
        
            
                
            
        

    
  Elm in Action


  Richard Feldman


  [image: ]


  
Copyright


  For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in qua ntity. For more information, please contact

         Special Sales Department
       Manning Publications Co.
       20 Baldwin Road
       PO Box 761
       Shelter Island, NY 11964
       Email: orders@manning.com


  ©2020 by Manning Publications Co. All rights reserved.


  No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.


  Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.


  [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.


  
    
      
      
    

    
      
        	[image: ]

        	
          Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

        
      

    
  

  Acquisitions editor: Mike Stephens
Development editor: Elesha Hyde
Senior technical development editor: Al Scherer
Technical development editor: Marius Butuc
Review editor: Aleksandar Dragosavljević
Production editor: Anthony Calcara
Copy editor: Sharon Wilkey
Proofreader: Katie Tennant
Technical proofreader: Mathias Polligkeit
Typesetter and cover designer: Marija Tudor



  ISBN 9781617294044


  Printed in the United States of America


  
Dedication


  
    To Mom and Dad, who have given me more love and wisdom than I could ever return

  


  Brief Table of Contents


  
    Copyright



    Brief Table of Contents



    Table of Contents



    Preface



    Acknowledgments



    About this book



    About the author



    About the cover illustration


  


  
    1. Getting started



    
      Chapter 1. Welcome to Elm



      Chapter 2. Your first Elm application



      Chapter 3. Compiler as assistant


    


    2. Production-grade Elm



    
      Chapter 4. Talking to servers



      Chapter 5. Talking to JavaScript



      Chapter 6. Testing


    


    3. Building bigger



    
      Chapter 7. Data modeling



      Chapter 8. Single-page applications


    

  


  
    A. Getting set up



    B. Installing Elm packages



    C. Html.Lazy’s change check


  


  
    Index


  


  
    List of Figures


  


  
    List of Tables


  


  
    List of Listings


  


  Table of Contents


  
    Copyright



    Brief Table of Contents



    Table of Contents



    Preface



    Acknowledgments



    About this book



    About the author



    About the cover illustration


  


  
    1. Getting started



    
      Chapter 1. Welcome to Elm



      
        1.1. How Elm fits in



        1.2. Expressions



        
          1.2.1. Using elm repl



          1.2.2. Building expressions



          1.2.3. Booleans and conditionals


        


        1.3. Functions



        
          1.3.1. Defining functions



          1.3.2. Importing functions



          1.3.3. Creating scope with let-expressions



          1.3.4. Anonymous functions



          1.3.5. Operators


        


        1.4. Collections



        
          1.4.1. Lists



          1.4.2. Records



          1.4.3. Tuples


        


        Summary


      


      Chapter 2. Your first Elm application



      
        2.1. Rendering a page



        
          2.1.1. Describing a page using the Html module



          2.1.2. Building a project


        


        2.2. Handling user input with The Elm Architecture



        
          2.2.1. Representing application state with a model



          2.2.2. Handling events with messages and updates


        


        Summary


      


      Chapter 3. Compiler as assistant



      
        3.1. Documenting guarantees with type annotations



        
          3.1.1. Adding optional type annotations



          3.1.2. Annotating functions with type variables



          3.1.3. Reusing annotations with type aliases



          3.1.4. Annotating longer functions


        


        3.2. Using case-expressions and custom types



        
          3.2.1. Using case-expressions



          3.2.2. Enumerating possibilities with custom types



          3.2.3. Holding data in custom types



          3.2.4. Representing flexible messages with custom types


        


        3.3. Generating random numbers with commands



        
          3.3.1. Describing random values with Random.Generator



          3.3.2. Introducing commands to The Elm Architecture



          3.3.3. Generating random values with Random.generate


        


        Summary


      

    


    2. Production-grade Elm



    
      Chapter 4. Talking to servers



      
        4.1. Preparing for server-loaded data



        
          4.1.1. Modeling incremental initialization



          4.1.2. Resolving data dependencies


        


        4.2. Fetching data from a server



        
          4.2.1. Describing HTTP requests



          4.2.2. Sending HTTP requests


        


        4.3. Decoding JSON



        
          4.3.1. Decoding JSON strings into results



          4.3.2. Decoding JSON collections



          4.3.3. Decoding JSON HTTP responses


        


        Summary


      


      Chapter 5. Talking to JavaScript



      
        5.1. Using custom elements



        
          5.1.1. Importing custom elements



          5.1.2. Handling custom events



          5.1.3. Responding to slider changes


        


        5.2. Sending data to JavaScript



        
          5.2.1. Creating a command by using a port



          5.2.2. Receiving data from Elm



          5.2.3. Timing DOM updates


        


        5.3. Receiving data from JavaScript



        
          5.3.1. Receiving real-time data from JavaScript via ports



          5.3.2. Receiving initialization arguments via flags


        


        Summary


      


      Chapter 6. Testing



      
        6.1. Writing unit tests



        
          6.1.1. Introducing tests



          6.1.2. Unit testing a JSON decoder



          6.1.3. Narrowing test scope


        


        6.2. Writing fuzz tests



        
          6.2.1. Converting unit tests to fuzz tests



          6.2.2. Testing update functions



          6.2.3. Creating multiple tests with one function


        


        6.3. Testing views



        
          6.3.1. Testing DOM structure



          6.3.2. Fuzzing view tests



          6.3.3. Testing user interactions


        


        Summary


      

    


    3. Building bigger



    
      Chapter 7. Data modeling



      
        7.1. Storing values by keys in dictionaries



        
          7.1.1. Setting up the page



          7.1.2. Storing photos by URL in a dictionary


        


        7.2. Modeling trees by using recursive custom types



        
          7.2.1. Defining trees by using custom types



          7.2.2. Recursive messages



          7.2.3. Event handlers with recursive messages


        


        7.3. Decoding graphs and trees



        
          7.3.1. Decoding dictionaries



          7.3.2. Decoding recursive JSON



          7.3.3. Accumulating while decoding


        


        Summary


      


      Chapter 8. Single-page applications



      
        8.1. Framing the page



        
          8.1.1. Creating Main.elm



          8.1.2. Rendering the header and footer



          8.1.3. Skipping unnecessary renders with Html.Lazy


        


        8.2. Routing



        
          8.2.1. Handling the initial URL



          8.2.2. Parsing URL paths



          8.2.3. Handing URL changes


        


        8.3. Delegating pages



        
          8.3.1. Revising module structure



          8.3.2. Initializing page states



          8.3.3. Delegating page logic


        


        Summary


      

    

  


  
    A. Getting set up



    
      A.1. Installing Node.js and NPM



      A.2. Installing command-line tools



      A.3. Obtaining the Elm in Action repository



      A.4. Installing recommended optional tools


    


