

 [image:]

 Tiny Python Projects

 Learn coding and testing with puzzles and games

 Ken Youens-Clark

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Al Scherer

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Mathijs Affourtit

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297519

brief contents

 Getting started: Introduction and installation guide

 1 How to write and test a Python program

 2 The crow’s nest: Working with strings

 3 Going on a picnic: Working with lists

 4 Jump the Five: Working with dictionaries

 5 Howler: Working with files and STDOUT

 6 Words count: Reading files and STDIN, iterating lists, formatting strings

 7 Gashlycrumb: Looking items up in a dictionary

 8 Apples and Bananas: Find and replace

 9 Dial-a-Curse: Generating random insults from lists of words

 10 Telephone: Randomly mutating strings

 11 Bottles of Beer Song: Writing and testing functions

 12 Ransom: Randomly capitalizing text

 13 Twelve Days of Christmas: Algorithm design

 14 Rhymer: Using regular expressions to create rhyming words

 15 The Kentucky Friar: More regular expressions

 16 The Scrambler: Randomly reordering the middles of words

 17 Mad Libs: Using regular expressions

 18 Gematria: Numeric encoding of text using ASCII values

 19 Workout of the Day: Parsing CSV files, creating text table output

 20 Password strength: Generating a secure and memorable password

 21 Tic-Tac-Toe: Exploring state

 22 Tic-Tac-Toe redux: An interactive version with type hints

 Epilogue

 Appendix. Using argparse

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover

 0 Getting started: Introduction and installation guide

 Writing command-line programs

 Using test-driven development

 Setting up your environment

 Code examples

 Getting the code

 Installing modules

 Code formatters

 Code linters

 How to start writing new programs

 Why not Notebooks?

 The scope of topics we’ll cover

 Why not object-oriented programming?

 A note about the lingo

 1 How to write and test a Python program

 1.1 Creating your first program

 1.2 Comment lines

 1.3 Testing your program

 1.4 Adding the #! (shebang) line

 1.5 Making a program executable

 1.6 Understanding $PATH

 Altering your $PATH

 1.7 Adding a parameter and help

 1.8 Making the argument optional

 1.9 Running our tests

 1.10 Adding the main() function

 1.11 Adding the get_args() function

 Checking style and errors

 1.12 Testing hello.py

 1.13 Starting a new program with new.py

 1.14 Using template.py as an alternative to new.py

 2 The crow’s nest: Working with strings

 2.1 Getting started

 How to use the tests

 Creating programs with new.py

 Write, test, repeat

 Defining your arguments

 Concatenating strings

 Variable types

 Getting just part of a string

 Finding help in the REPL

 String methods

 String comparisons

 Conditional branching

 String formatting

 Time to write

 2.2 Solution

 2.3 Discussion

 Defining the arguments with get_args()

 The main() thing

 Classifying the first character of a word

 Printing the results

 Running the test suite

 2.4 Going further

 3 Going on a picnic: Working with lists

 3.1 Starting the program

 3.2 Writing picnic.py

 3.3 Introducing lists

 Adding one element to a list

 Adding many elements to a list

 Indexing lists

 Slicing lists

 Finding elements in a list

 Removing elements from a list

 Sorting and reversing a list

 Lists are mutable

 Joining a list

 3.4 Conditional branching with if/elif/else

 Time to write

 3.5 Solution

 3.6 Discussion

 Defining the arguments

 Assigning and sorting the items

 Formatting the items

 Printing the items

 3.7 Going further

 4 Jump the Five: Working with dictionaries

 4.1 Dictionaries

 Creating a dictionary

 Accessing dictionary values

 Other dictionary methods

 4.2 Writing jump.py

 4.3 Solution

 4.4 Discussion

 Defining the parameters

 Using a dict for encoding

 Various ways to process items in a series

 (Not) using str.replace()

 4.5 Going further

 5 Howler: Working with files and STDOUT

 5.1 Reading files

 5.2 Writing files

 5.3 Writing howler.py

 5.4 Solution

 5.5 Discussion

 Defining the arguments

 Reading input from a file or the command line

 Choosing the output file handle

 Printing the output

 A low-memory version

 5.6 Going further

 6 Words count: Reading files and STDIN, iterating lists, formatting strings

 6.1 Writing wc.py

 Defining file inputs

 Iterating lists

 What you’re counting

 Formatting your results

 6.2 Solution

 6.3 Discussion

 Defining the arguments

 Reading a file using a for loop

 6.4 Going further

 7 Gashlycrumb: Looking items up in a dictionary

 7.1 Writing gashlycrumb.py

 7.2 Solution

 7.3 Discussion

 Handling the arguments

 Reading the input file

 Using a dictionary comprehension

 Dictionary lookups

 7.4 Going further

 8 Apples and Bananas: Find and replace

 8.1 Altering strings

 Using the str.replace() method

 Using str.translate()

 Other ways to mutate strings

 8.2 Solution

 8.3 Discussion

 Defining the parameters

 Eight ways to replace the vowels

 8.4 Refactoring with tests

 8.5 Going further

 9 Dial-a-Curse: Generating random insults from lists of words

 9.1 Writing abuse.py

 Validating arguments

 Importing and seeding the random module

 Defining the adjectives and nouns

 Taking random samples and choices

 Formatting the output

 9.2 Solution

 9.3 Discussion

 Defining the arguments

 Using parser.error()

 Program exit values and STDERR

 Controlling randomness with random.seed()

 Iterating with range() and using throwaway variables

 Constructing the insults

 9.4 Going further

 10 Telephone: Randomly mutating strings

 10.1 Writing telephone.py

 Calculating the number of mutations

 The mutation space

 Selecting the characters to mutate

 Mutating a string

 Time to write

 10.2 Solution

 10.3 Discussion

 Mutating a string

 Using a list instead of a str

 10.4 Going further

 11 Bottles of Beer Song: Writing and testing functions

 11.1 Writing bottles.py

 Counting down

 Writing a function

 Writing a test for verse()

 Using the verse() function

 11.2 Solution

 11.3 Discussion

 Counting down

 Test-driven development

 The verse() function

 Iterating through the verses

 1,500 other solutions

 11.4 Going further

 12 Ransom: Randomly capitalizing text

 12.1 Writing ransom.py

 Mutating the text

 Flipping a coin

 Creating a new string

 12.2 Solution

 12.3 Discussion

 Iterating through elements in a sequence

 Writing a function to choose the letter

 Another way to write list.append()

