3. Searching for array elements

 4.1.4. Iterating through arrays

 4.1.5. Adding items to an array

 4.2. Dictionaries

 4.2.1. Constructing a dictionary

 4.2.2. Accessing dictionary entries

 4.2.3. Adding key/value pairs

 4.2.4. Enumerating all keys and values

 4.3. Boxing

 4.3.1. The NSNumber class

 4.3.2. The NSValue class

 4.3.3. nil vs. NULL vs. NSNull

 4.4. Making the Rental Manager application data driven

 4.5. Summary

 2. Building your own objects

 Chapter 5. Creating classes

 5.1. Building custom classes

 5.1.1. Adding a new class to the project

 5.2. Declaring the interface of a class

 5.2.1. Instance variables (ivars)

 5.2.2. Method declarations

 5.2.3. Fleshing out the header file for the CTRentalProperty class

 5.3. Providing an implementation for a class

 5.3.1. Defining method implementations

 5.3.2. Accessing instance variables

 5.3.3. Sending messages to self

 5.3.4. Fleshing out the method file for the CTRentalProperty class

 5.4. Declared properties

 5.4.1. @property syntax

 5.4.2. Synthesizing property getters and setters

 5.4.3. Dot syntax

 5.5. Creating and destroying objects

 5.5.1. Creating and initializing objects

 5.5.2. init is pretty dumb

 5.5.3. Combining allocation and initialization

 5.5.4. Destroying objects

 5.6. Using the class in the Rental Manager application

 5.7. Summary

 Chapter 6. Extending classes

 6.1. Subclassing

 6.1.1. What is subclassing?

 6.2. Adding new instance variables

 6.3. Accessing existing instance variables

 6.3.1. Manual getters and setters approach

 6.4. Overriding methods

 6.4.1. Overriding the description method

 6.5. Class clusters

 6.5.1. Why use class clusters

 6.5.2. Multiple public clusters

 6.6. Categories

 6.6.1. Extending classes without subclassing

 6.6.2. Using a category

 6.6.3. Considerations when using categories

 6.7. Subclassing in your demo application

 6.7.1. Creating and subclassing CTLease

 6.7.2. Creating CTPeriodicLease as a subclass of CTLease

 6.7.3. Creating CTFixedLease as a subclass of CTLease

 6.8. Summary

 Chapter 7. Protocols

 7.1. Defining a protocol

 7.2. Implementing a protocol

 7.2.1. Creating the protocol method callers

 7.2.2. Making a class conform to a protocol

 7.3. Important protocols

 7.3.1. <UITableViewDataSource>

 7.3.2. <UITableViewDelegate>

 7.3.3. <UIActionSheetDelegate>

 7.3.4. NSXMLParser

 7.4. Summary

 Chapter 8. Dynamic typing and runtime type information

 8.1. Static vs. dynamic typing

 8.1.1. Making assumptions about the runtime type

 8.2. Dynamic binding

 8.3. How messaging works

 8.3.1. Methods, selectors, and implementations

 8.3.2. Handling unknown selectors

 8.3.3. Sending a message to nil

 8.4. Runtime type information

 8.4.1. Determining if a message will respond to a message

 8.4.2. Sending a message generated at runtime

 8.4.3. Adding new methods to a class at runtime

 8.5. Practical uses of runtime type introspection

 8.6. Summary

 Chapter 9. Memory management

 9.1. Object ownership

 9.2. Reference counting

 9.2.1. Releasing an object

 9.2.2. Retaining an object

 9.2.3. Determining the current retain count

 9.3. Autorelease pools

 9.3.1. What is an autorelease pool?

 9.3.2. Adding objects to the autorelease pool

 9.3.3. Creating a new autorelease pool

 9.3.4. Releasing objects in a pool

 9.3.5. Why not use an autorelease pool for everything?

 9.4. Memory zones

 9.5. Rules for object ownership

 9.6. Responding to low-memory warnings

 9.6.1. Implementing the UIApplicationDelegate protocol

 9.6.2. Overriding didReceiveMemoryWarning

 9.6.3. Observing the UIApplicationDidReceiveMemoryWarningNotification

 9.7. Summary

 3. Making maximum use of framework functionality

 Chapter 10. Error and exception handling

 10.1. NSError—handling errors the Cocoa way

 10.1.1. Getting NSError to talk

 10.1.2. Examining NSError’s userInfo Dictionary

 10.2. Creating NSError objects

 10.2.1. Introducing RentalManagerAPI

 10.2.2. Handling and displaying RentalManagerAPI errors

 10.3. Exceptions

 10.3.1. Throwing exceptions

 10.3.2. Catching exceptions

 10.4. Summary

 Chapter 11. Key-Value Coding and NSPredicate

 11.1. Making your objects KVC-compliant

 11.1.1. Accessing properties via KVC

 11.1.2. Constructing key paths

 11.1.3. Returning multiple values

 11.1.4. Aggregating and collating values

 11.2. Handling special cases

 11.2.1. Handling unknown keys

 11.2.2. Handling nil values

 11.3. Filtering and matching with predicates

 11.3.1. Evaluating a predicate

 11.3.2. Filtering a collection

 11.3.3. Expressing your predicate condition

 11.3.4. More complex conditions

 11.3.5. Using key paths in predicate expressions

 11.3.6. Parameterizing and templating predicate expressions

 11.4. Sample application

 11.5. Summary

 Chapter 12. Reading and writing application data

 12.1. Core Data history

 12.1.1. What does Core Data do?

 12.2. Core Data objects

 12.2.1. Managed object context

 12.2.2. Persistent store coordinator

 12.2.3. Managed object model

 12.2.4. Persistent object store

 12.3. Core Data resources

 12.3.1. Core Data entities

 12.3.2. Core Data attributes

 12.3.3. Core Data relationships

 12.4. Building the PocketTasks application

 12.4.1. Examining the Xcode Core Data template

 12.4.2. Building the data model

 12.4.3. Defining the relationships

 12.4.4. Creating Person entities in pure code

 12.4.5. Fetching Person entities in pure code

 12.4.6. Adding a master TableView

 12.4.7. Adding and deleting people

 12.4.8. Managing tasks

