
        
            
                
            
        

    
    


  [image: ]


   


   


  Blockchain in Action



   


  Bina Ramamurthy


   


   



  To comment go to liveBook


   


   


  [image: ]


  Manning


  Shelter Island


   


  For more information on this and other Manning titles go to


  manning.com


   


  
    Copyright

  


  For online information and ordering of these  and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.


  For more information, please contact


   


  Special Sales Department


  Manning Publications Co.


  20 Baldwin Road


  PO Box 761


  Shelter Island, NY 11964


  Email: orders@manning.com


   


  ©2020 by Manning Publications Co. All rights reserved.


   


  No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.


  Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.


  ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.


   


  
    
      
      
    

    
      	
        [image: ]    

      

      	
        Manning Publications Co.


        20 Baldwin Road Technical


        PO Box 761


        Shelter Island, NY 11964

      
    

  


   


  
    
      
      
    

    
      	
        Development editor:  

      

      	
        Christina Taylor

      
    


    
      	
        Technical development editor:  

      

      	
        Kyle Smith

      
    


    
      	
        Review editor:  

      

      	
        Ivan Martinović

      
    


    
      	
        Production editor:  

      

      	
        Deirdre S. Hiam

      
    


    
      	
        Copy editor:  

      

      	
        Keir Simpson

      
    


    
      	
        Proofreader:  

      

      	
        Melody Dolab

      
    


    
      	
        Technical proofreader:  

      

      	
        Valentin Crettaz

      
    


    
      	
        Typesetter:  

      

      	
        Gordan Salinović

      
    


    
      	
        Cover designer:  

      

      	
        Marija Tudor

      
    

  


  


   


  ISBN: 9781617296338


  
    dedication

  


  I dedicate this book to my grandmother, Thanjavur Avva, for her unconditional love and affection to me, and compassion and generosity to everyone.


  
    
brief contents

  


  Part 1. Getting started with blockchain programming


   1 Blockchain basics


   2 Smart contracts


   3 Techniques for trust and integrity


   4 From smart contracts to Dapps


  Part 2. Techniques for end-to-end Dapp development


   5 Security and privacy


   6 On-chain and off-chain data


   7 Web3 and a channel Dapp


   8 Going public with Infura


  Part 3. A roadmap and the road ahead


   9 Tokenization of assets


  10 Testing smart contracts


  11 A roadmap to Dapp development


  12 Blockchain: The road ahead


   


  appendix A UML blockchain design models


  appendix B Design principles


  


  
    
contents

  


  



  Preface


  Acknowledgments


  About this book


  About the author


  About the cover illustration


  



  Part 1.  Getting started with blockchain programming


  1 Blockchain basics


    1.1  From Bitcoin to blockchain


    1.2  What is a blockchain?


    1.3  Blockchain programming


  Decentralized infrastructure


  Distributed ledger technology


  Disintermediation protocol


  Trust enabler


    1.4  Motivating scenarios


  Automatic and consistent data collection


  Timely information sharing


  Verifiable compliance


  Auditable actions for provenance


  Guidance for governance


  Attribution of actions


  Pandemic management


    1.5  Retrospective


    1.6  Summary


  2 Smart contracts


    2.1  The concept of a smart contract


  Bitcoin transactions versus smart contract transactions


  What does a smart contract do?


    2.2  Design of a smart contract


  A use case diagram for the counter


  Data assets, peer participants, roles, rules, and transactions


  From class diagram to contract diagram


    2.3  Development of a smart contract code


  Solidity language


  Smart contract code for Counter


    2.4  Deploying and testing the smart contract


  The Remix IDE


  Deployment and testing


  Key takeaways


    2.5  What makes a blockchain contract smart?


    2.6  Decentralized airline system use case


  ASK definition


  Sequence of operations


    2.7  Airlines smart contract


  Peer participants, data assets, roles, rules, and transactions


  Airlines smart contract code


  ASK smart contract deployment and testing


    2.8  Smart contract design considerations


    2.9  Best practices


  2.10  Summary


  3 Techniques for trust and integrity


    3.1  Essentials of trust and integrity


  Trust


  Integrity


    3.2  Digital democracy problem


  Designing a solution


  Use case diagram


  Incremental development of code


  Users, assets, and transactions


  Finite state machine diagram


  Trust intermediation 64 Defining and using modifiers


  Defining and using modifiers


  Contract diagram including modifiers


  Putting it all together


    3.3  Testing


  Positive tests


  Negative tests


    3.4  Using modifiers, require(), and revert()


    3.5  Assert() declarations


    3.6  Best practices


    3.7  Retrospective


    3.8  Summary


  4 From smart contracts to Dapps


    4.1  Dapp development using Truffle


  The development process


  Installing Truffle


  Building the Dapp stack


    4.2  Install Ganache test chain


    4.3  Develop the smart contract


  Create a project folder


  Add smart contract and compile


  Configure blockchain network


  Deploy the smart contract


    4.4  Develop and configure the web application


  Develop ballot-app


  Launch the ballot-app


  Install MetaMask wallet


  Interact with Ballot-Dapp


  Connect web client to smart contract


    4.5  Retrospective


    4.6  Best practices


    4.7  Summary


  Part 2.  Techniques for end-to-end Dapp development


  5 Security and privacy


    5.1  Cryptography basics


  Symmetric key cryptography


  Asymmetric key cryptography


    5.2  The relevance of public-key cryptography to blockchain


  Generating Ethereum addresses


  Transaction signing


  Deploying smart contracts on Ropsten


  Using the private key in mnemonic form


  Populating a blockchain wallet


  Deploying and transacting on Ropsten


    5.3  Hashing basics


  Digital signing of documents


  Hashed data on distributed ledger


  Hashes in Ethereum block header


  Solidity hashing functions


    5.4  Application of hashing


  Blind auction design


  Blind auction smart contract


  Privacy and security aspects


  Testing the BlindAuction contract


  Test plan


    5.5  Retrospective


    5.6  Best practices


    5.7  Summary


  6 On-chain and off-chain data


    6.1  On-chain data


    6.2  Blind auction use case


  On-chain event data


  Blind auction with events


  Testing with the web UI


  Accessing on-chain data using the web3 API


    6.3  Off-chain data: External data sources


    6.4  ASK airline system


  ASK concept


  Airlines smart contract


  ASK on-chain data


  ASK off-chain data


  ASK Dapp development process


  ASK web user interface


  Putting it all together


  Interacting with ASK Dapp


    6.5  Retrospective


    6.6  Best practices


    6.7  Summary


  7 Web3 and a channel Dapp


    7.1  Web3 API


  Web3 in Dapp stack


  Web3 packages


    7.2  The channel concept


    7.3  Micropayment channel


    7.4  Micropayment channel use case


  Traditional banking solution


  Users and roles


  On-chain and off-chain operations


  MPC smart contract (MPC-contract)


  MPC application development (MPC-app)