 Using a str instead of a list

 Using a list comprehension

 Using a map() function

 12.4 Comparing methods

 12.5 Going further

 13 Twelve Days of Christmas: Algorithm design

 13.1 Writing twelve_days.py

 Counting

 Creating the ordinal value

 Making the verses

 Using the verse() function

 Printing

 Time to write

 13.2 Solution

 13.3 Discussion

 Making one verse

 Generating the verses

 Printing the verses

 13.4 Going further

 14 Rhymer: Using regular expressions to create rhyming words

 14.1 Writing rhymer.py

 Breaking a word

 Using regular expressions

 Using capture groups

 Truthiness

 Creating the output

 14.2 Solution

 14.3 Discussion

 Stemming a word

 Formatting and commenting the regular expression

 Using the stemmer() function outside your program

 Creating rhyming strings

 Writing stemmer() without regular expressions

 14.4 Going further

 15 The Kentucky Friar: More regular expressions

 15.1 Writing friar.py

 Splitting text using regular expressions

 Shorthand classes

 Negated shorthand classes

 Using re.split() with a captured regex

 Writing the fry() function

 Using the fry() function

 15.2 Solution

 15.3 Discussion

 Writing the fry() function manually

 Writing the fry() function with regular expressions

 15.4 Going further

 16 The Scrambler: Randomly reordering the middles of words

 16.1 Writing scrambler.py

 Breaking the text into lines and words

 Capturing, non-capturing, and optional groups

 Compiling a regex

 Scrambling a word

 Scrambling all the words

 16.2 Solution

 16.3 Discussion

 Processing the text

 Scrambling a word

 16.4 Going further

 17 Mad Libs: Using regular expressions

 17.1 Writing mad.py

 Using regular expressions to find the pointy bits

 Halting and printing errors

 Getting the values

 Substituting the text

 17.2 Solution

 17.3 Discussion

 Substituting with regular expressions

 Finding the placeholders without regular expressions

 17.4 Going further

 18 Gematria: Numeric encoding of text using ASCII values

 18.1 Writing gematria.py

 Cleaning a word

 Ordinal character values and ranges

 Summing and reducing

 Using functools.reduce

 Encoding the words

 Breaking the text

 18.2 Solution

 18.3 Discussion

 Writing word2num()

 Sorting

 Testing

 18.4 Going further

 19 Workout of the Day: Parsing CSV files, creating text table output

 19.1 Writing wod.py

 Reading delimited text files

 Manually reading a CSV file

 Parsing with the csv module

 Creating a function to read a CSV file

 Selecting the exercises

 Formatting the output

 Handling bad data

 Time to write

 19.2 Solution

 19.3 Discussion

 Reading a CSV file

 Potential runtime errors

 Using pandas.read_csv() to parse the file

 Formatting the table

 19.4 Going further

 20 Password strength: Generating a secure and memorable password

 20.1 Writing password.py

 Creating a unique list of words

 Cleaning the text

 Using a set

 Filtering the words

 Titlecasing the words

 Sampling and making a password

 l33t-ify

 Putting it all together

 20.2 Solution

 20.3 Discussion

 Cleaning the text

 A king’s ransom

 How to l33t()

 Processing the files

 Sampling and creating the passwords

 20.4 Going further

 21 Tic-Tac-Toe: Exploring state

 21.1 Writing tictactoe.py

 Validating user input

 Altering the board

 Printing the board

 Determining a winner

 Solution

 Validating the arguments and mutating the board

 Formatting the board

 Finding the winner

 21.2 Going further

 22 Tic-Tac-Toe redux: An interactive version with type hints

 22.1 Writing itictactoe.py

 Tuple talk

 Named tuples

 Adding type hints

 Type verification with Mypy

 Updating immutable structures

 Adding type hints to function definitions

 22.2 Solution

 A version using TypedDict

 Thinking about state

 22.3 Going further

 Epilogue

 Appendix. Using argparse

 index

 front matter

preface

Why write Python?

 Python is an excellent, general-purpose programming language. You can write a program to send secret messages to your friends or to play chess. There are Python modules to help you wrangle complex scientific data, explore machine learning algorithms, and generate publication-ready graphics. Many college-level computer science programs have moved away from languages like C and Java to Python as their introductory language because Python is a relatively easy language to learn. We can use Python to study fundamental and powerful ideas from computer science. As I show you ideas like regular expressions and higher-order functions, I hope to encourage you to study further.

Why did I write this book?

 Over the years, I’ve had many opportunities to help people learn programming, and I always find it rewarding. The structure of this book comes from my own experience in the classroom, where I think formal specifications and tests can be useful aids in learning how to break a program into smaller problems that need to be solved to create the whole program.

 The biggest barrier to entry I’ve found when I’m learning a new language is that small concepts of the language are usually presented outside of any useful context. Most programming language tutorials will start with printing “HELLO, WORLD!” (and this is book is no exception). Usually that’s pretty simple. After that, I usually struggle to write a complete program that will accept some arguments and do something useful. In this book, I’ll show you many, many examples of programs that do useful things, in the hopes that you can modify these programs to make more programs for your own use.

 More than anything, I think you need to practice. It’s like the old joke: “What’s the way to Carnegie Hall? Practice, practice, practice.” These coding challenges are short enough that you could probably finish each in a few hours or days. This is more material than I could work through in a semester-long university-level class, so I imagine the whole book will take you several months. I hope you will solve the problems, then think about them, and then return later to see if you can solve them differently, maybe using a more advanced technique or making them run faster.

acknowledgments

 This being my first book, it has been interesting to note the many people who have helped me create it. It all started with a call with Mike Stephens, the acquisitions editor for Manning, who entertained the idea of a book on learning how to produce serious, tested software by writing silly games and puzzles. That eventually led to a call with Marjan Bace, the publisher, who was enthusiastic about using test-driven development ideas to motivate readers to actively engage with writing the programs.

 My first development editor, Susanna Kline, had to help me wrestle the first few chapters of the book into something people would actually want to read. My second development editor, Elesha Hyde, provided patient and thoughtful guidance through months of writing, editing, and reviews. I thank my technical editors, Scott Chaussee, Al Scherer, and Mathijs Affourtit, for carefully checking all my code and text for mistakes. I appreciated the efforts of Manning’s MEAP team, especially Mehmed Pasic for producing the PDFs and giving me technical guidance on how to use AsciiDoc. I would also like to thank my project editor Deirdre Hiam, my copyeditor Andy Carroll, my proofreader Katie Tennant, and my review editor Aleksandar Dragosavljevic´. Also, the readers of the liveBook edition and the many technical reviewers who provided such great feedback: Amanda Debler, Conor Redmond, Drew Leon, Joaquin Beltran, José Apablaza, Kimberly Winston-Jackson, Maciej Jurkowski, Mafinar Khan, Manuel Ricardo Gonzalez Cova, Marcel van den Brink, Marcin Se˛k, Mathijs Affourtit, Paul R Hendrik, Shayn Cornwell, Víctor M. Pérez.

 I especially want to acknowledge the countless people who create the open source software upon which all of this is built. From the people who maintain the Python language and modules and documentation to the countless hackers who answer questions on the internet, I thank you for all that you do.

 Of course, none of this would have ever been possible without the love and support of my family, especially my wife, Lori Kindler, who has been an unbelievable source of love and support for over 27 years. (I’m still really, really sorry about wrecking on my mountain bike and the year it took for me to recover!) Our three children bring me such challenges and joy, and I hope that I am making them proud. They constantly have to feign interest in topics they know and care nothing about, and they have shown such patience for the many hours I’ve spent writing this book.

about this book

Who should read this book

 After you read this book and write all the programs, I would hope that you will be a zealot for creating programs that are documented, tested, and reproducible.

 I think my ideal reader is someone who’s been trying to learn to code well but isn’t quite sure how to level up. Perhaps you are someone who’s been playing with Python or some other language that has a similar syntax, like Java(Script) or Perl. Maybe you’ve cut your teeth on something really different, like Haskell or Scheme, and you’re wondering how to translate your ideas to Python. Maybe you’ve been writing Python for a while and are looking for interesting challenges with enough structure to help you know when you’re moving in the right direction.

 This is a book that will teach you to write well-structured, documented, testable code in Python. The material introduces best practices from industry such as test-driven development--that’s when the tests for a program exist even before the program itself is written! I will show you how to read documentation and Python Enhancement Proposals (PEPs) and how to write idiomatic code that other Python programmers would immediately recognize and understand.

