

NHibernate in Action

 Pierre Henri Kuaté, Christian Bauer, Gavin King & Tobin Harris

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development Editor: Cynthia Kane
Copyeditor: Tiffany Taylor
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Dedication

 To my parents, Henri and Jeannette Kuaté, who have always believed in me

 P.H.K.

 To my mum, Diana Ashworth She is the kindest and most generous person I know

 T.H.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Foreword

 Preface

 Acknowledgments

 About This Book

 1. Discovering ORM with NHibernate

 Chapter 1. Object/relational persistence in .NET

 Chapter 2. Hello NHibernate!

 2. NHibernate deep dive

 Chapter 3. Writing and mapping classes

 Chapter 4. Working with persistent objects

 Chapter 5. Transactions, concurrency, and caching

 Chapter 6. Advanced mapping concepts

 Chapter 7. Retrieving objects efficiently

 3. NHibernate in the real world

 Chapter 8. Developing NHibernate applications

 Chapter 9. Writing real-world domain models

 Chapter 10. Architectural patterns for persistence

 Appendix A. SQL fundamentals

 Appendix B. Going forward

 Index

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Foreword

 Preface

 Acknowledgments

 About This Book

 1. Discovering ORM with NHibernate

 Chapter 1. Object/relational persistence in .NET

 1.1. What is persistence?

 1.1.1. Relational databases

 1.1.2. Understanding SQL

 1.1.3. Using SQL in .NET applications

 1.1.4. Persistence in object-oriented applications

 1.1.5. Persistence and the layered architecture

 1.2. Approaches to persistence in .NET

 1.2.1. Choice of persistence layer

 1.2.2. Implementing the entities

 1.2.3. Displaying entities in the user interface

 1.2.4. Implementing CRUD operations

 1.3. Why do we need NHibernate?

 1.3.1. The paradigm mismatch

 1.3.2. Units of work and conversations

 1.3.3. Complex queries and the ADO.NET Entity Framework

 1.4. Object/relational mapping

 1.4.1. What is ORM?

 1.4.2. Why ORM?

 1.5. Summary

 Chapter 2. Hello NHibernate!