  MPC sequence diagram


  Demonstration of MPC execution


  Accessing the web3 provider


  Extensions of MPC


  The relevance of the micropayment channel


  Other web3 packages of interest


    7.5  Retrospective


    7.6  Best practices


    7.7  Summary


  8 Going public with Infura


    8.1  Nodes and networks


    8.2  Infura blockchain infrastructure


    8.3  Going public with Infura


  Blockchain node as a service


    8.4  End-to-end process for public deployment


  Account generation and management


  Choosing a network and importing accounts


  Collecting ether from faucets


  Creating blockchain nodes on Infura


  Installing HDWalletProvider


  Configuring and deploying the smart contract


  Configuring and deploying the web application


    8.5  Deploying BlindAuction-Dapp on Infura


  Setting up the blind auction environment


  Decentralized participants


  Configure and deploy the beneficiary account


  Configure and deploy bidders


  Interact with deployed blind auction Dapp


    8.6  Deploying MPC-Dapp on Infura


  Setting up the MPC environment


  Configure and deploy the organizer


  Configure and deploy the worker


    8.7  Retrospective


    8.8  Best practices


    8.9  Summary


  Part 3.  A roadmap and the road ahead


  9 Tokenization of assets


    9.1  Ethereum standards


  Ethereum improvement proposal


  ERC20 token standard


  Fungible and non-fungible tokens


    9.2  RES4: Non-fungible real estate token


  Use case diagram


  Contract diagram


  RES4 ERC721-compliant token


  RES4 Dapp


  Interaction with RES4 Dapp


    9.3  Retrospective


    9.4  Best practices


    9.5  Summary


  10 Testing smart contracts


  10.1  Importance of testing smart contracts


  Types of testing


  Language choice for test programs


  10.2  Testing counter smart contract


  Writing counter test script


  Positive and negative tests


  Running the test script


  10.3  Testing ballot smart contract


  Writing the ballot test script


  Executing the ballot test script


  Describe() and it() test functions


  10.4  Recap writing of test script


  10.5  The blind auction test script


  Analysis of describe() and it() code


  Executing the blind auction test script


  Full auction run


  10.6  Retrospective


  10.7  Best practices


  10.8  Summary


  11 A roadmap to Dapp development


  11.1  Motivating scenario: Educational credentialing


  11.2  The roadmap


  11.3  Problem description


  Context for the DCC application


  Design choices


  11.4  Analysis and design


  Operation flow and finite state machine


  Contract diagram


  11.5  Developing the smart contract


  Data structures


  Events


  Modifiers


  Functions


  11.6  Local deployment


  11.7  Automated testing using truffle


  11.8  Developing the web application


  UI design


  Coding the app.js


  11.9  Testing the DCC-Dapp


  11.10 Public deployment


  Deployment on Ropsten-Infura


  Create web-client for distribution 28


  11.11 Retrospective


  11.12 Best practices


  11.13 Summary


  12 Blockchain: The road ahead


  12.1  Decentralized identity


  12.2  Self-managed identity


  12.3  Consensus and integrity


  Proof of work


  Proof of stake


  Byzantine fault-tolerant consensus


  12.4  Scalability


  12.5  Scalability solutions


  Side channel


  Block size


  Network speed


  12.6  Privacy


  12.7  Public, private, and permissioned networks


  12.8  Confidentiality


  Open information


  A solution


  12.9  Security


  12.10 Securing it with cryptocurrency


  12.11 Accessing off-chain data (Oracles)


  12.12 From foundations to practical systems


  12.13 Looking ahead


  12.14 Best practices


  12.15 Retrospective


  12.16 Summary


   


  appendix A UML blockchain design models


  appendix B Design principles


   


  index


  


  
    front matter

  


  
Preface


  I’m fortunate to have been a computer scientist during an era of phenomenal advancement in computing, from integrated chips to the internet. I have designed and developed a wide range of systems, from a dot-matrix printer driver to algorithms for fault tolerance in distributed systems. I have programmed in a variety of high-level languages, from PL/1 to Python. All these years, I have also been an educator, teaching courses on the leading edge of technology, from grid computing to data science. And of course, my current passion and fascination is blockchain technology.


  I first heard about Bitcoin around 2013, but ignored it as being yet another attempt at cryptocurrency. In 2016, I went back to explore Bitcoin for its underlying technology: the blockchain. I searched for more information on blockchain, of course, but could not find much. At a local meetup in Buffalo on a cold January night in 2016, one of the speakers showed a few YouTube videos on the magic of the blockchain’s distributed ledger. That was my “Aha!” moment. I was amazed. I went on to read the Bitcoin white paper; then I dabbled with open source blockchain code with Eris and (later) Monax. In the summer of 2017, I taught blockchain in a course on Emerging Technologies. This course was held at Amrita University, Coimbatore, India, for a select group of automotive engineers. I spent the next year (August 2017-May 2018) producing and releasing a four-course MOOC specialization, which is still running, with more than 140,000 enrollees from all over the world.


  I had generated an enormous amount of content, video, original diagrams, and about 220 pages of script for the Coursera video production. I decided to turn the material generated into a book. Then, in the summer of 2018, I got a call from a Manning technical editor and began this book project: Blockchain in Action. The project took two years to complete. I realize that a print book project with hands-on examples is different from a MOOC--much more complex and challenging. But here it is: the completed product. I enjoyed every minute I spent writing this book, and the effort was worth it. I liked thinking about blockchain concepts, exploring them, discovering useful problems to solve, and then describing them to an audience that is not in front of me.


  Because blockchain is an emerging technology, few resources are available to help practitioners get started with application development in this area. This book addresses that need. This book covers end-to-end development of blockchain-based Dapp. I chose to use the Ethereum blockchain platform because its code is open source. Tools such as the Solidity compiler for smart contracts, the Remix IDE for exploration, the Truffle suite of tools for Dapp development and testing, the test chains Ganache and Ropsten, Infura for cloud deployment of smart contracts, and the MetaMask wallet have worked well for my team for the past four years. These tools work in unison to provide seamless learning as well as a prototyping environment.


  I hope you enjoy reading the book as much as I did creating its content.


  
Acknowledgments


  I’d like to thank my family for supporting me through this challenging project, especially my husband, Kumar, for his encouragement and unwavering support through the years. I also would like to thank our daughters Nethra and Nainita for being my cheerleaders throughout this project.


  Next, I’d like to acknowledge the team at Manning: Christina Taylor, my development editor; Deirdre Hiam, my project editor; Keir Simpson, my copy editor; Melody Dolab, my proofreader; Kyle Smith, my technical development editor; Ivan Martinović, my review editor; and the reviewers, whose feedback made this contents of this book useful and technically sound: Alessandro Campeis, Angelo Costa, Attoh-Okine Nii, Borko Djurković, Christophe Boschmans, Danny Chin, David DiMaria, Frederick Schiller, Garry Turkington, Glenn Swonk, Hilde Van Gysel, Jose San Leandro, Krzysztof Kamyczek, Luis Moux, Michael Jensen, Noreen Dertinger, Richard B. Ward, Ron Lease, Sambasiva Andaluri, Sheik Uduman Ali M, Shobha Iyer, Tim Holmes, Victor Durán, and Zalán Somogyváry. Special thanks to the technical proofreader, Valentin Crettaz, who ran the code and gave me some valuable feedback on the Dapps and token standards.