 12.4.9. Using model objects

 12.5. Beyond the basics

 12.5.1. Changing the data model

 12.5.2. Performance

 12.5.3. Error handling and validation

 12.6. Summary

 Chapter 13. Blocks and Grand Central Dispatch

 13.1. The syntax of blocks

 13.1.1. Blocks are closures

 13.1.2. Blocks and memory management

 13.1.3. Block-based APIs in Apple’s iOS frameworks

 13.2. Performing work asynchronously

 13.2.1. Meet GCD

 13.2.2. GCD fundamentals

 13.2.3. Building RealEstateViewer

 13.2.4. Making the image search asynchronous

 13.2.5. Making the image loading asynchronous

 13.3. Summary

 Chapter 14. Debugging techniques

 14.1. Building an application, complete with bugs

 14.2. Understanding NSLog

 14.3. Bringing memory leaks under control with Instruments

 14.4. Detecting zombies

 14.5. Summary

 Appendix A. Installing the iOS SDK

 A.1. Installing the iOS SDK

 A.1.1. Becoming an Apple developer and downloading the SDK

 A.1.2. System requirements

 A.1.3. Downloading Xcode and the iOS SDK

 A.1.4. Installing Xcode and the iOS SDK

 A.2. Preparing your iOS device for development

 A.2.1. Creating a certificate

 A.2.2. Provisioning a device using Xcode

 A.2.3. Provisioning a device manually

 A.2.4. Running an application on a device

 Appendix B. The basics of C

 B.1. Variable naming conventions

 B.1.1. Hungarian notation

 B.1.2. Camel case

 B.1.3. Namespaces

 B.2. Expressions

 B.2.1. Arithmetic operators

 B.2.2. Comparison operators

 B.2.3. Bitwise operators

 B.2.4. Assignment operators

 B.2.5. Operator precedence

 B.3. Conditional statements

 B.3.1. The if-else statement

 B.3.2. The conditional operator

 B.3.3. The switch statement

 B.4. Looping statements

 B.4.1. The while statement

 B.4.2. The do-while statement

 B.4.3. The for statement

 B.4.4. Controlling loops

 B.5. Summary

 Appendix C. Alternatives to Objective-C

 C.1. A short history of Objective-C

 C.1.1. The origins of Objective-C

 C.1.2. Popularization via NeXT Inc.

 C.1.3. Adoption and evolution by Apple Inc.

 C.2. Alternatives to Objective-C and Cocoa

 C.2.1. Close to home: Objective-C++ and plain old C or C++

 C.3. The iPhone SDK: Safari

 C.3.1. HTML5, CSS3, and other modern standards

 C.3.2. iPhone OS integration

 C.3.3. PhoneGap and other extensible cross-platform solutions

 C.4. Scripting languages: Lua and Ruby

 C.5. The 10,000-pound gorilla in the room: Adobe Flash

 C.6. Mono (.NET)

 C.7. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Having been involved in the development of applications on a variety of mobile platforms for more than 10 years, I knew the
 iPhone was something exciting when it was first introduced back in 2008. From a consumer viewpoint, it had the intangible
 and hard-to-define elements required to make a compelling device that you just wanted to keep coming back to and interact
 with. To the user, the device “felt right” and it was a pleasure to use rather than simply being a means to an end to achieve
 a singular task.

 As new and refreshing as the iPhone user experience was, the development tools that supported it were also rather unique.
 For developers without prior exposure to Apple products, the platform was full of new terms, tools, and concepts to grok.
 This book is designed to provide an introduction to these technologies, with emphasis on covering only those features available
 for use by iOS applications. For someone learning a new environment, there’s nothing worse than reading a section of a book
 and attempting to implement what you learn in an application of your own design, only to realize that the Objective-C or Cocoa
 feature discussed is only applicable to desktop Mac OS X applications.

 I hope you enjoy reading this book and you’ll remember its tips while you develop the next iTunes App Store Top 10 application!

 CHRISTOPHER FAIRBAIRN

Acknowledgments

 A technical book has more than what first meets the eye. A significant number of skills are required to make sure not only
 that it is technically correct, but that it reads well, looks good, and is approachable by the intended audience. Thus, we
 thank the entire Manning staff, without whom this book would not exist in its present form. They did more than just correct
 our errors and polish our words; they also helped make integral decisions about the organization and the contents of the book—decisions
 that improved it dramatically.

 At Manning Publications, we’d like to thank Emily Macel who helped us at an early stage to shape and focus our writing style.
 Thanks also to Troy Mott, our acquisitions editor, who initially approached us to develop the book and who stayed with us
 every step of the way. And thanks to Amos Bannister for expertly tech editing the final manuscript during production and for
 testing the code.

 Finally, we’d like to thank the reviewers who generously agreed to read our manuscript as we worked on it; they improved the
 book immensely: Ted Neward, Jason Jung, Glenn Stokol, Gershon Kagan, Cos DiFazio, Clint Tredway, Christopher Haupt, Berndt
 Hamboeck, Rob Allen, Peter Scott, Lester Lobo, Frank Jania, Curtis Miller, Chuck Hudson, Carlton Gibson, Emeka Okereke, Pratik
 Patel, Kunal Mittal, Tyson Maxwell, TVS Murthy, Kevin Butler, David Hanson, Timothy Binkley-Jones, Carlo Bottiglieri, Barry
 Ezell, Rob Allen, David Bales, Pierre-Antoine Grégoire, Kevin Munc, Christopher Schultz, Carlton Gibson, Jordan Duval-Arnould,
 Robert McGovern, Carl Douglas, Dave Mateer, Fabrice Dewasmes, David Cuillerier, Dave Verwer, and Glen Marcus.

