
        
            [image: cover]
        

    
Web Components in Action

      Ben Farrell 

      [image: ]

      

Copyright
      

      
      
      For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
      

             Special Sales Department
       Manning Publications Co.
       20 Baldwin Road
       PO Box 761
       Shelter Island, NY 11964
       Email: orders@manning.com

      
      © 2019 by Manning Publications Co. All rights reserved.

      
      
      No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
         mechanical, photocopying, or otherwise, without prior written permission of the publisher.
      

      
      Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
         those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
         printed in initial caps or all caps.
      

      
      
      [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
         on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
         of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
         chlorine.
      

      
      
      
         
            
            
         
         
            
               	[image: ]
               	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

            

         
      

      
      
      Acquisitions editor: Brian Sawyer
Development editors: Kevin Harreld, Kristen Watterson, and Rebecca Rinehart
Technical development editor: Douglas Duncan
Review editor: Ivan Martinović
Production editor: Anthony Calcara
Copy editor: Rebecca Deuel-Gallegos
Proofreader: Tiffany Taylor
Technical proofreader: Matthew Welke
Typesetter: Dottie Marisco
Cover designer: Marija Tudor


      
      
      ISBN 9781617295775

      
      Printed in the United States of America

      
      
      
      



Dedication
      

      
      
         
         To my amazing wife, who writes way more exciting books than those about web development, involving dragons and disasters.

         
      

      
      
      
Brief Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Foreword


         Preface


         Acknowledgments


         About this book


         About the cover illustration


      

      
         1. First steps


         
            Chapter 1. The framework without a framework


            Chapter 2. Your first Web Component


            Chapter 3. Making your component reusable


            Chapter 4. The component lifecycle


            Chapter 5. Instrumenting a better web app through modules


         

         2. Ways to improve your component workflow


         
            Chapter 6. Markup managed


            Chapter 7. Templating your content with HTML


            Chapter 8. The Shadow DOM


            Chapter 9. Shadow CSS


            Chapter 10. Shadow CSS rough edges


         

         3. Putting your components together


         
            Chapter 11. A real-world UI component


            Chapter 12. Building and supporting older browsers


            Chapter 13. Component testing


            Chapter 14. Events and application data flow


            Chapter 15. Hiding your complexities


         

      

      
          Appendix. ES2015 for Web Components


           


           


      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      
Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Foreword


         Preface


         Acknowledgments


         About this book


         About the cover illustration


      

      
         1. First steps


         
            Chapter 1. The framework without a framework


            
               1.1. What are Web Components?


               
                  1.1.1. The date picker


                  1.1.2. The Shadow DOM


                  1.1.3. What do people mean when they say Web Components?


                  1.1.4. The problematic history of HTML Imports


                  1.1.5. Polymer Library and X-Tags


                  1.1.6. Modern Web Components


               

               1.2. The future of Web Components


               1.3. Beyond the single component


               
                  1.3.1. Web Components are just like any other DOM element


                  1.3.2. From individual component to application


               

               1.4. Your project, your choice


               Summary


            

            Chapter 2. Your first Web Component


            
               2.1. Intro to HTMLElement


               
                  2.1.1. Crash course in inheritance


                  2.1.2. Inheritance in your favorite elements


               

               2.2. Rules for naming your element


               2.3. Defining your custom element (and handling collisions)


               2.4. Extending HTMLElement to create custom component logic


               2.5. Using your custom element in practice


               2.6. Making a (useful) first component


               
                  2.6.1. Setting up our web server


                  2.6.2. Writing our HTML tag


                  2.6.3. Creating our class


                  2.6.4. Adding content to our component


                  2.6.5. Styling our component


                  2.6.6. Component logic


                  2.6.7. Adding interactivity


                  2.6.8. Finishing touches


                  2.6.9. Improving the carousel


               

               2.7. Notes on browser support


               Summary


            

            Chapter 3. Making your component reusable


            
               3.1. A real-world component


               
                  3.1.1. A 3D search use case


                  3.1.2. Starting with an HTTP request


                  3.1.3. Wrapping up our work in a custom component


                  3.1.4. Rendering search results


                  3.1.5. Styling our component


               

               3.2. Making our component configurable


               
                  3.2.1. Creating our component API with setters


                  3.2.2. Using our API from the outside looking in


               

               3.3. Using attributes for configuration


               
                  3.3.1. An argument against a component API for configuration


                  3.3.2. Implementing attributes


                  3.3.3. Case sensitivity


               

               3.4. Listening for attribute changes


               
                  3.4.1. Adding text input


                  3.4.2. The attribute changed callback


                  3.4.3. Observed attributes


               

               3.5. Making more things even more customizable


               
                  3.5.1. Using hasAttribute to check if an attribute exists


                  3.5.2. Fully customizing the HTTP request URL for development


                  3.5.3. Best practice guides


                  3.5.4. Avoiding attributes for rich data


                  3.5.5. Property and attribute reflection


               

               3.6. Updating the slider component


               Summary


            

            Chapter 4. The component lifecycle


            
               4.1. The Web Components API


               4.2. The connectedCallback handler


               
                  4.2.1. Constructor vs. connected


               

               4.3. The remaining Web Component lifecycle methods


               
                  4.3.1. Disconnected callback


                  4.3.2. Adopted callback


               

               4.4. Comparing to React’s lifecycle


               4.5. Comparing to a game engine lifecycle


               4.6. Component lifecycle v0


               Summary


            

            Chapter 5. Instrumenting a better web app through modules


            
               5.1. Using the <script> tag to load your Web Components


               
                  5.1.1. Having to deal with many JS and CSS references


                  5.1.2. Tiny scripts are more organized, but make the reference problem worse


                  5.1.3. Including CSS for self-reliant components


                  5.1.4. Dependency hell


               

               5.2. Using modules to solve dependency problems


               
                  5.2.1. Creating a musical instrument with Web Components and JS modules


                  5.2.2. Starting with the smallest component


                  5.2.3. Importing and nesting a Web Component within a Web Component


                  5.2.4. Using a Web Component to wrap an entire web application


               

               5.3. Adding interactivity to our component


               
                  5.3.1. Listening for mouse movement


                  5.3.2. Passing data to child components


                  5.3.3. Making your components shake with CSS


               

               5.4. Wrapping third-party libraries as modules


               
                  5.4.1. Frontend tooling for wrapping a module with Node.js


                  5.4.2. Not perfect, but does the job


                  5.4.3. Using the wrapped module to play some notes


                  5.4.4. No more audio autoplay


                  5.4.5. Playing the Web Harp


               

               Summary


            

         

         2. Ways to improve your component workflow


         
            Chapter 6. Markup managed


            
               6.1. String theory


               
                  6.1.1. When inline HTML gets ugly


                  6.1.2. String syntax with the backtick


               

               6.2. Using template literals


               
                  6.2.1. Business card creator


                  6.2.2. Iterating design with just HTML and CSS


               

               6.3. Importing templates


               
                  6.3.1. Keeping markup out of the main component logic


                  6.3.2. A module just for HTML and CSS


               

               6.4. Template logic


               
                  6.4.1. Creating menus from data


                  6.4.2. More generation logic, harder automation


               

               6.5. Element caching


               
                  6.5.1. Don’t make me query-select in my component


               

               6.6. Smart templating


               
                  6.6.1. Using lit-html


                  6.6.2. Repeating with templates


                  6.6.3. Should you use it?


                  6.6.4. Injecting event listeners into markup


               