 This is probably not an ideal book for the absolute beginning programmer. I assume no prior knowledge of the Python language specifically, because I’m thinking of someone who is coming from another language. If you’ve never written a program in any language at all, you might do well to come back to this material when you are comfortable with ideas like variables, loops, and functions.

How this book is organized: A roadmap

 The book is written with chapters building on previous chapters, so I really recommend you start at the beginning and work sequentially through the material.

 	
 Every program uses command-line arguments, so we start off discussing how to use argparse to handle this. Every program is also tested, so you’ll have to learn how to install and use pytest. The introduction and chapter 1 will get you up and running.

 	
 Chapters 2-4 discuss the basic Python structures like strings, lists, and dictionaries.

 	
 Chapters 5 and 6 move into how we can work with files as input and output and how files are related to “standard in” and “standard out” (STDIN/STDOUT).

 	
 Chapters 7 and 8 start combining ideas so you can write more complicated programs.

 	
 Chapters 9 and 10 introduce the random module and how to control and test random events.

 	
 In chapters 11-13 you’ll learn more about compartmentalizing code into functions and how to write and run tests for them.

 	
 In chapters 14-18 we’ll start digging into denser topics like higher-order functions as well as regular expressions to find patterns of text.

 	
 In chapters 19-22 we’ll start writing more complex, “real-world” programs that will put all your skills together while pushing your knowledge of the Python language and testing.

About the code

 Every program and test shown in the book can be found at https://github.com/kyclark/tiny_python_projects.

Software/hardware requirements

 All the program were written and tested with Python 3.8, but version 3.6 would be sufficient for almost every program. Several additional modules are required, such as pytest for running the tests. There are instructions for how to use the pip module to install these.

liveBook discussion forum

 Purchase of Tiny Python Projects includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/tiny-python-projects/welcome/v-6. You can also learn more about Manning's forums and the rules of conduct at https:// livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 One element missing from many programming courses is a demonstration of how one can go from having no program to having one that works. In my classroom teaching, I spend a lot of time showing students how to start writing a program and then how to work through the process of adding and testing new features. I’ve recorded videos for each chapter and shared them at www.youtube.com/user/kyclark. There is a playlist for each chapter, and the videos follow the pattern of each chapter by introducing the problem and the language features you might use to write your program, followed by a discussion of the solution(s).

about the author

 My name is Ken Youens-Clark. I work as a Senior Scientific Programmer at the University of Arizona. Most of my career has been spent working in bioinformatics, using computer science ideas to study biological data.

 I began my undergraduate degree as a Jazz Studies major on the drum set at the University of North Texas in 1990. I changed my major a few times and eventually ended up with a BA in English literature in 1995. I didn’t really have a plan for my career, but I did like computers.

 Around 1995, I stared tinkering with databases and HTML at my first job out of college, building the company’s mailing list and first website. I was definitely hooked! After that, I managed to learned Visual Basic on Windows 3.1 and, during the next few years, I programmed in several languages and companies before landing in a bioinformatics group at Cold Spring Harbor Laboratory in 2001, led by Lincoln Stein, a prominent author of books and modules in Perl and an early advocate for open software, data, and science. In 2014 I moved to Tucson, AZ, to work at the University of Arizona, where I completed my MS in Biosystems Engineering in 2019.

 When I’m not coding, I like playing music, riding bikes, cooking, reading, and being with my wife and children.

about the cover

 The figure on the cover of Tiny Python Projects is captioned “Femme Turc allant par les rues,” or “Turkish woman going through the streets.” The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

0 Getting started: Introduction and installation guide

 This book will teach you how to write Python programs that run on the command line. If you have never used the command line before, don’t worry! You can use programs like PyCharm (see figure 0.1) or Microsoft’s VS Code to help you write and run these programs. If you are completely new to programming or to the Python language, I will try to cover everything I think you’ll need to know, although you might find it useful to read another book first if you’ve never heard of things like variables and functions.

 In this introduction, we’ll discuss

 	
 Why you should learn to write command-line programs

 	
 Tools and environments for writing code

 	
 How and why we test software

Writing command-line programs

 Why do I want you to write command-line programs? For one, I think they strip a program down to its most bare essentials. We’re not going to try to write complicated programs like an interactive 3D game that requires lots of other software to work. The programs in this book will all work with the barest of inputs and create only text output. We’re going to focus on learning the core Python language and how to write and test programs.

 Another reason for focusing on command-line programs is that I want to show you how to write programs that can run on any computer that has Python installed. I’m writing this book on my Mac laptop, but I can run all the programs on any of the Linux machines I use in my work or on a friend’s Windows machine. Any computer with the same version of Python can run any of these programs, and that is pretty cool.

 [image:]

 Figure 0.1 This is the PyCharm tool being used to edit and run the hello.py program from chapter 1. “Hello, World!”

 The biggest reason I want to show you how to write command-line programs, though, is because I want to show you how to test programs to make sure they work. While I don’t think anyone will die if I make a mistake in one of my programs, I still really, really want to be sure that my code is as perfect as possible.

 What does it mean to test a program? Well, if my program is supposed to add two numbers together, I’ll need to run it with many pairs of numbers and check that it prints the correct sum. I might also give it a number and a word, to make sure that it doesn’t try to add “3” plus “seahorse” but instead complains that I didn’t give it two numbers. Testing gives me some measure of confidence in my code, and I hope you will come to see how testing can help you understand programming more deeply.

 The exercises in this book are meant to be silly enough to pique your interest, but they each contain lessons that can be applied to all sorts of real-world problems. Almost every program I’ve ever written needs to accept some input data, whether from the user or from a file, and produce some output--sometimes text on the screen or maybe a new file. These are the kinds of skills you’ll learn by writing these programs.

 In each chapter, I’ll describe some program that I want you to write and the tests you’ll use to check if your program is working correctly. Then I’ll show you a solution and discuss how it works. As the problems get harder, I’ll start suggesting ways you might write your own tests to explore and verify your code.

 When you’re done with this book, you should be able to

 	
 Write and run command-line Python programs

 	
 Handle arguments to your programs

 	
 Write and run tests for your programs and functions

 	
 Use Python data structures like strings, lists, and dictionaries

 	
 Have your programs read and write text files

 	
 Use regular expressions to find patterns in text

 	
 Use and control randomness to make your programs behave unpredictably

 “Codes are a puzzle. A game, just like any other game.”

 --Alan Turing

 Alan Turing is perhaps most famous for cracking the Enigma code that the Nazis used to encrypt messages during World War II. The fact that the Allies could read enemy messages is credited with shortening the war by years and saving millions of lives. The Imitation Game is a fun movie that shows how Turing published puzzles in newspapers to find people who could help him break what was supposed to be an unbreakable code.

 I think we can learn tons from writing fun programs that generate random insults or produce verses to “The Twelve Days of Christmas” or play Tic-Tac-Toe. Some of the programs in this book even dabble a bit in cryptography, like in chapter 4 where we encode all the numbers in a piece of text or in chapter 18 where we create signatures for words by summing the numeric representations of their letters. I hope you’ll find the programs both amusing and challenging.

 The programming techniques in each exercise are not specific to Python. Most every language has variables, loops, functions, strings, lists, and dictionaries, as well as ways to parameterize and test programs. After you write your solutions in Python, I encourage you to write solutions in another language you know and compare what parts of the different languages make it easier or harder to write your programs. If your programs support the same command-line options, you can even use the included tests to verify those programs.

