

 [image: cover]

 Griffon in Action

 Andres Almiray, Danno Ferrin, and James Shingler & Foreword by Dierk König

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	
 [image:]

 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
 	Development editor:
 	Cynthia Kane

	20 Baldwin Road
 	Technical proofreader:
 	Al Scherer

	PO Box 261
 	Copyeditors:
 	Tiffany Taylor, Andy Carroll

	Shelter Island, NY 11964
 	Proofreader:
 	Melody Dolab

	
 	
 	Typesetter:
 	Dennis Dalinnik

	
 	
 	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Welcome to the Griffon revolution

 Chapter 2. A closer look at Griffon

 2. Essential Griffon

 Chapter 3. Models and binding

 Chapter 4. Creating a view

 Chapter 5. Understanding controllers and services

 Chapter 6. Understanding MVC groups

 Chapter 7. Multithreaded applications

 Chapter 8. Listening to notifications

 Chapter 9. Testing your application

 Chapter 10. Ship it!

 Chapter 11. Working with plugins

 Chapter 12. Enhanced looks

 Chapter 13. Griffon in front, Grails in the back

 Chapter 14. Productivity tools

 Appendix Porting a legacy application

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Welcome to the Griffon revolution

 1.1. Introducing Griffon

 1.1.1. Setting up your development environment

 1.1.2. Your first Griffon application

 1.2. Building the GroovyEdit text editor in minutes

 1.2.1. Giving GroovyEdit a view

 1.2.2. Making the menu items behave: the controller

 1.2.3. How about a tab per file?

 1.2.4. Making GroovyEdit functional: the FilePanel model

 1.2.5. Configuring the FilePanel controller

 1.3. Java desktop development: welcome to the jungle

 1.3.1. Lots of boilerplate code (ceremony vs. essence)

 1.3.2. UI definition complexity

 1.3.3. Lack of application life cycle management

 1.3.4. No built-in build management

 1.4. The Griffon approach

 1.4.1. At the core: the MVC pattern

 1.4.2. The convention-over-configuration paradigm

 1.4.3. Groovy: a modern JVM language

 1.5. Summary

 Chapter 2. A closer look at Griffon

 2.1. A tour of the common application structure

 2.2. The ABCs of configuration

 2.2.1. A is for Application

 2.2.2. B is for Builder

 2.2.3. C is for Config

 2.3. Using Griffon’s command line

 2.3.1. Build command targets

 2.3.2. Run command targets

 2.3.3. Miscellaneous command targets

 2.4. Application life cycle overview

 2.4.1. Initialize

 2.4.2. Startup

 2.4.3. Ready

 2.4.4. Shutdown

 2.4.5. Stop

 2.5. Summary

 2. Essential Griffon

 Chapter 3. Models and binding

 3.1. A quick look at models and bindings

 3.1.1. Creating the project

 3.1.2. Creating the model

 3.1.3. Creating the view

 3.1.4. Creating the controller

 3.2. Models as communication hubs

 3.2.1. MVC in the age of web frameworks

 3.2.2. Rethinking the pattern

 3.3. Observable beans

 3.3.1. JavaBeans bound properties: the Java way

 3.3.2. JavaBeans bound properties: the Groovy way

 3.3.3. Handy bound classes

 3.4. Have your people call my people: binding

 3.4.1. A basic binding call

 3.4.2. The several flavors of binding

 3.4.3. Finding the essence

 3.4.4. Other binding options

 3.5. The secret life of BindingUpdatable

 3.5.1. Keeping track of bindings with the BindingUpdatable object

 3.5.2. Managing the bindstorm: bind(), unbind(), and rebind()

 3.5.3. Manually triggering a binding: update() and reverseUpdate()

 3.5.4. Grouping bindings together

 3.6. Putting it all together

 3.6.1. Setting up the model

 3.6.2. Defining a view

 3.6.3. Adding the missing validations to the model

 3.7. Summary

 Chapter 4. Creating a view

 4.1. Java Swing for the impatient

 4.1.1. “Hello World” the Swing way

 4.1.2. Extending “Hello World”: “Hello Back”

 4.1.3. Swing observations

 4.2. Groovy SwingBuilder: streamlined Swing

 4.2.1. “Hello World” the SwingBuilder way

 4.2.2. “Hello Back” with SwingBuilder

 4.3. Anatomy of a Griffon view

 4.3.1. Builders are key to views

 4.3.2. Nodes as building blocks

 4.4. Using special nodes

 4.4.1. Container

 4.4.2. Widget

 4.4.3. Bean

 4.4.4. Noparent

 4.4.5. Application

 4.5. Managing large views

 4.5.1. Rounding up reusable code

 4.5.2. Breaking a large view into scripts

 4.5.3. Organize by script type

 4.6. Using screen designers and visual editors

 4.6.1. Integrating with the NetBeans GUI builder (formerly Matisse)

 4.6.2. Integrating with Abeille Forms Designer

 4.7. Summary

 Chapter 5. Understanding controllers and services

 5.1. Dissecting a controller

 5.1.1. Quick tour of injected properties and methods

 5.1.2. Using the post-initialization hook

 5.1.3. Understanding controller actions

 5.2. The need for services

 5.2.1. Creating a simple service

 5.2.2. Creating a Spring-based service

 5.3. Artifact management

 5.3.1. Inspecting artifacts

 5.3.2. Metaprogramming on artifacts

 5.3.3. Artifact API in action

 5.4. Summary

 Chapter 6. Understanding MVC groups

 6.1. Anatomy of an MVC group

 6.1.1. A look at each member

 6.1.2. Registering the MVC group

 6.1.3. Startup groups

 6.2. Instantiating MVC groups

 6.2.1. Creation methods

 6.2.2. Marshaling the MVC type instances

 6.2.3. Initializing group members

 6.2.4. Advanced techniques

 6.3. Using and managing MVC groups

 6.3.1. Accessing multiple MVC groups

 6.3.2. Destroying MVC groups

 6.4. Creating custom artifact templates

 6.4.1. Templates, templates, templates

 6.4.2. It’s alive!

 6.5. Summary

 Chapter 7. Multithreaded applications

 7.1. The bane of Swing development

 7.1.1. Java Swing without threading

 7.1.2. Java Swing with threading

 7.2. SwingBuilder alternatives

 7.2.1. Groovy Swing without threading

 7.2.2. Groovy Swing with threading

 7.2.3. Synchronous calls with edt

 7.2.4. Asynchronous calls with doLater

 7.2.5. Outside calls with doOutside