    B. Installing Elm packages



    
      B.1. Direct and indirect dependencies



      B.2. Semantic versioning in packages



      
        B.2.1. Semantic versioning enforced



        B.2.2. Browsing package documentation


      


      B.3. Example: Installing elm/url


    


    C. Html.Lazy’s change check



    
      C.1. lazy’s check for strings and numbers



      C.2. lazy’s check for everything else



      C.3. When memory locations stay the same



      
        C.3.1. Memory locations for collections



        C.3.2. Memory locations across updates



        C.3.3. Memory locations for functions



        C.3.4. Named top-level functions always keep the same memory location


      

    

  


  
    Index


  


  
    List of Figures


  


  
    List of Tables


  


  
    List of Listings


  


  front matter


  
Preface


  Shortly after I gave my first conference talk about Elm, I got an email from Manning Publications. It said Manning was interested in publishing a book on Elm, and asked if I had time for a phone call with a guy named Mike to talk about Elm and maybe recommend some potential authors. I hopped on the call and gave Mike a few names. Then—I couldn’t help myself—I launched into a stream of unsolicited advice about how I thought this hypothetical book should be done.


  From start to finish, the book should be about building things. The world is bursting at the seams with books on typed pure functional programming that focus on theory first, second, and third, and then get to “Hello World” around chapter 7. Elm is part of that family of languages, but Elm is for building things! A great Elm book, I told Mike, should have the reader building an interactive application by chapter 3 at the latest.


  Having both taught and participated in my fair share of Elm workshops, I didn’t stop there. “The book should introduce types only after the reader has built something. That’s really important! Otherwise, what happens is . . . ” Pretty soon I was gesturing with my free hand as I paced alone around my apartment.


  At some point, I realized I was describing the book I wished I’d had back when I first set out to learn functional programming. By the end of the call, I wanted that book to exist so badly, I volunteered to write it. This, I assume, was the desired outcome of the “Hey, could you recommend another author to us?” call. If so, then well played!


  When I got that first email, most of my time with Elm had still been as a happy hobbyist. I’d spent less than a year with it at work—using it “in anger,” as the saying goes. I knew Elm as a fun language, and my coworkers were loving it so far, but it remained to be seen how the language would fare in the long run, especially in the pressure cooker of a small startup with ambitious goals.


  Now that I can reflect on the four years since our company first started using Elm, our decision to adopt it was without a doubt the most positive technical change I’ve seen any team make in my entire career. Over the years, I’ve heard other companies tell similar stories about their experience with Elm—in blog posts, conference talks, and sometimes enthusiastically in person.


  Fast-forward a few years—and 10 Elm conferences—from that first phone call, and Elm in Action now exists! It has become the book I excitedly described on that call: the book I wished I’d had as a beginner. If you want to build things for web browsers, and you want them to be both reliable and delightful to maintain, then you’re the person I had in mind when writing this book. I hope you enjoy exploring this wonderful language as much as I have!


  
Acknowledgments


  I wrote this book at a pace that could charitably be described as “glacial,” so first and foremost I’d like to acknowledge the patient folks at Manning who supported me through all the written and rewritten (and, let’s be honest, sometimes rewritten another time or two) chapters—in particular, Elesha Hyde, my editor, who claims not to be a programmer but who has repeatedly spotted bugs in my code examples, and Marius Butuc, who reviewed every snippet of source code and uncovered more mistakes than I’d prefer to count. Much love to my patient wife, Kristy, for putting up with all my late nights spent writing this thing!


  It goes without saying that this book would not exist without Evan Czaplicki, since he created Elm. More than that, though, this book wouldn’t have turned out nearly as well as it did without his involvement and feedback on the early drafts. Thank you so much, Evan! Further thanks go to Brian Hicks, Luke Westby, Robin Heggelund Hansen, MEAP readers who commented on Manning’s liveBook discussion forum, and to everyone else who gave detailed feedback on early chapter drafts. It made a huge difference to me.


  I’ve learned from many people over the years, and I want to acknowledge a few who taught me things I needed to know to write this book. In particular, thanks go to Aditya “Deech” Siram for setting me on the path to learn typed functional programming, to Al Adams for teaching me I can bite off more than I can chew and get it down anyway, and to Amy Weiss—both for introducing me to the depth of prose and for, in 2005, looking me in my novice eye and exclaiming, “You’re a writer!” Lastly, thanks again to Evan Czaplicki for . . . I’m not sure how I could put into words all the things you’ve taught me about programming, so maybe I should have paid closer attention in Amy Weiss’s class.


  I’d also like to thank all the book’s formal reviewers, including Amit Lamba, Andy Kirsch, Bryce Darling, Damian Esteban, Daniel Carl, Daut Morina, Giovanni Ornaghi, Jake Romer, Jeff Smith, Jeffrey “jf” Lim, Jose Samonte, Kariem Ali, Keith Donaldson, Kent Spillner, Kumar Unnikrishnan, Lance Halvorsen, Mathias Polligkeit, Matt Audesse, Peter Hampton, Rob Bazinet, Tahir Awan, Thomas Ballinger, and Ubaldo Pescatore.


  Finally, I’d like to thank the incredible friends and colleagues who have shaped the course of my life, including but by no means limited to Jack Stover, Rob Owen, Paul Bender, Tom “T Money” Mooney, Zac Hill, Josh Leven, Michael “Glass” Glass, Jeff Scheur, Marcos “Dui” Toledo, and my amazing sister, Janet Feldman. I love you all.


  
About this book


  Elm in Action teaches you how to build applications using the Elm programming language. It starts with an introduction to the language’s basic syntax and semantics, then moves on to building the beginnings of a photo-sharing application. In each of the following chapters, you build on that application—adding features, improving code quality, and writing tests—and learn more about Elm in the process. By the end of the final chapter, you’ll have scratch-built a complete single-page application with routing, tests, client-server communication, and JavaScript interoperation.


  
Who should read this book


  This book is written for people who know at least one programming language. This means, for example, that the book does not explain what a function is, or what if does. That said, the book does not expect you to have prior experience with types, functional programming, or any particular language syntax.


  You don’t need to be a web programmer to learn Elm through this book. However, because Elm runs in the browser, in many places the book assumes you have some high-level familiarity with web concepts such as browsers, servers, HTTP, HTML, CSS, and JavaScript. If you are unfamiliar with these, you may find yourself glossing over a paragraph or diagram here and there, but by the end of the book, you can still expect to understand Elm almost as well as someone who was familiar with those technologies going in.


  An exception to this rule is chapter 5, which is about how Elm code can interoperate with JavaScript code. Understanding some parts of that chapter naturally requires an understanding of JavaScript, but even that chapter contains only a few small snippets of JS code. Even if you don’t know JS, you may still be able to generally follow what the JS code is doing in the context of the chapter.


