

 [image: ,]

 Learn Docker in a Month of Lunches

 Elton Stoneman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Acquisitions editor:

 	
 Michael Stephens

 	
 Development editor:

 	
 Becky Whitney

 	
 Technical development editor:

 	
 Mike Shepard

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Anthony Calcara and Lori Weidert

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Yan Guor

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781617297052

 I wrote this book in a barn in Gloucestershire, England. During many late nights, my fantastic wife, Nikki, kept the family running, so this book is for her— and for our fabulous children, Jackson and Eris.

preface

 By 2019 I’d been working with Docker and containers for five years—speaking at conferences, running workshops, training people, and consulting—and in that time I never had a go-to book that I felt I could recommend to every audience. There are some very good Docker books out there, but they assume a certain background or a certain technology stack, and I felt there was a real gap for a book that took a more inclusive approach: welcoming both developers and ops people, and both Linux and Windows users. Learn Docker in a Month of Lunches is the result of me trying to write that book.

 Docker is a great technology to learn. It starts with one simple concept: packaging an application together with all its dependencies, so you can run that app in the same way anywhere. That concept makes your applications portable between laptops, datacenters, and clouds, and it breaks down barriers between development and operations teams. It’s the enabler for the major types of IT project organizations are investing in, as you’ll learn in chapter 1, but it’s also a straightforward technology you can learn in your own time.

 Manning’s Month of Lunches series is the perfect vehicle to help you, as you’ll get much more from the experience of running exercises and trying labs than you will from reading the theory of how operating systems isolate container processes. This is very much a “real-world” book, and you’ll find that each chapter has a clear focus on one useful topic, and that the topics build on each other to give you a thorough understanding of how you’ll use Docker in practice.

acknowledgments

 Writing for Manning is a real pleasure. They take great care to help you make your book as good as it can be, and I’d like to thank the reviewers and publishing team whose feedback led to countless improvements. I’d also like to thank everyone who signed up for the early access program, read the drafts, tried out the exercises, and provided comments—I really appreciate all the time you put in. Thank you.

 I would also like to thank all the reviewers, whose suggestions helped make this a better book: Andres Sacco, David Madouros, Derek Hampton, Federico Bertolucci, George Onofrei, John Kasiewicz, Keith Kim, Kevin Orr, Marcus Brown, Mark Elston, Max Hemingway, Mike Jensen, Patrick Regan, Philip Taffet, Rob Loranger, Romain Boisselle, Srihari Sridharan, Stephen Byrne, Sylvain Coulonbel, Tobias Kaatz, Trent Whiteley, and Vincent Zaballa.

about this book

 My goal for this book is quite clear: I want you to be confident about running your own applications in Docker when you’ve finished; you should be able to run a proof-of-concept project to move your apps to containers, and you should know what you need to do after that to take them to production. Every chapter is focused on real-world tasks and incrementally builds up your experience with Docker, distributed applications, orchestration, and the container ecosystem.

 This book is aimed at new and improving Docker users. Docker is a core technology that touches lots of areas of IT, and I’ve tried hard to assume a minimum amount of background knowledge. Docker crosses the boundaries of architecture, development, and operations, and I’ve tried to do the same. This book should work for you, whatever your background in IT.

 There are a lot of exercises and labs in the book, and to get the most out of your learning, you should plan to work through the samples as you’re reading the chapter. Docker supports lots of different types of computers, and you can follow along with this book using any of the main systems—Windows, Mac, or Linux, or even a Raspberry Pi is fine.

 GitHub is the source of truth for all the samples I use in the book. You’ll download the materials when you set up your lab in chapter 1, and you should be sure to star the repository and watch for notifications.

How to use this book

 This book follows the Month-of-Lunches principles: you should be able to work through each chapter in an hour, and work through the whole book in a month. “Work” is the key word here, because the daily 60 minutes should be enough time to read the chapter, work through the try-it-now exercises, and have a go at the hands-on lab. It’s working with containers that will really cement the knowledge you gain in each chapter.

Your learning journey

 Docker is a great technology to teach because you can easily build a clear learning path that starts simple and gradually adds more and more until you get to production. This book follows a proven path I’ve used in dozens of workshops, webinars, and training sessions.

 Chapter 1 will tell you how this book works, and go over the importance of containers, before walking you through installing Docker and downloading the resource files for the exercises in the book.

 Chapters 2 through 6 cover the basics. Here you’ll learn how to run containers, how to package applications for Docker and share them on Docker Hub and other servers. You’ll also learn about storage in containers and how you can work with stateful applications (like databases) in Docker.

 Chapters 7 through 11 move on to running distributed applications, where each component runs in a container connected to a virtual Docker network. It’s where you’ll learn about Docker Compose and patterns for making your containerized application production-ready—including healthchecks and monitoring. This section also covers moving apps between environments and building a CI process with Docker.

 Chapters 12 through 16 are about running distributed applications using a container orchestrator, which is a cluster of machines all running Docker. You’ll learn about joining servers together and extend your knowledge of Docker Compose to deploy applications on the cluster. You’ll also learn how to build Docker containers which are cross-platform so they run on Windows, Linux, Intel, and Arm. That portability

 Chapters 17 through 21 cover more advanced topics. There’s production readiness in there, with hints for optimizing your Docker containers, and patterns for integrating your application’s logging and configuration with the Docker platform. This part of the book also covers approaches for breaking down monolithic applications into multiple containers using powerful communication patterns: reverse proxies and message queues.

 The final chapter (chapter 22) offers guidance on moving on with Docker—how to run a proof-of-concept to move your own applications to Docker, how to get stakeholders on board in your organization, and planning your path to production. By the end of the book you should be confident in bringing Docker into your daily work.

Try-it-nows

 Every chapter of the book has guided exercises for you to complete. The source code for the book is all on GitHub at https://github.com/sixeyed/diamol —you’ll clone that when you set up your lab environment, and you’ll use it for all the sample commands, which will have you building and running apps in containers.

 Many chapters build on work from earlier in the book, but you do not need to follow all the chapters in order. In the exercises you’ll package applications to run in Docker, but I’ve already packaged them all and made them publicly available on Docker Hub. That means you can follow the samples at any stage using my packaged apps.

 If you can find time to work through the samples, though, you’ll get more out of this book than if you just skim the chapters and run the final sample application.

Hands-on labs

 Each chapter also ends with a hands-on lab that invites you to go further than the try-it-now exercises. These aren’t guided—you’ll get some instructions and some hints, and then it will be down to you to complete the lab. There are sample answers for all the labs in the sixeyed/diamol GitHub repo, so you can check what you’ve done—or see how I’ve done it if you don’t have time for one of the labs.

Additional resources

 The main resource for looking further into the topics I’ll cover in this book is Docker’s own documentation at https://docs.docker.com , which covers everything from setting up the Docker engine, through syntax for Dockerfiles and Docker Compose, to Docker Swarm and Docker’s Enterprise product range.

 Docker is a popular topic on social media too. Docker posts daily on Twitter and Facebook, and you’ll find a lot of my content out there too. You can follow me on Twitter at @EltonStoneman , my blog is https://blog.sixeyed.com , and I post YouTube videos at https://youtube.com/eltonstoneman .

About the code

 This book contains many examples of Dockerfiles and application manifests, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/learn-docker-in-a-month-of-lunches and from GitHub at https://github.com/sixeyed/diamol .

liveBook discussion forum

 Purchase of Learn Docker in a Month of Lunches includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion . You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion .

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image:]

 	
 Elton Stoneman is a Docker Captain, a multi-year Microsoft MVP, and the author of over 20 online training courses with Pluralsight. He spent most of his career as a consultant in the .NET space, designing and delivering large enterprise systems. Then he fell for containers and joined Docker, where he worked for three furiously busy and hugely fun years. Now he works as a freelance consultant and trainer, helping organizations at all stages of their container journey. Elton writes about Docker and Kubernetes at https://blog.sixeyed.com and on Twitter @EltonStoneman.

 brief contents

 Part 1. Understanding Docker containers and images

 1 Before you begin

 2 Understanding Docker and running Hello World

 3 Building your own Docker images

 5 Sharing images with Docker Hub and other registries

 6 Using Docker volumes for persistent storage

 Part 2. Running distributed applications in containers

 7 Running multi-container apps with Docker Compose

 8 Supporting reliability with health checks and dependency checks

 9 Adding observability with containerized monitoring

 10 Running multiple environments with Docker Compose

 11 Building and testing applications with Docker and Docker Compose

 Part 3. Running at scale with a container orchestrator

 12 Understanding orchestration: Docker Swarm and Kubernetes

 13 Deploying distributed applications as stacks in Docker Swarm

 14 Automating releases with upgrades and rollbacks

 15 Configuring Docker for secure remote access and CI/CD

 16 Building Docker images that run anywhere: Linux, Windows, Intel, and Arm

 Part 4. Getting your containers ready for production

 17 Optimizing your Docker images for size, speed, and security

 18 Application configuration management in containers

 20 Controlling HTTP traffic to containers with a reverse proxy

 21 Asynchronous communication with a message queue

 22 Never the end

contents

 preface

 acknowledgments

 about this book

 about the author

 Part 1. Understanding Docker containers and images

 1 Before you begin

 1.1 Why containers will take over the world

 1.1.1 Migrating apps to the cloud

 1.1.2 Modernizing legacy apps 6 Building new cloud-native apps

 1.1.3 Technical innovation: Serverless and more

 1.1.4 Digital transformation with DevOps

 1.2 Is this book for you?

 1.3 Creating your lab environment

 1.3.1 Installing Docker

 1.3.2 Verifying your Docker setup 12 Downloading the source code for the book

 1.3.3 Remembering the cleanup commands

 1.4 Being immediately effective

 2 Understanding Docker and running Hello World

 2.1 Running Hello World in a container

 2.2 So what is a container?

 2.3 Connecting to a container like a remote computer

 2.4 Hosting a website in a container

 2.5 Understanding how Docker runs containers

 2.6 Lab: Exploring the container filesystem

 3 Building your own Docker images

 3.1 Using a container image from Docker Hub

 3.2 Writing your first Dockerfile

 3.3 Building your own container image

 3.4 Understanding Docker images and image layers

 3.5 Optimizing Dockerfiles to use the image layer cache

 3.6 Lab

 4 Packaging applications from source code into Docker Images

 4.1 Who needs a build server when you have a Dockerfile?

 4.2 App walkthrough: Java source code

 4.3 App walkthrough: Node.js source code

 4.4 App walkthrough: Go source code

 4.5 Understanding multi-stage Dockerfiles

 4.6 Lab

 5 Sharing images with Docker Hub and other registries

 5.1 Working with registries, repositories, and image tags

 5.2 Pushing your own images to Docker Hub

 5.3 Running and using your own Docker registry

 5.4 Using image tags effectively

 5.5 Turning official images into golden images

 5.6 Lab

 6 Using Docker volumes for persistent storage

 6.1 Why data in containers is not permanent

 6.2 Running containers with Docker volumes

 6.3 Running containers with filesystem mounts

 6.4 Limitations of filesystem mounts

 6.5 Understanding how the container filesystem is built

 6.6 Lab

 Part 2. Running distributed applications in containers

 7 Running multi-container apps with Docker Compose

 7.1 The anatomy of a Docker Compose file

 7.2 Running a multi-container application with Compose

 7.3 How Docker plugs containers together

 7.4 Application configuration in Docker Compose

 7.5 Understanding the problem Docker Compose solves

 7.6 Lab

 8 Supporting reliability with health checks and dependency checks

 8.1 Building health checks into Docker images

 8.2 Starting containers with dependency checks

 8.3 Writing custom utilities for application check logic

 8.4 Defining health checks and dependency checks in Docker Compose

 8.5 Understanding how checks power self-healing apps

 8.6 Lab

 9 Adding observability with containerized monitoring

 9.1 The monitoring stack for containerized applications

 9.2 Exposing metrics from your application

 9.3 Running a Prometheus container to collect metrics

 9.4 Running a Grafana container to visualize metrics

 9.5 Understanding the levels of observability

 9.6 Lab

 10 Running multiple environments with Docker Compose

 10.1 Deploying many applications with Docker Compose

 10.2 Using Docker Compose override files

 10.3 Injecting configuration with environment variables and secrets

 10.4 Reducing duplication with extension fields

 10.5 Understanding the configuration workflow with Docker

 10.6 Lab

 11 Building and testing applications with Docker and Docker Compose

 11.1 How the CI process works with Docker

 11.2 Spinning up build infrastructure with Docker

 11.3 Capturing build settings with Docker Compose

 11.4 Writing CI jobs with no dependencies except Docker

 11.5 Understanding containers in the CI process

 11.6 Lab

 Part 3. Running at scale with a container orchestrator

 12 Understanding orchestration: Docker Swarm and Kubernetes

 12.1 What is a container orchestrator?

 12.2 Setting up a Docker Swarm cluster

 12.3 Running applications as Docker Swarm services

 12.4 Managing network traffic in the cluster 2

 12.5 Understanding the choice between Docker Swarm and Kubernetes

 12.6 Lab 2

 13 Deploying distributed applications as stacks in Docker Swarm

 13.1 Using Docker Compose for production deployments

 13.2 Managing app configuration with config objects

 13.3 Managing confidential settings with secrets

 13.4 Storing data with volumes in the Swarm

 13.5 Understanding how the cluster manages stacks

 13.6 Lab

 14 Automating releases with upgrades and rollbacks

 14.1 The application upgrade process with Docker

 14.2 Configuring production rollouts with Compose

 14.3 Configuring service rollbacks

 14.4 Managing downtime for your cluster

 14.5 Understanding high availability in Swarm clusters

 14.6 Lab

 15 Configuring Docker for secure remote access and CI/CD

 15.1 Endpoint options for the Docker API

 15.2 Configuring Docker for secure remote access

 15.3 Using Docker Contexts to work with remote engines

 15.4 Adding continuous deployment to your CI pipeline

 15.5 Understanding the access model for Docker

 15.6 Lab

 16 Building Docker images that run anywhere: Linux, Windows, Intel, and Arm

 16.1 Why multi-architecture images are important

 16.2 Building multi-arch images from one or more Dockerfiles

 16.3 Pushing multi-arch images to registries with manifests

 16.4 Building multi-arch images with Docker Buildx

 16.5 Understanding where multi-arch images fit in your roadmap

 16.6 Lab

 Part 4. Getting your containers ready for production

 17 Optimizing your Docker images for size, speed, and security

 17.1 How you optimize Docker images

 17.2 Choosing the right base images

 17.3 Minimizing image layer count and layer size

 17.4 Taking your multi-stage builds to the next level

 17.5 Understanding why optimization counts

 17.6 Lab

 18 Application configuration management in containers

 18.1 A multi-tiered approach to app configuration

 18.2 Packaging config for every environment

 18.3 Loading configuration from the runtime

 18.4 Configuring legacy apps in the same way as new apps

 18.5 Understanding why a flexible configuration model pays off

 18.6 Lab

 19 Writing and managing application logs with Docker

 19.1 Welcome to stderr and stdout!

 19.2 Relaying logs from other sinks to stdout

 19.3 Collecting and forwarding container logs

 19.4 Managing your log output and collection

 19.5 Understanding the container logging model

 19.6 Lab

 20 Controlling HTTP traffic to containers with a reverse proxy

 20.1 What is a reverse proxy?

 20.2 Handling routing and SSL in the reverse proxy