 7.3. Multithreaded applications with Griffon

 7.3.1. Threading and the application life cycle

 7.3.2. Threading support the Griffon way

 7.3.3. Controller actions and multithreading: a quick guide

 7.3.4. Fine-tuning threading injection

 7.3.5. What about binding?

 7.4. SwingXBuilder and threading support

 7.4.1. Installing SwingXBuilder

 7.4.2. The withWorker() node

 7.5. Putting it all together

 7.5.1. Defining the application’s outline

 7.5.2. Setting up the UI elements

 7.5.3. Defining a tab per loading technique

 7.5.4. Adding the loading techniques

 7.5.5. FileViewer: the aftermath

 7.6. Additional threading options

 7.6.1. Synchronous calls in the UI thread

 7.6.2. Asynchronous calls in the UI thread

 7.6.3. Executing code outside of the UI thread

 7.6.4. Is this the UI thread?

 7.6.5. Executing code asynchronously

 7.7. Summary

 Chapter 8. Listening to notifications

 8.1. Working with build events

 8.1.1. Creating a simple script

 8.1.2. Handling an event with the events script

 8.1.3. Publishing build events

 8.2. Working with application events

 8.2.1. E is for events

 8.2.2. Additional application event handlers

 8.2.3. Firing application events

 8.3. Your class as an event publisher

 8.3.1. A basic Marco-Polo game

 8.3.2. Running the application

 8.4. Summary

 Chapter 9. Testing your application

 9.1. Griffon testing basics

 9.1.1. Creating tests

 9.1.2. Running tests

 9.1.3. Testing in action

 9.2. Not for the faint of heart: UI testing

 9.2.1. Setting up a UI component test

 9.2.2. A hands-on FEST example

 9.3. Testing with Spock and easyb

 9.3.1. Spock reaches a new level

 9.3.2. FEST-enabled Spock specifications

 9.3.3. easyb eases up BDD

 9.4. Metrics and code inspection

 9.4.1. Java-centric tools: JDepend and FindBugs

 9.4.2. Reporting Groovy code violations with CodeNarc

 9.4.3. Measuring Groovy code complexity with GMetrics

 9.4.4. Code coverage with Cobertura

 9.5. Summary

 Chapter 10. Ship it!

 10.1. Understanding the common packaging options

 10.2. Using Griffon’s standard packaging targets

 10.2.1. The jar target

 10.2.2. The zip target

 10.2.3. The applet and webstart targets

 10.2.4. Customizing the manifest

 10.2.5. Customizing the templates

 10.3. Using the Installer plugin

 10.3.1. Building a distribution

 10.3.2. The izpack target

 10.3.3. The rpm target

 10.3.4. The deb target

 10.3.5. The mac target

 10.3.6. The jsmooth target

 10.3.7. The windows target

 10.3.8. Tweaking a distribution

 10.4. Summary

 Chapter 11. Working with plugins

 11.1. Working with plugins

 11.1.1. Getting a list of available plugins

 11.1.2. Getting plugin-specific information

 11.1.3. Installing a plugin

 11.1.4. Uninstalling a plugin

 11.2. Understanding plugin types

 11.2.1. Build-time plugins

 11.2.2. Runtime plugins

 11.3. Creating the Tracer plugin and addon

 11.3.1. Bootstrapping the plugin/addon

 11.3.2. Intercepting property updates

 11.3.3. Using the plugin

 11.3.4. Intercepting action calls

 11.3.5. Running the plugin again

 11.4. Releasing the Tracer plugin

 11.5. Summary

 Chapter 12. Enhanced looks

 12.1. Adding new nodes

 12.1.1. Registering node factories

 12.1.2. Using an implicit addon

 12.1.3. Creating a builder

 12.2. Builder delegates under the hood

 12.2.1. Acting before the node is created

 12.2.2. Tweaking the node before properties are set

 12.2.3. Handling node properties your way

 12.2.4. Cleaning up after the node is built

 12.3. Quick tour of builder extensions in Griffon

 12.3.1. SwingXBuilder

 12.3.2. JideBuilder

 12.3.3. CSSBuilder

 12.3.4. GfxBuilder

 12.3.5. Additional builders

 12.4. Summary

 Chapter 13. Griffon in front, Grails in the back

 13.1. Getting started with Grails

 13.2. Building the Grails server application

 13.2.1. Creating domain classes

 13.2.2. Creating the controllers

 13.2.3. Running the Bookstore application

 13.3. To REST or not

 13.3.1. Adding controller operations

 13.3.2. Pointing to resources via URL

 13.4. Building the Griffon frontend

 13.4.1. Setting up the view

 13.4.2. Updating the model

 13.5. Querying the Grails backend

 13.5.1. Creating a service

 13.5.2. Injecting an instance of the service

 13.5.3. Configuring the Bookstore application

 13.6. Alternative networking options

 13.7. Summary

 Chapter 14. Productivity tools

 14.1. Getting set up in popular IDEs

 14.1.1. Griffon and Eclipse

 14.1.2. Griffon and NetBeans IDE

 14.1.3. Griffon and IDEA

 14.1.4. Griffon and TextMate

 14.2. Command-line tools

 14.2.1. Griffon and Ant

 14.2.2. Griffon and Gradle

 14.2.3. Griffon and Maven

 14.3. The Griffon wrapper

 14.4. Summary

 Appendix Porting a legacy application

 Handling legacy views

 Swing GUI Builder views

 Abeille Forms Designer views

 Custom Java-based views

 XML-based views

 Full Java MVC members

 Preferring services over controllers

 Using events to your advantage

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 As soon as I heard about Griffon in Action, I was eager to get it into my hands. What I expected was a typical Manning In Action book: providing an easy jump start, working from actionable examples, and providing lots of insight about the technology
 at hand. It turned out that this book not only lived up to my expectations, it exceeded them in many ways.

 First, the authors’ knowledge is indisputable. This is obvious for the technology, because we’re talking about main Griffon
 contributors. But beyond that comes experience about all aspects of developing desktop applications based on Swing, ranging
 from how to set up your project, through proper separation of concerns, threading, building, testing, visual composition,
 and code metrics, down to how to deliver the final application to the customer.