  
How this book is organized: a roadmap


  Elm in Action is divided into three parts and eight chapters. The first three chapters cover the basics; by the end of them, you will have learned the core concepts of the language and will have built a small Elm application. The next three chapters cover intermediate topics that come up in more fully featured Elm projects. The final two are about techniques that let you build larger and more advanced Elm applications.


  
    	
Chapter 1—“Welcome to Elm” covers the basic syntax and concepts of the language. It teaches you to “speak Elm” but not yet to do much with it.


    	
Chapter 2—“Your first Elm application” introduces the Elm Architecture, which is the foundation on which all Elm applications are built. By the end of the chapter, you’ll have used the Elm Architecture to build a working application.


    	
Chapter 3—“Compiler as assistant” covers Elm’s compiler and type system and shows how you can use it to make the application you built in chapter 2 easier to maintain.


    	
Chapter 4—“Talking to servers” shows how to use JSON decoders and commands to communicate between your application and a web server.


    	
Chapter 5—“Talking to JavaScript” introduces subscriptions over the course of adding some JavaScript interoperation to your application.


    	
Chapter 6—“Testing” shows how to use elm-test’s unit-testing and fuzz-testing features to make your application more reliable through automated tests.


    	
Chapter 7—“Data modeling” details recursive data modeling techniques, which give you the ability to build a wider variety of applications.


    	
Chapter 8—“Single-page applications” brings all the code from the previous chapters together, connecting your application’s two separate pages through a single-page application architecture, including handling routing and sharing code between pages.

  


  Each chapter builds on concepts introduced in the ones before it, so the book is designed to be read in normal chapter order rather than jumping around. Every line of code in the application is introduced in one chapter or another, so if you do decide to skip around, it might help to look at the code listings at www.manning.com/books/elm-in-action to see where the application’s code base stands at the beginning of that chapter.


  
About the code


  This book contains many examples of source code in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations accompany many of the listings, highlighting important concepts.


  The code listings in each chapter fall into two categories: independent examples related to a particular concept, and code changes for the application whose development begins in chapter 2 and continues through chapter 8.


  The complete source code for the application is available online on the Manning website at www.manning.com/books/elm-in-action and on GitHub at github.com/rtfeldman/elm-in-action. The end of each chapter also includes a final listing indicating where any changes to the application ended up, including annotations that comment on relevant details. The independent code examples (the ones unrelated to the application) are not included in the online repository.


  The book was developed with Elm version 0.19.1, which is available for free and runs on Windows, macOS, and Linux. Appendix A has instructions on how to install Elm, as well as some supplemental free tools used in chapters 6 and 8.


  
liveBook discussion forum


  Purchase of Elm in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/elm-in-action/discussion. You can learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
Other online resources


  The following are additional Elm resources:


  
    	
guide.elm-lang.org—The official Elm guide is a fantastic resource that will always be an up-to-date language reference whenever a new version of Elm is released.


    	
github.com/rtfeldman/elm-spa-example—This code repository contains a sizeable (roughly 4,000 lines of code) single-page application the author wrote in Elm as an example of good practices as he sees them. It can give you a sense of what a larger Elm application than the one you’ll build over the course of this book might look like.


    	
frontendmasters.com/courses/elm—The author recorded both an “Introduction to Elm” and an “Advanced Elm” video workshop course for Frontend Masters. The Introduction course covers topics similar to those in this book, but with different examples and exercises. The Advanced course is intended for people who have spent a few months with Elm, so you might find it a nice next step if you’ve finished this book and are looking for more advanced topics.

  


  
About the author


  Richard has spent 24 years programming, almost half of them professionally. Most of his career has been as a web programmer, where he has often found himself pushing the browser to its limit in the pursuit of ambitious user interfaces. He first used Java-Script before jQuery came out, was among the earliest contributors to React after it was open sourced, and started writing Elm before it had a core team.


  Today Richard is a member of the Elm core team, is a frequent conference speaker on the topic of Elm, and is the organizer of the Philadelphia Elm Meetup. He is also an instructor for Frontend Masters, where he teaches an “Introduction to Elm” as well as an “Advanced Elm” course. He maintains several widely used open source Elm projects, including elm-test, elm-css, elm-spa-example, and elm-json-decode-pipeline.


  Some have said he’s “into Elm,” but he’s not sure where they got that wild idea.


  
About the cover illustration


  
Turkey/Ottoman Empire collection


  The illustration of the woman on the cover of Elm in Action is titled “An Egyptian Arab.” The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book ... 200 years later.


  The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened a long time ago.


  We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.


  Part 1. Getting started


  The first three chapters cover the fundamentals of building a user interface in Elm. By the end of chapter 3, you’ll have built a basic Elm application from scratch, having learned how to read and write Elm syntax, use The Elm Architecture to build interactive user interfaces, and leverage Elm’s compiler to get strong guarantees about your code.


  Chapter 1 introduces the basics of Elm syntax and some basic operations. It focuses on small, self-contained examples and shows you how to run them. It sets the stage for chapter 2, where you begin by rendering a single page in the browser, and then make it interactive using The Elm Architecture.


  Finally, chapter 3 builds on the application you wrote in chapter 2. You’ll extend it by adding some documentation and new functionality, learning some helpful techniques that will come in handy throughout the rest of the book. Once you complete chapter 3, you’ll know enough to be able to build a basic Elm project on your own


  Chapter 1. Welcome to Elm


  This chapter covers:


  
    	Introducing Elm to a project


    	Using elm repl



    	Building expressions


    	Writing and importing functions


    	Working with collections

  


  Back in 2014, I set out to rewrite a side project and ended up with a new favorite programming language. Not only was the rewritten code faster, more reliable, and easier to maintain, but writing it was the most fun I’d had in over a decade of writing code. Ever since that project, I’ve been hooked on Elm.


  The rewrite in question was a writing application I’d built even longer ago, in 2011. Having tried out several writing apps over the course of writing a novel, and being satisfied with none, I decided to scratch my own itch and build my dream writing app. I called it Dreamwriter.


  For those keeping score: yes, I was indeed writing code in order to write prose better.


  Things went well at first. I built the basic web app, started using it, and iterated on the design. Months later I’d written over fifty thousand words in Dreamwriter. If I’d been satisfied with that early design, the story might have ended there. However, users always want a better experience—and when the user and the developer are the same person, further iteration is inevitable.


  The more I revised Dreamwriter, the more difficult it became to maintain. I’d spend hours trying to reproduce bugs that knocked me out of my writing groove. At some point, the copy and paste functions stopped working, and I found myself resorting to the browser’s developer tools whenever I needed to move paragraphs around.