Using test-driven development

 Test-driven development is described by Kent Beck in his 2002 book by that title as a method for creating more reliable programs. The basic idea is that we write tests even before we write code. The tests define what it means to say that our program works “correctly.” First we write and run our tests to verify that our code fails. Then we write the code to make each test pass. We always run all of the tests so that, as we fix new tests, we ensure we don’t break tests that were passing before. When all the tests pass, we have at least some assurance that the code we’ve written conforms to some manner of specification.

 Each program you are asked to write in this book comes with tests that will tell you when the code is working acceptably. The first test in every exercise checks whether the expected program exists. The second test checks that the program will print a help message if we ask for help. After that, your program will be run with various inputs and options.

 Since I’ve written around 250 tests for the programs in this book, and you have not yet written one of the programs, you’re going to encounter many failed tests. That’s OK! In fact, it’s a really good thing, because when you pass all the tests, you’ll know that your programs are correct. You’ll learn to read the failed tests carefully to figure out what needs fixing. Then you’ll correct the program and run the tests again. You may get another failed test, in which case you’ll repeat the process until finally all the tests pass. Then you’ll be done.

 [image:]

 It doesn’t matter if you solve the problems the same way as in the solution I provide. All that matters is that you figure out a way to pass the tests.

Setting up your environment

 If you want to write these programs on your computer, you will need Python version 3.6 or later. It’s quite possible that it’s already installed on your computer.

 You’ll also need some way to execute the python3 command--something we often call a command line. If you use a Windows computer, you may want to install Windows Subsystem for Linux (WSL). On a Mac, the default Terminal app is sufficient. You can also use a tool like VS Code (in figure 0.2) or PyCharm, which have terminals built into them.

 [image:]

 Figure 0.2 An IDE like VS Code combines a text editor for writing your code along with a terminal (lower-right window) for running your programs, and many other tools.

 I wrote and tested the programs for this book with Python version 3.8, but they should work with version 3.6 or newer. Python 2 reached its end of life at the end of 2019 and should no longer be used. To see what version of Python you have installed, open a terminal window and type python3 --version. If it says something like “command "python3" not found,” then you need to install Python. You can download the latest version from the Python site (www.python.org/downloads).

 If you are using a computer that doesn’t have Python, and you don’t have any way to install Python, you can do everything in this book using the Repl.it website (http://repl.it).

Code examples

 Throughout the book, I will show commands and code using a fixed-width font. When the text is preceded with a dollar sign ($), that means it’s something you can type on the command line. For instance, there is a program called cat (short for “concatenate”) that will print the contents of a file to the screen. Here is how I can run it to print the contents of the spiders.txt file that lives in the inputs directory:

 $ cat inputs/spiders.txt
Don't worry, spiders,
I keep house
casually.

 If you want to run that command, do not copy the leading $, only the text that follows. Otherwise you’ll probably get an error like “$: command not found.”

 Python has a really excellent tool called IDLE that allows you to interact directly with the language to try out ideas. You can start it with the command idle3. That should open a new window with a prompt that looks like >>> (see figure 0.3).

 [image:]

 Figure 0.3 The IDLE application allows you to interact directly with the Python language. Each statement you type is evaluated when you press Enter, and the results are shown in the window.

 You can type Python statements there, and they will be immediately evaluated and printed. For example, type 3 + 5 and press Enter, and you should see 8:

 >>> 3 + 5
8

 This interface is called a REPL because it’s a Read-Evaluate-Print-Loop. (I pronounce this like “repple” in a way that sort of rhymes with “pebble.”) You can get a similar tool by typing python3 on the command line (see figure 0.4).

 [image:]

 Figure 0.4 Typing the command python3 in the terminal will give you a REPL similar to the IDLE interface.

 The IPython program is yet another “interactive Python” REPL that has many enhancements over IDLE and python3. Figure 0.5 shows what it looks like on my system.

 I also recommend you look into using Jupyter Notebooks, as they allow you to interactively run code with the added bonus that you can save a Notebook as a file and share all your code with other people.

 [image:]

 Figure 0.5 The IPython application is another REPL interface you can use to try out your ideas with Python.

 Whichever REPL interface you use, you can type Python statements like x = 10 and press Enter to assign the value 10 to the variable x:

 >>> x = 10

 As with the command-line prompt, $, do not copy the leading >>> or Python will complain:

 >>> >>> x = 10
 File "<stdin>", line 1
 >>> x = 10
 ^
SyntaxError: invalid syntax

 The IPython REPL has a magical %paste mode that removes the leading >>> prompts so that you can copy and paste all the code examples:

 In [1]: >>> x = 10

In [2]: x
Out[2]: 10

 Whichever way you choose to interact with Python, I suggest you manually type all the code yourself in this book, as this builds muscle memory and forces you to interact with the syntax of the language.

Getting the code

 All the tests and solutions are available at https://github.com/kyclark/tiny_python_ projects. You can use the program Git (which you may need to install) to copy that code to your computer with the following command:

 $ git clone https://github.com/kyclark/tiny_python_projects

 Now you should have a new directory called tiny_python_projects on your computer.

 You may prefer to make a copy of the code into your own repository, so that you can track your changes and share your solutions with others. This is called “forking” because you’re breaking off from my code and adding your own programs to the repository. If you plan to use Repl.it to write the exercises, I recommend you do fork my repo into your own account so that you can configure Repl.it to interact with your own GitHub repositories.

 To fork, do the following:

 	
 Create an account on GitHub.com.

 	
 Go to https://github.com/kyclark/tiny_python_projects.

 	
 Click the Fork button (see figure 0.6) to make a copy of the repository into your account.

 [image:]

 Figure 0.6 The Fork button on my GitHub repository will make a copy of the code into your account.

 Now you have a copy of my all code in your own repository. You can use Git to copy that code to your computer. Be sure to replace “YOUR_GITHUB_ID” with your actual GitHub ID:

 $ git clone https://github.com/YOUR_GITHUB_ID/tiny_python_projects

 I may update the repo after you make your copy. If you would like to be able to get those updates, you will need to configure Git to set my repository as an “upstream” source. To do so, after you have cloned your repository to your computer, go into your tiny_python_projects directory:

 $ cd tiny_python_projects

 Then execute this command:

 $ git remote add upstream https://github.com/kyclark/tiny_python_projects.git

 Whenever you would like to update your repository from mine, you can execute this command:

 $ git pull upstream master

Installing modules

 I recommend using a few tools that may not be installed on your system. You can use the pip module to install them like so:

 $ python3 -m pip install black flake8 ipython mypy pylint pytest yapf

 I’ve also included a requirements.txt file in the top level of the repository. You can use it to install all the modules and tools with this command:

 $ python3 -m pip install -r requirements.txt

 If, for example, you wish to write the exercises on Repl.it, you will need to run this command to set up your environment, as the modules are not already installed.

Code formatters

 Most IDEs and text editors will have tools to help you format your code so that it’s easier to read and find problems. In addition, the Python community has created a standard for writing code so that other Python programmers can readily understand it. The PEP 8 (Python Enhancement Proposal) document at www.python.org/dev/peps/ pep-0008/ describes best practices for formatting code, and most editors will automatically apply formatting for you. For instance, the Repl.it interface has an autoformat button (see figure 0.7), VS Code has a Format Document command, and PyCharm has a Reformat Code command.

 [image:]

 Figure 0.7 The Repl.it tool has an autoformat button to reformat your code according to community standards. The interface also includes a command line for running and testing your program.