  I thank all my students and research team members, who have been my source of inspiration with their relentless eagerness to learn about blockchain.


  
About this book


  Blockchain in Action is a comprehensive resource for designing and developing blockchain-based decentralized applications (Dapps). The resources in this book will help you get started with smart contracts and blockchain application development. The book provides enough details to help you understand blockchain without going into theoretical material.


  The design and development of smart contracts and Dapps are illustrated by seven applications, each focusing on a certain aspect of blockchain. Several essential tools (Remix, Ganache, MetaMask, Truffle, Ropsten, and Infura) and techniques (encryption and digital signing) are introduced to demonstrate the development and deployment of Dapps on the Ethereum test chain. The core ideas of blockchain--trust and integrity, security and privacy, on-chain and off-chain data, and operations--are covered in detail with examples. The blockchain concepts are explained with more than 150 annotated figures and screenshots.


  The codebase provided for the six fully developed Dapps is a valuable resource for blockchain application developers. The development of smart contracts and Dapps is explained in an incremental fashion. A standard directory structure and single-page web UI help you quickly configure, migrate, and transact with the Dapps. You may find some of the chapters to be lengthy, because a new blockchain concept is introduced with a Dapp and explained further with a second Dapp. Special techniques (such as off-chain and on-chain data), design principles, and best practices round up the exploration to offer a clear roadmap to robust smart contract and Dapp development.


  
Who should read this book


  Blockchain in Action is for developers who want to learn about blockchain technology and ‘develop smart contracts and decentralized applications. Any programmer, from beginner to advanced, who wants to get started with blockchain programming can do that by reading and running the applications discussed in the book. Business professionals and practitioners who wish to have an overview of the special use cases of blockchain can learn from the diverse applications and Dapps described. This book is ideal for educators who are looking for a textbook to teach blockchain in their undergraduate or graduate courses. Also, a self-learner, such as a high-school student with some programming background, should be able to learn blockchain programming by reading this book and practicing the examples given.


  
How this book is organized: A roadmap


  The book has three parts that cover 12 chapters.


  Part 1 (chapters 1-4) covers blockchain basics and the design and development of smart contracts.


  Chapter 1 introduces the 3 Ds of blockchain--decentralization, disintermediation, and distributed immutable ledger--and provides a high-level conceptual view of a blockchain.


  Chapter 2 is a gentle introduction to smart contracts on the Ethereum blockchain, applying design principles to develop smart contracts, code them with the Solidity language, deploy them in a web-based Remix integrated development environment, and transact with them. Smart contracts for a decentralized counter (Counter.sol) and an airline consortium (ASK.sol) are developed.


  Chapter 3 is about techniques for adding trust and integrity to the smart contract code. A ballot smart contract (Ballot.sol) representing voting in a digital democracy is introduced and developed in incremental steps.


  Chapter 4 introduces the design and development of a decentralized application (Dapp) with smart contract logic and a web-based user interface. A Node.js-based Truffle suite of tools is introduced for developing and running the smart contract and the web application. The Ballot application (Ballot-Dapp) is used to illustrate Truffle-based development steps and deployment on a local Ganache test chain.


  Part 2 (chapters 5-8) is about end-to-end Dapp development, with additional blockchain-specific features such as on-chain data, security, and privacy.


  Chapter 5 introduces security and privacy in the context of blockchain programming. Cryptography and hashing algorithms and techniques are discussed at a high level. The concepts are illustrated by means of a blind auction smart contract (BlindAuction.sol).


  Chapter 6 introduces the concept of on-chain and off-chain data, which is unique to blockchain programming. The blind auction and ASK smart contracts are extended into Dapps (BA-Dapp, ASK-Dapp) to demonstrate development with on-chain and off-chain data. Defining, emitting, and accessing blockchain events and logs are illustrated.


  Chapter 7 focuses on the web3 API of Ethereum that enables web applications to access the underlying blockchain services. The blockchain side-channel concept is introduced to illustrate the use of web3 in a micropayment channel (MPC) application for massive plastics cleanup (MPC-Dapp).


  Chapter 8 discusses deploying the smart contracts developed on a public cloudlike infrastructure called Infura. Infura is a web3 provider, and a gateway to public blockchains such as Ropsten (mainnet and IPFS). Public deployment on Infura and Ropsten is illustrated by deploying MPC and blind auction smart contracts.


  Part 3 (chapters 9-12) is about expanding your view of the Ethereum Dapps ecosystem with tokens, Ethereum standards, automated testing, and a roadmap for real-world application development.


  Chapter 9 is about the tokenization of digital assets. A RES4-Dapp, a real estate token, is developed based on the Ethereum standard for non-fungible token ERC721.


  Chapter 10 is fully dedicated to writing test scripts and running them by using Truffle’s JS-based testing frameworks. Automated test script writing is illustrated by three smart contracts already discussed in the book: counter, ballot, and blind auction.


  Chapter 11 provides an end-to-end roadmap of all the concepts, tools, and techniques discussed so far and brings them together in an application for educational credentialing: DCC-Dapp.


  Chapter 12 reviews the road ahead, which is strewn with challenges, and explores the fantastic opportunities for you to contribute.


  Two appendices are provided to help you with the design process.


  Appendix A offers a refresher on design representation using Unified Modeling Language (UML). It illustrates structural, behavioral, and interaction modeling and diagrams that are used in the design of smart contracts.


  Appendix B captures the design principles introduced in the book for guiding blockchain application development.


  In general, a reader should start with chapter 1 and move sequentially through chapter 8. The chapters in part 3 can be explored in any order of interest. Chapter 10 (on testing), for example, can be read any time after chapter 5. I encourage you to do so.


  A developer who wants to be proficient in smart contract design and Dapp development should try to follow along with the code examples in the chapters and learn from them.


  
About the code


  This book contains many examples of source code, both in numbered listings and inline with normal text. There are six fully working Dapps, along with numerous pieces of code and smart contracts to explain various concepts. In many listings within the book, some lines are represented by ... (ellipsis) for brevity when the code is lengthy, but the complete code is available in the codebase accompanying the book. Code annotations accompany many of the listings, highlighting important concepts.


  Source code for the examples in this book is available for download from the publisher’s website at https://www.manning.com/books/blockchain-in-action.


  
liveBook discussion forum


  Purchase of Blockchain in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/blockchain-in-action/welcome/v-8. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
Other online resources


  I teach a blockchain course for undergraduates and graduates, using this book as a text. You can follow the happenings in this course and review the lecture presentations, slides, and other exercises at my website: https://www.cse.buffalo.edu/~bina/cse426.