 Christopher would like to thank his fiancée Michele for giving support and encouragement while he worked on this book. She is in many
 ways an unsung fourth “author” and has contributed greatly. Also, he would like to thank the staff at Manning for their understanding
 in a trying year involving burglaries, setbacks, and no less than three significant earthquake events. Last but not least,
 he is thankful for all the support from the important people in his life.

 Johannes would like to thank Troy Mott for getting him on board with this project, and Aaron Hillegass for helping him get started
 with Mac development in the first place, and for being an all-around nice guy. Most of all, he’d like to thank his loving
 and ever-supportive wife Simone (hey, he already did get rid of some of his nerd T-shirts!) and his parents Fred and Petra.

 Collin would like to thank Manning Publications for giving him the opportunity to work on this book and the language he is so passionate
 about. He acknowledges Aaron Hillegass for being a dedicated evangelist for this fantastic language and all its platforms;
 most of what he knows about Objective-C can be attributed to Aaron’s work. He would like to thank Panic, OmniGraffle, Delicious
 Library, Rouge Amoeba, MyDreamApp.com, and all the other inspiring software development companies that set such a high bar in the mobile space with their fantastic
 desktop software. He also thanks ELC Technologies for being so supportive in this endeavor. Thanks to his parents Debbie and
 Steve for all of their support, and his brothers Brett and Stephen for helping hash out ideas for the book. A big thanks goes
 to his girlfriend Caitlin for helping him stay dedicated and focused. And finally, he would like to thank Brandon Trebitowski,
 author with Manning Publications, for his dedication to this platform and for educating young developers.

About this Book

 Objective-C Fundamentals is an introductory book, intended to complement other books focused on iPhone and iPad application development such as iOS 4 in Action. While many books have been written on how to develop iOS applications, most focus on the individual APIs and frameworks
 provided by the device, rather than the unique language, Objective-C, which is a cornerstone of Apple’s development platform. To truly master the platform, you must have a strong grip on the
 language, and that is what this book intends to provide. Objective-C Fundamentals is a book that focuses on learning Objective-C in the context of iOS application development. No time is spent discussing
 aspects or elements of the language that are not relevant to iOS. All examples are fully usable on your own iOS-powered device.
 We encourage you to read this book straight through, from chapter 1 to chapter 14. This process will introduce the platform, discuss how to program for the iPhone and iPad, and walk you through the entire
 process step by step.

The audience

 We’ve done our best to make this book accessible to everyone who is interested in creating successful iOS applications using
 the native Objective-C–based development tools.

 If you want to learn about iOS programming, you should have some experience with programming in general. It’d be best if you’ve
 worked with C or at least one object-oriented language before, but that’s not a necessity. If you haven’t, you may find the
 introduction to the C programming language in appendix B helpful, and you should expect to do some research on your own to bolster your general programming skills. There’s no need
 to be familiar with Objective-C, Cocoa, or Apple programming in general. We’ll give you everything you need to become familiar
 with Apple’s unique programming style. You’ll probably have a leg-up if you understand object-oriented concepts; but it’s
 not necessary (and again, you’ll find an introduction in chapter 3).

Roadmap

 Chapter 1 introduces the tools surrounding Objective-C and iOS application development, and covers the creation of a basic game, ready
 to run on your device.

 Chapter 2 kicks things off by highlighting how data is stored and represented within an Objective-C–based application.

 Chapter 3 looks at how Objective-C takes small quantities of data and packages them with logic to form reusable components called classes.

 Chapter 4 shifts the focus by taking a look at some of the classes, provided out of the box by Cocoa Touch, that can be used to store
 multiple pieces of related data.

 Chapter 5 covers how to create your own custom classes and objects. Learning how to create your own classes is an important building
 block to becoming a productive developer.

 Chapter 6 takes a look at how you can build on top of the foundations provided by an existing class to create a more specialized or
 customized version of a class without needing to rewrite all of its functionality from scratch.

 Chapter 7 discusses how classes can be defined to provide specific functionality, without resorting to requiring all classes to inherit
 from a common base class. This concept is provided with a language construct called a protocol.

 Chapter 8 looks deeply at some of the aspects of Objective-C that make it unique. The important distinction between message sending
 and method invocation is discussed and some powerful programming techniques are demonstrated.

 Chapter 9 covers how to keep track of memory allocation within an Objective-C application. Since no automatic garbage collector is
 available, simple rules are discussed which will allow you to expertly craft applications without introducing memory leaks.

 Chapter 10 looks at NSError and at some real-life use cases for exceptions, which tools will help you deal with errors gracefully.

 Chapter 11 covers Key Value Coding (KVC) and NSPredicate-based queries, which are a surprisingly flexible way to filter, search and sort data within Cocoa Touch–based applications.

 Chapter 12 gets you started with Core Data and teaches you everything you’ll need to know to leverage Core Data for all of your most
 common data persistence needs.

 Chapter 13 introduces a language construct called a block and demonstrates this by showing how Grand Central Dispatch (GCD) can be used to simplify multithreaded programming, since
 it takes care of all the complicated heavy lifting for us.

 No application is perfect first time around, so chapter 14 rounds out the book with a discussion on debugging techniques that can help resolve unwanted logic errors and memory leaks
 quickly and efficiently.