 2.1. “Hello World” with NHibernate

 2.1.1. Installing NHibernate

 2.1.2. Create a new Visual Studio project

 2.1.3. Creating the Employee class

 2.1.4. Setting up the database

 2.1.5. Creating an Employee and saving to the database

 2.1.6. Loading an Employee from the database

 2.1.7. Creating a mapping file

 2.1.8. Configuring your application

 2.1.9. Updating an Employee

 2.1.10. Running the program

 2.2. Understanding the architecture

 2.2.1. The core interfaces

 2.2.2. Callback interfaces

 2.2.3. Types

 2.2.4. Extension interfaces

 2.3. Basic configuration

 2.3.1. Creating a SessionFactory

 2.3.2. Configuring the ADO.NET database access

 2.4. Advanced configuration settings

 2.4.1. Using the application configuration file

 2.4.2. Logging

 2.5. Summary

 2. NHibernate deep dive

 Chapter 3. Writing and mapping classes

 3.1. The CaveatEmptor application

 3.1.1. Analyzing the business domain

 3.1.2. The CaveatEmptor domain model

 3.2. Implementing the domain model

 3.2.1. Addressing leakage of concerns

 3.2.2. Transparent and automated persistence

 3.2.3. Writing POCOs

 3.2.4. Implementing POCO associations

 3.2.5. Adding logic to properties

 3.3. Defining the mapping metadata

 3.3.1. Mapping using XML

 3.3.2. Attribute-oriented programming

 3.4. Basic property and class mappings

 3.4.1. Property mapping overview

 3.4.2. Using derived properties

 3.4.3. Property access strategies

 3.4.4. Taking advantage of the reflection optimizer

 3.4.5. Controlling insertion and updates

 3.4.6. Using quoted SQL identifiers

 3.4.7. Naming conventions

 3.4.8. SQL schemas

 3.4.9. Declaring class names

 3.4.10. Manipulating metadata at runtime

 3.5. Understanding object identity

 3.5.1. Identity versus equality

 3.5.2. Database identity with NHibernate

 3.5.3. Choosing primary keys

 3.6. Fine-grained object models

 3.6.1. Entity and value types

 3.6.2. Using components

 3.7. Introducing associations

 3.7.1. Unidirectional associations

 3.7.2. Multiplicity

 3.7.3. The simplest possible association

 3.7.4. Making the association bidirectional

 3.7.5. A parent/child relationship

 3.8. Mapping class inheritance

 3.8.1. Table per concrete class

 3.8.2. Table per class hierarchy

 3.8.3. Table per subclass

 3.8.4. Choosing a strategy

 3.9. Summary

 Chapter 4. Working with persistent objects

 4.1. The persistence lifecycle

 4.1.1. Transient objects

 4.1.2. Persistent objects

 4.1.3. Detached objects

 4.1.4. The scope of object identity

 4.1.5. Outside the identity scope

 4.1.6. Implementing Equals() and GetHashCode()

 4.2. The persistence manager

 4.2.1. Making an object persistent

 4.2.2. Updating the persistent state of a detached instance

 4.2.3. Retrieving a persistent object

 4.2.4. Updating a persistent object transparently

 4.2.5. Making an object transient

 4.3. Using transitive persistence in NHibernate

 4.3.1. Persistence by reachability

 4.3.2. Cascading persistence with NHibernate

 4.3.3. Managing auction categories

 4.3.4. Distinguishing between transient and detached instances

 4.4. Retrieving objects

 4.4.1. Retrieving objects by identifier

 4.4.2. Introducing Hibernate Query Language

 4.4.3. Query by Criteria

 4.4.4. Query by Example

 4.4.5. Fetching strategies

 4.4.6. Selecting a fetching strategy in mappings

 4.4.7. Tuning object retrieval

 4.5. Summary

 Chapter 5. Transactions, concurrency, and caching

 5.1. Understanding database transactions

 5.1.1. ADO.NET and Enterprise Services/COM+ transactions

 5.1.2. The NHibernate ITransaction API

 5.1.3. Flushing the session

 5.1.4. Understanding connection-release modes

 5.1.5. Understanding isolation levels

 5.1.6. Choosing an isolation level

 5.1.7. Setting an isolation level

 5.1.8. Using pessimistic locking

 5.2. Working with conversations

 5.2.1. An example scenario

 5.2.2. Using managed versioning

 5.2.3. Optimistic and pessimistic locking compared

 5.2.4. Granularity of a session

 5.2.5. Other ways to implement optimistic locking

 5.3. Caching theory and practice

 5.3.1. Caching strategies and scopes

 5.3.2. The NHibernate cache architecture

 5.3.3. Caching in practice

 5.4. Summary

 Chapter 6. Advanced mapping concepts

 6.1. Understanding the NHibernate type system

 6.1.1. Associations and value types

 6.1.2. Bridging from objects to database

 6.1.3. Mapping types

 6.1.4. Built-in mapping types

 6.1.5. Using mapping types

 6.2. Mapping collections of value types

 6.2.1. Storing value types in sets, bags, lists, and maps

 6.2.2. Collections of components

 6.3. Mapping entity associations

 6.3.1. One-to-one associations

 6.3.2. Many-to-many associations

 6.4. Mapping polymorphic associations

 6.4.1. Polymorphic many-to-one associations

 6.4.2. Polymorphic collections

 6.4.3. Polymorphic associations and table-per-concrete-class

 6.5. Summary

 Chapter 7. Retrieving objects efficiently

 7.1. Executing queries

 7.1.1. The query interfaces

 7.1.2. Binding parameters

 7.1.3. Using named queries

 7.1.4. Using query substitutions

 7.2. Basic queries for objects

 7.2.1. The simplest query

 7.2.2. Using aliases

 7.2.3. Polymorphic queries

 7.2.4. Restriction

 7.2.5. Comparison operators

 7.2.6. String matching

 7.2.7. Logical operators

 7.2.8. Ordering query results

 7.3. Joining associations

 7.3.1. NHibernate join options

 7.3.2. Fetching associations

 7.3.3. Using aliases with joins

 7.3.4. Using implicit joins

 7.3.5. Theta-style joins

 7.3.6. Comparing identifiers

 7.4. Writing report queries

 7.4.1. Projection

 7.4.2. Using aggregation

 7.4.3. Grouping

 7.4.4. Restricting groups with having

 7.4.5. Improving performance with report queries

 7.4.6. Obtaining DataSets

 7.5. Advanced query techniques

 7.5.1. Dynamic queries

 7.5.2. Collection filters

 7.5.3. Subqueries

 7.6. Native SQL

 7.6.1. Using the ISQLQuery API

 7.6.2. Named SQL queries

 7.6.3. Customizing create, retrieve, update, and delete commands

 7.7. Optimizing object retrieval

 7.7.1. Solving the n+1 selects problem

 7.7.2. Using Enumerable() queries

 7.7.3. Caching queries

 7.7.4. Using profilers and NHibernate Query Analyzer

 7.8. Summary

 3. NHibernate in the real world

 Chapter 8. Developing NHibernate applications

 8.1. Inside the layers of an NHibernate application

 8.1.1. Using patterns and methodologies

 8.1.2. Building and testing the layers

 8.1.3. The domain model

 8.1.4. The business layer

 8.1.5. The persistence layer

 8.1.6. The presentation layer

 8.2. Solving issues related to .NET features

 8.2.1. Working with web applications

 8.2.2. .NET remoting

 8.3. Achieving goals and solving problems

 8.3.1. Design goals applied to an NHibernate application

 8.3.2. Identifying and solving problems

 8.3.3. Use the right tool for the right job

 8.4. Integrating services: the case of audit logging

 8.4.1. Doing it the hard way

 8.4.2. Doing it the NHibernate way

 8.4.3. Other ways of integrating services

 8.5. Summary

 Chapter 9. Writing real-world domain models

 9.1. Development processes and tools

 9.1.1. Top down: generating the mapping and the database from entities

 9.1.2. Middle out: generating entities from the mapping

 9.1.3. Bottom up: generating the mapping and the entities from the database

 9.1.4. Automatic database schema maintenance

 9.2. Legacy schemas

 9.2.1. Mapping a table with a natural key

 9.2.2. Mapping a table with a composite key

 9.2.3. Using a custom type to map legacy columns

 9.2.4. Working with triggers

 9.3. Understanding persistence ignorance

 9.3.1. Abstracting persistence-related code

 9.3.2. Applying the Observer pattern to an entity

 9.4. Implementing the business logic

 9.4.1. Business logic in the business layer

 9.4.2. Business logic in the domain model

 9.4.3. Rules that aren’t business rules

 9.5. Data-binding entities

 9.5.1. Implementing manual data binding

 9.5.2. Using data-bound controls

 9.5.3. Data binding using NHibernate

 9.5.4. Data binding using ObjectViews

 9.6. Filling a DataSet with entities’ data

 9.6.1. Converting an entity to a DataSet

 9.6.2. Using NHibernate to assist with conversion

 9.7. Summary

 Chapter 10. Architectural patterns for persistence

 10.1. Designing the persistence layer

 10.1.1. Implementing a simple persistence layer

 10.1.2. Implementing a generic persistence layer

 10.2. Implementing conversations

 10.2.1. Approving a new auction

 10.2.2. Loading objects on each request

 10.2.3. Using detached persistent objects

 10.2.4. Using the session-per-conversation pattern

 10.2.5. Choosing an approach to conversations

 10.3. Using NHibernate in an Enterprise Services application

 10.3.1. Rethinking DTOs

 10.3.2. Enabling distributed transactions for NHibernateHelper

 10.4. Summary

 Appendix A. SQL fundamentals

 Tables

 Relational model

 DDL and DML

 Table operations

 Queries

 Appendix B. Going forward

 What you need

 Practice makes perfect

 Problem solving

 Staying up to date

 Index

List of Figures

 Chapter 1. Object/relational persistence in .NET

 Figure 1.1. Layered architecture highlighting the persistence layer

 Chapter 2. Hello NHibernate!

 Figure 2.1. High-level overview of the NHibernate API in a layered architecture

 Figure 2.2. Direct access to ADO.NET connections

 Figure 2.3. NHibernate managing database access

 Chapter 3. Writing and mapping classes

 Figure 3.1. A class diagram of a typical online auction object model

 Figure 3.2. Persistent classes of the CaveatEmptor object model and their relationships

 Figure 3.3. Diagram of the Category class with an association

 Figure 3.4. Category and the associated Item

 Figure 3.5. Relationships between User and Address using composition

 Figure 3.6. Table attributes of User with Address component

 Figure 3.7. Relationship between Item and Bid

 Figure 3.8. Table relationships and keys for a one-to-many/many-to-one mapping

 Figure 3.9. Mapping table per concrete class

 Figure 3.10. Table-per-class hierarchy mapping

 Figure 3.11. Table-per-subclass mapping

 Chapter 4. Working with persistent objects

 Figure 4.1. States of an object and transitions in an NHibernate application

 Figure 4.2. Persistence by reachability with a root persistent object

 Figure 4.3. Category class with association to itself

 Figure 4.4. Adding a new Category to the object graph

 Chapter 5. Transactions, concurrency, and caching

 Figure 5.1. System states during a transaction

 Figure 5.2. Using a one-to-one ISession and ITransaction per request/response cycle

 Figure 5.3. Implementing conversations with multiple ISessions, one for each request/response cycle

 Figure 5.4. Implementing conversations with a long ISession using disconnection

 Figure 5.5. NHibernate’s two-level cache architecture

 Chapter 6. Advanced mapping concepts

 Figure 6.1. An order entity with a TotalAmount value type

 Figure 6.2. The Money value type with an association to a Currency entity

 Figure 6.3. Table structure and example data for a collection of strings

 Figure 6.4. Table structure using a bag with a surrogate primary key

 Figure 6.5. Tables for a list with positional elements

 Figure 6.6. Tables for a map, using strings as indexes and elements

 Figure 6.7. Collection of Image components in Item

 Figure 6.8. Collection of Image components using a bag with a surrogate key

 Figure 6.9. A one-to-one association with an extra foreign-key column

 Figure 6.10. The tables for a one-to-one association with shared primary-key values

 Figure 6.11. A many-to-many valued association between Category and Item

 Figure 6.12. Many-to-many entity association mapped to an association table

 Figure 6.13. Many-to-many entity association table using a component

 Figure 6.14. A standard one-to-many association using a foreign-key column

 Figure 6.15. The user has only one billing information object.