 20.3 Improving performance and reliability with the proxy

 20.4 Using a cloud-native reverse proxy

 20.5 Understanding the patterns a reverse proxy enables

 20.6 Lab

 21 Asynchronous communication with a message queue

 21.1 What is asynchronous messaging?

 21.2 Using a cloud-native message queue

 21.3 Consuming and handling messages

 21.4 Adding new features with message handlers

 21.5 Understanding async messaging patterns

 21.6 Lab

 22 Never the end

 22.1 Run your own proof-of-concept

 22.2 Make a case for Docker in your organization

 22.3 Plan the path to production

 22.4 Meet the Docker community

 index

Part 1. Understanding Docker containers and images

 Welcome to Learn Docker in a Month of Lunches. This first part will get you up to speed quickly on the core Docker concepts: containers, images, and registries. You’ll learn how to run applications in containers, package your own applications in containers, and share those applications for other people to use. You’ll also learn about storing data in Docker volumes and how you can run stateful apps in containers. By the end of these first chapters, you’ll be comfortable with all the fundamentals of Docker, and you’ll be learning with best practices baked in from the start.

1 Before you begin

 Docker is a platform for running applications in lightweight units called containers. Containers have taken hold in software everywhere, from serverless functions in the cloud to strategic planning in the enterprise. Docker is becoming a core competency for operators and developers across the industry--in the 2019 Stack Overflow survey, Docker polled as people’s number one “most wanted” technology (http://mng.bz/04lW).

 And Docker is a simple technology to learn. You can pick up this book as a complete beginner, and you’ll be running containers in chapter 2 and packaging applications to run in Docker in chapter 3. Each chapter focuses on practical tasks, with examples and labs that work on any machine that runs Docker--Windows, Mac, and Linux users are all welcome here.

 The journey you’ll follow in this book has been honed over the many years I’ve been teaching Docker. Every chapter is hands-on--except this one. Before you start learning Docker, it’s important to understand just how containers are being used in the real world and the type of problems they solve--that’s what I’ll cover here. This chapter also describes how I’ll be teaching Docker, so you can figure out if this is the right book for you.

 Now let’s look at what people are doing with containers--I’ll cover the five main scenarios where organizations are seeing huge success with Docker. You’ll see the wide range of problems you can solve with containers, some of which will certainly map to scenarios in your own work. By the end of this chapter you’ll understand why Docker is a technology you need to know, and you’ll see how this book will get you there.

1.1 Why containers will take over the world

 My own Docker journey started in 2014 when I was working on a project delivering APIs for Android devices. We started using Docker for development tools--source code and build servers. Then we gained confidence and started running the APIs in containers for test environments. By the end of the project, every environment was powered by Docker, including production, where we had strict requirements for availability and scale.

 When I moved off the project, the handover to the new team was a single README file in a GitHub repo. The only requirement for building, deploying, and managing the app--in any environment--was Docker. New developers just grabbed the source code and ran a single command to build and run everything locally. Administrators used the exact same tools to deploy and manage containers in the production cluster.

 Normally on a project of that size, handovers take two weeks. New developers need to install specific versions of half a dozen tools, and administrators need to install half a dozen completely different tools. Docker centralizes the toolchain and makes everything so much easier for everybody that I thought one day every project would have to use containers.

 I joined Docker in 2016, and I’ve spent the last few years watching that vision becoming reality. Docker is approaching ubiquity, partly because it makes delivery so much easier, and partly because it’s so flexible--you can bring it into all your projects, old and new, Windows and Linux. Let’s look at where containers fit in those projects.

1.1.1 Migrating apps to the cloud

 Moving apps to the cloud is top of mind for many organizations. It’s an attractive option--let Microsoft or Amazon or Google worry about servers, disks, networks, and power. Host your apps across global datacenters with practically limitless potential to scale. Deploy to new environments within minutes, and get billed only for the resources you’re using. But how do you get your apps to the cloud?

 There used to be two options for migrating an app to the cloud: infrastructure as a service (IaaS) and platform as a service (PaaS). Neither option was great. Your choice was basically a compromise--choose PaaS and run a project to migrate all the pieces of your application to the relevant managed service from the cloud. That’s a difficult project and it locks you in to a single cloud, but it does get you lower running costs. The alternative is IaaS, where you spin up a virtual machine for each component of your application. You get portability across clouds but much higher running costs. Figure 1.1 shows how a typical distributed application looks with a cloud migration using IaaS and PaaS.

 [image:]

 Figure 1.1 The original options for migrating to the cloud--use IaaS and run lots of inefficient VMs with high monthly costs, or use PaaS and get lower running costs but spend more time on the migration.

 Docker offers a third option without the compromises. You migrate each part of your application to a container, and then you can run the whole application in containers using Azure Kubernetes Service or Amazon’s Elastic Container Service, or on your own Docker cluster in the datacenter. You’ll learn in chapter 7 how to package and run a distributed application like this in containers, and in chapters 13 and 14 you’ll see how to run at scale in production. Figure 1.2 shows the Docker option, which gets you a portable application you can run at low cost in any cloud--or in the datacenter, or on your laptop.

 [image:]

 Figure 1.2 The same app migrated to Docker before moving to the cloud. This application has the cost benefits of PaaS with the portability benefits of IaaS and the ease of use you only get with Docker.

 It does take some investment to migrate to containers: you’ll need to build your existing installation steps into scripts called Dockerfiles and your deployment documents into descriptive application manifests using the Docker Compose or Kubernetes format. You don’t need to change code, and the end result runs in the same way using the same technology stack on every environment, from your laptop to the cloud.

1.1.2 Modernizing legacy apps

 You can run pretty much any app in the cloud in a container, but you won’t get the full value of Docker or the cloud platform if it uses an older, monolithic design. Monoliths work just fine in containers, but they limit your agility. You can do an automated staged rollout of a new feature to production in 30 seconds with containers. But if the feature is part of a monolith built from two million lines of code, you’ve probably had to sit through a two-week regression test cycle before you get to the release.

 Moving your app to Docker is a great first step to modernizing the architecture, adopting new patterns without needing a full rewrite of the app. The approach is simple--you start by moving your app to a single container with the Dockerfile and Docker Compose syntax you’ll learn in this book. Now you have a monolith in a container.

 Containers run in their own virtual network, so they can communicate with each other without being exposed to the outside world. That means you can start breaking your application up, moving features into their own containers, so gradually your monolith can evolve into a distributed application with the whole feature set being provided by multiple containers. Figure 1.3 shows how that looks with a sample application architecture.

 [image:]

 Figure 1.3 Decomposing a monolith into a distributed application without rewriting the whole project. All the components run in Docker containers, and a routing component decides whether requests are fulfilled by the monolith or a new microservice.