 The appendixes contain additional information that didn’t fit with the flow of the main text. Appendix A outlines how to enroll in the iOS Developer Program and set up your physical iPhone or iPad device in order to run your own
 applications on them. Appendix B provides a basic overview of the C programming language that Objective-C is a descendant of. This will be ideal for developers
 with little experience of a C-based language and those that have previously only developed in languages such as Ruby, Python,
 or Java. Appendix C outlines some of the alternatives you can use to develop iOS applications, and compares their advantages and disadvantages
 to Objective-C.

 Writing this book was truly a collaborative effort. Chris wrote chapters 1 through 5, 8, 9, 11, 14, and appendixes B and C. Johannes contributed chapters 10, 12, and 13, and appendix A; and Collin was responsible for chapters 6 and 7.

Code conventions and downloads

 Code examples appear throughout this book. Longer listings appear under clear listing headings, and shorter listings appear
 between lines of text. All code is set in a monospace font like this to differentiate it from the regular font. Class names have also been set in code font; if you want to type it into your
 computer, you’ll be able to clearly make it out.

 With the exception of a few cases of abstract code examples, all code snippets began life as working programs. You can download
 the complete set of programs from www.manning.com/Objective-CFundamentals. You’ll find two ZIP files there, one for each of the SDK programs. We encourage you to try the programs as you read; they
 include additional code that doesn’t appear in the book and provide more context. In addition, we feel that seeing a program
 work can elucidate the code required to create it.

 The code snippets in this book include extensive explanations. We often include short annotations beside the code; and sometimes
 numbered cueballs beside lines of code link the subsequent discussion to the code lines.

Software requirements

 An Intel-based Macintosh running OS X 10.6 or higher is required to develop iOS applications. You also need to download the
 Xcode IDE and iOS SDK. Xcode is available for purchase in the Mac App Store and the iOS SDK is freely downloadable.

 However, the best approach to obtaining Xcode and developing iOS applications is to pay a yearly subscription fee for the
 iOS Developer Program (http://developer.apple.com/programs/ios/). This will provide free access to Xcode and iOS SDK downloads as well as enable testing and deployment of applications on
 real iPhone and iPad devices, and the iTunes App Store.

Author Online

 Purchase of Objective-C Fundamentals includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/Objective-CFundamentals. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the authors
 some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 On the cover of Objective-C Fundamentals is “A man from Tinjan, Istria,” a village in the interior of the peninsula of Istria in the Adriatic Sea, off Croatia. The
 illustration is taken from a reproduction of an album of Croatian traditional costumes from the mid-nineteenth century by
 Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a
 helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town:
 the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of
 figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 In this region of Croatia, the traditional costume for men consists of black woolen trousers, jacket, and vest decorated with
 colorful embroidered trim. The figure on the cover is wearing a lighter version of the costume, designed for hot Croatian
 summers, consisting of black linen trousers and a short, black linen jacket worn over a white linen shirt. A gray belt and
 black wide-brimmed hat complete the outfit.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Getting started with Objective-C

 Becoming an iOS application developer can require mastering a number of new tools and technologies such as the Xcode IDE and
 the Objective-C programming language. Although plenty of step-by-step how-to tutorials are available online for developing
 small example applications, such as a photo viewer or RSS news feed display application and so on, these typically don’t provide
 much in the way of background information to enable you to develop applications of your own design.

 In this part of the book, you’ll develop a small game as a learning exercise to become familiar with the development tools
 surrounding the Objective-C language. As you progress through these chapters, you’ll discover more of the meaning and purpose
 behind the individual steps and tasks outlined in developing the game so you can see the theory and purpose behind each step.

 Toward the end of this part, you’ll reach a stage where you can confidently create a new project within Xcode and describe
 the purpose of each file and the meaning behind the various code snippets found within them.

Chapter 1. Building your first iOS application

	

 This chapter covers

	
Understanding the iOS development environment

 	Learning how to use Xcode and Interface Builder

 	Building your first application

	

As a developer starting out on the iOS platform, you’re faced with learning a lot of new technologies and concepts in a short
 period of time. At the forefront of this information overload is a set of development tools you may not be familiar with and
 a programming language shaped by a unique set of companies and historical events.

 iOS applications are typically developed in a programming language called Objective-C and supported by a support library called
 Cocoa Touch. If you’ve already developed Mac OS X applications, you’re probably familiar with the desktop cousins of these
 technologies. But it’s important to note that the iOS versions of these tools don’t provide exactly the same capabilities,
 and it’s important to learn the restrictions, limitations, and enhancements provided by the mobile device. In some cases,
 you may even need to unlearn some of your desktop development practices.

 While developing iOS applications, most of your work will be done in an application called Xcode. Xcode 4, the latest version of the IDE, has Interface Builder (for creating the user interface) built directly into it.
 Xcode 4 enables you to create, manage, deploy, and debug your applications throughout the entire software development life-cycle.
 When creating an application that supports more than one type of device powered by the iOS, you may wish to present slightly
 different user interfaces for specific device types while powering all variants via the same core application logic underneath.
 Doing so is easier if the concept of model-view-controller separation is used, something that Xcode 4 can help you with.

 This chapter covers the steps required to use these tools to build a small game for the iPhone, but before we dive into the
 technical steps, let’s discuss the background of the iOS development tools and some of the ways mobile development differs
 from desktop and web-based application development.

1.1. Introducing the iOS development tools

 Objective-C is a strict superset of the procedural-based C programming language. This fact means that any valid C program
 is also a valid Objective-C program (albeit one that doesn’t make use of any Objective-C enhancements).

 Objective-C extends C by providing object-oriented features. The object-oriented programming model is based on sending messages
 to objects, which is different from the model used by C++ and Java, which call methods directly on an object. This difference
 is subtle but is also one of the defining features that enables many of Objective-C’s features that are typically more at
 home in a dynamic language such as Ruby or Python.