  Right around when I’d decided to scrap my unreliable code base and do a full rewrite, a blog post crossed my radar. After reading it, I knew three things:


  
    	The Elm programming language compiled to JavaScript, just like Babel or TypeScript. (I already had a compile step in my build script, so this was familiar territory.)


    	Elm used the same rendering approach as React.js—which I had recently grown to love—except Elm had rendering benchmarks that outperformed React’s!


    	Elm’s compiler would catch a lot of the errors I’d been seeing before they could harm me in production. I did not yet know just how many it would catch.

  


  I’d never built anything with a functional programming language like Elm before, but I decided to take the plunge. I didn’t really know what I was doing, but the compiler’s helpful error messages kept picking me up whenever I stumbled. Eventually, I got the revised version up and running, and began to refactor.


  The refactoring experience blew me away. I revised the Elm-powered Dreamwriter gleefully, even recklessly—and no matter how dramatic my changes, the compiler always had my back. It would point out whatever corner cases I’d missed, and I’d go through and fix them. As soon as the code compiled, lo and behold, everything worked again. I felt invincible.


  I related my Elm experience to my coworkers at NoRedInk, and they were curious but understandably cautious. How could we find out if the team liked it without taking a big risk? A full rewrite may have been fine for Dreamwriter, but it would have been irresponsible to attempt that for our company’s entire frontend.


  So we introduced Elm gently, by rewriting just one portion of one production feature in Elm. It went well, so we did a bit more. And then more.


  Today our frontend programmers code almost exclusively in Elm, and our team has never been happier. Our test suites are smaller, yet our product is more reliable. Our feature set has grown more complex, yet refactoring remains delightful. We swap stories with other companies using Elm about how long our production code has run without throwing a runtime exception. In this book, we’ll explore all of these benefits.


  After learning some basics, we’ll begin building an Elm single-page web application called Photo Groove. Building it will involve learning concepts that apply to any Elm application, not just single-page apps—concepts like rendering, state management, testing, talking to servers, interoperating with JavaScript, and performance optimization.


  We’ll build this application the way teams typically do: ship a basic version that works, but has minimal features and some technical debt. As we advance through the chapters, we’ll expand and refactor our code, adding features and paying off technical debt as we learn more about Elm. By the end of the book, we will have transformed our application into a more featureful product, with a more maintainable code base, than the one we initially shipped.


  With any luck, we’ll have a lot of fun doing it. Welcome to Elm!


  
1.1. How Elm fits in


  Elm can be used either as a replacement for in-browser JavaScript code or as a complement to it. You write some .elm files, run them through Elm’s compiler, and end up with plain old .js files that the browser runs as it normally would. If you have separate stylesheets that you use alongside JavaScript, they’ll work the same way alongside Elm.


  Figure 1.1 illustrates this process.


  Figure 1.1. Elm files are compiled to plain old JavaScript files.


  [image: ]


  The appropriate Elm-to-JavaScript ratio can vary by project. Some projects may want primarily JavaScript and only a touch of Elm for business logic or rendering. Others may want a great deal of Elm but just a pinch of JavaScript to leverage its larger ecosystem. No single answer applies to every project.


  What distinguishes Elm from the many flavors of JavaScript is reliability. Handwritten JavaScript code is notoriously prone to runtime crashes like “undefined is not a function.” TypeScript has improved on this, but there are enough loopholes and escape hatches in its design that the surrounding ecosystem is often regarded with caution.


  In contrast, Elm programmers consistently describe the confidence Elm’s compiler inspires in them. Elm applications have a reputation for never throwing runtime exceptions in practice! This reliability extends to the entire Elm package ecosystem, which is built around a small set of simple primitives like expressions, immutable values, and managed effects—all verified by the compiler.


  Elm’s compiler also has a reputation for user-friendliness. Not only does it infer the types of entire programs without requiring the handwritten type annotations that many languages do—in chapter 2 we’ll build an entire application, and then in chapter 3 we’ll see how to add optional annotations to it—but when the compiler does find problems, it reports them with such clarity that it has made a name for itself even among legendary programmers.


  
    That should be an inspiration for every error message.


    John Carmack, after seeing one of Elm’s compiler errors

  


  Having this level of compiler assistance makes Elm code dramatically easier to refactor and debug, especially as code bases grow larger. There is an up-front cost to learning and adopting Elm, but you reap more and more maintainability benefits the longer the project remains in active development.

  


  Tip


  Most teams that use Elm in production say they used a “planting the seed” approach. Instead of waiting for a big project where they could build everything in Elm from the ground up, they rewrote a small part of their existing JavaScript or TypeScript code base in Elm. This was low-risk and could be rolled back if things did not go as planned, but having that small seed planted in production meant they could grow their Elm code at a comfortable pace from then on.

  


  Although Elm is in many ways a simpler language than JavaScript, it’s also much younger. This means Elm has fewer off-the-shelf solutions available for any given problem. Elm code can interoperate with JavaScript code to piggyback the larger Java-Script library ecosystem, but Elm’s design differs enough from JavaScript’s that incorporating JavaScript libraries takes effort.


  Balancing these trade-offs depends on the specifics of a given project. Let’s say you’re on a team where people are comfortable with JavaScript or TypeScript, but are new to Elm. Here are some projects I expect would benefit from the team learning and using Elm:


  
    	Feature-rich web applications whose code bases are large or will grow large


    	Individual features that will be revised and maintained over an extended period of time


    	Projects where most functionality comes from in-house code, not off-the-shelf libraries

  


  In contrast, I might choose a more familiar language and toolset for projects like these:


  
    	Time-crunched projects where learning a language is unrealistic given the deadline


    	Projects that will consist primarily of gluing together off-the-shelf components


    	Quick proof-of-concept prototypes that will not be maintained long-term

  


  We’ll explore these trade-offs in more detail throughout the course of the book.


  
1.2. Expressions


  To get our feet wet with Elm, let’s tap into one of the most universal traits across the animal kingdom: the innate desire to play. Researchers have developed many theories as to why we play, including to learn, to practice, to experiment, and, of course, for the pure fun of it.


  These researchers could get some high-quality data by observing a member of the homo sapiens programmerus species in its natural environment for play—the read-eval-print loop, or REPL. You’ll be using Elm’s REPL to play as you take your first steps as an Elm programmer.


  1.2.1. Using elm repl


  The Elm Platform includes a nice REPL called elm repl, so if you have not installed the Elm Platform yet, head over to appendix A to get hooked up.


  Once you’re ready, enter elm repl at the terminal. You should see this prompt:

  ---- Elm 0.19.1 ------------------------------------------------------
Say :help for help and :exit to exit!
---------------------------------------------------------------------- >


  Alexander Graham Bell invented the telephone over a century ago. There was no customary greeting back then, so Bell suggested one: lift the receiver and bellow out a rousing “Ahoy!” Thomas Edison later proposed the alternative “Hello,” which stuck, and today programmers everywhere append “World” as the customary way to greet a new programming language.