               6.7. Updating the slider component


               Summary


            

            Chapter 7. Templating your content with HTML


            
               7.1. R.I.P. HTML Imports


               
                  7.1.1. Polyfilling HTML Imports


                  7.1.2. What’s inside the import


               

               7.2. The <template> tag


               
                  7.2.1. Document fragments


                  7.2.2. Using template content


               

               7.3. Choose your own template adventure


               7.4. Dynamically loading templates


               7.5. Entering the Shadow DOM with slots


               
                  7.5.1. Slots without a name


               

               Summary


            

            Chapter 8. The Shadow DOM


            
               8.1. Encapsulation


               
                  8.1.1. Protecting your component’s API


                  8.1.2. Protecting your component’s DOM


               

               8.2. Enter the Shadow DOM


               
                  8.2.1. The shadow root


                  8.2.2. Closed mode


                  8.2.3. Your component’s constructor vs. connectedCallback


               

               8.3. The Shadow DOM today


               Summary


            

            Chapter 9. Shadow CSS


            
               9.1. Style creep


               
                  9.1.1. Style creep into component descendants


                  9.1.2. Style creep into your component


               

               9.2. Style creep solved with the Shadow DOM


               
                  9.2.1. When styles creep


               

               9.3. Shadow DOM workout plan


               
                  9.3.1. Application shell


                  9.3.2. Host and ID selectors


                  9.3.3. Grid and list containers


               

               9.4. Adaptable components


               
                  9.4.1. Creating the exercise component


                  9.4.2. Exercise component style


               

               9.5. Updating the slider component


               Summary


            

            Chapter 10. Shadow CSS rough edges


            
               10.1. Contextual CSS


               
                  10.1.1. A small bit of interactivity


                  10.1.2. Contextual style


                  10.1.3. Workaround for host-context


               

               10.2. Component themes


               
                  10.2.1. Shadow and deep selectors


                  10.2.2. CSS Variables


                  10.2.3. Applying CSS Variables to our demo


               

               10.3. Using the Shadow DOM in practice (today)


               
                  10.3.1. Browser support


                  10.3.2. Polyfilling


                  10.3.3. Design systems


               

               Summary


            

         

         3. Putting your components together


         
            Chapter 11. A real-world UI component


            
               11.1. Crafting a color picker


               
                  11.1.1. The components of our component


               

               11.2. Coordinate picker component


               
                  11.2.1. The coordinate picker Web Component class


                  11.2.2. Coordinate picker HTML/CSS


                  11.2.3. Component demos


               

               11.3. The color picker


               
                  11.3.1. Observing attribute changes for interaction


                  11.3.2. Responding to input fields


                  11.3.3. Responding to attribute changes


               

               11.4. Adding a common design language


               
                  11.4.1. Swapping in CSS vars for a consistent design


                  11.4.2. Using imports for more complex CSS


               

               Summary


            

            Chapter 12. Building and supporting older browsers


            
               12.1. Backward compatibility


               
                  12.1.1. Toggling the Shadow DOM


                  12.1.2. Comparing to polyfills


                  12.1.3. Shadow CSS and child elements


               

               12.2. Building for the least common denominator


               12.3. Build processes


               
                  12.3.1. Using NPM scripts


               

               12.4. Building components


               
                  12.4.1. Why we build


                  12.4.2. Module bundling with Rollup


                  12.4.3. Running builds with npm


               

               12.5. Transpiling for IE


               
                  12.5.1. Babel


                  12.5.2. CSS vars ponyfill


               

               Summary


            

            Chapter 13. Component testing


            
               13.1. Unit testing and TDD


               13.2. Web Component tester


               
                  13.2.1. Writing tests


               

               13.3. Comparing to a standard test setup with Karma


               
                  13.3.1. Karma Web Components


                  13.3.2. Multiple tests in the same project


                  13.3.3. A note on Safari


               

               Summary


            

            Chapter 14. Events and application data flow


            
               14.1. Framework offerings


               14.2. Events


               
                  14.2.1. Native events and WebComponentsReady


                  14.2.2. When custom elements are defined


                  14.2.3. Custom Events


                  14.2.4. Custom Event bubbling


               

               14.3. Passing events through Web Components


               
                  14.3.1. Native event propagation through the Shadow DOM


                  14.3.2. Custom Event propagation through the Shadow DOM


               

               14.4. Separate your data


               
                  14.4.1. Model-view-controller


                  14.4.2. Local storage


                  14.4.3. Wiring UI to the data model


               

               14.5. Exercise playback view


               14.6. Passing events with an event bus


               
                  14.6.1. Static getter event types


                  14.6.2. Design patterns as suggestions


               

               Summary


            

            Chapter 15. Hiding your complexities


            
               15.1. Looking to the Web Component future


               15.2. 3D and mixed reality


               
                  15.2.1. A-Frame


                  15.2.2. Model-viewer component


                  15.2.3. model-viewer + Poly search


                  15.2.4. AR with model-viewer


                  15.2.5. Your own 3D component


               

               15.3. Video effects


               
                  15.3.1. Processing pixels with JS


                  15.3.2. WebGL shaders


               

               15.4. Hand tracking and machine learning


               Summary


            

         

      

      
          Appendix. ES2015 for Web Components


         
            A.1. What is ES2015?


            A.2. Rethinking variables with ES2015


            
               A.2.1. Variable declaration with let


               A.2.2. Variable declaration with const


               A.2.3. Important by convention but not functionality


            

            A.3. Classes


            
               A.3.1. Constructor


               A.3.2. Properties


               A.3.3. Private properties in JS


               A.3.4. Getters and setters


               A.3.5. Static methods


            

            A.4. Modules


            
               A.4.1. Top-level objects in JS


               A.4.2. Module syntax for importing and exporting


               A.4.3. Working with multiple functions in the same module


            

            A.5. Template literals


            
               A.5.1. Inserting variables into a template literal


            

            A.6. The fat arrow


            
               A.6.1. The callback scope problem


               A.6.2. Losing scope in classes


               A.6.3. Managing scope with the fat arrow


            

         

           


           


      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      

Foreword
      

      
      
      
      The web has come a long way. What started three decades ago as a relatively simple means of publishing, sharing, discovering,
         and consuming content has evolved into a powerful and flexible application platform supporting a dizzying array of use cases.
         Meanwhile, its footprint has expanded from desktop computers to devices of all types.
      

      
      As a result of this gradual transformation, we web developers have been chasing an ever-moving target. Today’s websites are
         orders of magnitude more complex than their early predecessors, and UI expectations have shot through the roof.
      

      
      Thankfully, our toolbox has also evolved. The web platform itself has gained hundreds of new capabilities, and successive
         generations of libraries, frameworks, and tools have steadily advanced the state of the art, helping us meet rising demands.
      

      
      One major enabler of the web’s transformation in recent years has been the widespread adoption of component-based UI development.
         Factoring our work into components—each one responsible for the structure, style, and behavior of a slice of the user experience—has
         helped us manage complexity and build more ambitious sites.
      

      
      Components can be reused throughout a project or shared across projects, increasing our efficiency. Design systems can be
         expressed as collections of ready-to-use components, ensuring consistency and freeing teams to focus on product-specific needs.
      

      
      Popular frameworks have helped lead the component revolution, and indeed most components today are specific to a given framework
         or library. But in parallel, a multi-year effort has been underway to bring a first-class, native component model to the web
         platform.
      