 There are also command-line tools that integrate with your editor. I used YAPF (Yet Another Python Formatter, https://github.com/google/yapf) to format every program in the book, but another popular formatter is Black (https://github.com/psf/ black). Whatever you use, I encourage you to use it often. For instance, I can tell YAPF to format the hello.py program that we will write in chapter 1 by running the following command. Note that the -i tells YAPF to format the code “in place,” so that the original file will be overwritten with the newly formatted code.

 $ yapf -i hello.py

Code linters

 A code linter is a tool that will report problems in your code, such as declaring a variable but never using it. Two that I like are Pylint (www.pylint.org/) and Flake8 (http://flake8.pycqa.org/en/latest/), and both can find errors in your code that the Python interpreter itself will not complain about.

 In the final chapter, I will show you how to incorporate type hints into your code that the Mypy tool (http://mypy-lang.org/) can use to find problems, such as using text when you should be using a number.

How to start writing new programs

 I think it’s much easier to start writing code with a standard template, so I wrote a program called new.py that will help you create new Python programs with boilerplate code that will be expected of every program. It’s located in the bin directory, so if you are in the top directory of the repository, you can run it like this:

 $ bin/new.py
usage: new.py [-h] [-s] [-n NAME] [-e EMAIL] [-p PURPOSE] [-f] program
new.py: error: the following arguments are required: program

 Here you can see that new.py is asking you to provide the name of the “program” to create. For each chapter, the program you write needs to live in the directory that has the test.py file for that program.

 For example, you can use new.py to start off chapter 2’s crowsnest.py program in the 02_crowsnest directory like so:

 $ bin/new.py 02_crowsnest/crowsnest.py
Done, see new script "02_crowsnest/crowsnest.py."

 If you open that file now, you’ll see that it has written a lot of code for you that I’ll explain later. For now, just realize that the resulting crowsnest.py program is one that can be run like so:

 $ 02_crowsnest/crowsnest.py
usage: crowsnest.py [-h] [-a str] [-i int] [-f FILE] [-o] str
crowsnest.py: error: the following arguments are required: str

 Later you’ll learn how to modify the program to do what the tests expect.

 An alternative to running new.py is to copy the file template.py from the template directory to the directory and program name you need to write. You could create the crowsnest.py program file like so:

 $ cp template/template.py 02_crowsnest/crowsnest.py

 You do not have to use either new.py or copy the template.py file to start your programs. These are provided to save you time and provide your programs with an initial structure, but you are welcome to write your programs however you please.

Why not Notebooks?

 Many people are familiar with Jupyter Notebooks, as they provide a way to integrate Python code and text and images into a document that other people can execute like a program. I really love Notebooks, especially for interactively exploring data, but I find them difficult to use in teaching for the following reasons:

 	
 A Notebook is stored in JavaScript Object Notation (JSON), not as line-oriented text. This makes it really difficult to compare Notebooks to each other to find out how they differ.

 	
 Code and text and images can live mixed together in separate cells. These cells can be interactively run in any order, which can lead to very subtle problems in the logic of a program. The programs we write in this book will always be run from top to bottom in entirety every time, which I think makes them easier to understand.

 	
 There is no way for Notebooks to accept different values when they are run. That is, if you test a program with one input file and then want to change to a different file, you have to change the program itself. You will learn how to pass in a file as an argument to the program, so that you can change the value without changing the code.

 	
 It’s difficult to automatically run tests on a Notebook or on the functions they contain. We will use the pytest module to run our programs over and over with different input values and verify that the programs create the correct output.

The scope of topics we’ll cover

 The purpose of this book is to show you how amazingly useful all the built-in features of the Python language are. The exercises will push you to practice manipulating strings, lists, dictionaries, and files. We’ll spend several chapters focusing on regular expressions, and every exercise except for the last requires you to accept and validate command-line arguments of varying types and numbers.

 Every author is biased toward some subjects, and I’m no different. I’ve chosen these topics because they reflect ideas that are fundamental to the work I’ve done over the last 20 years. For instance, I have spent many more hours than I would care to admit parsing really messy data from countless Excel spreadsheets and XML files. The world of genomics that has consumed most of my career is based primarily on efficiently parsing text files, and much of my web development work is predicated on understanding how text is encoded and transferred to and from the web browser. For that reason, you’ll find many exercises that entail processing text and files, and that will challenge you to think about how to transform inputs into outputs. If you work through every exercise, I believe you’ll be a much improved programmer who understands the basic ideas that are common across many languages.

Why not object-oriented programming?

 One topic that you’ll notice is missing from this book is writing object-oriented code in Python. If you are not familiar with object-oriented programming (OOP), you can skip this section.

 I think OOP is a somewhat advanced topic that is beyond the scope of this book. I prefer to focus on how to write small functions and their accompanying tests. I think this leads to more transparent code, because the functions should be short, should only use the values explicitly passed as arguments, and should have enough tests that you can completely understand how they will behave under both favorable and unfavorable circumstances.

 The Python language is itself inherently object-oriented. Almost everything from strings to the lists and dictionaries that we’ll use are actually objects, so you’ll get plenty of practice using objects. But I don’t think it’s necessary to create objects to solve any of the problems I present. In fact, even though I spent many years writing object-oriented code, I haven’t written in this style for the last few years. I tend to draw my inspiration from the world of purely functional programming, and I hope I can convince you by the end of this book that you can do anything you want by combining functions.

 Although I personally avoid OOP, I would recommend you learn about it. There have been several seismic paradigm shifts in the world of programming from procedural to object-oriented and now functional. You can find dozens of books on OOP in general and on programming objects in Python specifically. This is a deep and fascinating topic, and I encourage you to try writing object-oriented solutions and compare them to my solutions.

A note about the lingo

 Often in programming books you will see foobar used in examples. The word has no real meaning, but its origin probably comes from the military acronym “FUBAR” (Fouled Up Beyond All Recognition). If I use “foobar” in an example, it’s because I don’t want to talk about any specific thing in the universe, just the idea of a string of characters. If I need a list of items, usually the first item will be “foo” and the next will be “bar.” After that, convention uses “baz” and “quux,” again because they mean nothing at all. Don’t get hung up on “foobar.” It’s just a placeholder for something that could be more interesting later.

 	
 Programmers also tend to call errors in code bugs. This comes from the days of computing before the invention of transistors. Early machines used vacuum tubes, and the heat from the machines would attract actual bugs like moths that could cause short circuits. The operators (the people running the machines) would have to hunt through the machinery to find and remove the bugs; hence, the term “to debug.”

 	
 [image:]

1 How to write and test a Python program

 	
 Before you start working on the exercises, I want to discuss how to write programs that are documented and tested. Specifically, we’re going to

 	
 Write a Python program to say “Hello, World!”

 	
 Handle command-line arguments using argparse

 	
 Run tests for the code with Pytest.

 	
 Learn about $PATH

 	
 Use tools like YAPF and Black to format the code

 	
 Use tools like Flake8 and Pylint to find problems in the code

 	
 Use the new.py program to create new programs

 	
 [image:]

1.1 Creating your first program

 It’s pretty common to write “Hello, World!” as your first program in any language, so let’s start there. We’re going to work toward making a version that will greet whichever name is passed as an argument. It will also print a helpful message when we ask for it, and we’ll use tests to make sure it does everything correctly.

 In the 01_hello directory, you’ll see several versions of the hello program we’ll write. There is also a program called test.py that we’ll use to test the program.

 Start off by creating a text file called hello.py in that directory. If you are working in VS Code or PyCharm, you can use File > Open to open the 01_hello directory as a project. Both tools have something like a File > New menu option that will allow you to create a new file in that directory. It’s very important to create the hello.py file inside the 01_hello directory so that the test.py program can find it.