 This gives you a lot of the benefits of a microservice architecture. Your key features are in small, isolated units that you can manage independently. That means you can test changes quickly, because you’re not changing the monolith, only the containers that run your feature. You can scale features up and down, and you can use different technologies to suit requirements.

 Modernizing older application architectures is easy with Docker--you’ll do it yourself with practical examples in chapters 20 and 21. You can deliver a more agile, scalable, and resilient app, and you get to do it in stages, rather than stopping for an 18-month rewrite.

1.1.3 Building new cloud-native apps

 Docker helps you get your existing apps to the cloud, whether they’re distributed apps or monoliths. If you have monoliths, Docker helps you break them up into modern architectures, whether you’re running in the cloud or in the datacenter. And brand-new projects built on cloud-native principles are greatly accelerated with Docker.

 The Cloud Native Computing Foundation (CNCF) characterizes these new architectures as using “an open source software stack to deploy applications as microservices, packaging each part into its own container, and dynamically orchestrating those containers to optimize resource utilization.”

 Figure 1.4 shows a typical architecture for a new microservices application--this is a demo application from the community, which you can find on GitHub at https:// github.com/microservices-demo .

 [image:]

 Figure 1.4 Cloud-native applications are built with microservice architectures where every component runs in a container.

 It’s a great sample application if you want to see how microservices are actually implemented. Each component owns its own data and exposes it through an API. The frontend is a web application that consumes all the API services. The demo application uses various programming languages and different database technologies, but every component has a Dockerfile to package it, and the whole application is defined in a Docker Compose file.

 You’ll learn in chapter 4 how you can use Docker to compile code, as part of packaging your app. That means you don’t need any development tools installed to build and run apps like this. Developers can just install Docker, clone the source code, and build and run the whole application with a single command.

 Docker also makes it easy to bring third-party software into your application, adding features without writing your own code. Docker Hub is a public service where teams share software that runs in containers. The CNCF publishes a map of open source projects you can use for everything from monitoring to message queues, and they’re all available for free from Docker Hub.

1.1.4 Technical innovation: Serverless and more

 One of the key drivers for modern IT is consistency: teams want to use the same tools, processes, and runtime for all their projects. You can do that with Docker, using containers for everything from old .NET monoliths running on Windows to new Go applications running on Linux. You can build a Docker cluster to run all those apps, so you build, deploy, and manage your entire application landscape in the same way.

 Technical innovation shouldn’t be separate from business-as-usual apps. Docker is at the heart of some of the biggest innovations, so you can continue to use the same tools and techniques as you explore new areas. One of the most exciting innovations (after containers, of course) is serverless functions. Figure 1.5 shows how you can run all your applications--legacy monoliths, new cloud-native apps, and serverless functions--on a single Docker cluster, which could be running in the cloud or the datacenter.

 Serverless is all about containers. The goal of serverless is for developers to write function code, push it to a service, and that service builds and packages the code. When consumers use the function, the service starts an instance of the function to process the request. There are no build servers, pipelines, or production servers to manage; it’s all taken care of by the platform.

 Under the hood, all the cloud serverless options use Docker to package the code and containers to run functions. But functions in the cloud aren’t portable--you can’t take your AWS Lambda function and run it in Azure, because there isn’t an open standard for serverless. If you want serverless without cloud lock-in, or if you’re running in the datacenter, you can host your own platform in Docker using Nuclio, OpenFaaS, or Fn Project, which are all popular open source serverless frameworks.

 Other major innovations like machine learning, blockchain, and IoT benefit from the consistent packaging and deployment model of Docker. You’ll find the main projects all deploy to Docker Hub--TensorFlow and Hyperledger are good examples. And IoT is particularly interesting, as Docker has partnered with Arm to make containers the default runtime for Edge and IoT devices.

 [image:]

 Figure 1.5 A single cluster of servers running Docker can run every type of application, and you build, deploy, and manage them all in the same way no matter what architecture or technology stack they use.

1.1.5 Digital transformation with DevOps

 All these scenarios involve technology, but the biggest problem facing many organizations is operational--particularly so for larger and older enterprises. Teams have been siloed into “developers” and “operators,” responsible for different parts of the project life cycle. Problems at release time become a blame cycle, and quality gates are put in to prevent future failures. Eventually you have so many quality gates you can only manage two or three releases a year, and they are risky and labor-intensive.

 DevOps aims to bring agility to software deployment and maintenance by having a single team own the whole application life cycle, combining “dev” and “ops” into one deliverable. DevOps is mainly about cultural change, and it can take organizations from huge quarterly releases to small daily deployments. But it’s hard to do that without changing the technologies the team uses.

 Operators may have a background in tools like Bash, Nagios, PowerShell, and System Center. Developers work in Make, Maven, NuGet, and MSBuild. It’s difficult to bring a team together when they don’t use common technologies, which is where Docker really helps. You can underpin your DevOps transformation with the move to containers, and suddenly the whole team is working with Dockerfiles and Docker Compose files, speaking the same languages and working with the same tools.

 It goes further too. There’s a powerful framework for implementing DevOps called CALMS--Culture, Automation, Lean, Metrics, and Sharing. Docker works on all those initiatives: automation is central to running containers, distributed apps are built on lean principles, metrics from production apps and from the deployment process can be easily published, and Docker Hub is all about sharing and not duplicating effort.

1.2 Is this book for you?

 The five scenarios I outlined in the previous section cover pretty much all the activity that’s happening in the IT industry right now, and I hope it’s clear that Docker is the key to it all. This is the book for you if you want to put Docker to work on this kind of real-world problem. It takes you from zero knowledge through to running apps in containers on a production-grade cluster.

 The goal of this book is to teach you how to use Docker, so I don’t go into much detail on how Docker itself works under the hood. I won’t talk in detail about containerd or lower-level details like Linux cgroups and namespaces or the Windows Host Compute Service. If you want the internals, Manning’s Docker in Action, second edition, by Jeff Nickoloff and Stephen Kuenzli is a great choice.

 The samples in this book are all cross-platform, so you can work along using Windows, Mac, or Linux--including Arm processors, so you can use a Raspberry Pi too. I use several programming languages, but only those that are cross-platform, so among others I use .NET Core instead of .NET Framework (which only runs on Windows). If you want to learn Windows containers in depth, my blog is a good source for that (https://blog.sixeyed.com).

 Lastly, this book is specifically on Docker, so when it comes to production deployment I’ll be using Docker Swarm, the clustering technology built into Docker. In chapter 12 I’ll talk about Kubernetes and how to choose between Swarm and Kubernetes, but I won’t go into detail on Kubernetes. Kubernetes needs a month of lunches itself, but Kubernetes is just a different way of running Docker containers, so everything you learn in this book applies.

1.3 Creating your lab environment

 Now let’s get started. All you need to follow along with this book is Docker and the source code for the samples.

1.3.1 Installing Docker

 The free Docker Community Edition is fine for development and even production use. If you’re running a recent version of Windows 10 or macOS, the best option is Docker Desktop; older versions can use Docker Toolbox. Docker also supplies installation packages for all the major Linux distributions. Start by installing Docker using the most appropriate option for you--you’ll need to create a Docker Hub account for the downloads, which is free and lets you share applications you’ve built for Docker.

Installing Docker Desktop on Windows 10

 You’ll need Windows 10 Professional or Enterprise to use Docker Desktop, and you’ll want to make sure that you have all the Windows updates installed--you should be on release 1809 as a minimum (run winver from the command line to check your version). Browse to www.docker.com/products/docker-desktop and choose to install the stable version. Download the installer and run it, accepting all the defaults. When Docker Desktop is running you’ll see Docker’s whale icon in the taskbar near the Windows clock.