      
      Web Components is an umbrella term for a new family of web platform features offering direct support for component-based development.
         Custom Elements let you extend the vocabulary of HTML, defining your own tags that work seamlessly with the browser’s built-in
         tags and can be used in all of the same places, regardless of what framework you might be using. The Shadow DOM lets you opt
         into native style encapsulation, ensuring that a component’s CSS rules don’t unintentionally break—and aren’t broken by—the
         styling of the containing page.
      

      
      You may be wondering what benefits Web Components bring over framework-specific component models. For one, Web Components
         promise to increase interoperability, making it simple to share components even across tech stacks. A common component model
         also lowers the risk of lock-in, allowing you to carry more work forward as your toolbox changes over time.
      

      
      The book you’re holding in your hands right now is exceptionally well-timed. The road to standardizing and landing Web Components
         has taken some twists and turns, but I’m happy to say that the destination is in sight: all but one of the major browsers
         have now shipped Web Components, and when the next version of Microsoft Edge is officially released, the puzzle will be complete.
      

      
      Custom Elements, the Shadow DOM, and the other Web Components features are, by design, low-level primitives. Some developers
         will use these features only indirectly, as framework support for Web Components has spiked with increasing browser support.
         Many of the most popular frameworks now make it easy to develop and share Web Components, and a whole new class of Web-Components-centric
         tools has begun to emerge.
      

      
      But you can also use the Web Components features directly, either individually or in combination. Reading this book will give
         you a deep understanding of each feature and how they relate to one another, equipping you to make smart choices for yourself
         and your team.
      

      
      Ben Farrell has been using Web Components since the early days, in a wide range of applications. Along the way, he has amassed
         a wealth of valuable knowledge and discovered numerous effective patterns, all of which he’ll share with you in these pages.
      

      
      Ben teaches by example, demonstrating concepts through compelling projects that illuminate realistic use cases. You’ll certainly
         learn a lot, but you’re also bound to find ideas and code here that you can apply directly to your own projects.
      

      
      In deciding to pick up Web Components and this book, you’ve chosen well. Enjoy the journey!

      
      —GRAY NORTON, 
TECHNICAL LEAD/MANAGER FOR THE POLYMER PROJECT, GOOGLE

      
      

Preface
      

      
      
      
      Web Components, for me, began in 2013. I remember that I was working on a fun little Angular v1 side project and nerding out
         on some aspect of managing CSS and classes that Angular didn’t handle well at the time. I knew I could have easily done what
         I needed in plain HTML/CSS/JavaScript, but Angular was making it difficult just because what I was doing was a bit off the
         beaten path.
      

      
      Around this time, I felt like I was really starting to master Angular, so I wrote a few blog posts around some interesting,
         nontypical approaches. But this was also when Angular excitement felt like it was waning, and React excitement was just starting.
      

      
      Honestly, I was disappointed. I took a long look at a cycle I felt trapped in. In the span of just two or three years, I was
         constantly learning and getting good at JS frameworks. None of these frameworks were compatible with each other. I’d get to
         a point where I felt like I could really focus on my project, with the framework off in the background, and then suddenly
         something new was released that made me feel like I had to go back to square one.
      

      
      At the same time, Google’s Polymer Library had been released as a very early and unstable version. Creating individual components
         that could live anywhere sounded like an amazing promise. Initially, I liked what it was trying to achieve, but a pre-v1 API
         that was in flux and the fact that I was replacing my workflow with yet another framework made me rethink things. I started
         looking at the proposed web standards that made the Polymer Library possible and saw enormous potential. I realized that it
         wasn’t the Polymer Library I was excited about—it was really Web Components.
      

      
      I started blogging and giving talks about Web Components. I also joined Adobe at around this time. This was significant because
         my team was working on small prototypes with one, maybe two, developers for a project. This meant that I could experiment
         with the technology and tools of my choice. For almost every project, I continued to push on Web Components while experimenting
         and continually improving a workflow for working with them.
      

      
      It certainly wasn’t easy, of course. Sometimes the rug was completely pulled out from under me! As Web Components became the
         standard that they are today, we saw the API change and features become deprecated, but I stuck with it. I did so because
         I really do enjoy working as close to the browser as I can with just HTML/JS/CSS and saw Web Components as the vehicle to
         provide structure to my projects and not have them end up as code spaghetti.
      

      
      I wasn’t totally convinced yet of Web Components’ viability. For one, I wasn’t using the Shadow DOM quite yet. I didn’t want
         to get lured into something only Google supported and that had questionable polyfill support. But then Web Components landed
         in Safari, and Mozilla promised support as well. The icing on the cake was when browsers started supporting JS modules/imports
         natively, and I could properly separate out code and, more importantly, HTML and CSS. When all this happened, I knew Web Components
         were starting to fulfill their potential.
      

      
      This was all very slow going over several years, of course. Many developers who were initially excited about Web Components
         lost their patience, and I don’t blame them. I initially approached Manning about a Web Components book prior to some important
         key things happening, like the major browser vendors coming together to finalize v1 of the specification. Manning wasn’t confident
         with Web Components at the time, especially with books in the industry being cancelled due to unknowns about where Web Components
         would go.
      

      
      Whether I was overly optimistic or had just spent enough time with them to know Web Components’ potential, Manning contacted
         me a year later for another proposal. Even then, in early 2018, Web Components still could have taken a bad turn if the other
         browser vendors decided to back out. Also at the time, I wasn’t approaching Web Component development in the same way as most
         others were—using HTML Imports as an entry point. However, during the course of the book, LitElement from the Polymer team
         started approaching things much like I was, using template literals to hold markup and style. This, coupled with Web Components
         landing in the fall of 2018 with Microsoft working on them as well, let me breathe a sigh of relief knowing that the approaches
         in my book are lockstep with the present and future of Web Components. I’ll definitely continue to improve my workflow as
         new features come to the browser and are invented in the community, but I’m extremely excited with where Web Components are
         right now, as Web Components in Action is about to be published. And, of course, I can’t wait to share everything with readers of this book!
      

      
      

Acknowledgments
      

      
      
      
      This book wouldn’t have been possible without all the amazing people who helped me along the way. I want to thank my friends
         in North Carolina and the awesome folks running and attending NCDevCon for listening to me yammer on about Web Components
         on a near-constant basis. More specifically, I’d like to thank Adrian Pomilio for blowing my mind in his 2011 talk showing
         Custom Elements before they were really a thing.
      

      
      I’d also like to thank the GE Design System team for being my Web Component co-conspirators at a time when they were so new
         and we weren’t quite sure if everyone else thought we were insane. Specifically, I’d like to thank Martin Wragg, Jeff Reichenberg,
         and John Rogerson for nerding out with me about this new way to create for the web. I’d also like to thank the Google Polymer
         team for help and guidance during this time, as well as their technical lead/manager Gray Norton for writing the foreword
         for this book.
      

      
      At Adobe, I’d like to thank the entire Adobe Design team (and beyond) for being so supportive and genuinely excited for me
         publishing my first book.
      

      
      Of course, my wife Rebecca Gomez Farrell has not only supported me through this whole thing, but also happens to be an amazing
         writer and editor herself. In addition to getting me a stiff drink when I needed one, she helped a new writer be way better,
         with actual, professional advice.
      