  Let’s spice things up a bit, shall we? Enter this at the prompt:

  > "Ahoy, World!"


  You should see this response from elm repl:

  "Ahoy, World!" : String


  Congratulations—you are now an Elm programmer!

  


  Note


  To focus on the basics, for the rest of this chapter I’ll omit the type annotations that elm repl prints. For example, the previous code snippet would have omitted the : String portion of "Ahoy, World!" : String. We’ll get into these annotations in chapter 3.

  


  If you’re the curious sort, by all means feel free to play as we continue. Enter things that occur to you and see what happens! Whenever you encounter an error you don’t understand yet, picture yourself as a tiger cub building intuition for physics through experimentation: adorable for now, but powerful in time.


  1.2.2. Building expressions


  Let’s rebuild our "Ahoy, World!" greeting from two parts and then play around from there. Try entering these into elm repl.


  Listing 1.1. Combining strings

  > "Ahoy, World!"
"Ahoy, World!"

> "Ahoy, " ++ "World!"
"Ahoy, World!"

> "Pi is " ++ String.fromFloat pi ++ " (give or take)"     ❶
"Pi is 3.141592653589793 (give or take)"


  ❶ String.fromFloat is a standalone function, not a method associated with a particular object. We will cover it later.


  In Elm, we use the ++ operator to combine strings, instead of the + operator Java-Script uses. At this point, you may be wondering: does Elm even have a + operator? What about the other arithmetic operators? Let’s find out by experimenting in elm repl!


  Listing 1.2. Arithmetic expressions

  > 1234 + 103
1337

> 12345 - (5191 * -15)   ❶
90210

> 2 ^ 11
2048

> 49 / 10
4.9

> 49 // 10               ❷

4


  ❶ Nests expressions via parentheses


  ❷ Integer division (decimals get truncated)


  Sure enough, Elm has both a ++ and a + operator. They’re used for different things:


  
    	The ++ operator is for appending. Using it on a number is an error.


    	The + operator is for addition. It can be used only on numbers.

  


  You’ll see this preference for being explicit often in Elm. If two operations are sufficiently different—in this case, adding and appending—Elm implements them separately, so each implementation can do one thing well.


  Strings and characters


  Elm also distinguishes between strings and their individual UTF-8 characters. Double quotes in Elm represent string literals, just as in JavaScript, but single quotes in Elm represent character literals. Table 1.1 shows a few examples of strings and characters.


  Table 1.1. Strings and characters


  
    
      
      
    

    
      
        	
          Elm literal

        

        	
          Result

        
      

    

    
      
        	
          "a"

        

        	A string with a length of 1.
      


      
        	
          ’a’

        

        	A single character.
      


      
        	
          "abc"

        

        	A string with a length of 3.
      


      
        	
          ’abc’

        

        	
Error: Character literals must contain exactly one character.
      


      
        	
          ""

        

        	An empty string.
      


      
        	
          ’’

        

        	
Error: Character literals must contain exactly one character.
      

    
  


  Comments


  There are two ways to write comments in Elm:


  
    	Use -- for single-line comments (like // in JavaScript).


    	Use {- to begin a multiline comment, and -} to end it (like /* and */ in JS).

  


  Let’s see these in action!


  Listing 1.3. Characters, comments, and named values

  > ’a’  -- This is a single-line comment. It will be ignored.  ❶
"a"

> "a"  {- This comment could span multiple lines. -}          ❷
"a"

> milesPerHour = 88                                           ❸
88

> milesPerHour
88


  ❶ JavaScript comment: //


  ❷ JavaScript comment: /* ... */


  ❸ JavaScript: const milesPerHour = 88;


  Assigning names to values


  In the last two lines of code in the preceding listing, we did something new: we assigned the name milesPerHour to the value 88.

  


  Note


  Normally, once we assign a name to a value, that name cannot be reassigned later to a different value in the same scope. Assignment in Elm works like JavaScript’s const keyword, as opposed to var or let. The only exception to this is in elm repl, where you can override a previous assignment for convenience.

  


  There are a few things to keep in mind when assigning names to values:


  
    	The name must begin with a lowercase letter. After that, it can be a mix of letters, numbers, and underscores.


    	By convention, all letters should be in one uninterrupted sequence. For example, map4 is a reasonable name, but map4ever is not, as the sequence of letters is interrupted by the 4.


    	Because of the previous two rules, you should never use snake_case or SCREAMING_SNAKE_CASE to name values. Use camelCase instead.


    	If you absolutely must know whether the compiler will accept some_raD __TH1NG___ as a valid name, remember: what happens in elm repl stays in elm repl.

  


  Assigning names to expressions


  You can assign names not only to literal values, but also to expressions.

  


  Definition


  An expression is anything that evaluates to a single value.

  


  Table 1.2 lists some expressions we’ve seen so far.


  Table 1.2. Examples of Elm expressions


  
    
      
      
    

    
      
        	
          Expression

        

        	
          Evaluates to

        
      

    

    
      
        	
          "Ahoy, " ++ "World!"

        

        	
          "Ahoy, World!"

        
      


      
        	
          2 ^ 11

        

        	
          2048

        
      


      
        	
          pi

        

        	
          3.141592653589793

        
      


      
        	
          42

        

        	
          42

        
      

    
  

  


  Note


  Since an expression is anything that evaluates to a value, literal values like "Ahoy, World!" and 42 are expressions too—just expressions that have already been fully evaluated.

  


  Expressions are the basic building block of Elm applications. This is different from JavaScript, which offers many features as statements instead of expressions.


  Consider these two lines of JavaScript code:

  label = (num > 0) ? "positive" : "negative"  // ternary expression
label = if (num > 0) { "positive" } else { "negative" }  // if-statement


  The first line is a ternary expression. As an expression, it evaluates to a value, and Java-Script happily assigns that value to label.


  The second line is an if-statement, and since statements do not evaluate to values, trying to assign it to label yields a syntax error.


  This distinction does not exist in Elm, as Elm programs express logic by using expressions only. As such, Elm has if-expressions instead of if-statements. As you will see in chapter 2, every Elm application is essentially one big expression built up from many smaller ones!


  1.2.3. Booleans and conditionals


  There aren’t many Boolean values out there—just the two, really—and working with them in Elm is similar to working with them in JavaScript. There are a few differences, though:


  
    	You write True and False instead of true and false.


    	You write /= instead of !==.


    	To negate values, you use Elm’s not function instead of JavaScript’s ! prefix.

  


  Let’s try them out!