 A programming language, however, is only as good as the features exposed by its support libraries. Objective-C provides syntax
 for performing conditional logic and looping constructs, but it doesn’t provide any inherent support for interacting with
 the user, accessing network resources, or reading files. To facilitate this type of functionality without requiring it to
 be written from scratch for each application, Apple includes in the SDK a set of support libraries collectively called Cocoa Touch. If you’re an existing Java or .NET developer, you can view the Cocoa Touch library as performing a purpose similar to the
 Java Class Library or .NET’s Base Class Libraries (BCL).

 1.1.1. Adapting the Cocoa frameworks for mobile devices

 Cocoa Touch consists of a number of frameworks (commonly called kits). A framework is a collection of classes that are grouped together by a common purpose or task. The two main frameworks you
 use in iPhone applications are Foundation Kit and UIKit. Foundation Kit is a collection of nongraphical system classes consisting
 of data structures, networking, file IO, date, time, and string-handling functions, and UIKit is a framework designed to help
 develop GUIs with rich animations.

 Cocoa Touch is based on the existing Cocoa frameworks used for developing desktop applications on Mac OS X. But rather than
 making Cocoa Touch a direct line-by-line port to the iPhone, Apple optimized the frameworks for use in iPhone and iPod Touch applications. Some Cocoa frameworks were
 even replaced entirely if Apple thought improvements in functionality, performance, or user experience could be achieved in
 the process. UIKit, for example, replaced the desktop-based AppKit framework.

 The software runtime environment for native iOS applications is shown in figure 1.1. It’s essentially the same software stack for desktop applications if you replace iOS with Mac OS X at the lowest level and
 substitute some of the frameworks in the Cocoa layer.

 Figure 1.1. The software runtime environment for iOS applications, showing the operating system, Objective-C runtime, and Cocoa Touch
 framework layers

 [image:]

 Although the Cocoa Touch frameworks are Objective-C–based APIs, the iOS development platform also enables you to access standard
 C-based APIs. The ability to reuse C (or C++) libraries in your Objective-C applications is quite powerful. It enables you
 to reuse existing source code you may have originally developed for other mobile platforms and to tap many powerful open source
 libraries (license permitting), meaning you don’t need to reinvent the wheel. As an example, a quick search on Google will
 find existing C-based source code for augmented reality, image analysis, and barcode detection, to name a few possibilities,
 all of which are directly usable by your Objective-C application.

1.2. Adjusting your expectations

 With a development environment that will already be familiar to existing Mac OS X developers, you may mistakenly think that
 the iPhone is just another miniature computing device, similar to any old laptop, tablet, or netbook. That idea couldn’t be
 any further from the truth. An iPhone is more capable than a simple cell phone but less so than a standard desktop PC. As
 a computing device, it fits within a market space similar to that of netbooks, designed more for casual and occasional use
 throughout the day in a variety of situations and environments than for sustained periods of use in a single session.

 1.2.1. A survey of hardware specifications, circa mid-2011

 On taking an initial look at an iPhone 4, you’ll undoubtedly notice the 3.5-inch screen, 960 x 640 pixels, that virtually
 dominates the entire front of the device. Its general size and the fact that the built-in touch screen is the only way for
 users to interact with the device can have important ramifications on application design. Although 960 x 640 is larger than
 many cell phones, it probably isn’t the screen on which to view a 300-column-by-900-row spreadsheet.

 As an example of the kind of hardware specifications you can expect to see, table 1.1 outlines the specifications of common iPhone, iPod Touch, and iPad models available in mid-2010. In general, the hardware
 specifications lag behind those of desktop PCs by a couple of years, but the number of integrated hardware accessories that
 your applications can take advantage of, such as camera, Bluetooth, and GPS, is substantially higher.

 Table 1.1. Comparison of hardware specifications of various iPhone and iPod Touch devices

	
 Feature

 	
 iPhone 3G

 	
 iPhone 3GS

 	
 iPhone 4

 	
 iPad

 	
 iPad2

	RAM
 	128 MB
 	256 MB
 	512 MB
 	256 MB
 	512 MB

	Flash
 	8-16 GB
 	16-32 GB
 	16-32 GB
 	16-64 GB
 	16-64 GB

	Processor
 	412 MHz
ARM11

 	600 MHz ARM
Cortex

 	1 GHz Apple A4
 	1 GHz Apple
A4

 	1 GHz dual-core Apple A5

	Cellular
 	3.6 Mbps
 	7.2 Mbps
 	7.2 Mbps
 	7.2 Mbps (optional)
 	7.2 Mbps (optional)

	Wi-Fi
 	Yes
 	Yes
 	Yes
 	Yes
 	Yes

	Camera
 	2 MP
 	3 MP AF
 	5 MP AF (back)
 0.3 MP (front)

 	—
 	0.92 MP (back)
 0.3 MP (front)

	Bluetooth
 	Yes
 	Yes
 	—
 	Yes
 	Yes

	GPS
 	Yes(no compass)
 	Yes
 	—
 	Yes
 (3G models only)

 	Yes
 (3G models only)

Although it’s nice to know the hardware capabilities and specifications of each device, application developers generally need
 not concern themselves with the details. New models will come and go as the iOS platform matures and evolves until it becomes
 difficult to keep track of all the possible variants.

 Instead, you should strive to create an application that will adapt at runtime to the particular device it finds itself running
 on. Whenever you need to use a feature that’s present only on a subset of devices, you should explicitly test for its presence
 and pro-grammatically deal with it when it isn’t available. For example, instead of checking if your application is running
 on an iPhone to determine if a camera is present, you would be better off checking whether a camera is present, because some
 models of iPad now come with cameras.