      
      I’d like to thank the Manning editorial team, including development editors Kristen Watterson, Kevin Harreld, and Rebecca
         Rinehart, as well as technical development editor Douglas Duncan, technical proofreader Matthew Welke, production editor Anthony
         Calcara, copyeditor Rebecca Deuel-Gallegos, and text proofreader Tiffany Taylor. Lastly, I’d like to thank the reviewers,
         whose feedback and insight were instrumental in shaping this book, including Alberto Ciarlanti, Alicia Baker, Birnou Sébarte,
         Clive Harber, Daniel Couper, Hernan Garcia, James Carella, John Larsen, Juan Asencio, Justin Calleja, Oliver Kovacs, Pietro
         Maffi, Ronald Borman, Russel Dawn Cajoles, Ryan Burrows, Sergio Arbeo, Stefan Trost, Thomas Overby Hansen, Timothy R. Kane,
         and Kumar S. Unnikrishnan (TR Technology & Ops).
      

      
      



About this book
      

      
      
      
      Web Components in Action isn’t about dictating what approaches developers should take. Instead of telling readers what to do, I take a more exploratory
         approach to cover the basics of Web Components. You should recognize that, while experts may tell you what a good workflow
         is today, the exciting thing about standards is that they can be built upon in ways nobody expects.
      

      
      In Web Components in Action, I aim to arm you with great ideas and workflows to get started. I also hope to empower you with the knowledge to take Web
         Components further, in ways I haven’t considered yet and for types of projects I haven’t encountered.
      

      
      
      
Who should read this book
      

      
      Web Components in Action is for web developers who are curious about Web Components and want to know more about the standards behind them and how
         they come together with other web technologies to create standalone components or applications.
      

      
      It’s also for developers who want ideas about how to break free of complicated frameworks or libraries and get back to writing
         plain HTML/JS/CSS without needing any build steps.
      

      
      
      
      
How this book is organized: a roadmap
      

      
      This book is in three parts covering 15 chapters and an appendix.

      
      Part 1 covers the first steps in getting a simple component off the ground:
      

      
      

      
         
         	
Chapter 1 outlines what people mean when they talk about Web Components and the different standards that come together to create one.
         

         
         	
Chapter 2 walks through creating your very first Web Component, while introducing the bare-minimum concepts needed to create something
            useful.
         

         
         	
Chapter 3 brings a minimal component to the next level by making it reusable.
         

         
         	
Chapter 4 details the Web Components API and lifecycle, comparing them with others you may have encountered.
         

         
         	
Chapter 5 introduces modules for better code reuse and project organization.
         

         
      

      
      The second part builds on a minimal component and covers concepts to improve developer workflow and project organization:

      
      

      
         
         	
Chapter 6 details using modules to separate out and import view logic like HTML and CSS to organize your component better.
         

         
         	
Chapter 7 covers an alternate, but nonpreferred, way to organize your component with HTML Imports, while breaking it down into pieces
            that are relevant to other aspects of Web Components as well.
         

         
         	
Chapter 8 introduces the Shadow DOM and how it’s useful for protecting and encapsulating your component.
         

         
         	
Chapter 9 continues with exploring the Shadow DOM to cover its CSS aspects.
         

         
         	
Chapter 10 explores some trouble that Web Component developers may have with CSS in the Shadow DOM and ways in which to avoid or overcome
            it.
         

         
      

      
      The third and final part covers working with multiple components together to build something larger:

      
      

      
         
         	
Chapter 11 reviews the previously covered concepts and uses them to build a brand-new, more polished component, built on child components
            already created.
         

         
         	
Chapter 12 takes this brand-new component forward to be more ready for production by using build tools that allow it to be used in older
            browsers that don’t support Web Components.
         

         
         	
Chapter 13 furthers the same component by writing tests for it that run in three different contexts, to explore the various options
            available for Web Component developers.
         

         
         	
Chapter 14 discusses passing messages between your components and dives into some common design pattern when event bubbling doesn’t
            cut it.
         

         
         	
Chapter 15 speculates on the future of Web Components and also the power they can enable today by hiding complexity and making everything
            from live video effects to mixed reality easier to use.
         

         
      

      
      Lastly, the appendix covers newer JS features (ES6/ES2015) and how they help Web Components.

      
      
      
      
About the code
      

      
      Source code is provided for all the examples in this book and is available for download from the Manning website at www.manning.com/books/web-components-in-action and in a GitHub repo found at https://github.com/bengfarrell/webcomponentsinaction. The repo is organized into folders for each chapter, and in those there are typically subfolders for each section. Exceptions
         are when working on a big example that encompasses the entire chapter.
      

      
      Code can be run with just a browser and doesn’t need to be compiled until the later chapters on build tooling. Generally,
         a simple HTTP server will be needed to run the associated HTML file that drives the example, but only to deal with cross-origin
         issues.
      

      
      This book contains many examples of source code, both in numbered listings and inline in normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
         of code.
      

      
      In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
         the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
         ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
         Code annotations accompany many of the listings, highlighting important concepts.
      

      
      
      
      
liveBook discussion forum
      

      
      The purchase of Web Components in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/web-components-inaction/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
         lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
      

      
      
      
      
About the author
      

      
      
      
      [image: ]

      
      
      Ben Farrell is a senior experience developer at Adobe, working on the Adobe Design Prototyping Team. Ben, alongside his team,
         helps shape and realize the UX of products and features in the middle ground between design and engineering. Ben has been
         primarily web-focused his entire career but has worked on award-winning projects using a wide variety of platforms and languages.
      

      
      
      

About the cover illustration
      

      
      
      
      The figure on the cover of Web Components in Action is captioned “Bourgeois de Londre,” or a bourgeois man from London. The illustration is taken from a collection of dress
         costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes Civils Actuels de Tous le Peuples Connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
         collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
         each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
         they lived and what their trade or station in life was just by their dress.
      

      
      The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard
         to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
         cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
      

      
      At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
         by Grasset de Saint-Sauveur’s pictures.
      

      
      
      
      


Part 1. First steps
      

      
      
      You’ve probably been hearing more and more about Web Components lately. Much of this has to do with all the major, modern
         browsers now supporting them in recent months. This includes Microsoft Edge, because you can already download a developer
         preview while we wait for the official Chromium-backed release. It can get a bit confusing when you look deeper to see what
         Web Components actually are, though!
      

      
      Not only has the collection of standards that make up Web Components changed a little over time, but, in reality, a Web Component
         can be created with Custom Elements alone! You can create your very own element that sits on your HTML page just like any
         other browser-provided one. More importantly, by using the Custom Element API, your element can be given custom logic to be
         a made a fully featured, tiny interactive component that looks simple from the outside and can work together with any other
         element on the page.
      

      
      The first part of this book will zero in on how to create your first custom elements, as well as explore some best practices
         around them. At the end of the first part, even just exploring this one concept, you’ll be making Web Components that are
         actually useful in real-world situations, even allowing them to be wrapped up as a single piece managing its own dependencies,
         perhaps including other nested Web Components, ready to be dropped onto an HTML page.
      

      
      
      
      
      


Chapter 1. The framework without a framework
      

      
      This chapter covers

      
      

      
         
         	What a Web Component is

         
         	The Shadow DOM

         
         	Custom Elements

         
         	Polymer Library and X-Tags

         
         	ES6/ES2015 language features

         
      

      
      Hello, and thanks for reading Web Components in Action! I’ve been using Web Components for a few years now on just about every web development project I’ve had.
      

      
      As web developers, it’s our job to choose the right tools for any given project. This can get complicated, because it’s not
         just the project’s immediate needs that matter. Your team’s needs do as well, as do whether the project is part of a bigger
         ecosystem at your company, how it will be maintained, and how long it will need to be maintained. The list goes on.
      