 Second, the book goes beyond giving simple recipes. It explains the underlying constraints and considerations that enable
 readers to make informed decisions about their projects.

 Third, Griffon in Action is a great reference. I have it open whenever I write Griffon applications so I can quickly look up an example or a list
 of available goodies. It is such a thorough source of information that I consider it the definitive guide.

 Writing such a book is a huge effort—especially when aiming for approachability and completeness at the same time. Additionally,
 the authors pushed the Griffon project forward while writing this book, and one or the other may even have an additional day
 job.

 A big “thank you” to the authors of this book; and to you, readers, a warm-hearted “Keep groovin’.”

 DIERK KÖNIG
Author of Groovy in Action
First and Second Editions

Preface

 The book you’re holding in your hands went through a lot of iterations before it reached its final form. We’re not referring
 to the editorial process, but rather to the deep relationship it has with the topic it discusses: the Griffon framework. Both
 evolved at the same time almost from the beginning.

 On a peaceful October afternoon back in 2007, Danno Ferrin, James Williams, and I (all members of the Groovy development team)
 had a very productive chat over Skype about the future of Groovy’s SwingBuilder—an enabler for writing desktop GUIs using
 Swing as a DSL. We recognized the potential of mixing and matching different builders to write richer UIs, but the current
 syntax wasn’t pleasant to use. We drafted a plan and got to work on our respective areas.

 Fast-forward to JavaOne 2008, where the three of us got to meet face to face for the first time. Joined by Guillaume Laforge,
 we hatched the idea of what was to become the Griffon framework. We knew that Grails was making waves in the web space, and
 we felt the need for a similar outcome in the desktop space. Cue the light-bulb moment: we agreed that creating a desktop
 framework that stuck as closely as possible to Grails would be the way to go—although we didn’t have a name for it yet.

 Danno went back to his batcave after the conference and in a matter of weeks bootstrapped the framework by forking Grails
 and removing all the webby stuff that was not needed. Then he grafted in the most important pieces of Griffon’s architecture:
 the UberBuilder, the MVC group conventions, and the application life cycle.

 We finally had something tangible. James picked the name and we went public with the project on September 2008. The initial
 reaction from the community was so positive than in a matter of months work on the book began. And this is where both projects
 got intertwined.

 Together with Danno and Geertjan Wielenga, we wrote the first part of the book. We went to work on the framework, and then
 we came back to the book when we stopped to rethink where we were going with the framework. This kept going for months: hacking
 some code, writing a few pages. In the meantime, we received plenty of feedback about both projects. A particular advantage
 of this setup was that we were able to address the needs of users and readers and thus save time, the most precious resource
 for an open source effort.

 Eventually Geertjan and Danno reduced their contributions, and my coauthor and good friend Jim Shingler joined the project.
 Being an early adopter of the technology plus a seasoned Swing developer meant he was the right person for the job. And he
 didn’t disappoint. Thank you, Jim!

 All this leads to where we are now, with you reading these pages. During the time it took to get the book into your hands,
 we painstakingly revised its goals and the framework, making sure both were kept as accurate and fresh as possible. Despite
 what the naysayers have said for years—that Java on the desktop is no longer relevant—the current situation couldn’t be further
 from the truth. Griffon has been used to write applications that manage patient data, process the data required to manage
 the railroad schedule of an entire country, and even talk to a satellite in space!

 It’s our hope that you’ll find the book to be the best resource for starting to work with this technology. Keep it close as
 a reference when you’re in doubt about how to use a particular feature.

 Enjoy!

 ANDRES ALMIRAY

Acknowledgments

 Griffon in Action is the culmination of the efforts of a lot of people, without whom we would not have been able to accomplish its publication.
 We would like to begin by thanking Josh A. Reed for pitching the book during an autumn conversation as well as Christina Rudloff
 at Manning for getting the ball rolling. We need to express our appreciation to our development editors, Tara McGoldrick Walsh,
 Lianna Wlasiuk, and Cynthia Kane. Associate publisher Michael Stephens organized the project and got us on track to get the
 book finished in a timely and organized manner. Thanks to our editorial director Maureen Spencer, and to our copy editors,
 Tiffany Taylor and Andy Carroll, for making our writing readable. And thanks to the rest of the Manning staff, including Melody
 Dolab, Karen Tegtmeyer, Steven Hong, and Candace Gillhoolley.

 It’s important that a technical book be accurate, so we would like to thank our formal technical reviewers, Dean Iverson,
 Dierk König, and Al Scherer. We also thank those who read the book and provided feedback during various stages of the book’s
 development: Geertjan Wielenga, Venkat Subramanian, Ken Kousen, Scott Davis, Michael Kimsal, Peter Niederwiser, Alex Ruiz,
 Guillaume Laforge, Dierk König, Hamlet D’Arcy, Gerrit Grünwald, Carl Dea, Dave Klein, Santosh D. Shanbhag, Edward Gibbs, Bob
 Brown, Doug Warren, Shawn Hartsock, Jean-Francois Poilpret, Amos Bannister, Gordon Dickens, Glen Smith, Jonas Bandi, Mykel
 Alvis, Eitan Suez, Sven Haiges, Jonathan Giles, Robby O’Connor, Josh Reed, and James Williams. We also thank Dierk for contributing
 the foreword to our book.

 Thanks to all those who have contributed to the Groovy, Griffon, and Grails projects, especially Guillaume Laforge, Graeme
 Rocher, Jochen Theodoru, Alex Tkachman, Paul King, Hans Dockter, Peter Niederwiser, Luke Daley, Spring Source, and VMWare.
 We would also like to thank other Groovy, Griffon, and Grails community contributors, including James Williams for SwingXBuilder,
 Alexander Klein for bringing new ideas to the framework, and René Gröschke and his build-bending Gradle powers. They have
 created some great stuff and should be proud of themselves. Thanks to Sven Haiges, Glen Smith, and Peter Ledbrook for their
 informative Grails podcast, where Griffon was present on several occasions. Other special mentions go to Peter for the countless
 exchanges we had regarding Grails and Griffon; Dick “I loooove the Groovy” Wall, Tor Norbye, Carl Quinn, and Joe Nuxoll for
 the Java Posse podcast; and Michael Kimsal for Groovy Mag.