 Once you’ve started a new file, add this line:

 print('Hello, World!')

 It’s time to run your new program! Open a terminal window in VS Code or PyCharm or in some other terminal, and navigate to the directory where your hello.py program is located. You can run it with the command python3 hello.py--this causes Python version 3 to execute the commands in the file named hello.py. You should see this:

 $ python3 hello.py
Hello, World!

 Figure 1.1 shows how it looks in the Repl.it interface.

 [image:]

 Figure 1.1 Writing and running our first program using Repl.it

 If that was your first Python program, congratulations!

1.2 Comment lines

 	
 In Python, the # character and anything following it is ignored by Python. This is useful for adding comments to your code or temporarily disabling lines of code when testing and debugging. It’s always a good idea to document your programs, indicating the purpose of the program or the author’s name and email address, or both. We can use a comment for that:

 	
 [image:]

 # Purpose: Say hello
print('Hello, World!')

 If you run this program again, you should see the same output as before because the “Purpose” line is ignored. Note that any text to the left of the # is executed, so you can add a comment to the end of a line if you like.

1.3 Testing your program

 The most fundamental idea I want to teach you is how to test your programs. I’ve written a test.py program in the 01_hello directory that we can use to test our new hello.py program.

 We will use pytest to execute all the commands and tell us how many tests we passed. We’ll include the -v option, which tells pytest to create “verbose” output. If you run it like this, you should see the following output as the first several lines. After that will follow many more lines showing you more information about the tests that didn’t pass.

 Note If you get the error “pytest: command not found,” you need to install the pytest module. Refer to the “Installing modules” section in the book’s introduction.

 $ pytest -v test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%] ①
test.py::test_runnable PASSED [40%] ②
test.py::test_executable FAILED [60%] ③
test.py::test_usage FAILED [80%] ④
test.py::test_input FAILED [100%] ⑤

=================================== FAILURES ===================================

 ① The first test always checks that the expected file exists. Here the test looks for hello.py.

 ② The second test tries to run the program with python3 hello.py and then checks if the program printed “Hello, World!” If you miss even one character, like forgetting a comma, the test will point out the error, so read carefully!

 ③ The third test checks that the program is “executable.” This test fails, so next we’ll talk about how to make that pass.

 ④ The fourth test asks the program for help and doesn’t get anything. We’re going to add the ability to print a “usage” statement that describes how to use our program.

 ⑤ The last test checks that the program can greet a name that we’ll pass as an argument. Since our program doesn’t yet accept arguments, we’ll need to add that, too.

 I’ve written the tests in an order that I hope will help you write the program in a logical fashion. If the program doesn’t pass one of the tests, there’s no reason to continue running the tests after it. I recommend you always run the tests with the flags -x, to stop on the first failing test, and -v, to print verbose output. You can combine these like -xv or -vx. Here’s what our tests look like with those options:

 $ pytest -xv test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable FAILED [60%] ①

=================================== FAILURES ===================================
_______________________________ test_executable ________________________________

 def test_executable():
 """Says 'Hello, World!' by default"""

 out = getoutput({prg})
> assert out.strip() == 'Hello, World!' ②
E AssertionError: assert '/bin/sh: ./h...ission denied' == 'Hello, World!' ③
E - /bin/sh: ./hello.py: Permission denied ④
E + Hello, World! ⑤

test.py:30: AssertionError
!!!!!!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!!!!!
========================= 1 failed, 2 passed in 0.09s ==========================

 ① This test fails. No more tests are run because we ran pytest with the -x option.

 ② The angle bracket (>) at the beginning of this line shows the source of the subsequent errors.

 ③ The “E” at the beginning of this line shows that this is an “Error” you should read. The AssertionError is saying that the test.py program is trying to execute the command ./hello.py to see if it will produce the text “Hello, World!”

 ④ The hyphen character (-) is showing that the actual output from the command is “Permission denied.”

 ⑤ The plus character (+) shows that the test expected to get “Hello, World!”

 Let’s talk about how to fix this error.

1.4 Adding the #! (shebang) line

 One thing you have learned so far is that Python programs live in plain text files that you ask python3 to execute. Many other programming languages, such as Ruby and Perl, work in the same way--we type Ruby or Perl commands into a text file and run it with the right language. It’s common to put a special comment line in programs like these to indicate which language needs to be used to execute the commands in the file.

 This comment line starts off with #!, and the nickname for this is “shebang” (pronounced “shuh-bang”--I always think of the # as the “shuh” and the ! as the “bang!”). Just as with any other comment, Python will ignore the shebang, but the operating system (like macOS or Windows) will use it to decide which program to use to run the rest of the file.

 Here is the shebang you should add:

 #!/usr/bin/env python3

 The env program will tell you about your “environment.” When I run env on my computer, I see many lines of output like USER=kyclark and HOME=/Users/kyclark. These values are accessible as the variables $USER and $HOME:

 $ echo $USER
kyclark
$ echo $HOME
/Users/kyclark

 If you run env on your computer, you should see your login name and your home directory. They will, of course, have different values from mine, but we both (probably) have both of these concepts.

 You can use the env command to find and run programs. If you run env python3, it will run a python3 program if it can find one. Here’s what I see on my computer:

 $ env python3
Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

 The env program is looking for python3 in the environment. If Python has not been installed, it won’t be able to find it, but it’s also possible that Python has been installed more than once. You can use the which command to see which python3 it finds:

 $ which python3
/Library/Frameworks/Python.framework/Versions/3.8/bin/python3

 If I run this on Repl.it, I can see that python3 exists in a different place. Where does it exist on your computer?

 $ which python3
/home/runner/.local/share/virtualenvs/python3/bin/python3

 Just as my $USER name is different from yours, my python3 is probably different from yours. If the env command is able to find a python3, it will execute it. As shown previously, if you run python3 by itself, it will open a REPL.

 If I were to put my python3 path as the shebang line, like so,

 #!/Library/Frameworks/Python.framework/Versions/3.8/bin/python3

 my program would not work on another computer that has python3 installed in a different location. I doubt it would work on your computer, either. This is why you should always use the env program to find the python3 that is specific to the machine on which it’s running.

 Now your program should look like this:

 #!/usr/bin/env python3 ①
Purpose: Say hello ②
print('Hello, World!') ③

 ① The shebang line tells the operating system to use /usr/bin/env to find python3 to interpret this program.

 ② A comment line documenting the purpose of the program

 ③ A Python command to print some text to the screen

1.5 Making a program executable

 	
 So far we’ve been explicitly telling python3 to run our program, but since we added the shebang, we can execute the program directly and let the OS figure out that it should use python3. The advantage of this is that we could copy our program to a directory where other programs live and execute it from anywhere on our computer.

 The first step in doing this is to make our program “executable” using the command chmod (change mode). Think of it as turning your program “on.” Run this command to make hello.py executable:

 	
 [image:]

 $ chmod +x hello.py ①

 ① The +x will add an “executable” attribute to the file.

 Now you can run the program like so:

 $./hello.py ①
Hello, World!

 ① The . / is the current directory, and it’s necessary to run a program when you are in the same directory as the program.