      
      Of course, these decisions aren’t unique to web developers, but one major difference between us and many software developers
         is that the web community has put out an astounding number of tools, libraries, and frameworks. It can get difficult to keep up with all of them—so much so that “framework fatigue” has been a topic of conversation for some time now.
      

      
      Adoption of these new tools seems to happen at lightning speed. Putting aside frameworks for a moment, even something as niche
         as task runners for building your JavaScript (JS) projects has changed dramatically over the past few years. I’ve seen the
         switch from Grunt in 2012 to Gulp just a couple of years later, and now there’s a tendency to go minimal by using the Node.js
         NPM (Node Package Manager) to run build scripts. Speaking of package managers, we developers have waffled between NPM, Bower,
         and Yarn for running our frontend dependencies.
      

      
      Build tooling and package managers are one thing. They are small but significant pieces of our web development workflow. Yet
         this same churn is happening with how we actually build our applications and UI, which is arguably the most central and important
         part of web development.
      

      
      For individual developers, this can definitely be hard to keep up with, although it’s exciting to learn a new framework or
         library. Some have a steeper learning curve than others, and, in many cases, you’re learning the framework’s “system” as opposed
         to fundamental HTML/JS/CSS concepts.
      

      
      As a developer on a team or in a company, there are additional challenges. At the start of a project, you’ll need to agree
         on what tools you’ll use to develop with over the lifecycle of the project. This includes build tools, testing tools, and,
         of course, any frameworks or libraries. Not everyone will agree on the best choice. If the team is large and working on many
         projects, it can be tempting to let developers on each project pick their own tools. After all, it’s good to analyze the needs
         of the project and use the appropriate tools. But this also ignores the inevitable, when developers must work together to
         create common pieces of UI or integrate a newly adopted design system that is mandated companywide. Eventually, using different
         tools and frameworks may come back to bite your team.
      

      
      If everyone agrees, begrudgingly or not, on the same framework, things can be great for a while. Even then, two or three years
         down the line, the framework can become dated. Using older technology begins to feel a little stifling, especially to junior
         developers on your team who want to keep their skills up-to-date with the rest of the web community. At this point, your organization
         is faced with the choice of redoing the entire technology stack using a new framework or keeping the old one and facing the
         perception of not being an innovative place to work.
      

      
      It’s a difficult problem and decision for sure! The question that begs asking, of course, is “What’s the alternative?” I’ve
         talked to quite a few people who want to break free of the constant framework churn for a variety of reasons. “Why can’t we
         just use plain HTML, JS, and CSS?” is a common question. One of the biggest benefits of not buying into a framework is being
         able to focus on core web development concepts rather than learning framework-specific skills that may or may not transfer
         to the next popular framework. Another huge benefit is being able to try small libraries and microframeworks that solve specific
         needs in your project. The barrier of entry to these, and even new frontend build tools, is much lower given that you aren’t fighting a specific development environment
         provided by the latest popular framework.
      

      
      Modern frameworks are extremely useful and solve some big problems, but why don’t we hear more about using so-called “vanilla
         JavaScript,” given developers’ desire to try other things? We do, to some extent. Consider this poll by the State of JavaScript,
         conducted in 2017: https://2017.stateofjs.com/2017/front-end/results/. You’ll note that no-framework development is second in popularity, behind only React.
      

      
      However, we don’t know specifics on why folks claim to prefer no framework, or vanilla JS. What kinds of things are those
         developers building? What tools/processes are they using? I’d be curious to know if they build a framework of sorts themselves
         to make up for the lack of structure and code organization that modern frameworks usually provide.
      

      
      This last point about structure and code organization is why no-framework web development has been a nonstarter for me in
         the past, and it’s why I’ve always turned to the latest framework. Without structure, your code becomes spaghetti. Maintaining
         and writing new features can be madness without predictable project organization. Nevertheless, I wanted to break free of
         big, all-encompassing frameworks; when I saw Web Components for the first time, I saw a huge opportunity to do just that.
      

      
      So . . . how? To really tackle this question, we need to understand what Web Components really are. Before I get into the
         specifics, we’ll use a browser’s date picker as an example we’ve all likely come across. While it’s not a Web Component, per
         se, it’s a similar concept if you peek inside.
      

      
      
      
1.1. What are Web Components?
      

      
      The popular modern frameworks of today largely offer code reusability in the form of components or modules. Generally speaking, these are shareable and standalone pieces of code (HTML/JS/CSS) that offer visual style and interactivity,
         and possibly have an API or options you can set to offer customization.
      

      
      Think about what’s already in your browser. And consider that we already have reusable, modular pieces that offer style and
         interactivity, and come with an API.
      

      
      Of course, I’m talking about HTML tags or DOM elements. These are rendered in the DOM and have a specific type of functionality.
         A <div> tag or <span> tag is fairly generic and is used to hold text or a mixture of elements. A <button> or an <input> element is more specific in functionality and style. When you place a button in your HTML, it looks like a standard button,
         and when you click it, it acts like a button. This is similar to the different styles of <input>, whether you mean to create a date picker, slider, or text input field.
      

      
      
      1.1.1. The date picker
      

      
      Take the date picker, for example. To create a date picker, you’d simply put the following tag in your HTML:

      
      <input type="date">

      
      Seems easy, doesn’t it? It is! What you actually get from this simple tag is fairly complicated, but it’s all handled for
         you by your browser. This tag (when using the type "date") offers a text input field, and you can click on the month, day, or year and step up or down through any of them. Also, if
         you click the down arrow to the side, it will pop open a calendar view that the user can interact with to choose a date, as
         figure 1.1 shows. Additionally, when on mobile, it acts slightly differently. It will not pop open as it does in a desktop browser,
         but instead shows a modal window.
      

      
      
      
      Figure 1.1. Expanded date picker UI
      

      
      [image: ]

      
      
      What’s more, the date picker has properties you can query, including value. We can see this by logging the property in the JS console:
      

      
      console.log( document.querySelector('input').value );

      
      When I log this, I see the picker’s current value in my console. It also dispatches events that I can listen to when the value changes or is submitted. I can also call methods on the picker for stepping through dates.
      

      
      The date picker is a great example of reusable components or modules with fairly complex visual style and interaction patterns
         that need to be programmed by the browser vendors. They work in a variety of situations. The date picker is also a great example
         of a popular Web Component concept called the Shadow DOM.
      

      
      
      
      1.1.2. The Shadow DOM
      

      
      The Shadow DOM is a way to isolate your Web Component and guard against unintentional consequences from your larger application.
         When you open the dev tools to look at the DOM, you’ll just see the <input type="date"> tag. However, if you use Chrome and enable “Show user agent shadow DOM” in the dev tool settings, the same input tag expands
         to look like figure 1.2.
      

      
      
      
      Figure 1.2. Enabling shadow root settings in the Chrome dev tools allows us to see the input tag’s hidden Shadow DOM.
      

      
      [image: ]

      
      
      Lots more markup is revealed in this hidden shadow root! Personally, the first thing I’d look for when inspecting this is the calendar pop-up. While it would be great to see that
         piece in HTML and CSS, it’s not there because that piece of UI is part of your native OS that your browser simply exposes
         through the element. That said, we have a fair number of elements hidden away in our Shadow DOM that all appear in the input field element.
      