  Listing 1.4. Boolean expressions

  > 1 + 1 == 2           ❶
True                   ❷

> 1 + 1 /= 2           ❸
False                  ❹

> not (1 + 1 == 2)     ❺
False

> pi <= 0 || pi >= 10
False

> 3 < pi && pi < 4     ❻
True


  ❶ JavaScript: 1 + 1 === 2


  ❷ JavaScript: true


  ❸ JavaScript: 1 + 1 !== 2


  ❹ JavaScript: false


  ❺ JavaScript: !(pi === pi)


  ❻ 3 < pi < 4 would be an error


  Now let’s say it’s a lovely afternoon at the North Pole, and we’re in Santa’s workshop writing a bit of user interface (UI) logic to display how many elves are currently on vacation. The quick-and-dirty approach would be to add the string " elves" after the number of vacationing elves, but then when the count is 1, we’d display "1 elves", and we’re better than that.


  Let’s polish our user experience with the if-expression shown in figure 1.2.


  Figure 1.2. Comparing an Elm if-expression to a JavaScript ternary


  [image: ]


  Like JavaScript ternaries, Elm if-expressions require three ingredients:


  
    	A condition


    	A branch to evaluate if the condition passes


    	A branch to evaluate otherwise

  


  Each ingredient must be an expression, and the whole if-expression evaluates to the result of whichever branch got evaluated. You’ll get an error if any of these three ingredients is missing, so make sure to specify an else branch every time!

  


  Note


  JavaScript has a concept of “truthiness,” where conditionals can be values other than true and false. Elm doesn’t have truthiness. Conditions can be either True or False, and that’s it. Life is simpler this way.

  


  Now let’s say we modified our pluralization conditional to include a third case:


  
    	If we have one Elf, evaluate to "elf".


    	Otherwise, if we have a positive number of elves, evaluate to "elves".


    	Otherwise, we must have a negative number of elves, so evaluate to "antielves".

  


  In JavaScript, you may have used else if to continue branching conditionals like this. It’s common to use else if for the same purpose in Elm, but it’s worth noting that else if in Elm is nothing more than a stylish way to combine the concepts we learned a moment ago. Check it out!


  Listing 1.5. Using else if

  if elfCount == 1 then                                   ❶
  "elf"                                                 ❶
else                                                    ❶
  (if elfCount >= 0 then "elves" else "anti-elves")     ❶

if elfCount == 1 then                                   ❷
  "elf"                                                 ❷
else (if elfCount >= 0 then                             ❷
  "elves"                                               ❷
else                                                    ❷
  "anti-elves")                                         ❷

if elfCount == 1 then                                   ❸
  "elf"                                                 ❸
else if elfCount >= 0 then                              ❸
  "elves"                                               ❸
else                                                    ❸
  "anti-elves"                                          ❸


  ❶ Uses an if-expression inside else


  ❷ Rearranges some whitespace


  ❸ Drops the parentheses


  This works because the else branch of an if-expression must be an expression, and it just so happens that if-expressions themselves are expressions. As shown in figure 1.3, all it takes is putting an if-expression after another one’s else, and voilà! Additional branching achieved.


  Figure 1.3. The else-if technique: use an if-expression as the else branch of another if-expression.


  [image: ]


  Nesting expressions is a recurring theme in Elm, and you’ll see plenty more recipes like else if throughout the book.


  Chapter 3 will add a powerful new conditional to our expression toolbox, one that has no analogue in JavaScript: the case-expression.


  
1.3. Functions


  Earlier we wrote this expression:

  elfLabel = if vacationingElves == 1 then "elf" else "elves"


  Suppose it turns out that a general-purpose singular/plural labeler would be really useful, and we want to reuse similar logic across the code base at Santa’s workshop. Search results might want to display "1 result" and "2 results" as appropriate, for example. We can write a function to make this pluralization logic easily reusable.

  


  Definition


  Elm functions represent reusable logic. They are not objects. They have no fields, no prototypes, and no ability to store state. All they do is accept values as arguments and then return a value.

  


  If you thought expressions would be a recurring theme in Elm, wait ’til you see functions!


  1.3.1. Defining functions


  Let’s define our first function: isPositive. It will take a number and then do the following:


  
    	Return True if the number is greater than zero


    	Return False otherwise

  


  We can define isPositive in elm repl and try it out right away.


  Listing 1.6. Defining a function

  > isPositive num = num > 0     ❶
<function>


> isPositive 2                 ❷
True


> (isPositive 2)               ❸
True


> isPositive (2 - 10)          ❹
False


  ❶ JavaScript: function isPositive(num) { return num > 0; }


  ❷ JavaScript: isPositive(2)


  ❸ JavaScript: (isPositive(2))


  ❹ JavaScript: isPositive(2 - 10)


  As you can see, in Elm we put the function parameter name before the = sign. We also don’t surround the function body with { }. And did you notice the return keyword is nowhere to be seen? That’s because Elm doesn’t have one! In Elm, a function body is a single expression, and since an expression evaluates to a single value, Elm uses that value as the function’s return value. This means all Elm functions return values!


  For our isPositive function, the expression num > 0 serves as the function’s body and provides its return value.

  


  
    Refactoring out an early return

    In JavaScript, return is often used to exit a function early. This is harmless when used responsibly, but can lead to unpleasant surprises when used in the middle of large functions. Elm does not support these unpleasant surprises, because it has no return keyword.


    Let’s refactor the early return out of this JavaScript function:

    function capitalize(str) {
    if (!str) {
        return str;       ❶
    }

    return str[0].toUpperCase() + str.slice(1);
}


    ❶ Early return


    Without making any other changes, we can refactor this early return into a ternary:

    function capitalize(str) {
    return !str ? str : str[0].toUpperCase() + str.slice(1);
}


    Poof! There it goes. Since JavaScript’s ternaries are structurally similar to Elm’s if-expressions, this code is now much more straightforward to rewrite in Elm. More-convoluted JavaScript functions may require more steps than this, but it is always possible to untangle them into plain old conditionals.


    Removing an early return is one of many quick refactors you can do to ease the transition from legacy JavaScript to Elm, and we’ll look at more of them throughout the book. When doing these, do not worry if the intermediate JavaScript code looks ugly! It’s intended to be a stepping-stone to nicer Elm code, not something to be maintained long-term.

  

  


  Let’s use what you just learned to generalize our previous elf-labeling expression into a reusable pluralize function. Our function this time will have a longer definition than last time, so let’s use multiple lines to give it some breathing room. In elm repl, you can enter multiple lines by pressing Enter to insert a line break as normal. If you do, you’ll need to press Enter twice when you’re finished entering everything.

  


  Note


  Indent with spaces only! Tab characters are syntax errors in Elm.