 Figure 6.16. Using a discriminator column with an <any> association

 Chapter 7. Retrieving objects efficiently

 Figure 7.1. The ITEM and BID tables are obvious candidates for a join operation.

 Figure 7.2. The result table of an ANSI-style inner join of two tables

 Figure 7.3. The result of an ANSI-style left outer join of two tables

 Chapter 9. Writing real-world domain models

 Figure 9.1. Development processes

 Figure 9.2. Domain model bound to a user interface

 Chapter 10. Architectural patterns for persistence

 Figure 10.1. Generic DAO interfaces with a separated NHibernate implementation

 Figure 10.2. State chart of the item-approval cycle in CaveatEmptor

List of Tables

 Chapter 3. Writing and mapping classes

 Table 3.1. NHibernate’s built-in identifier generator modules

 Chapter 6. Advanced mapping concepts

 Table 6.1. Primitive types

 Table 6.2. Additional names of NHibernate mapping types

 Table 6.3. Date and time types

 Table 6.4. Nullable object types

 Table 6.5. Binary and large object types

 Table 6.6. Other CLR-related types

 Chapter 9. Writing real-world domain models

 Table 9.1. XML mapping attributes for hbm2ddl

 Table 9.2. hbm2ddl.SchemaExport.Execute() parameters

 Chapter 10. Architectural patterns for persistence

 Table 10.1. NHibernate’s built-in current session-context implementations

List of Listings

 Chapter 2. Hello NHibernate!

 Listing 2.1. Employee.cs: A simple persistent class

 Listing 2.2. Creating and saving an Employee

 Listing 2.3. Retrieving Employees

 Listing 2.4. Simple Hibernate XML mapping

 Listing 2.5. Updating an Employee

 Listing 2.6. Using hibernate.cfg.xml to configure NHibernate

 Listing 2.7. App.config configuration file using <nhibernate>

 Listing 2.8. App.config configuration file using <hibernate-configuration>

 Listing 2.9. Basic configuration of log4net

 Chapter 3. Writing and mapping classes

 Listing 3.1. POCO implementation of the User class

 Listing 3.2. Category-to-Item scaffolding code

 Listing 3.3. Item-to-Category scaffolding code

 Listing 3.4. NHibernate XML mapping of the Category class

 Listing 3.5. Mapping with NHibernate.Mapping.Attributes

 Listing 3.6. INamingStrategy implementation

 Listing 3.7. Mapping the User class with a component Address

 Listing 3.8. NHibernate <subclass> mapping

 Listing 3.9. NHibernate <joined-subclass> mapping

 Chapter 5. Transactions, concurrency, and caching

 Listing 5.1. Using the NHibernate ITransaction API

 Chapter 6. Advanced mapping concepts

 Listing 6.1. Custom mapping type for monetary amounts in USD

 Listing 6.2. Custom mapping type for monetary amounts in new database schemas

 Chapter 8. Developing NHibernate applications

 Listing 8.1. Unit testing an entity

 Listing 8.2. IInterceptor implementation for audit logging

 Listing 8.3. Temporary session pattern

 Chapter 9. Writing real-world domain models

 Listing 9.1. Additional elements in the Item mapping for SchemaExport

 Listing 9.2. VersionedEntity base class abstracting persistence-related code

 Listing 9.3. Filling a DataSet with the content of an entity

 Chapter 10. Architectural patterns for persistence

 Listing 10.1. A simple NHibernate helper class

 Listing 10.2. Implementing a simple use case in one method

 Listing 10.3. DAO abstracting item-related persistence operations

 Listing 10.4. Session management using the current session API

 Listing 10.5. Web module managing NHibernate sessions

 Listing 10.6. NHibernateConversationWebModule for conversations

Foreword

 Somewhere in the middle of 2004, I decided that I needed to take a look at additional ways to deal with persistence, beyond
 store procedures and code generation using Code Smith. At the time, I was mystified by the all the noise around ORM, business
 objects, and domain-driven design. I had data sets and stored procedures, and I had code generation to make working with them
 a bit easier, and the world was good. But as I began to deal with more complex applications and attempted to learn from the
 collective knowledge in the community, I began to see the problems with this approach.

 Eventually, I understood the significant problem with my previous method of working with data: I was building procedural applications,
 where the data was king and the application behavior was, at best, a distant second. This approach doesn’t scale well with
 the complexity of the applications we need to build. Indeed, this programmatic approach has been largely superseded by object-oriented
 approaches. I see no reason that this shouldn’t apply to dealing with data as well.

 I can no longer recall what made me decide to focus on NHibernate—it was probably an enthusiastic blog post, come to think
 of it. But whatever the reason, I made that choice. Four years later, I have yet to regret this decision, and I am proud to
 state that exactly 100 percent of my projects since then have used NHibernate for persistence. That decision has paid off
 in many ways.

 Two occasions come to mind in particular. The first was a very ... tense meeting with a client, where the client DBA was furious
 about the need to support SQL Server. That was the client’s requirement, but the DBA saw it as an encroachment on his territory,
 and he didn’t like it one bit. In his eyes, DB2 on AS/400 was what the client had used for the last eon or so, and it should
 be what they used for the next eon or so. During that meeting, I pulled out my laptop, found the ADO.NET provider for DB2,
 and configured the application to run against it. I asked the DBA for the credentials of the test database and had the application
 running against it within 45 minutes. We ended up going for production on SQL Server, but that was the client’s choice, not
 an implementation imperative.

 On the second occasion, we had to build a fairly complex multi-tenant HR application on top of a legacy database that was
 imported from a mainframe and was enough to make a person cry. The table names were numeric (of course, table 200 is the employees
 table) and were different from one tenant to the next, and the database model was a direct copy of the flat files used in
 batch processing on the mainframe. Trying to build an application on top of that (and it couldn’t be changed) would have been
 challenging, to say the least. We were able to build a domain model that was mostly free of all the nonsense in the DB layer
 and map from the DB to the domain model for each tenant. I wouldn’t call it simple by any means, but we were able to encapsulate
 the complexity into a set of mapping files that were maintained by the system integrators (who were the only people who understood
 what value went where).