 1.2.2. Expecting an unreliable internet connection

 In this age of cloud computing, a number of iOS applications need connectivity to the internet. The iOS platform provides
 two main forms of wireless connectivity: local area in the form of 802.11 Wi-Fi and wide area in the form of various cellular
 data standards. These connection choices provide a wide variability in speed, ranging from 300 kilobits to 54 megabits per
 second. It’s also possible for the connection to disappear altogether, such as when the user puts the device into flight mode,
 disables cellular roaming while overseas, or enters an elevator or tunnel.

 Unlike on a desktop, where most developers assume a network connection is always present, good iOS applications must be designed
 to cope with network connectivity being unavailable for long periods of time or unexpectedly disconnecting. The worst user
 experience your customers can have is a “sorry, cannot connect to server” error message while running late to a meeting and
 needing to access important information that shouldn’t require a working internet connection to obtain.

 In general, it’s important to constantly be aware of the environment in which your iOS application is running. Your development
 techniques may be shaped not only by the memory and processing constraints of the device but also by the way in which the
 user interacts with your application.

 That’s enough of the background information. Let’s dive right in and create an iOS application!

1.3. Using Xcode to develop a simple Coin Toss game

 Although you might have grand ideas for the next iTunes App Store smash, let’s start with a relatively simple application
 that’s easy to follow without getting stuck in too many technical details, allowing the unique features of the development
 tools to shine through. As the book progresses, we dig deeper into the finer points of everything demonstrated. For now the
 emphasis is on understanding the general process rather than the specifics of each technique.

 The application you develop here is a simple game that simulates a coin toss, such as is often used to settle an argument
 or decide who gets to go first in a competition. The user interface is shown in figure 1.2 and consists of two buttons labeled Heads and Tails. Using these buttons, the user can request that a new coin toss be made
 and call the desired result. The iPhone simulates the coin toss and updates the screen to indicate if the user’s choice is
 correct.

 Figure 1.2. Coin Toss sample game

 [image:]

 In developing this game, the first tool we need to investigate is Xcode.

 1.3.1. Introducing Xcode—Apple’s IDE

 As mentioned earlier in this chapter, Xcode is an IDE that provides a comprehensive set of features to enable you to manage
 the entire lifecycle of your software development project. Creating the initial project, defining your class or data model,
 editing your source code, building your application, and finally debugging and performance-tuning the resultant application
 are all tasks performed in Xcode.

 Xcode is built on the foundation of several open source tools: LLVM (the open source Low-Level Virtual Machine), GCC (the
 GNU compiler), GDB (the GNU debugger), and DTrace (instrumentation and profiling by Sun Microsystems).

 1.3.2. Launching Xcode easily

 Once you install the iOS software development kit (SDK), the first challenge to using Xcode is locating the application. Unlike
 most applications that install in the/Applications folder, Apple separates developer-focused tools into the/Developer/Applications
 folder.

 The easiest way to find Xcode is to use the Finder to open the root Macintosh HD folder (as shown in figure 1.3). From there, you can drill down into the Developer folder and finally the Applications subfolder. As a developer, you’ll
 practically live within Xcode, so you may wish to put the Xcode icon onto your Dock or place the folder in the Finder sidebar
 for easy access.

 Figure 1.3. A Finder window showing the location of the Developer folder, which contains all iPhone developer–related tools and documentation

 [image:]

 Once you locate the/Developer/Applications folder, you should be able to easily locate and launch Xcode.

 It’s important to note that Xcode isn’t your only option. Xcode provides all the features you require to develop applications
 out of the box, but that doesn’t mean you can’t complement it with your own tools. For example, if you have a favorite text
 editor in which you feel more productive, it’s possible to configure Xcode to use your external text editor in favor of the
 built-in functionality. The truly masochistic among you could even revert to using makefiles and the command line.

	

 Help! I don’t see the Xcode application
 If you don’t have a/Developer folder or you can’t see any references to iPhone or iPad project templates when Xcode is launched,
 refer to appendix A for help on how to download and install the required software.

	

1.3.3. Creating the project

 To create your first project, select the New Project option in the File menu (Shift-Cmd-N). Xcode displays a New Project dialog
 similar to the one displayed in figure 1.4.

 Figure 1.4. The New Project dialog in Xcode showing the View-based Application template

 [image:]

 Your first decision is to choose the type of project you want to create. This is done by selecting a template that determines
 the type of source code and settings Xcode will automatically add to get your project started.

 For the Coin Toss game, you want the View-based Application template. You first select Application under the iOS header in
 the left pane, and then select View-based Application. Then click Next in the lower-right corner, which prompts you to name
 the project and allows you to specify the company identifier required to associate the application with your iOS Developer
 account. For this project, use the name CoinToss and enter a suitable company identifier.

 Xcode uses the product name and company identifier values to produce what is called a bundle identifier. iOS uniquely identifies each application by this string. In order for the operating system to allow the CoinToss game to run, its bundle identifier must match up with one included in
 a provisioning profile that’s been installed on the device. If the device can’t find a suitable profile, it refuses to run
 the application. This is how Apple controls with an iron fist which applications are allowed in its ecosystem. If you don’t
 have a suitable company identifier or are unsure what to enter here, follow the instructions in appendix A before proceeding with the rest of this chapter.

 Once all the details are entered, deselect the Include Unit Tests check box and click Next, which prompts you to select where
 you want the project and generated source code files to be saved.

	

 Help! I don’t see any iOS-related options
 If you see no iOS-based templates in the New Project dialog, it’s possible you haven’t correctly installed the iOS SDK. The
 copy of Xcode you’re running is probably from a Mac OS X Install DVD or perhaps was downloaded directly from the Apple Developer
 Connection (ADC) website and is suitable only for development of desktop applications.