Andres Almiray

 First and foremost, I would like to thank my wife, Ix-chel, for being my rock, anchor, companion, and soul mate. You wouldn’t
 be holding this book in your hands without her patience, understanding, and driving force. I’d like to thank my parents for
 bringing me into this world and for all their love through the years. Patricia and Astrud: where would I be without all your
 help? A very special and warm thank you to Christianne, Joseph, and Didier Muelemans, dear mentors and beacons of hope. We
 had a group of professors back in college who shaped our professional lives and led us to where we are. Bruno Guardia, Enrique
 Espinoza, Carlos Guerra, Angel Kuri, and Barbaro Ferro, I’m grateful for all your lessons and your words of encouragement.

 Danno Ferrin is the man with the plan. He wrote the initial pieces that eventually led us to bring forth the Griffon framework.
 You rock!

 Geertjan Wielenga started the book with us; sadly, he had to let it go after a while. Still, his contributions in the early
 stages are deeply engrained in the book. Thank you for keeping the light of desktop Java shining bright (and the NetBeans
 Griffon plugin too!).

 Thank you to the members of the Groovy community at large: Guillaume Laforge, Graeme Rocher, Jochen Theodoru, Alex Tkachman,
 Paul King, Hans Dockter, Peter Niederwiser, Luke Daley, Adam Murdoch, Dierk König, Hamlet D’Arcy, Roshan Dawrani, Cédric Champeau,
 Stéphane Maldini, Dave Klein, Zachary Klein, Ben Klein, Michael Kimsal, Jim Shingler, Chris Judd, Joseph Nusairat, Ken Kousen,
 Ken Sipe, Andrew Glover, Venkat Subramanian, Scott Davis, Tim Berglund, Matthew McCullough, Erik Wendelin, Burth Beckwith,
 Jeff Brown, Peter Ledbrook, Glen Smith, Sven Haiges, Tim Yates, Marc Palmer, Robert Fletcher, Tomas Lin, Andre Steingress,
 Andrew Eisenberg, Andy Clement, Peter Gromov, Colin Harrington, Shawn Hartsock, Søren Berg Glasius, Hubbert Klein Ikkink,
 Sébastien Blanc, Vaclav Pech, Russel Winder, Bernardo Gomez Palacios, Domingo Suarez, Jose Juan Reyes, and Alberto Vilches.

 Java on the desktop has evolved a lot since the platform’s inception back in 1995. The following people have carried it on
 their shoulders and sent it forward: Amy Fowler, Richard Bair, Jasper Potts, Joshua Marinacci, Hans Muller, Chet Haase, Scott
 Violet, Chris Campbell, Shannon Hickey, Romain Guy, Kirill Grouchnikov, Mikael Grev, Jean-Francois Poilpret, Karsten Lentzsch,
 Gerrit Grünwald, Jim Weaver, Stephen Chin, Dean Iverson, Jim Clarke, Jonathan Giles, Carl Dea, Jeanette Winzenburg, and Rémy
 Rakic.

 Thanks to the friends and colleagues I’ve met across the years: el equipazo! (Artemio Urbina, Jose Luis Balderas, Pedro Iniestra,
 and Francisco Macias), Ignacio Molina, Agustin Ramos, Kevin Nilson, Mike van Riper, Alex Ruiz, Yvonne Price, Stoyan Vassilev,
 Jay Zimmerman, Ben Ellison, Deepak Alur, Etienne Studder, Johannes Bühler, Sven Herke, Alberto Mijares, Detlef Brendle, Sibylle
 Peter, Dieter Holz, and Hans-Dirk Walter.

 Last but not least, thanks to Mac Liaw, the evil genius behind it all.

Jim Shingler

 I would like to thank my wife, Wendy, and son, Tyler, for their support and patience during the writing of the book and in
 our journey together through life. I would like to thank all those who have contributed to my personal and professional growth
 over the years: Wendy Shingler, Tyler Shingler, James L. Shingler Sr., Linda Shingler, George Ramsayer, Chris Judd, Andres
 Almiray, Danno Ferrin, Tom Posival, Ken Heintz, Bryce Kerlin, Rick Burchfield, David Lucas, Chris Nicholas, Tim Resch, BJ
 Allmon, Kevin Smith, Jeff Brown, Dave Klein, Paul King, Soren Berg Glasius, Michael Kimsal, Joseph Nusairat, Brian Sam-Bodden.
 Steve Swing, Brian Campbell, Greg Wilmer, Rick Fannin, Kunal Bajaj, Mukund Chandrasekar, Seth Flory, Frank Neugebauer, David
 Duhl, Jason Gilmore, Teresa Whitt, Jay Johnson, Gerry Wright, and the many other people who have touched my life. I’d also
 like to thank Jay Zimmerman, Andrew Glover, Dave Thomas, Venkat Subramaniam, Scott Davis, Neal Ford, Ted Neward, and the other
 great speakers and influencers on the “No Fluff Just Stuff” tour.

Danno Ferrin

 I would like to thank K.D., S.R., C.B, J.C., H.G., and H.F. for their support and patience.

About this Book

 Griffon in Action is a comprehensive introduction to the Griffon framework that covers the basic building blocks such as MVC groups, binding,
 threading, services, plugins, and addons. But don’t let this quick summary fool you into thinking the topics are covered lightly.
 The book provides deep dives into the topics at hand, following a practical approach to get you started as quickly as possible.

Who should read this book

 This book is for anyone interested in writing desktop applications for the Java virtual machine (JVM). Whether you’re a seasoned
 Java developer or just starting on your way, Griffon in Action will give you the knowledge to get started writing desktop applications in a productive manner and—why not?—have some fun
 while you’re at it.

 Some experience with Java Swing is assumed. Previous experience with Grails is an advantage, but we take the time to explain
 the crucial concepts where we think a common base should be explicitly stated. If you’re coming from another language background
 (such as Ruby or Python), you should find that using the Groovy language comes naturally.

Roadmap

 Griffon in Action gives a quick, accessible, no-fluff introduction to writing desktop applications in the Java universe.

 The book is divided into four parts:

	
Part 1 Getting started

 	
Part 2 Essential Griffon

 	Part 3 Advanced Griffon

 	Part 4 Extending Griffon’s reach

We cover what Griffon is in chapter 1: where did it come from, and why was such a development platform needed in the first place? This chapter presents theory
 along with a good deal of practical advice and code—we want you to get a quick start right off the bat.