1.6 Understanding $PATH

 One of the biggest reasons to set the shebang line and make your program executable is so that you can install your Python programs just like other commands and programs. We used the which command earlier to find the location of python3 on the Repl.it instance:

 $ which python3
/home/runner/.local/share/virtualenvs/python3/bin/python3

 How was the env program able to find it? Windows, macOS, and Linux all have a $PATH variable, which is a list of directories the OS will look in to find a program. For instance, here is the $PATH for my Repl.it instance:

 > echo $PATH
/home/runner/.local/share/virtualenvs/python3/bin:/usr/local/bin:\
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 The directories are separated by colons (:). Notice that the directory where python3 lives is the first one in $PATH. It’s a pretty long string, so I broke it with the \ character to make it easier to read. If you copy your hello.py program to any of the directories listed in your $PATH, you can execute a program like hello.py without the leading ./ and without having to be in the same directory as the program.

 Think about $PATH like this: If you lose your keys in your house, would you start looking in the upper-left kitchen cabinet and work your way through each cabinet, and then all the drawers where you keep your silverware and kitchen gadgets, and then move on to your bathrooms and bedroom closets? Or would you start by looking in places where you normally put your keys, like the key hooks beside the front door, and then move on to search the pockets of your favorite jacket and your purse or backpack, and then maybe look under the couch cushions, and so forth?

 The $PATH variable is a way of telling your computer to only look in places where executable programs can be found. The only alternative is for the OS to search every directory, and that could take several minutes or possibly even hours! You can control both the names of the directories in the $PATH variable and their relative order so that the OS will find the programs you need.

 It’s very common for programs to be installed into /usr/local/bin, so we could try to copy our program there using the cp command. Unfortunately, I do not have permission to do this on Repl.it:

 > cp 01_hello/hello.py /usr/local/bin
cp: cannot create regular file '/usr/local/bin/hello.py': Permission denied

 But I can do this on my own laptop:

 $ cp hello.py /usr/local/bin/

 I can verify that the program is found:

 $ which hello.py
/usr/local/bin/hello.py

 And now I can execute it from any directory on my computer:

 $ hello.py
Hello, World!

1.6.1 Altering your $PATH

 Often you may find yourself working on a computer that won’t allow you to install programs into your $PATH, such as on Repl.it. An alternative is to alter your $PATH to include a directory where you can put your programs. For instance, I often create a bin directory in my home directory, which can often be written with the tilde (~).

 On most computers, ~/bin would mean “the bin directory in my home directory.” It’s also common to see $HOME/bin where $HOME is the name of your home directory. Here is how I create this directory on the Repl.it machine, copy a program to it, and then add it to my $PATH:

 $ mkdir ~/bin ①
$ cp 01_hello/hello.py ~/bin ②
$ PATH=~/bin:$PATH ③
$ which hello.py ④
/home/runner/bin/hello.py

 ① Use the mkdir (“make directory”) command to create ~/bin.

 ② Use the cp command to copy the 01_hello/hello.py program to the ~/bin directory.

 ③ Put the ~/bin directory first in $PATH.

 ④ Use the which command to look for the hello.py program. If the previous steps worked, the OS should now be able to find the program in one of the directories listed in $PATH.

 Now I can be in any directory,

 $ pwd
/home/runner/tinypythonprojects

 and I can run it:

 $ hello.py
Hello, World!

 Although the shebang and the executable stuff may seem like a lot of work, the payoff is that you can create a Python program that can be installed onto your computer or anyone else’s and run just like any other program.

1.7 Adding a parameter and help

 Throughout the book, I’ll use string diagrams to visualize the inputs and outputs of the programs we’ll write. If we created one for our program now (as in figure 1.2), there would be no inputs, and the output would always be “Hello, World!”

 [image:]

 Figure 1.2 A string diagram representing our hello.py program that takes no inputs and always produces the same output

 It’s not terribly interesting for our program to always say “Hello, World!” It would be nice if it could say “Hello” to something else, like the entire universe. We could do this by changing the code as follows:

 print('Hello, Universe')

 But that would mean we’d have to change the code every time we wanted to make it greet a different name. It would be better to change the behavior of the program without always having to change the program itself.

 We can do that by finding the parts of the program that we want to change--like the name to greet-- and providing that value as as an argument to our program. That is, we’d like our program to work like this:

 $./hello.py Terra
Hello, Terra!

 How would the person using our program know to do this? It’s our program’s responsibility to provide a help message! Most command-line programs will respond to arguments like -h and --help with helpful messages about how to use the programs. We need our program to print something like this:

 $./hello.py -h
usage: hello.py [-h] name

Say hello

:
 name Name to greet ①

:
 -h, --help show this help message and exit

 ① Note that name is called a positional argument.

 To do this, we can use the argparse module. Modules are files of code we can bring into our programs. We can also create modules to share our code with other people. There are hundreds to thousands of modules you can use in Python, which is one of the reasons why it’s so exciting to use the language.

 The argparse module will “parse” the “arguments” to the program. To use it, change your program as follows. I recommend you type everything yourself and don’t copy and paste.

 #!/usr/bin/env python3 ①
Purpose: Say hello ②

import argparse ③

parser = argparse.ArgumentParser(description='Say hello') ④
parser.add_argument('name', help='Name to greet') ⑤
args = parser.parse_args() ⑥
print('Hello, ' + args.name + '!') ⑦

 ① The shebang line tells the OS which program to use to execute this program.

 ② This comment documents the purpose of the program.

 ③ We must import the argparse module to use it.

 ④ The parser will figure out all the arguments. The description appears in the help message.

 ⑤ We need to tell the parser to expect a name that will be the object of our salutations.

 ⑥ We ask the parser to parse any arguments to the program.

 ⑦ We print the greeting using the args.name value.

 Figure 1.3 shows a string diagram of our program now.

 Now when you try to run the program like before, it triggers an error and a “usage” statement (notice that “usage” is the first word of the output):

 $./hello.py ①
usage: hello.py [-h] name ②
hello.py: error: the following arguments are required: name ③

 ① We run the program with no arguments, but the program now expects a single argument (a “name”).

 ② Since the program doesn’t get the expected argument, it stops and prints a “usage” message to let the user know how to properly invoke the program.

 ③ The error message tells the user that they have not supplied a required parameter called “name.”

 [image:]

 Figure 1.3 Now our string diagram shows that our program can take an argument and produce a message based on that value.

 We’ve changed the program so that it requires a name or it won’t run. That’s pretty cool! Let’s give it a name to greet:

 $./hello.py Universe
Hello, Universe!

 Try running your program with both the -h and --help arguments, and verify that you see the help messages.

 The program works really well now and has nice documentation, all because we added those few lines using argparse. That’s a big improvement.

1.8 Making the argument optional

 Suppose we’d like to run the program like before, with no arguments, and have it print “Hello, World!” We can make the name optional by changing the name of the argument to --name:

 #!/usr/bin/env python3
Purpose: Say hello

import argparse

parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--name', metavar='name', ①
 default='World', help='Name to greet')
args = parser.parse_args()
print('Hello, ' + args.name + '!')

 ① The only change to this program is adding -n and --name for the “short” and “long” option names. We also indicate a default value. “metavar” will show up in the usage to describe the argument.

 Now we can run it like before:

 $./hello.py
Hello, World!

 Or we can use the --name option:

 $./hello.py --name Terra
Hello, Terra!

 And our help message has changed:

 $./hello.py -h
usage: hello.py [-h] [-n NAME]

Say hello

optional arguments:
 -h, --help show this help message and exit
 -n name, --name name Name to greet ①

 ① The argument is now optional and no longer a positional argument. It’s common to provide both short and long names to make it easy to type the options. The metavar value of “name” appears here to describe what the value should be.

 Figure 1.4 shows a string diagram that describes our program.

 [image:]

 Figure 1.4 The name parameter is now optional. The program will greet a given name or will use a default value when it’s missing.