 In both cases, I managed to get tremendous value out of NHibernate. In the first case, it provided a good reputation and the
 ability to remove hurdles in working with the client; in the second case, we made the problem simpler by an order of magnitude
 if not more. The team worked mostly on the UI and the business problems, not on solving persistence issues.

 I’ve been using NHibernate since version 0.4 or 0.5, and I have watched (and had the honor of taking part in) how it has grown
 from a simple port of Hibernate on Java to have a personality, community, and presence of its own. NHibernate 1.0 gave us
 parity with Hibernate 2.1, with support for common scenarios, but it was still mostly a port of the Java version. Starting
 with 1.2, we’ve seen more and more work being done not only to make NHibernate more friendly to the .Net ecosystem, but also
 to add features that are unique for NHibernate.

 NHibernate 1.0 was a good ORM for the time, looking back at it, but it seems bare-bones compared to the options that we have
 now with 1.2 and 2.0.

 NHibernate 1.2 added support for generics, stored procedures, multiqueries, write batching, and much more. NHibernate 2.0
 is focused on parity with Hibernate 3.2, with events and listeners, stateless sessions, joined and unioned classes, detached
 queries, and much more. On the horizon is a Linq provider for NHibernate, which is being used in production by several projects
 and will likely be released as part of NHibernate 2.1.

 NHibernate is also able to benefit from the ecosystem that grew around Hibernate, and ports of Hibernate’s satellite projects
 exist for NHibernate. I’ll mention NHibernate Search, which lets you integrate your entities with the Lucene.NET search engine;
 and NHibernate Validator, which gives you a powerful validation framework. NHibernate Contrib contains more examples. But
 the extensions available for NHibernate go beyond ports of Java projects. Rhino Security is a project that gives you a complete
 business-level security package on top of the NHibernate domain model, and it uses NHibernate itself to do that. Several projects
 provide mapping by convention to NHibernate, and a big community of users are sharing knowledge and issues on a daily basis.

 This rich ecosystem didn’t happen by accident, it happened because NHibernate is a flexible and adaptable framework; and when
 you come to understand the way it works and how to utilize its strengths, it will bring significant benefits to your projects.
 But being flexible and adaptable comes at a cost. Many people find that NHibernate has a steep learning curve. I disagree;
 but as one of the committers for the project, I’m probably not a good person to judge that particular aspect of NHibernate.

 When I started with NHibernate, I got Hibernate in Action (Christian Bauer and Gavin King; Manning, 2004) and read it from cover to cover. My goal wasn’t to memorize the API; my intent
 was to understand NHibernate—not just the API and how to use it in simple scenarios, but also the design approach and how
 NHibernate handles issues. To my joy, Hibernate in Action contained exactly that kind of information and has been of tremendous value in understanding and using NHibernate.

 But Hibernate in Action is a Java book, which is why I was happy to hear (and read) about this book. NHibernate in Action is not simply a reproduction of Hibernate in Action with different naming conventions. This book has accomplished the task of translating the knowledge and of adapting and extending
 it. I consider this book to be essential for any developer who wants to be able to do more than the basics with NHibernate.
 And it certainly helps that the book covers NHibernate-specific features, which do not exist in the Hibernate version.

 OREN EINI, A.K.A. AYENDE RAHIEN

 NHIBERNATE COMMITTER

Preface

 For as long as I’ve been interested in software development, the most challenging and fun aspect has always been problem solving:
 from the business level to more technical levels, I’ve routinely spent countless hours thinking about the best solution to
 my current problem.

 After discovering the .NET framework, I investigated how to write business applications. I was particularly worried about
 how I would load and store information in a database. I tested the then-popular DataSet approach and the low-level ADO.NET
 API. Although this API was easy to set up, it turned out to be inefficient and inflexible, and it simply felt wrong. Anybody
 who has written countless plumbing code and SQL queries would understand what I mean. Therefore, I did some research and discovered
 object/relational mapping (ORM) tools. This was exactly what I was looking for: a non-intrusive, object-oriented persistence
 approach supporting relational databases. I chose NHibernate after testing numerous alternatives because it fitted that description
 the best.

 I remember downloading and testing NHibernate 0.4. It was surprisingly stable and provided the basic features I needed. More
 than that, it came with a wonderful community of open source developers. Being able to share my thoughts and having developers
 willing to help each other was one of my best learning experiences. I eventually shipped my first commercial application using
 NHibernate 0.7. I’ve used it in countless other projects, and I think I’ll continue to use it in the years to come.

 When Manning Publications approached Tobin and me about writing a book on NHibernate, we already had an interest in writing
 tutorials and helping people on the NHibernate forum. Nonetheless, writing a book was an intimidating challenge! We learned
 to write in a simple and readable way for the benefit of the reader. It turned out to be an experience that we recommend anyone
 try at least once.

 Although Java developers have used ORM and written about it for years, this technology is still quite obscure to .NET developers.
 This book explains not only how to use and extend NHibernate but also the theory behind it. We hope that this book will help
 enlighten you regarding an indispensable technology that’s not so simple to learn.

 PIERRE HENRI KUATE

Acknowledgments

 We’d like to first express our thanks to all the core developers, contributors, and other community members who have helped
 make NHibernate a first-class open source tool. We’d also like to extend our thanks to those who have made the original Java
 Hibernate a success. Our thanks to Jim Bolla, Mike Doerfler, Paul Hatcher, Sergey Koshcheyev, Demetris Manikas, Fabio Maulo,
 Donald Mull, Bill Pierce, Dario Quintana, Ayende Rahien, Peter Smulovics, Michael Third, Kailuo Wang, Kevin Williams, and
 all the other contributors to NHibernate.

 As with any book, this one has required huge quantities of time, effort, and patience. We’d like to thank the Manning Publications
 team for their incredible expertise and know-how. They’ve continually endeavored to make the best choices possible for the
 book and helped bring out the best from its authors. In particular, we’d like to thank publisher Marjan Bace, acquisitions
 editor Mike Stephens, as well as Tiffany Taylor, Katie Tennant, and Megan Yockey for their invaluable expertise, guidance,
 and feedback. A special thanks goes to our development editors, Frank Blackwell, Jackie Carter, and Cynthia Kane, who patiently
 initiated us in the art of book writing.

 Our technical proofreaders gave their expert advice on the content of the book as we prepared it for publication. Many thanks
 to Ayende Rahien for reviewing the manuscript and writing a brilliant foreword. Also, thanks to Mark Monster for the questions,
 amendments, and suggestions he made to the final version of the manuscript.

 The following technical reviewers took time out of their busy schedules to read the manuscript at various stages of development
 and offered their invaluable feedback, making this a much better book: Sergey Koshcheyev, John Tobler, Dan Hounshell, Alessandro
 Gallo, Robi Sen, Paul Wilson, Pete Helgren, Oren Eini, Doug Warren, Jim Geurts, Riccardo Audano, and Armand du Plessis.