 In chapter 2, we explain the configuration options for an application both at compile time and runtime. The command-line tools are discussed
 extensively.

 In part 2 of the book, we go deep into the Griffon’s lair and explore the MVC components found in every Griffon application. Our first
 stop is modeling data and establishing automatic updates via binding. We hope that by the end of chapter 3, you’ll agree that binding makes life much easier that manually wiring up triggers; and event listeners will be a task you
 cross off your list permanently.

 Walking further into the den of the beast in chapter 4, we’ll discuss several techniques for building a UI. Declarative programming is certainly within your reach, and the fact
 that Griffon uses Groovy—a real programming language—makes things much sweeter. You’ll find that the relationships between
 the different components emerge naturally as you progress.

 Closer to the nest, in chapter 5, are the components that form the logic of an application: controllers and services. They’re responsible for routing events
 and data, as well as responding to user events.

 All the pieces will have fallen into place at this point, but you may have some unanswered questions regarding the relationships
 between components. Chapter 6 covers in great detail how the platform manages its components and the facilities it puts at your disposal to make the most
 out of them.

 In part 3, we progress to more advanced topics. Building a responsive application can be a daunting task, but in chapter 7 we’ll show you a few options that will help you sort out multithreading obstacles with ease. Dealing with highly coupled
 components is equally intimidating; but, fortunately, Griffon lets you react to well-timed events depending on the application’s
 life cycle. You can even trigger your own events. And did we mention that the event system is also useful for the command
 line? Events are essential to building an application, and we’ll show you how to use them.

 Chapter 8 offers complete coverage of notifications. Then, we’ll move to an often-neglected aspect of desktop applications: proper
 testing, involving the UI. Griffon simplifies that task as well, as we’ll explain in chapter 9.

 Finally, we get into the subject of deployment in chapter 10. We cannot stress enough how important it is to package the application in a way that customers can start using it immediately.
 Griffon provides highly configurable options to gift-wrap that application, and you need only concern yourself with how you’ll
 ship it to your customers. The beast should be tamed by now and comfortably accepting your commands.

 We’ll begin part 4 by flying the friendly skies of plugins and extensions. We’ll bank left to chart our way through chapter 11. Plugins, a key Griffon feature, let you as a developer customize further how applications are built and packaged, for example.
 In chapter 12, we’ll climb up to the highest clouds, close to the stars, where the imagination roams freely through the vast expanse of
 customized views.

 Before we complete our journey and shoot for the stars, you’ll put all your newfound knowledge and training to the test in
 chapter 13. We’ll show you how to build a prototype application that spans both desktop and web spaces, thanks to friendly cooperation
 between Griffon and Grails.

 You’ll want to keep your flying steed well nourished and in excellent condition. In chapter 14, we’ll look at the most common tools, such as editors and build tools, that you can use to maximize Griffon’s performance.

Code conventions

 This book provides examples that demonstrate in a hands-on fashion how to use Griffon features. Source code in listings or
 in text appears in a fixed-width font like this to separate it from the ordinary text. In addition, class and method names, object properties, and other code-related terms
 and content in text are presented using the same fixed-width font.

 Code and command-line input/output can be verbose. In some cases, the original source code (available online) has been reformatted;
 we’ve added line breaks and reworked indentation to accommodate the page space available in the book. In rare cases, when
 even this was not enough, line-continuation markers were added to show where longer lines had to be broken.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered cueballs link to
 additional explanations that follow the listing.

Source code downloads

 You can access the source code for all examples in the book from the publisher’s website: www.manning.com/GriffoninAction. All source code for the book is hosted at GitHub (github.com), a commercial Git hosting firm. We’ll maintain the current
 URL via the publisher’s website, also mirrored at https://github.com/aalmiray/griffoninaction. To simplify finding your way, the source code is maintained by chapter.

Software requirements

 All you need to get started is a working version of Oracle’s JDK6 (available from http://java.oracle.com) that matches your platform and operating system plus the latest stable Griffon release (from http://griffon.codehaus.org/download). Additional software may be required, such as plugins or tools; we’ll provide download instructions when applicable.

Staying up to date

 We wrote the book as Griffon evolved, targeting 0.9.5 specifically, however subsequent Griffon versions may have been released
 by the time you read this. New Griffon versions bring new functionality, and although Griffon reached 1.0 status right about
 the time this book was finished, the Griffon team made sure to keep away from introducing breaking changes after 0.9.5 was
 released. This means all the knowledge you learn here is valid for future releases.

 If portions of source code require modification for a future release, you’ll be able to find information on the Griffon in Action Author Online forum (www.manning.com/GriffoninAction).

 You can also use the Author Online forum to make comments about the book, point out any errors that may have been missed,
 ask technical questions, and receive help from the authors and from other users.

About the authors

 ANDRES ALMIRAY is a Java/Groovy developer and Java Champion, with more than a decade of experience in software design and development. He
 has been involved in web and desktop application developments since the early days of Java. His current interests include
 Groovy and Swing. He is a true believer in open source and has participated in popular projects like Groovy, Grails, JMatter,
 and DbUnit, as well as starting his own projects. Andres is a founding member and current project lead of the Griffon framework.
 He blogs periodically at http://jroller.com/aalmiray and is a regular speaker at international conferences. You can find him on twitter as @aalmiray.

 DANNO FERRIN is a component lead engineer with experience in Java, Groovy, and Swing. He’s the cofounder of Griffon, an active committer
 to the Groovy language, and a former committer to both Tomcat and Ant.

 JAMES SHINGLER is the lead technical architect for Big Lots (a nationwide retailer base in Columbus, Ohio), a conference speaker, an open
 source advocate, and coauthor of Beginning Groovy and Grails (2008). The focus of his career has been using cutting-edge technology to develop IT solutions for the retail, insurance,
 financial services, and manufacturing industries. He has 14 years of large-scale Java experience and significant experience
 in distributed and relational technologies.

About the Cover Illustration

 The figure on the cover of Griffon in Action is captioned “An inhabitant of Breno.” The illustration is taken from a reproduction of the travel logs of Francesco Carrara
 (1812–1854), a historian and archaeologist, who traveled extensively through Dalmatia, Northern Italy, and Austria, recording
 his impressions of the history, politics, and customs of the places he visited. The travel logs, accompanied by finely colored
 illustrations, give a rare and detailed account of regional life in that part of Europe in the mid-nineteenth century. The
 illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, situated in the Roman core of the
 medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.