 Our program is really flexible now, greeting a default value when run with no arguments or allowing us to say “hi” to something else. Remember that parameters that start with dashes are optional, so they can be left out, and they may have default values. Parameters that don’t start with dashes are positional and are usually required, so they do not have default values.

 Table 1.1 Two kinds of command-line parameters

 	
 Type

 	
 Example

 	
 Required

 	
 Default

 	
 Positional

 	
 name

 	
 Yes

 	
 No

 	
 Optional

 	
 -n (short), --name (long)

 	
 No

 	
 Yes

1.9 Running our tests

 Let’s run our tests again to see how we are doing:

 $ make test
pytest -xv test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable PASSED [60%]
test.py::test_usage PASSED [80%]
test.py::test_input PASSED [100%]

============================== 5 passed in 0.38s ===============================

 Wow, we’re passing all our tests! I actually get excited whenever I see my programs pass all their tests, even when I’m the one who wrote the tests. Before we were failing on the usage and input tests. Adding the argparse code fixed both of those because it allows us to accept arguments when our program runs, and it will also create documentation about how to run our program.

1.10 Adding the main() function

 Our program works really well now, but it’s not quite up to community standards and expectations. For instance, it’s very common for computer programs--not just ones written in Python--to start at a place called main(). Most Python programs define a function called main(), and there is an idiom to call the main() function at the end of the code, like this:

 #!/usr/bin/env python3
Purpose: Say hello

import argparse

def main(): ①
 parser = argparse.ArgumentParser(description='Say hello')
 parser.add_argument('-n', '--name', metavar='name',
 default='World', help='Name to greet')
 args = parser.parse_args()
 print('Hello, ' + args.name + '!')

if __name__ == '__main__': ②
 main() ③

 ① def defines a function, named main() in this case. The empty parentheses show that this function accepts no arguments.

 ② Every program or module in Python has a name that can be accessed through the variable __name__. When the program is executing, __name__ is set to “__main__”.1

 ③ If this is true, call the main() function.

 As our programs get longer, we’ll start creating more functions. Python programmers approach this in different ways, but in this book I will always create and execute a main() function to be consistent. To start off, we’ll always put the main part of our program inside the main() function.

1.11 Adding the get_args() function

 As a matter of personal taste, I like to put all the argparse code into a separate place that I always call get_args(). Getting and validating arguments is one concept in my mind, so it belongs by itself. For some programs, this function can get quite long.

 I always put get_args() as the first function so that I can see it immediately when I read the source code. I usually put main() right after it. You are, of course, welcome to structure your programs however you like.

 Here is what the program looks like now:

 #!/usr/bin/env python3
Purpose: Say hello

import argparse

def get_args(): ①
 parser = argparse.ArgumentParser(description='Say hello')
 parser.add_argument('-n', '--name', metavar='name',
 default='World', help='Name to greet')
 return parser.parse_args() ②

def main(): ③
 args = get_args() ④
 print('Hello, ' + args.name + '!')

if __name__ == '__main__':
 main()

 ① The get_args() function is dedicated to getting the arguments. All the argparse code now lives here.

 ② We need to call return to send the results of parsing the arguments back to the main() function.

 ③ The main() function is much shorter now.

 ④ Call the get_args() function to get parsed arguments. If there is a problem with the arguments or if the user asks for --help, the program never gets to this point because argparse will cause it to exit. If our program does make it t

 Nothing has changed about the way the program works. We’re just organizing the code to group ideas together--the code that deals with argparse now lives in the get_args() function, and everything else lives in main(). Just to be sure, go run the test suite!

1.11.1 Checking style and errors

 	
 [image:]

 	
 Our program works really well now. We can use tools like Flake8 and Pylint to check if our program has problems. These tools are called linters, and their job is to suggest ways to improve a program. If you haven’t installed them yet, you can use the pip module to do so now:

 $ python3 -m pip install flake8 pylint

 The Flake8 program wants me to put two blank lines between each of the function def definitions:

 $ flake8 hello.py
hello.py:6:1: E302 expected 2 blank lines, found 1
hello.py:12:1: E302 expected 2 blank lines, found 1
hello.py:16:1: E305 expected 2 blank lines after class or function definition, found 1

 And Pylint says that the functions are missing documentation (“docstrings”):

 $ pylint hello.py
************* Module hello
hello.py:1:0: C0114: Missing module docstring (missing-module-docstring)
hello.py:6:0: C0116: Missing function or method docstring (missing-function-docstring)
hello.py:12:0: C0116: Missing function or method docstring (missing-function-docstring)

Your code has been rated at 7.00/10 (previous run: -10.00/10, +17.00)

 A docstring is a string that occurs just after the def of the function. It’s common to have several lines of documentation for a function, so programmers often will use Python’s triple quotes (single or double) to create a multiline string. Following is what the program looks like when I add docstrings. I have also used YAPF to format the program and fix the spacing problems, but you are welcome to use Black or any other tool you like.

 #!/usr/bin/env python3
""" ①
Author: Ken Youens-Clark <kyclark@gmail.com>
Purpose: Say hello
"""

import argparse

-- ②
def get_args():
 """Get the command-line arguments""" ③

 parser = argparse.ArgumentParser(description='Say hello')
 parser.add_argument('-n', '--name', default='World', help='Name to greet')
 return parser.parse_args()

--
def main():
 """Make a jazz noise here""" ④

 args = get_args()
 print('Hello, ' + args.name + '!')

--
if __name__ == '__main__':
 main()

 ① Triple-quoted, multiline docstring for the entire program. It’s common practice to write a long docstring just after the shebang to document the overall purpose of the function. I like to include at least my name, email address, and the purpose of the script so that any future person using the program will know who wrote it, how to get in touch with me if they have problems, and what the program is supposed to do.

 ② A big horizontal “line” comment to help me find the functions. You can omit these if you don’t like them.

 ③ The docstring for the get_args() function. I like to use triple quotes even for a single-line comment, as they help me to see the docstring better.

 ④ The main() function is simply where the program begins, so there’s not much to say in the docstring. I think it’s (at least a little) funny to always put “Make a jazz noise here,” but you can put whatever you like.

 To learn how to use YAPF or Black on the command line, run them with the -h or --help flag and read the documentation. If you are using an IDE like VS Code or PyCharm, or if you are using the Repl.it interface, there are commands to reformat your code.

1.12 Testing hello.py

 We’ve made many changes to our program--are we sure it still works correctly? Let’s run our test again.

 This is something you will do literally hundreds of times, so I’ve created a shortcut you might like to use. In every directory, you’ll find a file called Makefile that looks like this:

 $ cat Makefile
.PHONY: test

test:
 pytest -xv test.py

 If you have the program make installed on your computer, you can run make test when you are in the 01_hello directory. The make program will look for a Makefile in your current working directory and then look for a recipe called “test.” There it will find that the command to run for the “test” target is pytest -xv test.py, so it will run that command for you.

 $ make test
pytest -xv test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable PASSED [60%]
test.py::test_usage PASSED [80%]
test.py::test_input PASSED [100%]

============================== 5 passed in 0.75s ===============================

 If you do not have make installed, you might like to install it and learn about how Makefiles can be used to execute complicated sets of commands. If you do not want to install or use make, you can always run pytest -xv test.py yourself. They both accomplish the same task.

 The important point is that we were able to use our tests to verify that our program still does exactly what it is supposed to do. As you write programs, you may want to try different solutions. Tests give you the freedom to rewrite a program (also called “refactoring your code”) and know that it still works.