Installing Docker Desktop on macOS

 You’ll need macOS Sierra 10.12 or above to use Docker Desktop for Mac--click the Apple icon in the top left of the menu bar and select About this Mac to see your version. Browse to www.docker.com/products/docker-desktop and choose to install the stable version. Download the installer and run it, accepting all the defaults. When Docker Desktop is running, you’ll see Docker’s whale icon in the Mac menu bar near the clock.

Installing Docker Toolbox

 If you’re using an older version of Windows or OS X, you can use Docker Toolbox. The end experience with Docker is the same, but there are a few more pieces behind the scenes. Browse to https://docs.docker.com/toolbox and follow the instructions--you’ll need to set up virtual machine software first, like VirtualBox (Docker Desktop is a better option if you can use it, because you don’t need a separate VM manager).

Installing Docker Community Edition and Docker Compose

 If you’re running Linux, your distribution probably comes with a version of Docker you can install, but you don’t want to use that. It will likely be a very old version of Docker, because the Docker team now provides their own installation packages. You can use a script that Docker updates with each new release to install Docker in a non-production environment--browse to https://get.docker.com and follow the instructions to run the script, and then to https://docs.docker.com/compose/install to install Docker Compose.

Installing Docker on Windows Server or Linux Server distributions

 Production deployments of Docker can use the Community Edition, but if you want a supported container runtime, you can use the commercial version provided by Docker, called Docker Enterprise. Docker Enterprise is built on top of the Community Edition, so everything you learn in this book works just as well with Docker Enterprise. There are versions for all the major Linux distributions and for Windows Server 2016 and 2019. You can find all the Docker Enterprise editions together with installation instructions on Docker Hub at http://mng.bz/K29E .

1.3.2 Verifying your Docker setup

 There are several components that make up the Docker platform, but for this book you just need to verify that Docker is running and that Docker Compose is installed.

 First check Docker itself with the docker version command:

 PS> docker version Client: Docker Engine - Community Version: 19.03.5 API version: 1.40 Go version: go1.12.12 Git commit: 633a0ea Built: Wed Nov 13 07:22:37 2019 OS/Arch: windows/amd64 Experimental: false Server: Docker Engine - Community Engine: Version: 19.03.5 API version: 1.40 (minimum version 1.24) Go version: go1.12.12 Git commit: 633a0ea Built: Wed Nov 13 07:36:50 2019 OS/Arch: windows/amd64 Experimental: false

 Your output will be different from mine, because the versions will have changed and you might be using a different operating system, but as long as you can see a version number for the Client and the Server, Docker is working fine. Don’t worry about what the client and server are just yet--you’ll learn about the architecture of Docker in the next chapter.

 Next you need to test Docker Compose, which is a separate command line that also interacts with Docker. Run docker-compose version to check:

 PS> docker-compose version docker-compose version 1.25.4, build 8d51620a docker-py version: 4.1.0 CPython version: 3.7.4 OpenSSL version: OpenSSL 1.1.1c 28 May 2019

 Again, your exact output will be different from mine, but as long as you get a list of versions with no errors, you are good to go.

1.3.3 Downloading the source code for the book

 The source code for this book is in a public Git repository on GitHub. If you have a Git client installed, just run this command:

 git clone https://github.com/sixeyed/diamol.git

 If you don’t have a Git client, browse to https://github.com/sixeyed/diamol and click the Clone or Download button to download a zip file of the source code to your local machine, and expand the archive.

1.3.4 Remembering the cleanup commands

 Docker doesn’t automatically clean up containers or application packages for you. When you quit Docker Desktop (or stop the Docker service), all your containers stop and they don’t use any CPU or memory, but if you want to, you can clean up at the end of every chapter by running this command:

 docker container rm -f $(docker container ls -aq)

 And if you want to reclaim disk space after following the exercises, you can run this command:

 docker image rm -f $(docker image ls -f reference='diamol/*' -q)

 Docker is smart about downloading what it needs, so you can safely run these commands at any time. The next time you run containers, if Docker doesn’t find what it needs on your machine, it will download it for you.

1.4 Being immediately effective

 “Immediately effective” is another principle of the Month of Lunches series. In all the chapters that follow, the focus is on learning skills and putting them into practice.

 Every chapter starts with a short introduction to the topic, followed by try-it-now exercises where you put the ideas into practice using Docker. Then there’s a recap with some more detail that fills in some of the questions you may have from diving in. Lastly there’s a hands-on lab for you to go the next stage.

 All the topics center around tasks that are genuinely useful in the real world. You’ll learn how to be immediately effective with the topic during the chapter, and you’ll finish by understanding how to apply the new skill. Let’s start running some containers!

2 Understanding Docker and running Hello World

 It’s time to get hands-on with Docker. In this chapter you’ll get lots of experience with the core feature of Docker: running applications in containers. I’ll also cover some background that will help you understand exactly what a container is, and why containers are such a lightweight way to run apps. Mostly you’ll be following try-it-now exercises, running simple commands to get a feel for this new way of working with applications.

2.1 Running Hello World in a container

 Let’s get started with Docker the same way we would with any new computing concept: running Hello World. You have Docker up and running from chapter 1, so open your favorite terminal--that could be Terminal on the Mac or a Bash shell on Linux, and I recommend PowerShell in Windows.

 You’re going to send a command to Docker, telling it to run a container that prints out some simple “Hello, World” text.

 Try it now Enter this command, which will run the Hello World container:

 docker container run diamol/ch02-hello-diamol

 When we’re done with this chapter, you’ll understand exactly what’s happening here. For now, just take a look at the output. It will be something like figure 2.1.

 [image:]

 Figure 2.1 The output from running the Hello World container. You can see Docker downloading the application package (called an “image”), running the app in a container, and showing the output.

 There’s a lot in that output. I’ll trim future code listings to keep them short, but this is the very first one, and I wanted to show it in full so we can dissect it.

 First of all, what’s actually happened? The docker container run command tells Docker to run an application in a container. This application has already been packaged to run in Docker and has been published on a public site that anyone can access. The container package (which Docker calls an “image”) is named diamol/ ch02-hello-diamol (I use the acronym diamol throughout this book--it stands for Docker In A Month Of Lunches). The command you’ve just entered tells Docker to run a container from that image.

 Docker needs to have a copy of the image locally before it can run a container using the image. The very first time you run this command, you won’t have a copy of the image, and you can see that in the first output line: unable to find image locally . Then Docker downloads the image (which Docker calls “pulling”), and you can see that the image has been downloaded.

 Now Docker starts a container using that image. The image contains all the content for the application, along with instructions telling Docker how to start the application. The application in this image is just a simple script, and you see the output which starts Hello from Chapter 2! It writes out some details about the computer it’s running on:

 	
The machine name, in this example e5943557213b

 	
The operating system, in this example Linux 4.9.125-linuxkit x86_64

 	
The network address, in this example 172.17.0.2

 I said your output will be “something like this”--it won’t be exactly the same, because some of the information the container fetches depends on your computer. I ran this on a machine with a Linux operating system and a 64-bit Intel processor. If you run it using Windows containers, the I'm running on line will show this instead:

 --------------------- I'm running on: Microsoft Windows [Version 10.0.17763.557] ---------------------

 If you’re running on a Raspberry Pi, the output will show that it’s using a different processor (armv7l is the codename for ARM’s 32-bit processing chip, and x86_64 is the code for Intel’s 64-bit chip):

 --------------------- I'm running on: Linux 4.19.42-v7+ armv7l ---------------------

 This is a very simple example application, but it shows the core Docker workflow. Someone packages their application to run in a container (I did it for this app, but you will do it yourself in the next chapter), and then publishes it so it’s available to other users. Then anyone with access can run the app in a container. Docker calls this build, share, run.