      
      Looking closely, you might notice that our Shadow DOM hosts a mix of <div> and <span> tags. It might occur to you that this is dangerous! Why? Well, in my application’s CSS, I could very well define all <div> tags to have a blue background with a super-large font size and all <span> tags to display with an opacity of 10%. If you didn’t know that this additional markup existed, you might accidentally ruin
         all your date pickers—except for one major thing: the Shadow DOM protects the inner workings of your Web Component from the
         outside. Your blue/large div styles won’t penetrate the Shadow DOM. What’s more, you would not be able to write some JS to
         try to get and manipulate the date picker’s clear button:
      

      
      let myElement = document.getElementById('clear');

      
      When we attempt to get this element, because it is within the bounds of the Shadow DOM, the element is not found, and our
         myElement variable is null. Figure 1.3 shows various attempts with both CSS and JS.
      

      
      
      
      Figure 1.3. The Shadow DOM protects your component from unintended consequences when CSS or JS might affect styles and nodes inside that
         aren’t meant to be altered. Instead, your component would have a custom-defined API to interact with using methods and properties.
      

      
      [image: ]

      
      
      So, the Shadow DOM protects your shadow root scope. Yes, you can use this shadow root anywhere. But it makes a ton of sense
         in a custom element that you built to avoid unintended breakage when a developer sets a CSS rule that happens to have the
         same name as something you used in your component—or when that same developer happens to query an element by class, and something in your custom element gets picked up accidentally.
      

      
      As you can imagine, the date picker is a useful element for complementing several other useful elements that we use on a daily
         basis. Many elements are used for semantic purposes, like the <footer> tag, but others have a specific API and style, like the <button>, <option>, and <video> tags.
      

      
      
      
      1.1.3. What do people mean when they say Web Components?
      

      
      As nice as the date picker, and any other element, might be, wouldn’t it be amazing if we could create our own elements with
         our own visual style, internal logic, reusability, and encapsulation?
      

      
      This is what folks mean when they refer to Web Components. In addition to the encapsulation provided by the Shadow DOM, we
         can use the Custom Element API to create our own components that do things specific to our own needs.
      

      
      To me, that’s the promise of Web Components. I want to take something I’m interested in and create a reusable piece that I
         can share with the world, my team, or just myself to use in multiple projects where I need it. Alternately, there might be
         a piece of UI that I find boring to create over and over and over again. With Web Components, I can create it once, use it
         in multiple projects, and flesh it out as I need more features. Even better, maybe someone else created a Web Component for
         something I need, and I don’t have the time or expertise to re-create it. They can share it with me, and I can just use it
         like a normal DOM element.
      

      
      
      
      
      1.1.4. The problematic history of HTML Imports
      

      
      Unfortunately, some in the web development community regard the promise of Web Components as a broken one. I certainly can’t
         blame them for feeling this way. When talking about the specific technical features that Web Components offer, the vision
         started to fall apart after the initial hype around Web Components settled down a few years ago.
      

      
      Around 2015, it was widely understood that a standard Web Component would be built using three new features:

      
      

      
         
         	Custom Elements

         
         	The Shadow DOM

         
         	HTML Imports

         
      

      
      I haven’t even mentioned HTML Imports yet. That concept was never adopted as a standard. In fact, in the beginning, Google
         was largely responsible for creating working drafts of Web Components. Google took it upon itself to create APIs and ship
         them in Chrome as a hopeful experiment to see if Web Components would take off. HTML Imports never made it; the other browser
         vendors at the time had no plans to ship the feature. Firefox, specifically, wanted to hold off to see how big a splash ES6/ES2015
         modules would make and—perhaps, possibly, someday—import not only JS, but HTML as well.
      

      
      HTML Imports were a pretty big loss. From the beginning, Google’s plans for delivering Web Components hinged on them. The
         HTML Import, as figure 1.4 shows, was a snippet of HTML for declaring the component’s markup or structure, and it also included the JS that defined
         the component’s logic. HTML Imports were the main entry point for Web Components, and without them, we were at a loss as to
         how to use Web Components with markup and style at all.
      

      
      
      
      Figure 1.4. With HTML Imports, a file containing your component definition and your component’s markup could be imported right into your
         document.
      

      
      [image: ]

      
      
      The Shadow DOM wasn’t much better at the time. Chrome was the only browser to adopt it. It took until October 2018 for Firefox
         to adopt, and we’re waiting for Microsoft Edge to ship it, though it is available as a developer preview right now.
      

      
      Both the Shadow DOM and the Custom Element API have gone from version 0 to 1 as well. For Custom Elements, this was a bit
         troubling, given that developers who were familiar with Web Components during that shaky time were told to switch over to
         the new API.
      

      
      Given all this, developers who called Web Components a “broken promise” and moved on to a framework can hardly be criticized.
         I can vouch that it was a bit tricky around 2015 to properly work with them, especially when targeting browsers other than
         Chrome.
      

      
      
      
      1.1.5. Polymer Library and X-Tags
      

      
      Another aspect of what people meant when they talked about Web Components then were the libraries that emerged at the time,
         which used Web Components as their basis. With the instability surrounding plain, no-framework components at the time, Google’s
         Polymer Library (https://polymer-library.polymer-project.org) and Mozilla’s X-Tags (https://x-tag.github.io) were what people thought of as Web Components, or at least the only way to work with them.
      

      
      The Polymer Library did a great job pushing the standards and workflows forward, and it now looks like 3.0 is the last official
         feature release, as the Polymer Library goes into maintenance mode. The team is instead breaking off some of the core tools
         and features into much smaller and more targeted solutions like lit-html and LitElement as part of the Polymer Project. These
         core tools and features are well-aligned with the no-framework approach I outline in this book.
      

      
      Even though the team did great work on a series of solid releases and is working now to focus on smaller and more opt-in features,
         the Polymer Library’s early days prior to v1.0 were a little shaky. As expected with any pre-v1.0 library, the APIs changed
         a fair bit, especially as it tried to keep up with the changing specifications and lack of Shadow DOM on every browser except
         Chrome. The Shadow DOM was especially hard to deal with. Full-featured polyfills that included CSS encapsulation were too
         difficult and affected performance. To compensate, the “Shady DOM” was invented as a lightweight implementation that could
         be polyfilled.
      

      
      It was a rocky time for Web Components in general, and the Polymer Library seemed like yet another framework/library that
         had to compete with more-solidified ones that didn’t deal with in-flight web standards.
      

      
      
      
      1.1.6. Modern Web Components
      

      
      Despite these rocky times, I stuck with Web Components. I was successful at using them for projects but wasn’t fully satisfied
         until I started using some new JS language features. The fat-arrow function turned out to be an amazing way to manage scope
         when working with mouse events or timers. More importantly, the import keyword and the concept of modules were huge.
      

      
      With import, I was able to move away from the fragile mess of making sure every JS file I wanted to use was linked in a script tag on
         my main HTML page. Each Web Component could be completely responsible for importing its own code. This meant that on the main
         HTML page, I could have a single module-based script tag import a Web Component that contained my entire application. Each
         child component would just import whatever it needed.
      

      
      This opened the door to reusable code modules written in pure JS and gave me the ability to create multiple levels of inheritance
         when I wanted my components to share an API and be a little smarter than the base HTMLElement API. Lastly, I could keep my HTML/CSS in a separate template.js file that I could import, separating my visual concerns from
         the component’s controller logic.
      