 Breno is a small town in the province of Brescia in the Lombardy region of Italy. The town is the historical capital of the
 Valcamonica, the valley formed by the river Oglio as it flows through the surrounding Alps. The area is famous for its petroglyphs
 dating from around 20,000 BC, which are listed among UNESCO’s World Heritage Sites.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought to life by illustrations from old books and collections like this one.

Part 1. Getting started

 Our goal in part 1 is to get you up to speed on what Griffon offers to the desktop application development experience by diving directly into
 code. Part 1 is all about hitting the ground running.

 We’ll introduce you to Griffon by guiding you through building your first Griffon application: a simple multitabbed file viewer.
 You’ll experience most of the tasks required to design, build, package, and deploy an application; and we’ll take a quick
 look at the building blocks of the framework, its conventions, and the application’s life cycle.

 Taking inspiration from mythology, a Griffon (or Griffin) is a mystical beast that’s half eagle, half lion. In antiquity,
 the lion was considered the king of beasts, while the eagle held the same title for birds. Thus an amalgam of both creatures
 results in the king of all creatures. The Griffon framework is an amalgam between the web world (thanks to its Grails heritage)
 and the desktop world. Griffons were thought to guard treasures and riches; in our case, Griffon is the key to a productive
 experience when writing desktop applications.

 Let’s begin our journey by looking the Griffon directly in the eye.

Chapter 1. Welcome to the Griffon revolution

	

 This chapter covers

	What Griffon is all about

 	Installing Griffon

 	Building your first Griffon application

 	Understanding how Griffon simplifies desktop development

	

Welcome to a revolution in how desktop applications are designed, developed, and maintained. You may be wondering, a revolution
 against what exactly? Let’s begin with how you pick the application’s source layout, or how you organize build time versus
 runtime dependencies. What about keeping the code clean? How do you deal with multithreading concerns? Can you extend an application’s
 capabilities with plugins? These are but a few of the most common obstacles that must be sorted out in order to get an application
 out the door. Many hurdles and obstacles lurk in your path, waiting their turn to make you slip that important deadline or
 drive you to frustration.

 Griffon is a revolutionary solution that can make your job easier while bringing back the fun of being programmer. Griffon
 is a Model-View-Controller (MVC) based, convention-over-configuration, Groovy-powered desktop application development framework.
 Using Griffon to build your desktop applications will result in organized code and less of it. But why would you build a desktop application in the first place? There are times when being
 close to the metal pays off really well: for example, how would you access a local device like a scanner or a printer from
 a web page? Via some other domain-specific device, perhaps? This is a valid use case scenario in both financial and health
 industries. We believe that once you use Griffon, you’ll enjoy it as much as we do.

 This chapter will get you started building Griffon applications. It lays out the core concepts and underlying designs behind
 the framework. You’ll start by getting your development environment set up and building your first Griffon application. You’ll
 build on your first application and create a simple tab-based editor with a menu and actions to open and save files. We’ll
 review some of the challenges with Java-based desktop development and see how Griffon approaches it. Along the way, we’ll
 discuss some of the core Griffon constructs, components, and philosophy.

 Are you ready to become truly productive building applications for the desktop? Let’s begin!

1.1. Introducing Griffon

 Griffon’s goal is to bring the simplicity and productivity of modern web application frameworks like Grails and Rails to desktop
 development. Griffon leverages years of experience and lessons learned by Grails, Groovy, Rails, Ruby, Java Desktop, and Java
 developers and their communities. Griffon has adopted many of those languages’ and frameworks’ best practices, including Model-View-Controller,
 convention-over-configuration, a modern dynamic language (Groovy), domain-specific languages (DSLs), and the builder pattern.

 Web application development as we knew it suddenly changed in 2004, when a framework named Ruby on Rails (RoR; http://rubyonrails.org) was released in the wild. It showed that a dynamic language like Ruby could make you highly productive when teamed with
 a well-thought-out set of conventions. Add the convention-over-configuration paradigm and the viral reception from disheartened
 Java developers longing for something better than JEE, and RoR suddenly stepped into the spotlight.

 A year later, another web framework appeared: its name was Grails, and Groovy was its game. It followed RoR’s ideals, but
 its founders decided to base the framework on well-known Java technologies such as the Spring framework, Hibernate, SiteMesh,
 and Quartz. Grails included a default database and a full stack to develop JEE applications without the hassle that comes
 with a regular JEE application.

 Grails grew in popularity and a community was created around it, to the point that it’s now the most successful and biggest
 project at the Codehaus (www.codehaus.org), an organization that hosts open source projects; that’s where Grails was born and Griffon is hosted.

 Grails is a convention-over-configuration, MVC-based, Groovy-powered web application development framework. Does that definition
 sound familiar? Just exchange desktop for web, and you get Griffon.

 Both frameworks share a lot of traits, and it’s no surprise that Griffon’s MVC design and plugin facility were based on those
 provided by Grails, or that the command-line tools and scripts found in one framework can also be found in the other. The
 decision to use Grails as the foundation of Griffon empowers developers to switch between web and desktop development: the
 knowledge gathered in one environment can easily be translated to the other.

	

Note

 If you’re in a hurry to understand how to use plugins, take a quick peek at chapter 11.

	

Let’s get started by setting up the development environment and building your first simple Griffon application.

 1.1.1. Setting up your development environment

 In order to get started with Griffon, you’ll need the following three items in your toolbox: a working JDK installation, a
 binary distribution of the Griffon framework, and your favorite text editor or IDE.

 First, make sure you have the JDK installed. The version should be 1.6 or later: to check, type javac -version from your command prompt.

 Next, download the latest IzPack-based Griffon distribution from http://griffon.codehaus.org/download. The file link looks like this one:

 griffon-0.9.5-installer.jar

 Note that the version number may differ. The important thing is that you pick the IzPack link. IzPack provides a cross-platform
 installer that should take care of installing the software and configuring the environment variables for you. It will even
 unpack the source distribution of the framework, where you can find sample applications that are useful for learning cool
 tricks. You can run the installer by locating the file and double-clicking it. Alternatively, you can run the following command
 in a console prompt:

 java –jar griffon-0.9.5-installer.jar

 If for some reason the installer doesn’t work for you, or if you’d rather configure everything by yourself, download the latest
 Griffon binary distribution from the same page in either zip or tar.gz format. Uncompress the downloaded file into a folder
 of your choosing (preferably one whose name doesn’t contain whitespace characters). A standard Griffon distribution contains
 all the files and tools you need to get going, including libraries, executables, and documentation.