 It’s a hugely powerful concept, because the workflow is the same no matter how complicated the application is. In this case it was a simple script, but it could be a Java application with several components, configuration files, and libraries. The workflow would be exactly the same. And Docker images can be packaged to run on any computer that supports Docker, which makes the app completely portable--portability is one of Docker’s key benefits.

 What happens if you run another container using the same command?

 Try it now Repeat the exact same Docker command:

 docker container run diamol/ch02-hello-diamol

 You’ll see similar output to the first run, but there will be differences. Docker already has a copy of the image locally so it doesn’t need to download the image first; it gets straight to running the container. The container output shows the same operating system details, because you’re using the same computer, but the computer name and the IP address of the container will be different:

 --------------------- Hello from Chapter 2! --------------------- My name is: 858a26ee2741 --------------------- Im running on: Linux 4.9.125-linuxkit x86_64 --------------------- My address is: inet addr:172.17.0.5 Bcast:172.17.255.255 Mask:255.255.0.0 ---------------------

 Now my app is running on a machine with the name 858a26ee2741 and the IP address 172.17.0.5 . The machine name will change every time, and the IP address will often change, but every container is running on the same computer, so where do these different machine names and network addresses come from? We’ll dig into a little theory next to explain that, and then it’s back to the exercises.

2.2 So what is a container?

 A Docker container is the same idea as a physical container--think of it like a box with an application in it. Inside the box, the application seems to have a computer all to itself: it has its own machine name and IP address, and it also has its own disk drive (Windows containers have their own Windows Registry too). Figure 2.2 shows how the app is boxed by the container.

 [image:]

 Figure 2.2 An app inside the container environment

 Those things are all virtual resources--the hostname, IP address, and filesystem are created by Docker. They’re logical objects that are managed by Docker, and they’re all joined together to create an environment where an application can run. That’s the “box” of the container.

 The application inside the box can’t see anything outside the box, but the box is running on a computer, and that computer can also be running lots of other boxes. The applications in those boxes have their own separate environments (managed by Docker), but they all share the CPU and memory of the computer, and they all share the computer’s operating system. You can see in figure 2.3 how containers on the same computer are isolated.

 [image:]

 Figure 2.3 Multiple containers on one computer share the same OS, CPU, and memory.

 Why is this so important? It fixes two conflicting problems in computing: isolation and density. Density means running as many applications on your computers as possible, to utilize all the processor and memory that you have. But apps may not work nicely with other apps--they might use different versions of Java or .NET, they may use incompatible versions of tools or libraries, or one might have a heavy workload and starve the others of processing power. Applications really need to be isolated from each other, and that stops you running lots of them on a single computer, so you don’t get density.

 The original attempt to fix that problem was to use virtual machines (VMs). Virtual machines are similar in concept to containers, in that they give you a box to run your application in, but the box for a VM needs to contain its own operating system--it doesn’t share the OS of the computer where the VM is running. Compare figure 2.3, which shows multiple containers, with figure 2.4, which shows multiple VMs on one computer.

 [image:]

 Figure 2.4 Multiple VMs on one computer each have their own OS.

 That may look like a small difference in the diagrams, but it has huge implications. Every VM needs its own operating system, and that OS can use gigabytes of memory and lots of CPU time--soaking up compute power that should be available for your applications. There are other concerns too, like licensing costs for the OS and the maintenance burden of installing OS updates. VMs provide isolation at the cost of density.

 Containers give you both. Each container shares the operating system of the computer running the container, and that makes them extremely lightweight. Containers start quickly and run lean, so you can run many more containers than VMs on the same hardware--typically five to ten times as many. You get density, but each app is in its own container, so you get isolation too. That’s another key feature of Docker: efficiency.

 Now you know how Docker does its magic. In the next exercise we’ll work more closely with containers.

2.3 Connecting to a container like a remote computer

 The first container we ran just did one thing--the application printed out some text and then it ended. There are plenty of situations where one thing is all you want to do. Maybe you have a whole set of scripts that automate some process. Those scripts need a specific set of tools to run, so you can’t just share the scripts with a colleague; you also need to share a document that describes setting up all the tools, and your colleague needs to spend hours installing them. Instead, you could package the tools and the scripts in a Docker image, share the image, and then your colleague can run your scripts in a container with no extra setup work.

 You can work with containers in other ways too. Next you’ll see how you can run a container and connect to a terminal inside the container, just as if you were connecting to a remote machine. You use the same docker container run command, but you pass some additional flags to run an interactive container with a connected terminal session.

 Try it now Run the following command in your terminal session:

 docker container run --interactive --tty diamol/base

 The --interactive flag tells Docker you want to set up a connection to the container, and the --tty flag means you want to connect to a terminal session inside the container. The output will show Docker pulling the image, and then you’ll be left with a command prompt. That command prompt is for a terminal session inside the container, as you can see in figure 2.5.

 [image:]

 Figure 2.5 Running an interactive container and connecting to the container’s terminal.

 The exact same Docker command works in the same way on Windows, but you’ll drop into a Windows command-line session instead:

 Microsoft Windows [Version 10.0.17763.557] (c) 2018 Microsoft Corporation. All rights reserved. C:\>

 Either way, you’re now inside the container and you can run any commands that you can normally run in the command line for the operating system.

 Try it now Run the commands hostname and date and you’ll see details of the container’s environment:

 / # hostname f1695de1f2ec / # date Thu Jun 20 12:18:26 UTC 2019

 You’ll need some familiarity with your command line if you want to explore further, but what you have here is a local terminal session connected to a remote machine--the machine just happens to be a container that is running on your computer. For instance, if you use Secure Shell (SSH) to connect to a remote Linux machine, or Remote Desktop Protocol (RDP) to connect to a remote Windows Server Core machine, you’ll get exactly the same experience as you have here with Docker.

 Remember that the container is sharing your computer’s operating system, which is why you see a Linux shell if you’re running Linux and a Windows command line if you’re using Windows. Some commands are the same for both (try ping google.com), but others have different syntax (you use ls to list directory contents in Linux, and dir in Windows).

 Docker itself has the same behavior regardless of which operating system or processor you’re using. It’s the application inside the container that sees it’s running on an Intel-based Windows machine or an Arm-based Linux one. You manage containers with Docker in the same way, whatever is running inside them.

 Try it now Open up a new terminal session, and you can get details of all the running containers with this command:

 docker container ls

 The output shows you information about each container, including the image it’s using, the container ID, and the command Docker ran inside the container when it started--this is some abbreviated output:

 CONTAINER ID IMAGE COMMAND CREATED STATUS f1695de1f2ec diamol/base "/bin/sh" 16 minutes ago Up 16 minutes

 If you have a keen eye, you’ll notice that the container ID is the same as the hostname inside the container. Docker assigns a random ID to each container it creates, and part of that ID is used for the hostname. There are lots of docker container commands that you can use to interact with a specific container, which you can identify using the first few characters of the container ID you want.