 Before this book went into print, many people purchased the PDF version of the chapters as they were being written through
 the Manning Early Access Program (MEAP). We’d like to thank those readers for their comments, support, and suggestions throughout
 the project, especially Adam Cooper, Darren Maidlow, Morten Mertner, Magnus Salgo, Benjamin VanEvery, Jan Van Ryswyck, Fabio
 Maulo, Paul Anderson, Damon Wilder Carr, Shane Courtrille, Jim Beveridge, Daren Fox, David Gadd, Jason Whitehorn, Gary Murchison,
 Muhammad Shehabeddeen, and Thomas Koch.

 PIERRE HENRI KUATÉ would like to thank his family for always supporting him, and his friends at the Polelo Research Lab for their encouragement
 all along the way.

 TOBIN HARRIS would like to thank his girlfriend, Georgina Reall, for her support, encouragement, and patience throughout the project!
 He would also like to thank his sister, Marnie, for her help and endless enthusiasm.

About This Book

 The NHibernate project was started back in 2003 by Paul Hatcher, and with the tremendous work done by Mike Doerfler and Sergei
 Koshcheyev, it has steadily become a mature product, popular with thousands of .NET developers.

 NHibernate was originally a port of the incredibly popular Java Hibernate project, and object/relational mapping has been
 very popular with the Java crowd for many years.

 A consequence of this popularity is that Java developers have access to a whole heap of books about Hibernate. In fact, the
 last time I counted I found 15 books dedicated purely to this single tool. New books on Hibernate and related technologies
 are still appearing regularly.

 Until now, .NET developers have had no such luxury for learning NHibernate. This book aims to remedy that problem—we finally
 have our “manual” written for .NET developers and focusing solely on NHibernate. NHibernate in Action is based on the best-selling Hibernate in Action, which is considered to be the de facto manual for Java Hibernate. The book is much more than a translation; in fact, much
 work has gone into making it appeal to the .NET developer while also accommodating API changes, code differences, new features,
 and the like.

 We hope that the arrival of this book is considered good timing. The world of .NET is finally getting excited about object/relational
 mapping, and we hope this book will help you discover, learn, and enjoy one of the most mature, powerful ORM frameworks available.

Who should read this book

 This book is written for developers who work with Microsoft .NET. Both developers and architects should be able to draw great
 value from this book, regardless of whether they’re new to NHibernate and ORM or they’ve already gained some experience with
 it.

 For those new to NHibernate, this book assumes no prior knowledge. We also don’t expect that you’ve worked with any object/relational
 mapping framework before. The idea is that that you can take the knowledge in this book and start building NHibernate solutions
 with it.

 We also anticipate that many reading this book might have used NHibernate on a few projects already, either on its own or
 as part of another library such as Castle Active Record or Spring.NET. This book will help you if you want to learn a little
 more about what’s going on behind the scenes. It will also help you leverage the great features of NHibernate and understand
 how to take full advantage of them.

 We’ve done our best to give as much background detail as possible on both the common and the not-so-common usages of NHibernate.
 We’ve covered many topics that are barely mentioned in forums and blogs, such as the persistence lifecycle and some of the
 more exotic mapping capabilities.

 Regardless of whether you’re new to NHibernate or a seasoned user, we hope this book will teach you new things and increase
 your enjoyment and success with the tool.

Roadmap

 Chapter 1 sets the scene, explaining what persistence is and how it fits into business applications. We take a glimpse at NHibernate,
 comparing it to other popular approaches such as LINQ to SQL and DataSets. You’ll then learn about the fundamental problems
 posed in object/relational mapping and how NHibernate tackles them.

 Chapter 2 puts some code under your nose! Our brief tour takes you from installing NHibernate to building and running a simple application.
 We then go on to explore the main facilities available in NHibernate, including the APIs for querying, transactions, and customization.
 We round off with both basic and advanced configuration techniques and show how you can use logging to get a deeper insight
 into how NHibernate operates behind the scenes.

 Chapter 3 will bring you up to speed with the bulk of NHibernate’s capabilities. We take a more sophisticated problem—the CaveatEmptor
 application—and guide you through modeling your domain model, along with mapping it using various types of associations. You’ll
 learn how NHibernate allows mapping with XML and the .NET attributes. We also explain some smarter capabilities, such as flexible
 property mappings and automatic naming conventions. The chapter also explains the importance of identity in ORM, before building
 on previous knowledge by explaining more about mapping inheritance and associations.

 Chapter 4 gives further insight into some important concepts: entity lifecycle, persistent states, and equality. We look at how this
 knowledge can be leveraged by NHibernate’s APIs. We also look at working with entire object graphs, discussing cascading persistence,
 batching, lazy fetching, and eager fetching.

 Chapter 5 delves into using NHibernate to get tight control over database transactions. We then discuss long-running business transactions
 and demonstrate how to achieve automatic versioning and locking. Caching is core to NHibernate, and you’ll learn a great deal
 here about the first- and second-level caches.

 Chapter 6 introduces the NHibernate type system and how to implement custom user types. We move on to discuss components, value types,
 and working with the more advanced associations, indicating some best practices when working with them.

 Chapter 7 focuses on efficiently querying NHibernate. We examine both HQL and the ICriteria API, giving many code samples for each. You’ll see glorious detail for parameter binding, named queries, polymorphic queries,
 and joins. We also look at how you can run efficient report queries, use collection filters, and use plain SQL rather than
 HQL. Finally, this chapter looks at solving common performance problems, discussing the n+1 selects problem and caching.

 Chapter 8 offers a look at patterns and practices around NHibernate. We give example code for common practices such as layered applications
 and unit testing. Also included are some helpful tips for finding bugs in your applications. We also give an example implementation
 of adding additional services to NHibernate applications, such as audit logging.

 Chapter 9 starts by discussing development processes and available tools, explaining the various starting points for an NHibernate
 application. We also look at code generation and automatic schema maintenance, for evolving domain models and databases in
 tandem. We then look at working with legacy databases and explain some tried and tested tricks for dealing with things like
 composite keys and triggers.

 Chapter 10 gives more real-world knowledge. We look at refactoring a sample application into layers, with a well-defined persistence
 layer and a smart domain model. This chapter also introduces the DAO pattern with generics, and a useful NHibernate Helper class. Finally, we look at session management for web applications, implementing long-running business conversations, and
 demonstrating how to implement distributed transactions.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets [image:] link to explanations that follow the listing.

 The complete example code for the book can be downloaded from the Manning web site at www.manning.com/kuate or www.manning.com/NHibernateinAction.

Author Online

 Purchase of NHibernate in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/NHibernateinAction or www.manning.com/kuate. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 PIERRE HENRI KUATÉ is one of the main developers on the NHibernate project team, author of the NHibernate.Mapping.Attributes library, and a
 major contributor to the NHibernate forum. He was responsible for managing the NHibernate documentation, website, and forum
 on the Hibernate.org site. He started using NHibernate more than four years ago in commercial development.