  
About the author


  Dr. Bina Ramamurthy is a Teaching Professor in the Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York. In 2019, she was awarded the State University of New York (SUNY) Chancellor’s Award for excellence in teaching.


  She is the director of Blockchain Thinklab at the University at Buffalo. In the summer of 2018, she launched a four-course blockchain specialization on the Coursera platform for a worldwide audience. The suite of courses has been ranked number 1 among the best courses on blockchain technology and has enrolled more than 140,000 learners from all over the world.


  She has been the principal investigator on four National Science Foundation (NSF) grants and a co-investigator on six Instructional Innovative Instructional Technology Grants (IITG) from SUNY. She has given numerous invited presentations at prominent conferences in the areas of data-intensive and big data computing. She has also been on the program committees of prestigious conferences, including the High-Performance Computing Conference and Special Interest Group in Computer Science Education (SIGCSE).


  Bina Ramamurthy received a BE (Honors) from Guindy Engineering College, Madras, India; an MS in Computer Science from Wichita State University, Kansas; and a PhD in Electrical Engineering from the University at Buffalo.


  
About the cover illustration


  The figure on the cover of Blockchain in Action is captioned “Fille de Bulgarie,” or “Bulgarian Girl.” The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from one another, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.


  The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countrieis. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.


  At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.


  
    
Part 1. Getting started with blockchain programming

  


  Blockchain is poised to become an integral part of existing computing systems as a trust layer. So part 1 begins with an overview of a blockchain as decentralized infrastructure, disintermediator, and distributed ledger technology: the three Ds of blockchain. The three Ds together enable trust in decentralized applications with the help of an essential coding element called smart contracts. Part 1 focuses on the design and development of smart contracts in incremental steps. Design diagrams and design principles are introduced to guide the smart contract design. You’ll learn to code smart contracts by using the Solidity language, and deploy and test them by using a web-based Remix IDE. Then you’ll learn to code rules for trust and integrity in the smart contracts. Finally I introduce the Truffle suite of tools with detailed instructions on installing it. You’ll be using Truffle commands throughout the book for deploying and testing smart contracts.


  Chapter 1 is about blockchain basics. Chapter 2 introduces essential coding elements of a smart contract, using a counter (Counter.sol) application and an airline consortium (ASK.sol) for trading seats. Chapter 3 illustrates techniques for verification and validation of the smart contract, using a digital democracy application. Chapter 4 demonstrates the use of the Truffle suite of tools for migrating the smart contract to a test chain Ganache and testing the deployment (Ballot-Dapp) with a web UI.


  
    
1 Blockchain basics

  


  This chapter covers


  
    	
      Understanding blockchain

    


    	
      Discovering decentralized system infrastructure

    


    	
      Exploring distributed ledger technology

    


    	
      Analyzing trust-enabling protocol

    


    	
      Motivating blockchain applications with real-world scenarios

    

  


  In the latter part of 2008 and early 2009, centralized systems of the world’s financial markets--enabled by large intermediaries such as banks and investment firms--failed and began to crumble. Trust in these systems eroded, and panic set in all over the world with the collapse of financial markets. It was at this juncture that a mysterious person or persons introduced to the world a working model of a peer-to-peer decentralized digital currency system (with no central authority or administration) called Bitcoin. The trust intermediation in this system was realized via software that would later be named blockchain. Blockchain provided the software-based verification, validation, recording, and integrity essentials for currency transfers.


  Even though Bitcoin appeared to have launched suddenly in 2009, the idea of a working digital currency has been a quest since the dawn of computing. Bitcoin’s blockchain technology stands on a strong foundation of more than 40 years of scientific research in cryptography, hashing, peer-to-peer networks, and consensus protocols. Figure 1.1 provides a brief history of blockchain, its innovation and robust scientific foundation, and its transformative effect on modern networked systems.


  [image: ]


  Figure 1.1 The birth of blockchain technology


  On completion of this chapter, you’ll know the fundamental concepts of blockchain and decentralized applications, such as transactions, blocks, a chain of blocks, nodes, networks of nodes, and the protocol that ties all these elements together. With these many components, blockchain is indeed a complex system. An understanding of these foundational concepts is, therefore, imperative for the blockchain application design and development that you’ll embark on in chapters 2-11.


  
1.1 From Bitcoin to blockchain


  The initial excitement about blockchain technology was about enabling peer-to-peer transfers of digital currency to anybody in the world, crossing human-created boundaries (such as the borders of countries) without any intermediaries such as banks. This excitement was further heightened by the realization that this peer-to-peer capability could be applied to other, non-cryptocurrency types of transactions. These transactions involve assets such as titles, deeds, music and art, secret codes, contracts between businesses, autonomous driver decisions, and artifacts resulting from many everyday human endeavors. A transaction record may contain other details based on the blockchain protocol and the application.


  DEFINITION A transaction recorded on a blockchain contains a peer-to-peer message that specifies the operations executed, data parameters used for the execution of operations, the sender and receiver of the message, the transaction fee, and the timestamp of its recording.


  Bitcoin has been in operation continuously since its launch. At the time of this writing, according to Blockchain Charts (https://www.blockchain.com/en/charts), it is delivering more than 200,000 transactions per day. Following its initial success, people began to ask, “If you can transact digital currency, why not any other digital assets?” This question was answered around 2013 with the addition of an environment for code execution on another popular blockchain, Ethereum (https://ethereum.org). The innovation was that the verification, validation, and recording could be extended to other digital assets and to related transactions and systems. Therefore, blockchain can play a crucial role in implementing decentralized systems by providing software-based intermediation to other (non-currency) peer-to-peer transactions.


  Let’s take a look at a blockchain to give you an idea of what transactions, blocks, and chains of blocks look like. This example will help you visualize blockchain context and the problem space discussed in the next sections, which explore the transactions and blocks for the Ethereum public blockchain (https://etherscan.io). Figure 1.2 shows transactions (Tx and transaction#) that represent messages between two accounts (From and To) representing peer participants. These Txs enable the recording of information on the blocks of the blockchain.


  [image: ]


  Figure 1.2 A snapshot of the Ethereum public blockchain


  Figure 1.2 also shows blocks of Txs. Each block (Bk) is made up of a set of transactions and is identified by a block number. Block #10163275 has 142 Txs, and block #10163274 has 60 Txs. You may see a different set of blocks when you visit the site. But you can always search for a particular block number (#10163275, in this case) and verify the number of Txs. The block will have the same number of Txs shown here, exemplifying the immutable nature of blockchain technology. The blocks are linked to form a chain of blocks, or blockchain.