  


  Listing 1.7. Using multiple REPL lines

  > pluralize singular plural count = 
|     if count == 1 then singular else plural     ❶
<function>

> pluralize "elf" "elves" 3                       ❷
"elves"

> pluralize "elf" "elves" (round 0.9)             ❸
"elf"


  ❶ Don’t forget to press Enter twice when you’re done.


  ❷ No commas between arguments!


  ❸ (round 0.9) returns 1.


  When passing multiple arguments to an Elm function, separate the arguments with whitespace and not commas. That last line of code is an example of passing the result of one function call, namely round 0.9, as an argument to another function. Think about what would happen if we did not put parentheses around (round 0.9)—how many arguments would we then be passing to pluralize?


  1.3.2. Importing functions


  So far, we’ve used only basic operators and functions we wrote ourselves. Now let’s expand our repertoire of functions by using one from an external module.

  


  Definition


  A module is a named collection of Elm functions and other values.

  


  The String module is a core module that ships with Elm. Additional modules can be obtained from Elm’s official package repository, copying and pasting code from elsewhere, or through a back-alley rendezvous with a shadowy figure known as Dr. Deciduous. Chapter 4 covers the former, but neither the author nor Manning Publications endorses obtaining Elm modules through a shadowy back-alley rendezvous.


  Let’s import the String module and try out some of its functions.


  Listing 1.8. Importing functions

  > String.toLower "Why don’t you make TEN louder?"
"why don’t you make ten louder?"


> String.toUpper "These go to eleven."
"THESE GO TO ELEVEN."

> String.fromFloat 44.1
"44.1"

> String.fromInt 531
"531"


  The String.fromFloat and String.fromInt functions convert floats (numbers that may be fractions) and integers (numbers that may not be fractions) to strings.


  In JavaScript, both are handled by the catchall toString method, whereas Elm generally uses separate functions to convert between different types of values. This way, Elm can (and will) give an error if you accidentally call String.fromFloat on a function instead of a number, rather than cheerfully displaying gibberish to a very confused user who was expecting to see their account balance.


  Using functions from the String module


  Observant readers may note a striking resemblance between Elm’s String.toUpper function and the toUpperCase() method one finds on JavaScript strings. This is the first example of a pattern we will encounter many times!


  JavaScript has several ways of organizing string-related functionality: fields on a string, methods on a string, or methods on the String global itself.


  In contrast, Elm strings have neither fields nor methods. As detailed in table 1.3, the String module houses the standard set of string-related features, and exposes them in the form of plain old functions like toLower and toUpper.


  Table 1.3. String functionality comparison


  
    
      
      
    

    
      
        	
          JavaScript

        

        	
          Elm

        
      

    

    
      
        	
          "storm".length

        

        	
          String.length "storm"

        
      


      
        	
          "dredge".toUpperCase()

        

        	
          String.toUpper "dredge"

        
      


      
        	
          String.fromCharCode(someChar)

        

        	
          String.fromChar someChar

        
      

    
  


  This organizational pattern is consistent not only within the String module, but also across Elm. Want a function related to sets? Look no further than the functions in the Set module. Debugging functions? Hit up the Debug module.


  Methods are never the answer in Elm; over here it’s all vanilla functions, all the time.

  


  Tip


  Complete documentation for String, Set, Debug, and other tasty modules can be found in the elm/core section of the https://package.elmlang.org website.

  


  You’ll learn more about modules in the coming chapters, including how to write your own!


  Using String.filter to filter out characters


  Another useful function in the String module is filter. It lets us filter out unwanted characters from a string, such as non-numeric digits from a phone number.


  To do this, we’ll pass filter a function that specifies which characters to keep. The function will take a single character as an argument and return True if we should keep that character, or False if we should chuck it. Figure 1.4 illustrates using String.filter to remove dashes from a US telephone number.


  Figure 1.4. Using String.filter to remove dashes from a US phone number


  [image: ]


  Elm functions are first-class values that can be passed around just like any other value. This lets us provide filter with the function it expects by defining that function and then passing it in as a plain old argument.


  


  Listing 1.9. Filtering with a named function

  > isKeepable character = character /= '-'    ❶
<function>

> isKeepable ’z’
True

> isKeepable ’-’
False

> String.filter isKeepable "800-555-1234"    ❷
"8005551234"


  ❶ A function describing which characters to keep


  ❷ Passing our function to String.filter


  This code normalizes these telephone numbers splendidly. Alexander Graham Bell would be proud!


  String.filter is one of the higher-order functions (functions that accept other functions as arguments) that Elm uses to implement customizable logic like this.


  1.3.3. Creating scope with let-expressions


  Let’s say we find ourselves removing dashes from phone numbers so often that we want to make a reusable function for the operation. We can do that with our trusty isKeepable function:

  withoutDashes str = String.filter isKeepable str


  This works, but in a larger Elm program, it might be annoying having isKeepable in the global scope like this. After all, its implementation is useful only to withoutDashes. Can we avoid globally reserving such a nicely self-documenting name?


  Absolutely! We can scope isKeepable to the implementation of withoutDashes by using a let-expression.

  


  Definition


  A let-expression adds locally scoped named values to an expression.

  


  Figure 1.5 shows how to implement withoutDashes by using a single let-expression.


  Figure 1.5. Anatomy of the wild let-expression


  [image: ]


  The code in figure 1.5 does very nearly the same thing as entering the following in elm repl:

  > dash = ’-’
> isKeepable character = character /= dash
> withoutDashes str = String.filter isKeepable str


  In both versions, the implementation of withoutDashes boils down to String.filter isKeepable str. The only difference between the two is the scope of dash and isKeepable:


  
    	In the elm repl version, dash and isKeepable are in the global scope.


    	In figure 1.5, dash and isKeepable are scoped locally to the let-expression.

  


  You can mentally replace any let-expression with the part after its in keyword—in this case, String.filter isKeepable str. All the named values between let and in are intermediate values that are no longer in scope once the expression after in gets evaluated.

  


  Note


  The indentation you see in figure 1.5 is no accident! In a multiline let-expression, the let and in keywords must be at the same indentation level, and all other lines in the let-expression must be indented further than they are.

  


  Anywhere you’d write a normal expression, you can swap in a let-expression instead. Because of this, you don’t need to learn anything new to define locally scoped named values inside function bodies, branches of if-expressions, or anyplace else.


  Wherever you want some local scope, reach for a refreshing let-expression!


  1.3.4. Anonymous functions


  Anonymous functions work like named functions, except they don’t have a name. The following listing compares named and anonymous functions in JavaScript and in Elm.


  Listing 1.10. Named and anonymous functions

  function area(w, h) { return w * h; }    ❶

function(w, h) { return w * h; }         ❷

area w h = w * h                         ❸

\w h -> w * h                            ❹


  ❶ JavaScript named function


  ❷ JavaScript anonymous function


  ❸ Elm named function


  ❹ Elm anonymous function


  Elm’s anonymous functions differ from named functions in three ways:


  
    	They have no names.