 TOBIN HARRIS has worked with NHibernate since it was in early beta. He’s passionate about tools and practices that help build quality
 software at high speeds. As an independent consultant and entrepreneur, Tobin works with companies across the globe in various
 sectors including banking, personal finance, healthcare, software components, and new media. Tobin obtained his degree in
 software engineering at Leeds Metropolitan University and continues to work and live in Leeds, UK.

 CHRISTIAN BAUER is a member of the Hibernate developer team and a trainer, consultant, and product manager for Hibernate, EJB 3.0, and JBoss
 Seam at JBoss. He is the lead author of Manning’s Hibernate in Action and Java Persistence with Hibernate.

 GAVIN KING is a lead developer at JBoss, the creator of Hibernate, and a member of the EJB 3.0 (JSR 220) expert group. He also leads
 Web Beans JSR 299, a standardization effort involving Hibernate concepts, JSF, and EJB 3.0, and is coauthor with Christian
 of the two books mentioned above.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it’s example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of NHibernate in Action is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs. This book was first
 published in Paris in 1788, one year before the French Revolution. Each illustration is finely drawn and colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were
 just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or the countryside,
 they were easy to place—sometimes with an error of no more than a dozen miles—just by their dress.

 Dress codes have changed everywhere with time and the diversity by region, so rich at the time, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural
 diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Discovering ORM with NHibernate

 The first part of the book provides insights into what ORM is, why it exists, and how it fits in a typical .NET application.
 We then introduce NHibernate, using a clear and simple example to help you understand how the various pieces of an NHibernate
 application fit together.

Chapter 1. Object/relational persistence in .NET

 This chapter covers

	.NET persistence and relational databases

 	Layering .NET applications

 	Approaches to implementing persistence in .NET

 	How NHibernate solves persistence of objects in relational databases

 	Advanced persistence features

Software development is an ever-changing discipline in which new techniques and technologies are constantly emerging. As software
 developers, we have an enormous array of tools and practices available, and picking the right ones can often make or break
 a project. One choice that is thought to be particularly critical is how to manage persistent data—or, more simply, how to
 load and save data.

 Almost endless options are available. You can store data in binary or text files on a disk. You can choose a format such as
 CSV, XML, JSON, YAML, or SOAP, or invent your own format. Alternatively, you can send data over the network to another application or service, such as a relational database, an Active Directory server, or a message queue. You may even need to
 store data in several places, or combine all these options within a single application.

 As you may begin to realize, managing persistent data is a thorny topic. Relational databases are extremely popular, but many
 choices, questions, and options still confront you in your daily work. For example, should you use DataSets, or are DataReaders
 more suitable? Should you use stored procedures? Should you hand-code your SQL or let your tools dynamically generate it?
 Should you strongly type your DataSets? Should you build a hand-coded domain model containing classes? If so, how do you load
 data to and save it from the database? Do you use code generation? The list of questions continues.

 This topic isn’t restricted to .NET. The entire development community has been debating this topic, often fiercely, for many
 years.

 But one approach has gained widespread popularity: object/relational mapping (ORM). Over the years, many libraries and tools have emerged to help developers implement ORM in their applications. One
 of these is NHibernate—a sophisticated and mature object/relational mapping tool for .NET.

 NHibernate is a .NET port of the popular Java Hibernate library. NHibernate aims to be a complete solution to the problem
 of managing persistent data when working with relational databases and domain model classes. It strives to undertake the hard
 work of mediating between the application and the database, leaving you free to concentrate on the business problem at hand.
 This book covers both basic and advanced NHibernate usage. It also recommends best practices for developing new applications
 using NHibernate.

 Before we can get started with NHibernate, it will be useful for you to understand what persistence is and the various ways
 it can be implemented using the .NET framework. This chapter will explain why tools like NHibernate are needed.

Do I need to read all this background information?

 No. If you want to try NHibernate right away, skip to chapter 2, where you’ll jump in and start coding a (small) NHibernate application. You’ll be able to understand chapter 2 without reading chapter 1, but we recommend that you read this chapter if you’re new to persistence in .NET. That way, you’ll understand the advantages
 of NHibernate and know when to use it. You’ll also learn about important concepts like unit of work. If you’re interested by this discussion, you may as well continue with chapter 1, get a broad idea of persistence in .NET, and then move on.

 First, we define the notion of persistence in the context of .NET applications. We then demonstrate how a classic .NET application
 is implemented, using the standard persistence tools available in the .NET framework. You’ll discover some common difficulties
 encountered when using relational databases with object-oriented frameworks such as .NET, and how popular persistence approaches
 try to solve these problems. Collectively, these issues are referred to as the paradigm mismatch between object-oriented and database design. We then go on to introduce the approach taken by NHibernate and discuss many
 of its advantages. Following that, we dig into some complex persistence challenges that make a tool like NHibernate essential.
 Finally, we define ORM and discuss why you should use it. By the end of this chapter, you should have a clear idea of the
 great benefits you can reap by using NHibernate.

1.1. What is persistence?

 Persistence is a fundamental concern in application development. If you have some experience in software development, you’ve already
 dealt with it. Almost all applications require persistent data. You use persistence to allow data to be stored even when the
 programs that use it aren’t running.

 To illustrate, let’s say you want to create an application that lets users store their company telephone numbers and contact
 details, and retrieve them whenever needed. Unless you want the user to leave the program running all the time, you’ll soon
 realize that your application needs to somehow save the contacts somewhere. You’re faced with a persistence decision: you
 need to work out which persistence mechanism you want to use. You have the option of persisting your data in many places, the simplest being a text file. More often than
 not, you may choose a relational database, because such databases are widely understood and offer great features for reliably storing and retrieving data.

 1.1.1. Relational databases

 You’ve probably already worked with a relational database such as Microsoft SQL Server, MySQL or Oracle. If you haven’t, see
 appendix A. Most developers use relational databases every day; they have widespread acceptance and are considered a robust and mature
 solution to modern data-management challenges.

 A relational database management system (RDBMS) isn’t specific to .NET, and a relational database isn’t necessarily specific
 to any one application. You can have several applications accessing a single database, some written in .NET, some written
 in Java or Ruby, and so on. Relational technology provides a way of sharing data between many different applications. Even
 different components within a single application can independently access a relational database (a reporting engine and a
 logging component, for example).

 Relational technology is a common denominator of many unrelated systems and technology platforms. The relational data model
 is often the common enterprise-wide representation of business objects: a business needs to store information about various things such as customers, accounts, and products (the business objects),
 and the relational database is usually the chosen central place where they’re defined and stored. This makes the relational
 database an important piece in the IT landscape.

 RDBMSs have SQL-based application programming interfaces (APIs). So today’s relational database products are called SQL database management systems or, when we’re talking about particular systems, SQL databases.