 Installing the iOS SDK as outlined in appendix A should replace your copy of Xcode with an updated version that includes support for iPhone and iPad development.

	

You may wonder what other kinds of projects you can create. Table 1.2 lists the most common iOS project templates. Which template you choose depends on the type of user interface you want your
 application to have. But don’t get too hung up on template selection: the decision isn’t as critical as you may think. Once
 your project is created, you can alter the style of your application—it just won’t be as easy because you won’t have the project template automatically
 inserting all of the required source code for you; you’ll need to write it yourself.

 Table 1.2. Project templates available in Xcode for creating a new iOS project

	
 Project type

 	
 Description

	Navigation-based Application
 	Creates an application similar in style to the built-in Contacts application with a navigation bar across the top.

	OpenGL ES Application
 	Creates an OpenGL ES–based graphics application suitable for games and so on.

	Split View–based Application
 	Creates an application similar in style to the built-in Mail application on the iPad. Designed to display master/detail-style
 information in a single screen.

	Tab Bar Application
 	Creates an application similar in style to the built-in Clock application with a tab bar across the bottom.

	Utility Application
 	Creates an application similar in style to the built-in Stocks and Weather applications, which flip over to reveal a second
 side.

	View-based Application
 	Creates an application that consists of a single view. You can draw and respond to touch events from the custom view.

	Window-based Application
 	Creates an application that consists of a single window onto which you can drag and drop controls.

Now that you’ve completed the New Project dialog, a project window similar to the one in figure 1.5 is displayed. This is Xcode’s main window and consists of a Project Navigator pane on the left and a large, context-sensitive
 editor pane on the right.

 Figure 1.5. Main Xcode window with the CoinToss group fully expanded to show the project’s various source code files

 [image:]

 The pane on the left lists all the files that make up your application. The group labeled CoinToss represents the entire game,
 and if you expand this node, you can drill down into smaller subgroups until you eventually reach the files that make up the
 project. You’re free to create your own groupings to aid in organizing the files in any manner that suits you.

 When you click a file in the left pane, the right pane updates to provide an editor suitable for the selected file. For *.h
 and *.m source code files, a traditional source code text editor is presented, but other file types (such as *.xib resource
 files) have more complex graphical editors associated with them.

 Some groups in the left pane have special behaviors associated with them or don’t represent files at all. For example, the
 items listed under the Frameworks group indicate pre-compiled code libraries that the current project makes use of.

 As you become more comfortable with developing applications in Xcode, you’ll become adept at exploring the various sections
 presented in the Project Navigator pane. To begin your discovery, let’s write the source code for your first class.

 1.3.4. Writing the source code

 The View-based Application template provides enough source code to get a basic game displayed on the iPhone—so basic, in fact,
 that if you ran the game right now, you would simply see a gray rectangle on the screen.

 Let’s start implementing the game by opening the CoinTossViewController.h file in the Xcode window and using the text editor
 to replace the contents with the following listing.

 Listing 1.1. CoinTossViewController.h

 #import <UIKit/UIKit.h>
@interface CoinTossViewController : UIViewController {
 UILabel *status;
 UILabel *result;
}
@property (nonatomic, retain) IBOutlet UILabel *status;
@property (nonatomic, retain) IBOutlet UILabel *result;
- (IBAction)callHeads;
- (IBAction)callTails;
@end

 Don’t worry if the contents of listing 1.1 don’t make much sense to you. At this stage, it’s not important to understand the full meaning of this code. Learning these
 sorts of details is what the rest of the book is designed for—all will be revealed in time!

 For now, let’s focus on understanding the general structure of an Objective-C–based project. Objective-C is an object-oriented
 language, meaning that a large portion of your coding efforts will be spent defining new classes (types of objects). Listing 1.1 defines a new class called CoinTossViewController. By convention, the definition of a class is kept in a header file that uses a *.h file extension.

 In the CoinTossViewController header file, the first two lines declare that the class stores the details of two UILabel controls located somewhere in the user interface. A UILabel can display a single line of text, and you use these labels to display the results of the coin toss.

 The second set of statements allows code external to this class to tell you which specific UILabels you should be using. Finally, you specify that your class responds to two messages called callHeads and callTails. These messages inform you when the user has called heads or tails and a new coin toss should be initiated.

 A header (*.h) file specifies what you can expect a class to contain and how other code should interact with it. Now that
 you’ve updated the header file, you must provide the actual implementation of the features you’ve specified. Open the matching
 Coin-TossViewController.m file, and replace its contents with that of the following listing.

 Listing 1.2. CoinTossViewController.m

 [image:]

 [image:]

 Listing 1.2 at first appears long and scary looking, but when broken down into individual steps, it’s relatively straightforward to understand.

 The first statement [image:] matches up with the @property declarations in CoinTossViewController.h. The concept of properties and the advantage of synthesized ones in particular are
 explored in depth in chapter 5.

 Most of the logic in the CoinTossViewController.m file is contained in the simulateCoinToss: method, which is called whenever the user wants the result of a new coin toss. The first line simulates a coin toss by generating
 a random number between 0 and 1 to represent heads and tails respectively. The result is stored in a variable called coinLandedOnHeads.

 Once the coin toss result is determined, the two UILabel controls in the user interface are updated to match. The first conditional statement updates the result label to indicate
 if the simulated coin toss landed on heads or tails; the second statement indicates if the user correctly called the coin
 toss.

 The rest of the code in the simulateCoinToss: method sets up two CABasic-Animation objects [image:], [image:] to cause the label displaying the status of the coin toss to spin into place and fade in over time rather than abruptly updating.
 It does this by requesting that the transform.rotation property of the UILabel control smoothly rotate from 0 degrees to 720 degrees over 2.0 seconds, while the opacity property fades in from 0% (0.0) to 100% (1.0) over 3.5 seconds. It’s important to note that these animations are performed in a declarative manner. You specify the change or effect
 you desire and leave it up to the framework to worry about any timing- and redrawing-related logic required to implement those
 effects.