	

Caution

 If you’re working on a Windows platform, avoid installing Griffon in the special Program Files directory, because the operating
 system may impose special restrictions that hinder Griffon’s setup.

	

Next, set an environment variable called GRIFFON_HOME, pointing to your Griffon installation folder. Finally, add GRIFFON_HOME/bin (or %GRIFFON_HOME%\bin on Windows) to your path:

	
OS X and Linux —This is normally done by editing your shell configuration file (such as ~/.profile) by adding the following lines:

export GRIFFON_HOME=/opt/griffon
export PATH=$PATH:$GRIFFON_HOME/bin

 	
Windows —Go to the Environment Variables dialog to define a GRIFFON_HOME variable and update your path settings (see figure 1.1).
 Figure 1.1. Updating variable settings on Windows

 [image:]

Verify that Griffon has been installed correctly by typing griffon help at your command prompt. This should display a list of available Griffon commands, confirming that GRIFFON_HOME has been set as expected and that the griffon command is available on your path. The output should be similar to this:

 $ griffon help
Welcome to Griffon 0.9.5 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /opt/griffon

 Be aware that Griffon may produce output in addition to this—particularly when run for the first time, Griffon will make sure
 it can locate all the appropriate dependencies it requires, which should be available in the folder where Griffon was installed.

	

 Griffon commands
 The griffon command is the entry point for other commands, such as the help command you just used. It’s a good idea to familiarize yourself with the additional commands because they’re useful when
 you’re developing Griffon applications. Using Griffon’s command line will be explored further in chapter 2.

	

Now you’re ready to start building your first application. You’ll start with a default Griffon application and evolve it into
 a simple tab-based editor with a menu and actions to open and save files. The application is small enough that you don’t need
 to use an IDE. The goal is to learn how Griffon works, and using an IDE right now would just add an extra layer for you to
 figure out.

 The first order of business in developing an application is setting up the directory layout and defining references to the
 Griffon framework.

 1.1.2. Your first Griffon application

 Fortunately, you can do all the bootstrapping plus a bit more with a simple command. All Griffon applications use the create-app command to bootstrap themselves. Enter the following in your command-line window:

 $ griffon create-app groovyEdit

 That’s it! You can give yourself a pat on the back, because you’ve already done a lot of the work that would have taken you
 considerably longer in regular Java/Swing. The create-app command created the appropriate directory structure, the application, and even skeleton code that can be used to launch the
 application.

	

 A quick peek at a simple Swing application
 If you’re new to Swing, listing 1.9 in section 1.3 is a simple Java Swing application. It will give you an idea of how Java desktop development was done before Griffon.

	

But don’t take our word for it; take it for a spin. Make sure you’re in the main folder of your new application structure:

 $ cd groovyEdit

 Then type the following command at the command prompt:

 $ griffon run-app

 On issuing that command, you should see Griffon compiling and packaging your sources. After a few seconds, you’ll see a screen
 similar to figure 1.2.

 Figure 1.2. Your first application is up and running in standalone mode.

 [image:]

 Granted, it doesn’t look like much yet, but remember that although you haven’t touched the code, the application is up and
 running in literally seconds.[1] You ran the application from the command line, but that isn’t your only option.

 1 That is one of the advantages of the convention-over-configuration paradigm.

 Java became famous in 1995 because it was possible to create little applications called applets[2] that run in a browser. Java also provides a mechanism for delivering desktop applications across the network: Java Web Start.
 Although powerful, these options carry with them the burden of configuration, which can get tricky in some situations. Wouldn’t
 it be great if Griffon applications could run in those two modes as well, without the configuration hassle?

 2 Who could forget the Dancing Duke and Nervous Text applets?

 As you’ll quickly discover, Griffon is all about productivity and having fun while developing applications. That means it’s
 possible to provide these deployment options in a typical Griffon way. Close the GroovyEdit application if it’s still running.
 Now, type the following command, and you’ll launch the current application in Web Start mode:

 $ griffon run-webstart

 You should see Griffon compiling and packaging your sources. After a few seconds, you’ll see a screen similar to figure 1.3.

 Figure 1.3. Your first application running in Web Start mode

 [image:]

 Notice that Griffon performs some additional tasks, such as signing the Java archives (jars). You’ll also see the Java Web
 Start splash screen and a security dialog asking you to accept the self-signed certificate. After you accept the certificate—which
 is OK because the application isn’t malicious in any way—you should again see a screen similar to figure 1.2.

 Finally, you can run the application in applet mode with the following command:

 $ griffon run-applet

 You should see Griffon compiling and packaging your sources. After a few seconds, you’ll see a screen similar to figure 1.4.

 Figure 1.4. The GroovyEdit application running in applet mode

 [image:]

 This command signs the application’s jars as well, if they’re not up to date. But if you launched the applet mode after the
 previous step, you won’t see the jars being signed. You’re asked again to accept the certificate if you didn’t do so previously.
 Then, after a moment, you should see the application running again, using Java’s applet viewer.

 Bearing in mind that you can deploy the application in any of these three modes, we’ll continue with the standalone mode for
 the rest of the chapter, because it’s the fastest (it doesn’t require signing the jars that have been updated when you compile the sources repeatedly). We’ll cover
 deployment options in greater detail in chapter 10, where you’ll even learn to create a cross-platform installer with minimal configuration from your side.

 We hope you’re getting excited about the painless configuration: so far, you haven’t done any! In the next section, you’ll
 build on this great start and create an editor.

1.2. Building the GroovyEdit text editor in minutes

 Many consider Swing application development painful. “Aaargh, Swing!” sums up this attitude. Swing development isn’t easy,
 and time to market suffers because of all the tweaking required. There’s truth in these complaints, at least partly because
 the Swing toolkit is more than 10 years old. It’s powerful, but it requires too much work for a new developer to come to terms
 with quickly. Add to that the perils of Java’s multithreaded environment and the verbosity of Swing’s syntax, and the life
 of a Swing developer, especially a newbie, isn’t easy.