 1.1.2. Understanding SQL

 As with any .NET database development, a solid understanding of relational databases and SQL is a prerequisite when you’re
 using NHibernate. You’ll use SQL to tune the performance of your NHibernate application. NHibernate automates many repetitive
 coding tasks, but your knowledge of persistence technology must extend beyond NHibernate if you want take advantage of the
 full power of modern SQL databases. Remember that the underlying goal is robust, efficient management of persistent data.

 If you feel you may need to improve your SQL skills, then pick up a copy of the excellent books SQL Tuning by Dan Tow [Tow 2003] and SQL Cookbook by Anthony Molinaro [Mol 2005]. Joe Celko has also written some excellent books on advanced SQL techniques. For a more theoretical
 background, consider reading An Introduction to Database Systems [Date 2004].

 1.1.3. Using SQL in .NET applications

 .NET offers many tools and choices when it comes to making applications work with SQL databases. You might lean on the Visual
 Studio IDE, taking advantage of its drag-and-drop capabilities: in a series of mouse clicks, you can create database connections,
 execute queries, and display editable data onscreen. We think this approach is great for simple applications, but the approach
 doesn’t scale well for larger, more complex applications.

 Alternatively, you can use SqlCommand objects and manually write and execute SQL to build DataSets. Doing so can quickly become
 tedious; you want to work at a slightly higher level of abstraction so you can focus on solving business problems rather than
 worrying about data access concerns. If you’re interested in learning more about the wide range of tried and tested approaches
 to data access, then consider reading Martin Fowler’s Patterns of Enterprise Application Architecture [Fowler 2003], which explains many techniques in depth.

 Of all the options, the approach we take is to write classes—or business entities—that can be loaded to and saved from the database. Unlike DataSets, these classes aren’t designed to mirror the structure
 of a relational database (such as rows and columns). Instead, they’re concerned with solving the business problem at hand.
 Together, such classes typically represent the object-oriented domain model.

 1.1.4. Persistence in object-oriented applications

 In an object-oriented application, persistence allows an object to outlive the process or application that created it. The
 state of the object may be stored to disk and an object with the same state re-created at some point in the future.

 This application isn’t limited to single objects—entire graphs of interconnected objects may be made persistent and later
 re-created. Most objects aren’t persistent; a transient object is one that has a limited lifetime that is bounded by the life of the process that instantiated the object. A simple
 example is a web control object, which exists in memory for only a fraction of a second before it’s rendered to screen and
 flushed from memory. Almost all .NET applications contain a mix of persistent and transient objects, and it makes good sense to have
 a subsystem that manages the persistent ones.

 Modern relational databases provide a structured representation of persistent data, enabling sorting, searching, and grouping
 of data. Database management systems are responsible for managing things like concurrency and data integrity; they’re responsible
 for sharing data between multiple users and multiple applications. A database management system also provides data-level security.
 When we discuss persistence in this book, we’re thinking of all these things:

	Storage, organization, and retrieval of structured data

 	Concurrency and data integrity

 	Data sharing

In particular, we’re thinking of these issues in the context of an object-oriented application that uses a domain model. An
 application with a domain model doesn’t work directly with the tabular representation of the business entities (using DataSets);
 the application has its own, object-oriented model of the business entities. If a database has ITEM and BID tables, the .NET
 application defines Item and Bid classes rather than uses DataTables for them.

 Then, instead of directly working with the rows and columns of a DataTable, the business logic interacts with this object-oriented
 domain model and its runtime realization as a graph of interconnected objects. The business logic is never executed in the
 database (as a SQL stored procedure); it’s implemented in .NET. This allows business logic to use sophisticated object-oriented
 concepts such as inheritance and polymorphism. For example, you could use well-known design patterns such as Strategy, Mediator,
 and Composite [GOF 1995], all of which depend on polymorphic method calls.

 Now, a caveat: Not all .NET applications are designed this way, nor should they be. Simple applications may be much better
 off without a domain model. SQL and ADO.NET are serviceable for dealing with pure tabular data, and the DataSet makes CRUD
 operations even easier. Working with a tabular representation of persistent data is straightforward and well understood.

 But in the case of applications with nontrivial business logic, the domain model helps to improve code reuse and maintainability
 significantly. We focus on applications with a domain model in this book, because NHibernate and ORM in general are most relevant
 to this kind of application.

 It will be useful to understand how this domain model fits into the bigger picture of a software system. To explain this,
 we take a step back and look at the layered architecture.

 1.1.5. Persistence and the layered architecture

 Many, if not most, systems today are designed with a layered architecture, and NHibernate works well with that design. What
 is a layered architecture?

 A layered architecture splits a system into several groups, where each group contains code addressing a particular problem
 area. These groups are called layers. For example, a user interface layer (also called the presentation layer) might contain all the application code for building web pages and processing user input. One major benefit of the layering approach is that
 you can often make changes to one layer without significant disruption to the other layers, thus making systems less fragile
 and more maintainable.

 The practice of layering follows some basic rules:

	Layers communicate top to bottom. A layer is dependent only on the layer directly below it.

 	Each layer is unaware of any other layers except the layer just below it.

Business applications use a popular, proven, high-level application architecture that comprises three layers: the presentation
 layer, the business layer, and the persistence layer. See figure 1.1.

 Figure 1.1. Layered architecture highlighting the persistence layer

 [image:]

 Let’s take a closer look at the layers and elements in the diagram:

	
Presentation layer— The user interface logic is topmost. In a web application, this layer contains the code responsible for drawing pages or screens,
 collecting user input, and controlling navigation.

 	
Business layer— The exact form of this layer varies widely between applications. But it’s generally agreed that the business layer is responsible
 for implementing any business rules or system requirements that users would understand as part of the problem domain. In some
 systems, this layer has its own internal representation of the business domain entities. In others, it reuses the model defined
 by the persistence layer. We revisit this issue in chapter 3.

 	
Persistence layer— The persistence layer is a group of classes and components responsible for saving application data to and retrieving it from
 one or more data stores. This layer defines a mapping between the business domain entities and the database. It may not surprise
 you to hear that NHibernate would be used primarily in this layer.

 	
Database— The database exists outside the .NET application. It’s the actual, persistent representation of the system state. If a SQL
 database is used, the database includes the relational schema and possibly stored procedures.

 	
Helper/utility classes— Every application has a set of infrastructural helper or utility classes that support the other layers: for example, UI widgets,
 messaging classes, Exception classes, and logging utilities. These infrastructural elements aren’t considered to be layers, because they don’t obey the
 rules for interlayer dependency in a layered architecture.

Should all applications have three layers?

 Although a three-layers architecture is common and advantageous in many cases, not all .NET applications are designed like that, nor should they be. Simple applications
 may be better off without complex objects. SQL and the ADO.NET API are serviceable for dealing with pure tabular data, and
 the ADO.NET DataSet makes basic operations even easier. Working with a tabular representation of persistent data is straightforward
 and well understood.