 The simulateCoinToss: method expects a single parameter called userCalled-Heads, which indicates if the user expects the coin toss to result in heads or tails. Two additional methods, callHeads and callTails, are simple convenience methods that call simulateCoinToss: with the userCalledHeads parameter set as expected.

 The final method, called dealloc [image:], deals with memory management–related issues. We discuss memory management in far greater depth in chapter 9. The important thing to note is that Objective-C doesn’t automatically garbage collect unused memory (at least as far as
 the current iPhone is concerned). This means if you allocate memory or system resources, you’re also responsible for releasing
 (or deallocating) it. Not doing so will cause your application to artificially consume more resources than it needs, and in
 the worst case, you’ll exhaust the device’s limited resources and cause the application to crash.

 Now that you have the basic logic of the game developed, you must create the user interface in Xcode and connect it back to
 the code in the CoinTossView-Controller class.

1.4. Hooking up the user interface

 At this stage, you can determine from the CoinTossViewController class definition that the user interface should have at least two UILabel controls and that it should invoke the callHeads or callTails messages whenever the user wants to call the result of a new coin toss. You haven’t yet specified where on the screen the
 labels should be positioned or how the user requests that a coin toss be made.

 There are two ways to specify this kind of detail. The first is to write source code that creates the user interface controls,
 configures their properties such as font size and color, and positions them onscreen. This code can be time consuming to write,
 and you can spend a lot of your time trying to visualize how things look onscreen.

 A better alternative is to use Xcode, which allows you to visually lay out and configure your user interface controls and
 connect them to your source code. Most iOS project templates use this technique and typically include one or more *.xib files
 designed to visually describe the user interface. This project is no exception, so click the Coin-TossViewController.xib file
 in the Project Navigator pane and notice that the editor pane displays the contents of the file (figure 1.6).

 Figure 1.6. The main Xcode window demonstrating the editing of a *.xib file. Along the left edge of the editor you can see three icons,
 each representing a different object or GUI component stored in the .xib file.

 [image:]

 Along the left edge of the editor pane are some icons. Each icon represents an object that’s created when the game runs, and
 each has a tooltip that displays it name. The wireframe box labeled File’s Owner represents an instance of the CoinTossViewController class; the white rectangle represents the main view (or screen) of the application. Using Xcode, you can graphically configure
 the properties of these objects and create connections between them.

OEBPS/01fig04_alt.jpg
o et e st o for 3 sl st e e, oV
el 15 .y et s

Croson) o

OEBPS/01fig05_alt.jpg
@), @ (oromiin.z] (=) T Eoe mao @
B S e o s v o

< B
o [T T T
B Ere—

s —
L

o

10|
@ .

OEBPS/01fig02.jpg
iCarer = 8:49 Al

Select Heads or Tails

OEBPS/01fig03_alt.jpg
[XeXE) ! Macintosh HD.
(-] B=oi=] (o]
B a @
’%‘;’:‘ Applications. R oeveioper 3 Ubrary
13 Deskeop
Asopicatons P - -
g -
System usruldes g users

1 of 6 selected, 901.87 GB available

hHD

OEBPS/manning.jpg

OEBPS/01fig01.jpg
User's application

C-based
APIs

Foundation
Kit

UIKit

Obj-C runtime

ios.

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/icon.jpg

OEBPS/01list02a.jpg
RAIGORS | TOUARIOASTSONUDUEDL SRR
#import <QuartzCore/QuartzCore.h>

simplementation CoinTossViewController @ Matchvich
esynthesize status, result; <1 @property

- (void) simulateCoinToss: (BOOL)userCalledtieads {
BOOL coinLandedontteads = (arcdrandom() % 2)

0
result.text = coinlandedonHieads ? G"Heads® : @'Tails®;
if (coinLandedonHeads -= usercalledHeads)

status.text = @rCorrect!
else

status.text = @virong!®; @ setuptwo
objects

ChBasicAnimation +rotation = (CABasicAnimation
animat ioniithKeyPath:@"transforn. rotation"] ;
rotation.tiningFunction = [CAMediaTimingFunction
functionWithName :kCAediaTimingFunct ionBase InEaseout] ;
rotation. fronvalue = (NSNumber numberiithFloat:0.0f];
rotation.tovalue = [NSNumber numberWithFloat:720 + M_PI / 180.0f;
rotation.duration = 2.0f;

[status. layer addAnimation:rotation forkey:@'rotate]; Afect

CABasicAnimation +fade = (CABasicAnimation the laba
animat ioniithKeyPath:6"opacity"]

fade.timingFunction = [CAMediaTimingFunction

functionki thiame :kCAlediaTimingPunct ionBase InEaseout] ;
fade. fronvalue = [NSNumber numberWithFloat:0.0f]

fade. tovalue = [NSNumber numberWithFloat:1.0f] ;

fade. duration = 3.5¢;

[status.layer addAnimation:fade forkey:a"fade"

OEBPS/cricle01.jpg

OEBPS/01list02b.jpg
(1BAction) callleads {
(self simulateCoinToss:VES];

(1BAction) callTails {
(self simulateCoinTos

(void) viewDidunload {
self.status - nil;
selt.result = nil

(void) dealloc {
(status releasel;
[result release
(super dealloc] ;

—

Memory
‘management

OEBPS/cover.jpg

OEBPS/cricle03.jpg

OEBPS/cricle02.jpg
@)

OEBPS/01fig06_alt.jpg
Ty

o comtn s | oo 2000

OEBPS/cricle04.jpg
(4]