 Try it now docker container top lists the processes running in the container. I’m using f1 as a short form of the container ID f1695de1f2ec :

 > docker container top f1 PID USER TIME COMMAND 69622 root 0:00 /bin/sh

 If you have multiple processes running in the container, Docker will show them all. That will be the case for Windows containers, which always have several background processes running in addition to the container application.

 Try it now docker container logs displays any log entries the container has collected:

 > docker container logs f1 / # hostname f1695de1f2ec

 Docker collects log entries using the output from the application in the container. In the case of this terminal session, I see the commands I ran and their results, but for a real application you would see your code’s log entries. For example, a web application may write a log entry for every HTTP request processed, and these will show in the container logs.

 Try it now docker container inspect shows you all the details of a container:

 > docker container inspect f1 [{ "Id": "f1695de1f2ecd493d17849a709ffb78f5647a0bcd9d10f0d97ada0fcb7b05e98", "Created": "2019-06-20T12:13:52.8360567Z"

 The full output shows lots of low-level information, including the paths of the container’s virtual filesystem, the command running inside the container, and the virtual Docker network the container is connected to--this can all be useful if you’re tracking down a problem with your application. It comes as a large chunk of JSON, which is great for automating with scripts, but not so good for a code listing in a book, so I’ve just shown the first few lines.

 These are the commands you’ll use all the time when you’re working with containers, when you need to troubleshoot application problems, when you want to check if processes are using lots of CPU, or if you want to see the networking Docker has set up for the container.

 There’s another point to these exercises, which is to help you realize that as far as Docker is concerned, containers all look the same. Docker adds a consistent management layer on top of every application. You could have a 10-year-old Java app running in a Linux container, a 15-year-old .NET app running in a Windows container, and a brand-new Go application running on a Raspberry Pi. You’ll use the exact same commands to manage them-- run to start the app, logs to read out the logs, top to see the processes, and inspect to get the details.

 You’ve now seen a bit more of what you can do with Docker; we’ll finish with some exercises for a more useful application. You can close the second terminal window you opened (where you ran docker container logs), go back to the first terminal, which is still connected to the container, and run exit to close the terminal session.

2.4 Hosting a website in a container

 So far we’ve run a few containers. The first couple ran a task that printed some text and then exited. The next used interactive flags and connected us to a terminal session in the container, which stayed running until we exited the session. docker container ls will show that you have no containers, because the command only shows running containers.

 Try it now Run docker container ls --all , which shows all containers in any status:

 > docker container ls --all CONTAINER ID IMAGE COMMAND CREATED STATUS f1695de1f2ec diamol/base "/bin/sh" About an hour ago Exited (0) 858a26ee2741 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh" 3 hours ago Exited (0) 2cff9e95ce83 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh" 4 hours ago Exited (0)

 The containers have the status Exited. There are a couple of key things to understand here.

 First, containers are running only while the application inside the container is running. As soon as the application process ends, the container goes into the exited state. Exited containers don’t use any CPU time or memory. The “Hello World” container exited automatically as soon as the script completed. The interactive container we were connected to exited as soon as we exited the terminal application.

 Second, containers don’t disappear when they exit. Containers in the exited state still exist, which means you can start them again, check the logs, and copy files to and from the container’s filesystem. You only see running containers with docker container ls, but Docker doesn’t remove exited containers unless you explicitly tell it to do so. Exited containers still take up space on disk because their filesystem is kept on the computer’s disk.

 So what about starting containers that stay in the background and just keep running? That’s actually the main use case for Docker: running server applications like websites, batch processes, and databases.

 Try it now Here’s a simple example, running a website in a container:

 docker container run --detach --publish 8088:80 diamol/ch02-hello- diamol-web

 This time the only output you’ll see is a long container ID, and you get returned to your command line. The container is still running in the background.

 Try it now Run docker container ls and you’ll see that the new container has the status Up :

 > docker container ls CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES e53085ff0cc4 diamol/ch02-hello-diamol-web "bin\\httpd.exe -DFOR..." 52 seconds ago Up 50 seconds 443/tcp, 0.0.0.0:8088->80/tcp reverent_dubinsky

 The image you’ve just used is diamol/ch02-hello-diamol-web . That image includes the Apache web server and a simple HTML page. When you run this container, you have a full web server running, hosting a custom website. Containers that sit in the background and listen for network traffic (HTTP requests in this case) need a couple of extra flags in the container run command:

 	
 --detach--Starts the container in the background and shows the container ID

 	
 --publish--Publishes a port from the container to the computer

 Running a detached container just puts the container in the background so it starts up and stays hidden, like a Linux daemon or a Windows service. Publishing ports needs a little more explanation. When you install Docker, it injects itself into your computer’s networking layer. Traffic coming into your computer can be intercepted by Docker, and then Docker can send that traffic into a container.

 Containers aren’t exposed to the outside world by default. Each has its own IP address, but that’s an IP address that Docker creates for a network that Docker manages--the container is not attached to the physical network of the computer. Publishing a container port means Docker listens for network traffic on the computer port, and then sends it into the container. In the preceding example, traffic sent to the computer on port 8088 will get sent into the container on port 80--you can see the traffic flow in figure 2.6.

 [image:]

 Figure 2.6 The physical and virtual networks for computers and containers

 In this example my computer is the machine running Docker, and it has the IP address 192.168.2.150 . That’s the IP address for my physical network, and it was assigned by the router when my computer connected. Docker is running a single container on that computer, and the container has the IP address 172.0.5.1 . That address is assigned by Docker for a virtual network managed by Docker. No other computers in my network can connect to the container’s IP address, because it only exists in Docker, but they can send traffic into the container, because the port has been published.

 Try it now Browse to http://localhost:8088 on a browser. That’s an HTTP request to the local computer, but the response (see figure 2.7) comes from the container. (One thing you definitely won’t learn from this book is effective website design.)

 [image:]

 Figure 2.7 The web application served from a container on the local machine

 This is a very simple website, but even so, this app still benefits from the portability and efficiency that Docker brings. The web content is packaged with the web server, so the Docker image has everything it needs. A web developer can run a single container on their laptop, and the whole application--from the HTML to the web server stack--will be exactly the same as if an operator ran the app on 100 containers across a server cluster in production.

 The application in this container keeps running indefinitely, so the container will keep running too. You can use the docker container commands we’ve already used to manage it.

 Try it now docker container stats is another useful one: it shows a live view of how much CPU, memory, network, and disk the container is using. The output is slightly different for Linux and Windows containers:

 > docker container stats e53 CONTAINER ID NAME CPU % PRIV WORKING SET NET I/O BLOCK I/O e53085ff0cc4 reverent_dubinsky 0.36% 16.88MiB 250kB / 53.2kB 19.4MB / 6.21MB

 When you’re done working with a container, you can remove it with docker container rm and the container ID, using the --force flag to force removal if the container is still running.

 We’ll end this exercise with one last command that you’ll get used to running regularly.

 Try it now Run this command to remove all your containers:

 docker container rm --force $(docker container ls --all --quiet)

 The $() syntax sends the output from one command into another command--it works just as well on Linux and Mac terminals, and on Windows PowerShell. Combining these commands gets a list of all the container IDs on your computer, and removes them all. This is a good way to tidy up your containers, but use it with caution, because it won’t ask for confirmation.

2.5 Understanding how Docker runs containers

 We’ve done a lot of try-it-now exercises in this chapter, and you should be happy now with the basics of working with containers.