 Remember that layers are particularly useful for breaking down large and complex applications, and are often overkill for
 the extremely simple .NET applications. For such simple programs, you may choose to put all your code in one place. Instead
 of neatly separating business rules and database-access functions into separate layers, you can put them all in your web/Windows
 code-behind files. Tools like Visual Studio .NET make it easy and painless to build this kind of application. But be aware
 that this approach can quickly lead to a problematic code base; as the application grows, you have to add more and more code
 to each form or page, and things become increasingly difficult to work with. Moreover, changes made to the database may easily
 break your application, and finding and fixing the affected parts can be time consuming and painful!

1.2. Approaches to persistence in .NET

 We’ve discussed how, in any sizeable application, you need a persistence layer to handle loading and saving data. Many approaches
 are available when you’re building this persistence layer, and each has advantages and disadvantages. Some popular choices
 are as follow:

	Hand coding

 	DataSets

 	LINQ-to-SQL

 	NHibernate (or similar)

 	ADO.NET Entity Framework

Despite the fact that we highly recommend NHibernate, it’s always wise to consider the alternatives. As you’ll soon learn,
 building applications with NHibernate is straightforward, but that doesn’t mean it’s perfect for every project. In the following
 sections, we examine and compare these strategies in detail, discussing the implications for database access and the user
 interface.

 1.2.1. Choice of persistence layer

 In your applications, you’ll often want to load, manipulate, and save database items. Regardless of which persistence approach
 you use, at some point ADO.NET objects must be created and SQL commands must be executed. It would be tedious and unproductive to write all this SQL code each time you have to manipulate data, so you can use a persistence layer to take
 care of these low-level steps.

 The persistence layer is the set of classes and utilities used to make life easier when it comes to saving and loading data.
 ADO.NET lets you execute SQL commands that perform the persistence, but the complexity of this process requires that you wrap
 these commands behind components that understand how your entities should be persisted. These components can also hide the
 specifics of the database, making your application less coupled to the database and easier to maintain. For example, when
 you use a SQL identifier containing spaces or reserved keywords, you must delimit this identifier. Databases like SQL Server
 use brackets for that, whereas MySQL uses back-ticks. It’s possible to hide this detail and let the persistence layer select
 the right delimiter.

 Based on the approach you use, the internals of the persistence layer differ widely.

Hand-Coded Persistence Layer

 Hand-coding a persistence layer can involve a lot of work; it’s common to first build a generic set of functions to handle
 database connections, execution of SQL commands, and so on. Then, on top of this sublayer, you have to build another set of
 functions that save, load, and find your business entities. Things get much more involved if you need to introduce caching,
 business-rule enforcement, or handling of entity relationships.

 Hand-coding your persistence layer gives you the greatest degree of flexibility and control; you have ultimate design freedom
 and can easily exploit specialized database features. But it can be a huge undertaking and is often tedious and repetitive
 work, even when you use code generation.

Dataset-Based Persistence Layer

 Visual Studio lets you effortlessly generate your own persistence layer, which you can then extend with new functionality
 with few clicks. The classes generated by Visual Studio know how to access the database and can be used to load and save the
 entities contained in the DataSet.

 Again, a small amount of work is required to get started. You have to resort to hand-coding when you need more control, which
 is usually inevitable (as described in section 1.3).

NHibernate Persistence Layer

 NHibernate provides all the features required to quickly build an advanced persistence layer in code. It’s capable of loading
 and saving entire graphs of interconnected objects while maintaining the relationships between them.

 In the context of an auction application (such as eBay), NHibernate lets you easily save an Item and its Bids by implementing a method like this:

 public void Save(Item item) {
 OpenNHibernateSession();
 session.Save(item);
 CloseNHibernateSession();
}

 Here, session is an object provided by NHibernate. Don’t worry about understanding the code yet. For now, we want you to see how simple
 the persistence layer is with NHibernate. You’ll start using NHibernate in chapter 2, where you’ll discover that it’s straightforward to execute persistence operations. All you need to do is write your entities
 and explain to NHibernate how to persist them. Before moving on to a deeper discussion of NHibernate, let’s take a quick look
 at the newest generation of persistence technologies introduced by Microsoft.

Linq to SQL–Based Persistence Layer

 Language INtegrated Query (LINQ) was introduced in 2007 by Microsoft. It allows for query and set operations, similar to what
 SQL statements offer for databases directly within .NET languages like C# and Visual Basic through a set of extensions to
 these languages. LINQ’s ambition is to make queries a natural part of the programming language. LINQ to SQL provides language-integrated
 data access by using LINQ’s extension mechanism. It builds on ADO.NET to map tables and rows to classes and objects.

 LINQ to SQL uses mapping information encoded in .NET custom attributes or contained in an XML document. This information is
 used to automatically handle the persistence of objects in relational databases. A table can be mapped to a class, the table’s
 columns can be mapped to properties of the class, and relationships between tables can be represented by properties. LINQ
 to SQL automatically keeps track of changes to objects and updates the database accordingly through dynamic SQL queries or
 stored procedures. Consequently, when you use LINQ to SQL, you don’t have to provide the SQL queries yourself most of the
 time.

 LINQ to SQL has some significant limitations when compared to NHibernate. For example, its mapping of classes to tables is
 strictly one-to-one, and it can’t map base class properties to table columns. Although you can create a custom provider in
 LINQ, LINQ to SQL is a SQL Server–specific solution.

ADO.NET Entity Framework

 The Microsoft ADO.NET Entity Framework is a new approach to persistence, available since .NET 3.5 SP1. At a high level, it
 proposes to provide a persistence solution similar to NHibernate, but with the full commercial support and backing of Microsoft.
 This promises to be an attractive option for developers who require a vendor-supported solution. But at the time of this writing,
 the Entity Framework is early beta software, and its feature set is incomplete.

 The ADO.NET Entity Framework 1.0 version supports multiple databases and more complex mapping. But it won’t support true “object-first”
 development, where you design and build, and then generate the database tables from that mapping, until version 2—planned
 for late 2009 at the earliest. For situations requiring a robust ORM, NHibernate still offers significant advantages.

 1.2.2. Implementing the entities

 Once you’ve chosen a persistence-layer approach, you can focus on building the business objects, or entities, that the application
 will manipulate. These are classes representing the real-world elements that the application must manipulate. For an auction
 application, User, Item, and Bid are common examples. We now discuss how to implement business entities using each of the three approaches.

Hand-Coded Entities

 Returning to the example of an auction application, consider the entities: User, Item, and Bid. In addition to the data they contain, you expect relationships to exist between them. For example, an Item has a collection of bids, and a Bid refers to an Item; in C# classes, this might be expressed using a collection like item.Bids and a property like bid.Item. The object-oriented view is different that the relational view: instead of having primary and foreign keys, you have associations.
 Object-oriented design also provides other powerful modeling concepts, such as inheritance and polymorphism.