  
1.2 What is a blockchain?


  A blockchain is a technology for enabling trust in a decentralized system of transacting peer participants. The purpose of a blockchain is to verify and validate (or reject, if not valid) a transaction initiated by a participant, and then execute the transaction and record the proof of these actions with the consensus of the peer participants. As shown in figure 1.3, the blockchain-based trust infrastructure exists within a larger system. Blockchain infrastructure contains software for a specific purpose: trust intermediation among a large number of (typically unknown) peer-to-peer participants. On the left side of figure 1.3 is a distributed (client/server) system performing routine operations. This system may send messages that contain data to be verified, validated, and recorded on the blockchain (on the right) to establish trust in that larger system. In blockchain programming, you don’t replace an existing system; you enhance it with code for trust intermediation through validation and verification.


  [image: ]


  Figure 1.3 Blockchain programming context


  To help you further understand blockchain programming, let’s examine the blockchain stacks for Bitcoin and Ethereum, shown in figure 1.4. These stacks represent the two models of blockchain in its short history. Bitcoin has only the wallet application, whereas Ethereum features programmable code called smart contracts (about which you’ll learn more in chapters 2-4).


  [image: ]


  Figure 1.4 Blockchain stacks and types of programming


  Figure 1.4 also shows the three levels of programming:


  
    	
      Protocol-level programming --This level involves software that is needed for the deployment and operation of the blockchain itself. This software is similar to your operating system or networking software. If you are a systems programmer and administrator, you’ll program at this level. This text does not cover protocol-level programming.

    


    	
      Smart contract-level programming --One level above is smart contract (or rules engine) programming. It is at this level that you design and program the rules for verification and validation, and specify the data and messages that are to be recorded on the underlying blockchain. The smart contract is the engine that drives the blockchain on behalf of the user application. In chapters 2-4, you’ll learn in depth about the design, development, and testing of smart contracts.

    


    	
      Application-level programming --This level involves programming using web (or enterprise or mobile) application frameworks and user interface design concepts that are outside the blockchain protocol. In chapters 5-11, you’ll be provided details on web programming to link to underlying smart contracts and to deploy end-to-end decentralized applications (Dapps) on the blockchain.

    

  


  Definition Dapps are web or enterprise applications that include application logic to invoke blockchain functions that implement trust intermediation.


  Dapps embed a significant code element--that of smart contracts. For any given smart contract, an exact copy of the smart contract’s code is transmitted through a special transaction and deployed in the participant nodes of a blockchain network.


  Definition A smart contract is an immutable executable code representing the logic of a Dapp. The data variables and functions defined in a smart contract collectively represent the state and operations for enforcing an application’s (Dapp’s) rules for verification, validation, and recording on the blockchain.


  
1.3 Blockchain programming


  In the evolution from sequential programming to structured programming, functional programming, object-oriented programming (OOP), web and database programming, and big data programming, programmers experienced shifts in approaches, artifacts, and architectures (such as OOP with classes and objects, and Hadoop and Map Reduce for big data processing). Similarly, blockchain programming is yet another paradigm shift.


  Four fundamental concepts play a significant role in making blockchain programming different. You need to understand these concepts before you start programming in chapter 2, just as you need to learn about class and object concepts before undertaking OOP (object-oriented programming). Given this context, the four key roles fulfilled by a blockchain are


  
    	
      Decentralized infrastructure --Special computing hardware and software stacks support the blockchain protocol, smart contracts, and applications (Dapps). The main components of this infrastructure are the computing nodes and networks connecting the nodes (section 1.3.1).

    


    	
      Distributed ledger technology --On top of the infrastructure is the ledger. Transactions and data are recorded simultaneously in all stakeholders’ ledgers. The ledger is distributed because all the stakeholders record the same facts. It is immutable because each block is linked to the signature of the previous block, making it tamperproof (section 1.3.2).

    


    	
      Disintermediation protocol --Participants in a decentralized system follow the same blockchain protocol to connect and to communicate and transact with one another. The protocol is a set of rules for everyone to follow. Ethereum and Hyperledger, for example, are two different blockchain protocols (section 1.3.3).

    


    	
      Trust enabler --In a decentralized system of participants, there are no central authorities or intermediaries such as banks. You, therefore, need an infrastructure that implements the rules for governance, provenance, compliance, and the like automatically, without any intermediaries. Blockchain software assumes the role of a trust enabler (section 1.3.4).

    

  


  
1.3.1 Decentralized infrastructure


  Blockchain infrastructure is inherently decentralized, like the railway tracks or roadways connecting cities. You can think of the Dapps that you’ll deploy as being like the trains or vehicles that travel on the tracks and roads. With this picture in your mind, let’s explore that infrastructure. I’ll defer the technical details and coding of the applications to later chapters. Your aim in this chapter is to comprehend the crucial role played by blockchain infrastructure in supporting decentralized systems.


  What is a decentralized system? A decentralized system is a type of distributed system in which


  
    	
      Participants communicate peer to peer.

    


    	
      Participants are in control of their assets, digital or otherwise (such as an audio file, a digital health record, or a piece of land).

    


    	
      Participants can join and leave the system as they wish.

    


    	
      Participants operate beyond the typical boundaries of trust (such as within a university or a country).

    


    	
      Decisions are made by the distributed participants, not by any central authority.

    


    	
      Intermediation is achieved by the use of automated software such as a blockchain.

    

  


  Let’s explore the architectural elements of blockchain that address the unique needs of a decentralized system.


  
Blockchain nodes, networks, and applications


  Consider air traffic. Flights have origins and destinations, and stopover airports and waypoints form the airline networks. Similarly, blockchain nodes host the computational environment that serves as endpoints of transactions and also performs other functions, such as relaying and broadcasting transactions.


  DEFINITIOn Node is a collective name for blockchain software and the machine or hardware on which it is installed for the participant of a decentralized system.


  Figure 1.5 shows the logical architecture of a single blockchain node. A node can support many accounts to represent the identities of peer participants in the decentralized network. A 256-bit number represents an account. Compare this size with your traditional computer’s address size of 64 bits!


  [image: ]


  Figure 1.5 Blockchain node and application stack


  DEFINITION An account represents a unique identity for a transacting entity. An account is needed to initiate a transaction.


  A blockchain node hosts the elements represented by the stack in figure 1.5. It serves as a foundation for your blockchain application development.


  Let’s start from the bottom and move up. The lower two levels are the standard hardware and software of most computing systems. The next level up is the blockchain protocol level: it houses the components of the blockchain, but you won’t program at this level. The next layer hosts the application logic. This layer is where you solve problems like access control to data and code functions for validation, verification, and recording. The top layer is the user-facing interface where web (or enterprise) programming is done, such as with HTML, JavaScript, and associated frameworks. These elements form the Dapp and its user interface (UI) layer.


  A blockchain application is not a single-user application, unlike a handheld game or an income tax calculator. It typically connects a large number of participants through its network of nodes. Each node can host multiple accounts to identify the different customers it services. A node can also host more than one Dapp, such as one for a decentralized supply chain management system and another for a decentralized payment system.