      
      The last huge JS feature that made Web Components a pleasure to work with was the template literal. Not only could I keep my HTML/CSS in a separate template file, but I could replace placeholder expressions in my markup
         with variables, and nest multiple templates together using JS functions.
      

      
      These ES6/ES2015 features suddenly made Web Components a joy to work with. Even having previously worked with the now-deprecated
         HTML Imports, I think the combo of modules and template literals is a much better way to go, by comparison.
      

      
      As I stated before, the Shadow DOM is 99% here. It’s taken some time, but all the major browser vendors are in. We’re just
         waiting for Microsoft to release the Edge developer preview to everyone. Personally, I’ve only now gone all in on working
         with the Shadow DOM after Firefox shipped.
      

      
      At the same time, as nice as the Shadow DOM is, it’s also optional. True, it does give our component’s child elements some
         nice protection against style and JS creeping in and having adverse effects, but this is a new solution to a problem we’ve
         always had. So, if we need to wait a few months for browser support, or just opt out of it altogether for the short term,
         it’s not the end of the world. That said, I’ve tempered my excitement on the Shadow DOM long enough due to previous browser
         support; now that we’re about to cross the finish line, I’m thrilled because it’s proving to be such a joy to use.
      

      
      As excited as I am for the future of Web Components, I haven’t heard of any sort of modern vision for them, especially for
         developers who were confused by them before. If I had to redefine the “promise of Web Components” for 2019 onward, it wouldn’t
         be the three mandatory features of Custom Elements, Shadow DOM, and HTML Imports anymore.
      

      
      To me, the 2019 vision for Web Components is shaping up to be a toolbelt of ES6/ES2015 features and the <template> tag when and if you need it, all in service of the Custom Element as the core feature. Once the Shadow DOM ships everywhere
         in the near future, it will also be a major addition to our toolbelt. This vision is how I’ll be approaching Web Components
         in this book. We’ll dive deep into the Custom Element and then explore workflows around all the optional tools in our toolbelt.
      

      
      
      
      
      
      
1.2. The future of Web Components
      

      
      It’s never easy to predict the future, especially on the web, where things change at an insane pace. That said, we have some
         strong clues indicating where Web Components might go beyond 2019.
      

      
      We’ve already seen experiments with React, Angular (https://angular.io/guide/elements), and Vue (https://vuejsdevelopers.com/2018/05/21/vue-js-web-component/) on compiling components in each of these frameworks to a standalone Web Component, running completely independently of the
         framework that made those components. Additionally, tools like StencilJS (https://stenciljs.com) and Svelte (https://svelte.technology) allow you to create with a framework and compile to standalone Web Components.
      

      
      What does this mean? Soon, we might all create components with no framework or with the framework of our choice. We’ll use
         a React-created Web Component in Angular or a Vue-created Web Component in a no-framework web page. The artificial walls we
         have between developers and their frameworks may be coming down relatively soon, as depicted in figure 1.5. And this is all thanks to Web Components.
      

      
      
      
      Figure 1.5. Web Components could bridge the gap in the future between popular frameworks. Not only can no-framework Web Components be
         used in these frameworks, but there are already experimental projects to compile a component in React, Angular, or Vue to
         independently run components that can be used anywhere.
      

      
      [image: ]

      
      
      This concept might even extend to allowing completely different languages to operate together. One application could have
         different components developed in JS, Typescript, and CoffeeScript; given that each is a modular component providing an API,
         this wouldn’t matter. Even crazier, with the advent of WebAssembly, we could see languages like C++, Lua, Go, and so on compiled
         to bytecode and wrapped by a Web Component, looking like a completely normal element from the outside while simultaneously
         allowing high-performance graphics that can run faster than JS would normally run.
      

      
      I also think that using ES6/ES2015 modules and imports will change the way we think about libraries and frameworks. Already,
         we are seeing two similar tools, lit-html and hyperHTML, for advanced markup management. Both of these have modules that developers
         can import instead of loading an entire library to target a specific problem. You’re allowed to opt in or out whenever you
         want during your project.
      

      
      In this regard, I think we’ll see lots more amazing libraries. You’ll import only what you need, when you need it. People
         might get bored with Web Components as a shiny new paradigm, but I can see us building on these fundamentals with importable
         scripts and libraries. The Polymer Project’s new approach, as the team moves their original library into maintenance mode,
         seems to match this exactly. Time will tell if the major frameworks will break off features, as the Polymer team did with
         lit-html, into separate imports we can use outside the framework. But it seems inevitable to me, especially looking at other
         languages that have had import functionality forever.
      

      
      
      
      
1.3. Beyond the single component
      

      
      So far, I’ve talked a lot about Web Components as individual components, but as much as I love standalone Web Components,
         they wouldn’t be much use if they didn’t work together to create your application.
      

      
      Long before Web Components were a thing, we had great ways to interact with normal DOM elements. We can use these same methods
         to give structure to whatever we build with Web Components, just like we do with an ordinary <div>, <video>, or <input> tag.
      

      
      
      1.3.1. Web Components are just like any other DOM element
      

      
      For starters, every element has some sort of public API. By this, I mean that you can get and set properties on your element
         and call functions. For example, with the video element, you can call pause() and play() functions to control video playback. You can also check how long a video is by checking the duration property. Lastly, to jump to a specific point in your video, you can set the currentTime property.
      

      
      Obviously, methods and functions on objects are common everywhere in programming. DOM elements are no different, as you may
         be able to tell from figure 1.6; furthermore, custom Web Components are no exception, either.
      

      
      
      
      Figure 1.6. DOM elements have various properties, methods, events, and attributes that are used to tell the element how to act and communicate
         with the outside world.
      

      
      [image: ]

      
      
      Somewhat similar to properties are attributes. You see these all the time in HTML. Something as simple as an <img> tag has a src attribute that points the element to the image’s location. Attributes are a simple concept, but they are handy for giving
         your Web Component different behaviors depending on how you want it to act. Even better, Web Components have an API such that
         you can internally listen for attribute changes.
      

      
      In the previous example of the video element, the attributes exposed by the tag don’t match the properties that the API exposes.
         While we can set the currentTime property, we can’t set the same attribute on the tag. Counter to this, many times with Web Components you create, you’ll want to use the best practice of reflection. When setting properties, you’ll want to update the attribute (and vice versa), so these attributes and properties are in
         sync. Of course, this isn’t a hard-and-fast rule, just a widely accepted best practice. Prior to Web Components, reflection
         wasn’t necessarily adhered to. A good example of when things can go wrong is the value attribute on an <input> tag. A value attribute here sets the initial value, but when it changes, this value attribute stays the same. Querying the value property through JS will return the most recent value, assuming it’s been changed. This is confusing! But we just accept
         it because that’s how the <input> tag has always worked. When creating new Web Components, it’s likely best to avoid this confusion and reflect attributes
         and properties. To this effect, the video element’s muted attribute/property is a good example of reflection.
      

      
      Lastly, you might want to listen for changes from your custom Web Component. We use events all the time in other scenarios.
         Think about clicking a button. Typically, we’d do the following to listen for the click:
      

      
      mybutton.addEventListener('click', functionToCall );

      
      You can also create and dispatch your own Custom Events. You can do this from anywhere, but they are especially handy when
         you need your application or other components within it to listen to events coming from your Web Component.
      

      
      
      
      1.3.2. From individual component to application
      

      
      Talking about individual components is one thing, but what about when you need to build an entire web application? Web Components
         can be as big or as little as you need them to be. You might build some extremely granular components, like buttons, and then
         nest those inside a bigger Web Component, like a custom toolbar.
      

      
      Your toolbar component might handle the finer details of working with the buttons, perhaps toggling them on and off or disabling
         certain ones under specific circumstances. Our toolbar, alongside other components shown in figure 1.7, could be further nested inside another parent component, and so on. This can keep going all the way up until a single, solitary
         Web Component is the only thing in your <body> tag.
      

      
      
      
      Figure 1.7. Example web application consisting of Web Components, which are themselves made up of more Web Components. The hierarchy can
         extend to something small, like a custom button, or be as large as the entire application wrapped as a Web Component.
      

      
      [image: ]

      
      
      Web Components, and no-framework JS, have much to offer you for web application development. But as your application grows,
         it will grow in complexity. It can get more and more difficult to coordinate how your components interact with each other.
      

      
      Sometimes, you’ll find that even with the inherent structure that Web Components give you, this just isn’t enough to build
         your complex application. You might be tempted to turn to popular frameworks and libraries to help structure things. Frameworks
         like Angular offer data binding, MVC patterns, and more. Certainly, they can be helpful when building a traditional web application.
         On the other hand, we can write and import simple JS code based on tried-and-true design patterns that have been around for
         ages, avoiding these larger frameworks.
      

      
      For example, native DOM events might fall short for you. Often, you’ll want one part of your web application to message a
         completely different part of your application, and you won’t want to worry about how the event bubbles through the DOM. You
         could turn to a library like RXjs or Redux, but it might be overkill. Instead, you could write a simple event bus with a small
         amount of code. Figures 1.8 and 1.9 contrast these two approaches.
      

      
      
      
      Figure 1.8. Events naturally bubble from the inside out of nested elements.
      

      
      [image: ]

      
      
      In figure 1.8, you might, for example, have form-input components contained in a Web Component. These input components could trigger text
         input changes, drop-down changes, and more, all to that parent component. A good example of this might be a color picker component
         with RGB text input and sliders. The parent Web Component (the color picker) that hosts these input components would then
         have to pass the color on to its parent Web Component in another event to report the color’s hex value.
      

      
      This natural event bubbling could break down if the thing whose color you’ve decided to change is all the way on the other
         side of your DOM in a different section of the DOM tree. In this case, you’ll need to use a different strategy, such as an
         event bus (figure 1.9).
      

      
      
      
      Figure 1.9. If normal event bubbling is not desirable, with a bit of code, you can create an event bus system to route events where you
         want.
      

      
      [image: ]

      
      
      There’s also a middle ground with microframeworks. Microframeworks can be a great, minimalist way to organize your application
         and add specific functionality without getting too opinionated about it like a larger framework would. Worrying about finer
         details in your custom-built Web Components, while orchestrating your larger application with these smaller libraries, can
         be a nice way to go. Even minimalist solutions for data binding and routing can be found through NPM as well.
      

      
      
      
      
      
1.4. Your project, your choice
      

      
      In the end, even though there’s a great case to be made for no-framework Web Components, your project and your team will ultimately
         influence what you use to create for the web. Like any emerging standard, Web Components don’t offer all the answers just
         yet. Then again, no popular framework does.
      

      
      There will be cases where your web application is extremely straightforward, and a modern framework might be the perfect answer
         because it handles everything you need to do. Other times, you might be working on the type of project in which frameworks
         just get in the way. The solutions you can choose from cover a wide spectrum of options, with some of those options overlapping.
      

      
      Even if no-framework Web Components aren’t the right answer for you, your favorite framework will likely be built with them
         one day, although it may not be apparent. Getting acquainted with the web standards-based underpinnings of any framework is
         always a great idea, even if you don’t use them directly.
      

      
      Despite the somewhat confusing half-start of Web Components a few years back, we’re at a place right now where they are a
         real option for making your next project. I’m sure we’ll see new ideas and methods for your Web Component workflow in the
         years to come, but these new ideas will be based on the standards I’ll cover in this book, along with the latest and emerging
         current workflows. We’ll cover Web Components on an atomic level, all the way up to applications built with many components,
         as well as how to manage your HTML/CSS, organize your projects, and more. I hope you’re as excited as I am about the future
         of the web!
      

      
      
      
      
Summary
      

      
      In this chapter, you learned

      
      

      
         
         	How Web Components have evolved in the past few years from a Google-owned working draft to a real web standard adopted by
            all the modern browsers
         

         
         	About the Shadow DOM as an optional yet important feature, while being on the verge of widespread browser adoption

         
         	Web Components’ place in modern frameworks, as well as an agnostic part of any ecosystem

         
         	The potential future of Web Components, with an ever-expanding community of JS modules in the spirit of Polymer Project libraries
            like lit-html and lit-element, as well as non-Polymer Project ones like hyperHTML
         

         
         	About the individual Web Component versus an entire Web Component application

         
      

      
      
      
      
      
      
      


Chapter 2. Your first Web Component
      

      
      This chapter covers

      
      

      
         
         	The basis for almost every element you use: HTMLElement


         
         	Extending classes to make your own custom elements

         
         	Giving your custom elements logic and interactivity

         
         	Using custom elements after defining them with customElements.define


         
      

      
      As I promised in the beginning of this book, we’re going to start small. Luckily, with Web Components, even when we do start
         small, we can still make something meaningful. After this chapter, you’ll have the know-how to make your first Web Component
         and be able to view it right in your browser! Subsequent chapters through this book will explore key concepts in more detail,
         but the basics start here. At the end of this chapter, we’ll discuss options when your browser doesn’t support custom elements,
         as in the case of the latest consumer Edge release (at the time of writing) or IE. For now, though, please use Chrome, Firefox,
         or Safari if you’d like to follow along with the code examples.
      

      
      
      
      
2.1. Intro to HTMLElement
      

      
      Prior to learning the basics of Web Components, I didn’t really know what an HTMLElement was. You might not either—it’s an easy thing to never come across, because while it’s a core concept in how the DOM works,
         we’ve typically never worked with it directly until now.
      

      
      This is because when you add an element to your page, it just works. You don’t necessarily need to know how an <input> tag is related to a <button> or how a <div> is related to an <img>.
      

      
      To explain, we’ll have to get a bit into the concept of inheritance. It’s a popular concept in object-oriented programming,
         and one we’ll run with later in the book as we explore code reusability, but to quickly explain, let me start with an example.
      

      
      
      2.1.1. Crash course in inheritance
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      If you are already familiar with inheritance in object-oriented programming, please skip to section 2.1.2 to explore inheritance in relation to your favorite DOM element.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Pretend you’re at a zoo. While you’re there, you notice that all the animals have some specific things in common. Animals need to eat, breathe, sleep, and move around. Of course, some animals are different than others. Mammals have fur, have babies instead of laying eggs, and are warm blooded. Mammals have all the base characteristics of animals,
         but there are extra rules when you call something a mammal. You could even go further and consider mammals like tigers, lions,
         and panthers as types of felines. Felines also have some specific things in common, like whiskers, claws, and eating meat.
      

      
      In object-oriented programming, we can say that a feline inherits from a mammal, and a mammal inherits from an animal. If
         you were writing code, you might start by defining an Animal object (or class to be more specific), as figure 2.1 shows. Your Animal might have functions that you can call to make it breath(), sleep(), and eat().
      

      
      
      
      Figure 2.1. A not-so-scientific example of inheritance in the animal kingdom
      