 Given these hurdles, is it even possible to build a meaningful Swing application in minutes? The answer is, of course, “Yes!”
 One of the core features of Griffon is a powerful domain-specific language (DSL) that overcomes the issues we just mentioned.
 SwingBuilder is a core Griffon component that allows you to easily create an application using Swing. You’re about to find
 out how easy using Swing can be.

 In this section, you’ll expand your GroovyEdit application by adding tabs, a menu structure, and the ability to open, save,
 and close files. At the end, you should have a working application that looks similar to figure 1.5.

 Figure 1.5. Finished GroovyEdit application displaying two tabs with its own source code

 [image:]

 At the next stop in your journey, you’ll add a bit of spice to the application by changing the way it looks. To do so, you’ll
 modify your application’s view.

 1.2.1. Giving GroovyEdit a view

 The goal we’ve set for this chapter is to create an application that looks like figure 1.5, which clearly doesn’t resemble figure 1.3. A quick glance at figure 1.5 reveals the following elements:

	
The menu bar has a single visible menu item (File).

 	Each tab displays the file name as its title.

 	The contents area has both vertical and horizontal scrollbars.

 	Each tab includes a Save button and a Close button. Those buttons have a mnemonic set on their label.

 	The Save button is disabled.

You’re ready to roll up your sleeves and start coding! You’ll start by editing the application’s view.

Understanding the role of the view

 Griffon follows the MVC pattern (Model-View-Controller). This means the smallest unit of structure in the application is an
 MVC group. An MVC group is a set of three components, one for each member of the MVC pattern: model, view, and controller. Each member
 follows a naming convention that’s easy to follow. We’ll look more closely at the MVC paradigm in section 1.4.

 Griffon created an initial MVC group for the application when you issued the create-app command. Equipped with this information, let’s look at the view: the part of the application the user sees and interacts with (see the following listing). This file is located at griffon-app/view/groovyedit/GroovyEditView.groovy.

 Listing 1.1. Default GroovyEditView

 package groovyedit
application(title: 'groovyEdit', size: [320,340], locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 // add content here
 label('Content Goes Here') // delete me
}

 Griffon uses a declarative programming style to reduce the amount of work required to build an application. From this code,
 you can see that the create-app command defines an application titled GroovyEdit with a default size of 480 by 320, some icons, and a Content Goes Here label.

 Let’s take a closer look. One of the goals of Griffon is to simplify and shield you from implementation details. Java can
 be a bit of a hassle: desktop applications extend javax.swing.JFrame, but applets extend javax.swing.JApplet. Griffon takes care of this for you. In listing 1.1, the application node resolves to a javax.swing.JFrame instance when run in standalone mode and a javax.swing.JApplet instance when run in applet mode. After the code sets some basic properties, such as the title and the location, in the application
 node, the label component resolves to javax.swing.JLabel.

 Next you’ll move forward with the application by adding a file chooser (JFile-Chooser), a menu structure (JMenuBar), and a tab structure (JTabbedPane).

	

 SwingBuilder naming conventions
 Swing components in Groovy follow naming conventions. Let’s take JLabel, for example. Its corresponding Griffon component is label. Can you guess what the corresponding component is for JButton? If you guessed button, you’re correct!

 The naming convention is roughly this: remove the prefixing J from the Swing class name, and lowercase the next character. We’ll discuss declarative UI programming with Groovy thoroughly
 in chapter 5, but for now this tip can save you from some head-scratching as you read this chapter.

	

Adding UI elements

 Following the preferred convention-over-configuration approach laid out by Griffon, the GroovyEditView.groovy file should
 contain all the view components this MVC group will work with. Replace the contents of the entire file (listing 1.1) with the code in the following listing.

 Listing 1.2. Adding menus and a tabbed pane to GroovyEditView.groovy

 [image:]

 By now, you can begin to appreciate a few advantages of using a general programming language like Groovy instead of a markup
 language like XML for declarative UI programming. The code is close to what you would have written in Java, yet the verbosity
 is kept to a minimum; there’s hardly a trace of visual clutter.

	

Note

 If you’re not that familiar with Groovy, please refer to Groovy in Action (www.manning.com/koenig2/). For now, think of Groovy as a superset of Java with shorthand notations to make your programming life easier.

	

In order to refer to these components from other files, you need to declare references for the file chooser and the tabbed
 pane. The return value of the first node call (fileChooser) is kept as an explicit variable [image:] as you would in regular Groovy code. The second way to define a reference is by setting an id property [image:] on the target node. In this case, a variable named tabGroup is created that can be referenced from the view script. The advantage of the second approach, as you’ll see later in the
 book, is that you can create variable names in a dynamic way.

 Having done this, you can refer back to these components from the other files in your application, while at the same time
 ensuring that all the view components are in the same place. Imagine how useful that will be for someone maintaining the application.
 They’ll know exactly where to go to find the application’s view components.

 Run the application by typing the following Griffon command at the command prompt:

 $ griffon run-app

 When you do so, you should see a screen similar to figure 1.6.

 Figure 1.6. The GroovyEdit application now has a menu.

 [image:]

Adding the menu items

 Next, you’ll spend some time working with the menu items. You’ve hard-coded the names of the actions into the view of your
 application. Griffon lets you separate your action code from the rest of your application. Defining an action also leads to
 code reuse, because many Swing components can use the action definition to configure themselves—for example, their label and
 icon—and also to handle the job they’re supposed to do.

 You’ll define two actions in GroovyEditView.groovy. Note the id of each action:

 actions {
 action(id: 'openAction',
 name: 'Open',
 mnemonic: 'O',
 accelerator: shortcut('O'))
 action(id: 'quitAction',
 name: 'Quit',
 mnemonic: 'Q',
 accelerator: shortcut('Q'))
}

 This code must precede the code that uses the actions. For example, you could insert it before the application node or just
 before the application node is defined.

 In the definition of your menu items, change menuItem 'Open' to menuItem openAction. Do the same for the Quit action:

OEBPS/01fig04.jpg

OEBPS/01fig05.jpg

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01list02_alt.jpg

OEBPS/two.jpg

OEBPS/one.jpg

OEBPS/cover.jpg

OEBPS/01fig06.jpg