  [image: ]


  Figure 1.6 A blockchain network of nodes broadcasting transactions and blocks


  Figure 1.6 shows a network of three nodes connected by a network. The network facilitates broadcast of the


  
    	
      transactions initiated by users

    


    	
      blocks formed out of the transactions

    

  


  These transactions and blocks constitute the payload of the network and, eventually, after verification and validation, are recorded on the distributed ledger.


  A network identifier identifies a blockchain network of nodes. Network ID #1, for example, is the main Ethereum public network; network ID #4 is a public network called Rinkeby (https://www.rinkeby.io), and so on. You’ll have to indicate the network by using its identifier while deploying your smart contract on the network. The participants on a given network will share a unified distributed ledger for recording their transaction details.


  The smart contracts are deployed in a sandbox environment such as a virtual machine (VM) hosted by a blockchain node. The syntax of a smart contract is similar to a class in an OO (object-oriented) language. It contains data, functions, and rules for the execution of functions. Calling or invoking a smart contract function generates the transactions that are recorded on the blockchain, as shown in figure 1.7. If any of the verification and validation rules fails, the function invocation is reverted. But if the execution is successful, the generated transactions (Txs) are broadcast to the network for recording, as shown in figure 1.7. The figure illustrates how a function call is transformed into actions that are recorded on the blockchain.


  [image: ]


  Figure 1.7 From application messages to Txs on the blockchain


  
1.3.2 Distributed ledger technology


  Now that you’ve explored the infrastructure, let’s focus on the technology that the infrastructure supports. This core blockchain technology is known as distributed ledger technology (DLT). In this section, I’ll dig deeper into this technology, exploring


  
    	
      What constitutes the blockchain DLT

    


    	
      The physical structure of the DLT for recording blocks of transactions

    


    	
      The operational details of how an application gets to use the DLT for its intended purpose: verification, validation, and immutable recording for enabling trust

    


    	
      The consensus algorithm (at a high level) for the integrity of the DLT

    

  


  
Transactions, blocks, and chain of blocks


  Applications initiate transactions and the execution of smart contract code. A simple cryptocurrency transfer between accounts, for example, generates a “send” transaction. The transactions generated are broadcast through the blockchain network and then gathered and recorded in the distributed immutable ledger. Listing 1.1 shows an example pseudocode for function calls for initiating two types of transactions. Tx1 is for the transfer of cryptocurrency. Tx2 is an application-specific transfer of ownership of an asset from one owner to another, probably to fulfill the sale of an asset. You can also observe the use of the rule onlyByOwner for the transferOwnership function, which means that only the owner of the account can execute that function. Such rules are necessary for the autonomous systems that blockchain controls. In chapters 3-5, you’ll learn how to code rules like these.


  Listing 1.1 Pseudocode for two functions initiating transactions

  /Tx1: */ web3.eth.sendTransaction(fromAccount, toAccount, value);    ❶
/Tx2: */ transferOwnership(newOwner);                                ❷
 
function transferOwnership onlyByOwner (account newOwner)..          ❸


  ❶ Cryptocurrency transfer from one account to another


  ❷ No-cryptocurrency transaction; current owner is the implied sender of this Tx.


  ❸ onlyByOwner rule validates that the sender is the owner; if not, Tx reverts.


  Now that you know how transactions are generated and broadcast on a network, let’s explore how they get recorded on the blockchain. A set of transactions makes a block, and a set of blocks make a blockchain, as shown in figure 1.8. The process is as follows:


  
    	
      Transactions on the network are verified, gathered, and pooled. Nodes select a set of transactions from the pool to create a block.

    


    	
      Participant nodes use a consensus algorithm to collectively agree or come to a consensus on a single consistent block of transactions to be appended to the existing chain.

    


    	
      A hash or representative value of the current lead block of the chain is added to the newly appended block, creating a chain link.

    

  


  


  [image: ]


  Figure 1.8 Transactions to blocks and blocks to the blockchain


  As figure 1.8 demonstrates, a blockchain is an append-only distributed immutable ledger. Its creation begins with a single block called the genesis block. Every node of a stakeholder on the blockchain has an identical copy of the blockchain, starting with the genesis node. A blockchain DLT, therefore, is


  
    	
      Distributed, because the blockchain protocol ensures that every distributed node involved has an identical copy of the chain of blocks.

    


    	
      Immutable, because each newly created block is linked to the existing blockchain by the hash value of the current head of the blockchain, as shown in figure 1.8.

    

  


  At this point, it is sufficient to know that a representative signature value of the block n is stored in the block n+1 to ensure immutability. Any inadvertent or deliberate change to a block’s data at a node will change the block’s hash value and render that node’s chain invalid. (You’ll learn more about the hash value and its computation in chapter 5.) The blocks of a blockchain are stored in the local file systems of the participant nodes, as shown in figure 1.9. The chain of blocks on each node is the distributed ledger recording Txs and related data in its blocks. Figure 1.9 depicts the fact that every node has an exact copy of the blockchain.


  [image: ]


  Figure 1.9 Blockchains stored in local file systems


  At the time of this writing (2020), Bitcoin block creation (or mining) time--and, hence, Tx confirmation time--is about 10 minutes. On Ethereum, block confirmation takes about 10 to 19 seconds, whereas transaction confirmation time on credit cards takes less than a second. Recall the speed of your internet connection 10 or 20 years back; blockchain technology is experiencing a similar situation in these early years of its existence. The developer community at the blockchain protocol level is working on improving Tx confirmation times by using various consensus algorithms and by using relaying techniques at the network level.


  
1.3.3 Disintermediation protocol


  Like any transportation infrastructure, a blockchain infrastructure has rules that you need to follow. If drivers don’t follow the laws of the road, chaos and gridlock ensue. A protocol or a set of rules governs the structure and operation of a blockchain. A blockchain protocol defines the following, among other things:


  
    	
      The structure of a blockchain (transactions, blocks, and chain of blocks)

    


    	
      Fundamental algorithms and standards for encryption, hashing, and state management

    


    	
      Methods for implementing consensus and a consistent chain of blocks

    


    	
      Techniques for handling exceptions resulting in an inconsistent ledger

    


    	
      The execution environment for code on the blockchain and rules for maintaining consistency, correctness, and immutability in this context

    

  


  You get the idea. The structure of the blockchain and operations on it are not arbitrary, but well guided by a protocol. The implementation of the protocol establishes the base layer on which applications are written.


  The framework for code execution introduced by the Ethereum blockchain protocol has opened a whole world of opportunities in the decentralized realm. The smart contract is the centerpiece and the main contribution of the Ethereum protocol.


  Consider the stack diagram in figure 1.10, which compares the Bitcoin and Ethereum blockchains. The Bitcoin blockchain is for the transfer of cryptocurrency, and it does that job well. It has only wallet applications for initiating transactions. Ethereum supports smart contracts and a VM sandbox called Ethereum VM (EVM) on which the smart contracts execute. Smart contracts in turn enable decentralized operation of applications.