    	They begin with a \ symbol.


    	Their parameters are followed by a -> symbol instead of an = symbol.

  


  Once defined, anonymous functions and named functions work the same way; you can always use one in place of the other. For example, the following do exactly the same thing:

  isKeepable char = char /= ’-’
isKeepable = \char -> char /= ’-’


  Let’s use an anonymous function to call String.filter in one line instead of two, and then see if we can improve the business logic! For example, we can try using Char.isDigit to cast a wider net, filtering out any nondigit characters instead of just dashes.


  Listing 1.11. Filtering with anonymous functions

  > String.filter (\char -> char /= ’-’) "800-555-1234"
"8005551234"

> String.filter (\char -> char /= ’-’) "(800) 555-1234"
"(800) 5551234"                                                ❶

> String.filter (\char -> Char.isDigit char) "(800) 555-1234"
"8005551234"                                                   ❷

> String.filter Char.isDigit "(800) 555-1234"                  ❸
"8005551234"


  ❶ Our simple filter fell short here.


  ❷ Much better!


  ❸ Refactor of previous approach


  Anonymous functions are often used with higher-order functions like String.filter.


  1.3.5. Operators


  So far, we’ve seen functions such as String.filter, as well as operators such as ++, -, and ==. How do operators and functions relate?


  As it turns out, Elm’s operators are functions! There are a few things that distinguish operators from normal functions:


  
    	Operators must always accept exactly two arguments—no more, no fewer.


    	Normal functions have names that begin with a letter. You typically call them by writing the name of the function followed by its arguments. This is prefix-style calling.


    	Operators have names that contain neither letters nor numbers. You typically call them by writing the first argument, followed by the operator, followed by the second argument. This is infix-style calling.


    	Wrapping an operator in parentheses treats it as a normal function—prefix-style calling and all! Figure 1.6 illustrates calling the (-) operator in both infix style and prefix style.

  


  Figure 1.6. Calling the - operator in both infix style and prefix style


  [image: ]


  Let’s play with some operators in elm repl.


  


  Listing 1.12. Showing that operators are functions

  > (/)
<function>

> divideBy = (/)
<function>

> 7 / 2      ❶
3.5

> (/) 7 2    ❷
3.5

> divideBy 7 2
3.5


  ❶ Infix-style calling


  ❷ Prefix-style calling


  Operator precedence


  Try entering an expression involving both arithmetic operators and (==) into elm repl:

  > 3 + 4 == 8 - 1
True : Bool


  Now consider how we’d rewrite this expression in prefix style:

  > (==) ((+) 3 4) ((-) 8 1)
True : Bool


  Notice anything about the order in which these operators appear?


  
    	Reading the infix-style expression from left to right, we see +, then ==, and finally -.


    	The prefix-style expression has a different order: first we see ==, then +, and finally -.

  


  How come? They get reordered because (==), (+), and (-) have different precedence values, illustrated in figure 1.7.


  Figure 1.7. (==) gets evaluated after (+) and (-) because it has lower precedence.


  [image: ]

  


  Definition


  In any expression containing multiple operators, the operators with higher precedence get evaluated before those with lower precedence. This applies only to infix-style calls, as all prefix-style calls implicitly have the same precedence.

  


  There isn’t much formal documentation on operators’ relative precedence values, but operators that appear in many programming languages (such as the (==), (+), and (-) operators) tend to work similarly in Elm as they do everywhere else.


  Normal function calls have top precedence


  Here are two ways to write the same thing:

  > negate 1 + negate 5
-6

> (negate 1) + (negate 5)
-6


  These two are equivalent because plain function calls have higher precedence than any operator. This means anytime you want to pass the results of two plain function calls to an operator, you won’t need to add any parentheses! You’ll still get the result you wanted.


  Operator associativity


  Besides precedence, the other factor that determines evaluation order for operators called in infix style is whether the operators are left-associative, right-associative, or nonassociative. Every operator is one of these.


  An easy way to think about operator associativity is in terms of where the implied parentheses go, as shown in table 1.4. Infix expressions involving left-associative operators, such as arithmetic operators, have implied parentheses that cluster on the left.


  Table 1.4. Implied parentheses for the (-) operator


  
    
      
      
      
    

    
      
        	
          Parentheses shown

        

        	
          Expression

        

        	
          Result

        
      

    

    
      
        	None

        	
          10 - 6 - 3

        

        	
          1

        
      


      
        	Assuming left-associative


        	
          ((10 - 6) - 3)

        

        	
          1

        
      


      
        	Assuming right-associative


        	
          (10 - (6 - 3))

        

        	
          7

        
      

    
  


  If (-) were right-associative, 10 - 6 - 3 would have parentheses clustering on the right, meaning it would evaluate to (10 - (6 - 3)) and the undesirable result of 10 - 6 - 3 == 7. Good thing arithmetic operators are left-associative!


  Nonassociative operators cannot be chained together. For example, foo == bar == baz does not result in clustered parentheses; it results in an error!


  
1.4. Collections


  Elm’s most basic collections are lists, records, and tuples. Each has varying degrees of similarity to JavaScript’s arrays and objects, but one way in which they differ from JavaScript collections is that Elm collections are always immutable.

  


  Definition


  An immutable value cannot be modified in any way once created.

  


  This is in contrast to JavaScript, where some values (like strings and numbers) are immutable, but collections (like arrays and objects) can be mutated.


  1.4.1. Lists


  An Elm list has many similarities to a JavaScript array:


  
    	You can create one with a square bracket literal; for example, [ "one fish", "two fish" ].


    	You can ask for its first element.


    	You can ask for its length.


    	You can iterate over its elements in various ways.

  


  An Elm list does have some differences, though:


  
    	It is immutable.


    	It has no fields or methods. You work with it by using functions from the List module.


    	Because it is a linked list, you can ask for its first element, but not for other individual elements. (If you need to ask for elements at various positions, you can first convert from an Elm List to an Elm Array. We’ll discuss Elm arrays in chapter 3.)



OEBPS/OEBPS/Images/fig1-4_alt.jpg


OEBPS/OEBPS/Images/fig1-5_alt.jpg


OEBPS/OEBPS/Images/fig1-2_alt.jpg


OEBPS/OEBPS/Images/fig1-3_alt.jpg


OEBPS/OEBPS/Images/pub.jpg


OEBPS/OEBPS/Images/fig1-1_alt.jpg


OEBPS/OEBPS/Images/logo.jpg


OEBPS/OEBPS/Images/common1.jpg


OEBPS/OEBPS/Images/fig1-6.jpg


OEBPS/OEBPS/Images/fig1-7.jpg


OEBPS/cover.jpeg