 In the first try-it-now for this chapter, I talked about the build, share, run workflow that is at the core of Docker. That workflow makes it very easy to distribute software--I’ve built all the sample container images and shared them, knowing you can run them in Docker and they will work the same for you as they do for me. A huge number of projects now use Docker as the preferred way to release software. You can try a new piece of software--say, Elasticsearch, or the latest version of SQL Server, or the Ghost blogging engine--with the same type of docker container run commands you’ve been using here.

 We’re going to end with a little more background, so you have a solid understanding of what’s actually happening when you run applications with Docker. Installing Docker and running containers is deceptively simple--there are actually a few different components involved, which you can see in figure 2.8.

 	
The Docker Engine is the management component of Docker. It looks after the local image cache, downloading images when you need them, and reusing them if they’re already downloaded. It also works with the operating system to create containers, virtual networks, and all the other Docker resources. The Engine is a background process that is always running (like a Linux daemon or a Windows service).

 	
The Docker Engine makes all the features available through the Docker API, which is just a standard HTTP-based REST API. You can configure the Engine to make the API accessible only from the local computer (which is the default), or make it available to other computers on your network.

 	
The Docker command-line interface (CLI) is a client of the Docker API. When you run Docker commands, the CLI actually sends them to the Docker API, and the Docker Engine does the work.

 It’s good to understand the architecture of Docker. The only way to interact with the Docker Engine is through the API, and there are different options for giving access to the API and securing it. The CLI works by sending requests to the API.

 So far we’ve used the CLI to manage containers on the same computer where Docker is running, but you can point your CLI to the API on a remote computer running Docker and control containers on that machine--that’s what you’ll do to manage containers in different environments, like your build servers, test, and production. The Docker API is the same on every operating system, so you can use the CLI on your Windows laptop to manage containers on your Raspberry Pi, or on a Linux server in the cloud.

OEBPS/OEBPS/Images/2-5.jpg
This run command starts an interactive container
from an image called diamol/base.
\

\

PSIM container run --interactive --tty diamol/base

Unable to find image 'diamol/base:latest' locally
latest: Pulling from diamol/base

Digest: sha256:e28094dc5c9e5ebae55c1d7fda277cbfeb379033
0813ec83a2ff383dele877a0

Status: Downloaded newer image for diamol/base:latest

)

This command line is connected to a
terminal session inside the container.

OEBPS/OEBPS/Images/2-1.jpg
This run command starts a container
from an application package called
diamol/ch02-hello-diamol.

\

PSF - container run

diamol/ch@2-hello-diamol

Unable to find image "diamol/ch@2-hello-diamol:Iatest' locally

e7c96db7181b: Already e
1fag86bl6e100: Pull comp
d475cf4ade544: Pull comp

9b37d4bbbde7c
Status: Downloaded newe

latest: Pulling from diamol/ch@2-hello-diamol

xists
lete
lete

Digest: sha256:4c441f5e0fel79ae61d8388fd711a87P6c769559a2666a71c84

r image for diamol/che@2-hello-diamol:latest

My name is:
©5943557213b

Im running on
Linux 4.9.125-linuxkit
My address is:

inet addr:172.17.0.2 B(

x86_64

ast:172.17.255.255\Mask:255.255.0.0

Docker runs a container from

That package doesn’t exist on this
machine, so Docker downloads it first.

the package, and these logs
are the output from the application.

OEBPS/OEBPS/Images/1-4.jpg
User
|

NodeJS

> Users browse to the web application,
which is a NodeJ$ app running in a
Docker container.

i
H
Java/ NET Go Go Go Java
Core
[| [| -
= = =
1 == Mongo ' Mongo MySQL — Mongo

/

The web frontend consumes

APIs from multiple microservices,
which own their own data. Services
and data stores all run in Docker
containers.

i
i
i
H RabbitMQ
i
i
\

Java Jav:
--+{ Shipping |- - =< Queue >- -
Yy
[

There’s an asynchronous workflow too, where services
publish and subscribe to messages on a queue. The services
and the message queue all run in Docker containers.

OEBPS/OEBPS/Images/2-6.jpg
Sty pove
192.168.2.150
container1

Port: 8088 Docker listens on the computer’s physical
""""""""""" The host computer’s

T_ network and sends content into the container.
;
Computor physical IP address

The container’s
virtual IP address

OEBPS/cover.jpeg
Learn

DOCKER

IN A MONTH OF LUNCHES

runni
Hello ortg
v

7105 Supporting
(‘/l?)!l/h with Ada
h ok uh:,el\rﬂ
Containerizey
monitoring

unam(

6
Unders
cker

rolutomating

app configuy
rom the

Docker platform

ation,

the D\k,
b latform

ELTON STONEMAN

/Ml mANNING

OEBPS/OEBPS/Images/2-4.jpg
The host computer has a separate computer name, IP address,
and disk. Virtual machines all share the host’s CPU and memory.
\

\

Operating
system 1

Hostname i

IP address i

Disk
! Operating
: system 2
i vm2

e o T

Hostname
IP address
Disk

Hypervisor

Operating system

\
|

Computer [

|

\

v

— Hostname
— IP address
— Disk

— CPU

— Memory

I

Each VM has its own 0S, computer name, IP address, and disk.

OEBPS/OEBPS/Images/author.jpg

OEBPS/OEBPS/Images/1-3.jpg
This is the original monolithic application
running in a container. It could be a 10-year-old
app running in Docker with no code changes.

|

New features are broken out into separate containers.
These are small components with their own release cycles
and can use a different technology stack from the monolith.

All external requests are sent to a single component, which routes
them to the monolith or to a new container based on the requested
route. The monolith can be broken down without a full rewrite.

OEBPS/OEBPS/Images/2-3.jpg
The host computer has a separate computer name, IP address, and disk.
Containers all share the host’s operating system, CPU, and memory.

--}— Hostname — Hostname
i i
i‘_ 1P address ;_ 1P address
- i Disk] i Disk
container1 container2
Docker /
/ Operating System
Computer

\

|

\

v
— Hostname
— IP address
{— Disk
— CPU
— Memory

\

Each container has its own computer name, IP address, and disk.

OEBPS/OEBPS/Images/1-1.jpg
This is the laa$ model. Every component
runs in its own VM for isolation. It’s an
easier migration, but VMs are likely to be
underutilized and expensive to run.

This is the PaaS model. Every component
gets mapped to a managed service from

to run and easy to manage, but the
migration is a big project.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/1-2.jpg
T B

@

? ¢
far.

The application components all run in
containers. They are isolated like VMs
but lightweight and efficient like Paa$
services.

Dockerized applications are portable.
They can run in a managed service like
Azure Kubernetes Service, and they can
move to AWS or to the datacenter with
no changes.

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/2-2.jpg
— Hostname
. Disk
I container1 1

* The container has its own virtual
environment, with resources
managed by Docker.

OEBPS/OEBPS/Images/2-7.jpg
Browsing to the published port on the host
computer; the content comes from the container.
|

locahosts088/

Hello from Chapter 2!

This is Learn Docker in a Month of Lunches.

OEBPS/OEBPS/Images/1-5.jpg
You can run any type of app in containers on the
cluster—legacy monoliths, new cloud-native apps,
and serverless functions.

@ cenier

Monolith Cloud-native Monolith Serverless
I I I I

I g} E:»
e all i

A production container cluster can

be built from Linux or Windows

servers, or a mixture of both. The cluster can be set up to use the
Docker Swarm API or the Kubernetes
API to manage containerized applications.