  [image: ]


  Figure 1.10 Bitcoin versus Ethereum protocol stacks


  Currently, many blockchains (such as EOS, ZCash, and IOTA) exist, with different protocols, and the expectation is that they will consolidate to a few eventually. The goal of this chapter is to give you a general idea of the various features of blockchain, independent of any particular technology. This high-level knowledge will help you be a better blockchain designer and developer. You’ll follow the Ethereum blockchain protocol for programming smart contracts and Dapps in chapters 2-11.


  
1.3.4 Trust enabler


  Trust is critical for business and personal transactions, whether those transactions are trade, commerce, legal, medical, marital, interpersonal, or financial. Imagine a business transaction for transferring a million dollars. You have a secure channel for transfer, but are you sure you can trust the parties involved? You typically use an intermediary such as a bank to establish the credentials of the transacting parties. But in a decentralized system, there are no humans checking identities or banks verifying credentials. You need some other mechanism--a software mechanism. Blockchain addresses this need by enabling a trust layer over the internet, thus facilitating trust intermediation. The three Ds--decentralized infrastructure, distributed ledger technology, and disintermediation protocol--collectively enable trust in a system.


  NOTE In a decentralized system, trust intermediation is achieved by the decentralized infrastructure (section 1.3.1), the DLT (section 1.3.2), and the disintermediation protocol (section 1.3.3).


  Figure 1.11 shows the evolution of the protocols leading to blockchain-based trust, which has yet to become a standard in the internet context.


  [image: ]


  Figure 1.11 Evolution of the internet and the blockchain-based trust layer


  The internet was created for sharing research among scientists. It enabled connectivity among computing machines and internetworking. Later, Hypertext Transfer Protocol (HTTP) was introduced as the underlying protocol for the web. It became a standard around 1991 and opened many commercial activities through web applications.


  Note that security was not part of the standard at that time. With increased digitization and adoption of online activities came rampant online fraud and security breaches. Security became critical for web applications, and it was retrofitted into HTTP as a standard (HTTPS) around 2000. This addition enabled secure web applications. Global standards were established with formal Request for Comments (RFC) documents from the Internet Engineering Task Force (IETF)—RFCs 7230, 2818, and so on. Blockchain, introduced in 2009, established a trust layer alongside the security layer of the internet. Trust is currently realized in centralized systems by ad hoc means (such as verifying credentials, recommendation systems, and reviews/ratings) and by human involvement in other situations, such as at airports and grocery-store checkouts. Blockchain enables the trust layer for Dapps through software-based verification, validation, and immutable recording of transactions and facts.


  Next, let’s look at some compelling decentralized scenarios that can benefit from the blockchain’s DLT and its trust layer.


  
1.4 Motivating scenarios


  In this section, you explore several issues that are prevalent in the systems you may deal with in everyday activities. Consider the broad area of budgets and expense management in organizations small and large: governmental and nongovernmental agencies (NGOs), charities and disaster-relief agencies, and more. A significant issue is accountability. Is the allocated amount being spent on the designated item or service? Were the expected outcomes realized? Was the spending wasteful? Did the right people authorize it? Can you show the money trail in a disaster-relief effort? Is the process transparent? Are you able to collect the correct data for demonstrating the effectiveness of the effort? I’m sure you can think of several other similar concerns.


  In the following sections, you’ll explore some of these concerns and how they can be addressed by using smart contracts on an infrastructure enabled by the blockchain protocol.


  
1.4.1 Automatic and consistent data collection


  The sustainable development goals of the United Nations General Assembly specify the purposes of UN programs. Your organization likely has similar goals that it hopes to achieve with the budget allocated, and it likely keeps track of the goals and related expenses through various reporting and data collection mechanisms. These are examples of decentralized scenarios in which many centralized computing systems are interacting, but often inefficiently. There is insufficient evidence of the effectiveness of many of the UN’s interventions, for example, due to lack of data or ineffective data collection methods, such as surveys. In this situation, the items of interest could be recorded in the DLT ledger. These items include


  
    	
      Funds allocated for each agency and dates of disbursement

    


    	
      Start dates and amounts transferred from the agency to actual fund users

    


    	
      Project completion dates and statuses

    

  


  Smart contract-enabled code can help organizations to collect data automatically as the funds are disbursed and used. In this case, the user interface to the Dapp would be an intuitive mobile app that invokes smart contract functions to record a distributed and immutable copy of the actions in the ledger of the blockchain. All the stakeholders--say, UN agencies, local municipalities, and NGOs--automatically get a consistent copy of the ledger.


  
1.4.2 Timely information sharing


  Another example is a significant issue in U.S. government agencies uncovered by experts who analyzed the 9/11 disasters: lack of sharing of information, in this case between the central office of the Federal Bureau of Investigation and local offices (one Minneapolis office in particular). In a blockchain setup, any update in a branch office would have updated the central office’s ledger automatically. This information would have been readily available and could have prevented the terrorists from boarding the flights.


  A similar lack of sharing of information with the FBI’s central database enabled the slaughter of 24 people at a Texas church in 2017 (http://mng.bz/X0dY). A distributed ledger supported by smart contracts on the blockchain with proper user access to the data might have averted this massacre by preventing the sale of firearms to the gunman.


  These examples make a case for the importance of a distributed mechanism for timely information sharing. The sharing rules, conditions, and severity levels can be codified into a smart contract that will, in turn, enable recording of relevant metainformation in the distributed ledger of the blockchain.


  
1.4.3 Verifiable compliance


  Let’s examine another area with numerous potential uses for the smart contract. Health care is a vast domain that has many requirements related to regulations and laws. Blockchain-based compliance, provenance, and governance can address many inefficiencies in this domain. Consider the Health Insurance Portability and Accountability Act (HIPAA), which is meant to protect the privacy and confidentiality of patient and other health data. Violations of this act by health care organizations or individuals may result in fines of anywhere from $1,000 to $250,000, so it’s in the best interest of everyone to keep track of how health care data is handled.


  Compliance with HIPAA rules can be codified into smart contracts and recorded at the stakeholders’ blockchain node automatically, preventing any unwanted leaks of sensitive data. Businesses can ensure verifiable compliance. And blockchain provides a mechanism to demonstrate compliance to regulators.


  
1.4.4 Auditable actions for provenance


  In health care and other operations, such as disaster recovery, there’s often a question of whether actions and interventions were undertaken at the appropriate time. You must have heard of cases in which a diagnostic test ordered at the right time would have prevented the untimely demise of a patient. In one particular case narrated by an expert in the field, the doctor did order the test, but the order was canceled by somebody else. This case ended up in a court of law. The doctor had to prove his side of the story--something that would have been helped by having the sequence of orders recorded in a distributed ledger. In this case, smart contracts could have been used for provenance, indicating that a particular treatment was ordered at the right time by a doctor.


  The distributed ledger created by the smart contract can provide ready access to the audit trail of the actions taken for provenance in many other situations. I’m sure you can think of examples in your own organization in which important undertakings could be proved by an audit trail stored within the stakeholders’ blockchain infrastructure.


  
1.4.5 Guidance for governance


  Let’s look at another use case from the health care domain. You must be aware of the rampant misuse of opioids in the United States and its disastrous consequences. Smart contracts could be used to prevent opioids from being dispensed to misusers while making sure that patients who need it get the medication. In this case, the rules for the governance of drug distribution could be codified into a smart contract shared by all stakeholders in the health care system, including doctors, pharmacies, and governing bodies. This blockchain-based governance approach could easily be expanded to cover the general distribution of any controlled substances and medicines.


  
1.4.6 Attribution of actions


  In many situations, such as research and business workflows, it’s important to know who did what and to whom to attribute the actions taken in a system. Suppose that a patient in a remote rural area with a medical emergency gets transported by ambulance to a major hospital for care. How does the medical insurer decide who gets paid and how much, based on the medical transportation process? The actions taken from the time the call for help was placed to the time when the patient was treated could be recorded in the stakeholders’ ledgers. The payment settlement could be automated through rules governing the rates and services rendered. All this information could be coded in a smart contract.


  The smart contract transforms the traditional distributed system into a decentralized system by implementing the rules for compliance, governance, provenance, and information sharing and by recording the necessary details on the blockchain.


  
1.4.7 Pandemic management


  As I was finishing writing this book, the once-in-a-century COVID-19 pandemic descended upon us, engulfing the planet. Every one of us got firsthand experience with a decentralized planetary-level problem. Everyone and every community was isolated, resulting in a decentralized world.


  Although blockchain is well suited to solving many problems in this type of situation, I feel that it is ideally suited to performing a crucial task in mitigating the spread of this virulent disease: that of contact tracing. According to the U.S. Centers for Disease Control (CDC), contact tracing identifies cases by testing and tracing the source and pathway to the affected patient. This task of contact tracing is similar to tracking a fraction of a Bitcoin cryptocurrency to its origin. This trace for a cryptocurrency is recorded automatically on the DLT of the blockchain. Thus, blockchain infrastructure and DLT, along with the smart contract code collectively, could provide an innovative solution for contact tracing in an epidemic.


  Another area in which blockchain can help is the transparent management of distribution of trillion-dollar aid packages and resource allocations. A significant outcome of the pandemic is the decentralized world, in which people are managing the situation themselves. Blockchain infrastructure is ideally suited to solve many problems in this environment.


  
1.5 Retrospective


  Computer systems are evolving toward decentralized systems, as shown in figure 1.12. In the progression shown in figure 1.12, blockchain provides the necessary trust layer for the operation of a decentralized network. These decentralized systems coexist with centralized and other distributed systems to provide a robust environment for innovative planetary-level use cases.


  [image: ]


  Figure 1.12 Progression to decentralized systems


  Think about learning to drive. Before you get started, you should know some details about the automobile you’ll drive--essential parts such as the accelerator, brake, and clutch and their functions--and the rules of the road. Blockchain programming is similar. In this introductory chapter, you learned how to drive the blockchain machine by getting to know the motivating factors behind blockchain, its structural components and operational details, and the pioneering solutions for trust and integrity in systems that it enables. You also explored blockchain as a means for supporting the three Ds: decentralization, disintermediation, and distributed immutable recording.


  When you learn to drive, you can go places. Likewise, the basic knowledge you acquired by reading this chapter will pave your way toward an informed approach to problem-solving, designing, and coding with blockchain, helping you conceptualize creative use cases and discover new application domains for this technology.


  In chapters 2-11, you’ll learn how to problem-solve with blockchain and how to design, develop, and test smart contracts and Dapps. You’ll learn about design principles for developing blockchain solutions, and you’ll see how to tell when a blockchain solution will work and when blockchain is not the right choice. You’ll also find ideas for disrupting your application domain and transforming the ongoing digitization and automation efforts in many application areas.


  
1.6 Summary


  
    	
      Computing systems are trending from distributed, centralized systems to decentralized systems in which participants transact peer-to-peer and operate beyond the usual boundaries of trust.

    


    	
      Blockchain makes decentralized operation possible by providing a trust layer, an infrastructure, and a protocol governing blockchain’s operation.

    


    	
      Blockchain enables decentralization, disintermediation, and a distributed immutable ledger for recording relevant information about an executing application.

    


    	
      A blockchain protocol defines the rules governing the participants; the computing nodes; the networks connecting the nodes; the decentralized application stack on the nodes; and the transactions, blocks, and chain of blocks.

    


    	
      The Ethereum blockchain application stack supports a computational framework called smart contracts and an execution environment for it.

    


    	
      There are enormous opportunities to develop groundbreaking decentralized applications by using blockchain technology in numerous domains, thus disrupting and innovating ongoing digitization efforts.

    


    	
      Businesses need thought leaders, designers, and developers to advance this innovation. It is imperative that application developers at all levels, from the Internet of Things (IoT) to the web, learn about blockchain. Providing you this blockchain knowledge and enabling related design and development skills is the overarching goal of this book.

    

  


  
    
2 Smart contracts

  


  This chapter covers


  
    	
      Understanding smart contracts

    


    	
      Applying design principles to develop smart contracts

    


    	
      Coding smart contracts with the Solidity language

    


    	
      Running and transacting with smart contracts by using the Remix IDE

    


    	
      Designing, developing, deploying, and testing smart contracts for two use cases

    

  


  The smart contract is a significant component of the blockchain technology that has been instrumental in transforming a cryptocurrency framework into a trust framework enabling broad range of decentralized applications. This chapter provides details on the concept, design, and development of a smart contract, and also examines the power of executable code on the blockchain.


  Structurally, a smart contract is a standalone piece of code similar to a class in an object-oriented program. It is a deployable module of code with data and functions. Functions serve the specific purposes of verification, validation, and enabling recording of the messages sent. A contract in the real world involves rules, conditions, laws, regulations to be enforced, criteria, contingencies, and items for provenance such as dates and signatures. Similarly, the smart contract in a blockchain context implements the contract rules for solving a decentralized problem. It functions as a rules engine as well as a gatekeeper, so understandably, the smart contract design requires careful consideration. Following is an explanation of a smart contract modified to include the code aspects.


  Definition A smart contract is executable code on the blockchain intended to digitally facilitate, verify, validate, and enforce the rules and regulations of an application. Smart contracts allow the performance of credible transactions without third parties. These transactions are trackable and irreversible.


  In this chapter, you’ll learn a set of design principles that will guide you through the design and development of smart contracts and blockchain programming. You’ll apply these design principles to design a smart contract for a simple use case (a decentralized counter) and a different larger use case (for a decentralized airline consortium). To implement the design in the form of code, you need the following:































