

 [image: cover]

 Prototype and Scriptaculous in Action

 Dave Crane, Bear Bibeault & Tom Locke

[image:]

Copyright

 For online information and ordering of this and other Manning books, please go to www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: manning@manning.com

 ©2007 Manning Publications. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:]Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books they publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Andy Carroll
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Dedication

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Getting Started

 Chapter 1. Introducing Prototype and Scriptaculous

 Chapter 2. Introducing QuickGallery

 Chapter 3. Simplifying Ajax with Prototype

 Chapter 4. Using Prototype’s Advanced Ajax Features

 2. Scriptaculous Quickly

 Chapter 5. Scriptaculous Effects

 Chapter 6. Scriptaculous Controls

 Chapter 7. Scriptaculous Drag and Drop

 3. Prototype in Depth

 Chapter 8. All About Objects

 Chapter 9. Fun with Functions

 Chapter 10. Arrays Made Easy

 Chapter 11. Back to the Browser

 4. Advanced Topics

 Chapter 12. Prototype and Scriptaculous in Practice

 Chapter 13. Prototype, Scriptaculous, and Rails

 Appendix A. HTTP Primer

 Appendix B. Measuring HTTP Traffic

 Appendix C. Installing and Running Tomcat 5.5

 Appendix D. Installing and Running PHP

 Appendix E. Porting Server-Side Techniques

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Dedication

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Getting Started

 Chapter 1. Introducing Prototype and Scriptaculous

 1.1. A brief history of Ajax

 1.1.1. Prehistory

 1.1.2. The pioneer phase

 1.1.3. The settlers arrive

 1.1.4. Civilization

 1.2. What is Prototype?

 1.2.1. JavaScript language features

 1.2.2. Web browser features

 1.3. What is Scriptaculous?

 1.3.1. Visual effects

 1.3.2. Drag and drop

 1.3.3. Components

 1.3.4. Utilities and testing frameworks

 1.4. Applying Prototype and Scriptaculous

 1.4.1. Introducing the Ratings example

 1.4.2. Adding Prototype and Scriptaculous

 1.5. Summary

 Chapter 2. Introducing QuickGallery

 2.1. Design and implementation

 2.1.1. Application requirements

 2.1.2. Navigating the filesystem

 2.1.3. Generating the thumbnail image

 2.1.4. Putting the pieces together

 2.1.5. Creating the HTML

 2.2. Evaluating the classic web app model

 2.2.1. Links, forms, and full-page refresh

 2.2.2. The classic web app and QuickGallery

 2.3. Summary

 Chapter 3. Simplifying Ajax with Prototype

 3.1. Redesigning for Ajax

 3.1.1. Designing the asynchronous request

 3.1.2. Prototype’s Ajax classes

 3.2. Using XML and Ajax

 3.2.1. Designing the XML response

 3.2.2. Modifying the server-side code

 3.2.3. Writing the client code

 3.3. Using JSON and Ajax

 3.3.1. Modifying the server code

 3.3.2. Modifying the client code

 3.4. Summary

 Chapter 4. Using Prototype’s Advanced Ajax Features

 4.1. Prototype’s advanced Ajax classes

 4.1.1. Ajax.Updater

 4.1.2. Ajax.PeriodicalUpdater

 4.1.3. Ajax.Responders

 4.2. Using HTML and Ajax

 4.2.1. Generating the HTML fragment

 4.2.2. Modifying the client-side code

 4.2.3. Updating multiple DOM elements

 4.2.4. Automatically updating content

 4.3. Comparing data- and content-centric Ajax

 4.3.1. Considering ease of development

 4.3.2. Fitting the tools

 4.3.3. Comparing performance

 4.3.4. Looking for future-proof solutions

 4.4. Summary

 2. Scriptaculous Quickly

 Chapter 5. Scriptaculous Effects

 5.1. Quick win: adding an effect with only one line

 5.2. Setting up Scriptaculous and the examples

 5.2.1. Getting Scriptaculous

 5.2.2. Loading the Scriptaculous libraries

 5.3. Types of Scriptaculous effects

 5.4. Understanding the effects

 5.4.1. The effects laboratory

 5.4.2. The common effects options

 5.4.3. Exploring the core effects

 5.4.4. Exploring the combination effects

 5.5. Easy toggling of Show and Hide effects

 5.5.1. The Effect.toggle() utility function

 5.5.2. The Toggle Pane widget

 5.6. Working with transitions

 5.6.1. Using the built-in transitions

 5.6.2. Introducing the Transition Mapper

 5.6.3. Writing your own transitions

 5.7. Gaining control during effects

 5.8. Canceling effects

 5.9. Controlling multiple effects

 5.9.1. Running simultaneous effects

 5.9.2. Running serial effects

 5.10. Summary

 Chapter 6. Scriptaculous Controls

 6.1. Using the sample programs for this chapter

 6.2. The in-place text editor

 6.2.1. Creating an in-place text editor

 6.2.2. The InPlaceEditor options

 6.2.3. Some usage examples

 6.3. The InPlaceCollectionEditor

 6.3.1. Creating an InPlaceCollectionEditor

 6.3.2. The InPlaceCollectionEditor Options

 6.4. The Ajax autocompleter control

 6.4.1. Creating an Ajax autocompleter

 6.4.2. Ajax.Autocompleter options

 6.4.3. The sci-fi movie autocompleter servlet

 6.4.4. Styling the choices menu

 6.5. The Scriptaculous local autocompleter control

 6.5.1. Creating a local autocompleter

 6.5.2. Autocompleter.Local options

 6.6. The slider control

 6.6.1. Creating a slider control

 6.6.2. Using images with a slider

 6.6.3. The Control.Slider options

 6.6.4. A more absorbing example

 6.7. Summary

 Chapter 7. Scriptaculous Drag and Drop

 7.1. The sample code for this chapter

 7.2. Dragging things around

 7.2.1. Making an element draggable

 7.2.2. Draggable options

 7.3. Dropping dragged things

 7.3.1. Defining drop targets

 7.3.2. Drop target options

 7.3.3. Drag and drop example

 7.4. Sorting by drag and drop

 7.4.1. Creating a sortable element

 7.4.2. Sortable element options

 7.4.3. Serializing the sortable elements

 7.5. Summary

 3. Prototype in Depth

 Chapter 8. All About Objects

 8.1. Introducing the Scratchpad application

 8.2. The Object type

 8.2.1. Creating an Object

 8.2.2. Defining object types using prototypes

 8.2.3. Reflecting on objects

 8.3. Objects and Prototype

 8.3.1. Simplifying constructors with Class.create()

 8.3.2. Declaring object hierarchies with Object.extend()

 8.3.3. Simple object merging

 8.3.4. Modeling Object hierarchies

 8.4. Summary

 Chapter 9. Fun with Functions

 9.1. JavaScript functions

 9.1.1. Declaring functions

 9.1.2. Calling functions

 9.1.3. Function context

 9.1.4. Function closures

 9.1.5. When to use context and closures

 9.2. Extending functions with Prototype.js

 9.2.1. The bind() method

 9.2.2. The bindAsEventListener() method

 9.3. Summary

 Chapter 10. Arrays Made Easy

 10.1. Introducing Arrays

 10.2. The native JavaScript Array

 10.2.1. Iterating over Arrays using length

 10.2.2. Treating Arrays like stacks : pop() and push(), shift() and unshift()

 10.2.3. Chopping and changing with slice(), splice(), and concat()

 10.2.4. Reordering Arrays with reverse() and sort()

 10.2.5. Arrays and Strings: join() and split()

 10.2.6. Other Array-like objects

 10.3. Prototype.js and Arrays

 10.3.1. Accessing elements by position using first(), last(), and indexOf()

 10.3.2. Modifying Arrays using clear(), compact(), without(), and flatten()

 10.4. Methods of the Enumerable object

 10.4.1. Searching through arrays: all(), any(), and include()

 10.4.2. Filtering arrays with detect(), findAll(), reject(), grep(), and partition()

 10.4.3. Handling complex array elements with pluck(), invoke(), and collect()

 10.4.4. Constructing complex array elements with inject() and zip()

 10.4.5. Numerical ordering with max(), min(), and sortBy()

 10.4.6. Working with DOM collections

 10.5. Working with Hashes and ObjectRanges

 10.5.1. Using the Hash object

 10.5.2. Using the ObjectRange

 10.6. Summary

 Chapter 11. Back to the Browser

 11.1. A crash course in DOM methods

 11.1.1. Traversing the tree

 11.1.2. Modifying the tree

 11.2. Prototype and the DOM

 11.2.1. Simple helper functions

 11.2.2. The Element object

 11.2.3. Insertion objects

 11.2.4. The Position object

 11.3. Extending the Event object

 11.4. Working with HTML forms

 11.5. Summary

 4. Advanced Topics

 Chapter 12. Prototype and Scriptaculous in Practice

 12.1. QuickGallery application requirements

 12.2. Building the slideshow editor

 12.2.1. Modifying the page layout

 12.2.2. Defining a drag-and-drop strategy

 12.2.3. Implementing drag and drop

 12.2.4. Providing editable captions

 12.3. Adding Ajax-based persistence

 12.3.1. Defining the persistence format

 12.3.2. Saving a slideshow

 12.3.3. Loading content from the server

 12.4. Creating the toolbar

 12.5. Building the slideshow player

 12.5.1. Specifying a user interface

 12.5.2. Implementing the slideshow player

 12.5.3. Launching the player

 12.6. Putting it all together

 12.7. Summary

 Chapter 13. Prototype, Scriptaculous, and Rails

 13.1. Generating JavaScript

 13.1.1. Hello World, Prototype, and Rails style

 13.1.2. Introducing Rails helpers

 13.2. Ajax helpers

 13.2.1. Standard configuration options

 13.2.2. A tour of Ajax helpers

 13.3. Scriptaculous helpers

 13.3.1. Creating visual effects

 13.3.2. Implementing in-place editors

 13.3.3. Adding autocomplete features

 13.3.4. Implementing drag and drop

 13.4. To JavaScript or not to JavaScript

 13.5. The next level: RJS

 13.5.1. The multiple-update problem

 13.5.2. Hello from RJS

 13.5.3. Multiple updates and RJS

 13.5.4. A tour of RJS

 13.5.5. Rendering RJS inline

 13.6. Summary

 Appendix A. HTTP Primer

 A.1. Why should we care about HTTP?

 A.2. What is HTTP?

 A.2.1. Resources and URLs

 A.2.2. Statelessness

 A.3. What are the request types?

 A.4. What are the formats of HTTP messages?

 A.4.1. The request message format

 A.4.2. The response message format

 A.5. What’s the Ajax connection?

 A.5.1. Generating requests with Ajax

 A.5.2. Getting responses via Ajax

 A.5.3. The Request Message Lab Page

 Appendix B. Measuring HTTP Traffic

 B.1. Capturing HTTP traffic data

 B.1.1. Mozilla LiveHTTPHeaders

 B.1.2. Microsoft Fiddler

 B.2. Parsing HTTP traffic data

 Appendix C. Installing and Running Tomcat 5.5

 C.1. Obtaining and unpacking the distribution

 C.2. Setting up JAVA_HOME

 C.3. Setting up the application contexts

 C.4. Starting Tomcat

 C.5. Managing Tomcat contexts

 Appendix D. Installing and Running PHP

 D.1. System requirements

 D.1.1. PHP version

 D.1.2. Web server

 D.1.3. Operating system

 D.1.4. Libraries

 D.2. Installation

 D.2.1. Installing PHP on Linux

 D.2.2. Installing PHP on Mac OS X

 D.2.3. Installing PHP on Windows

 D.3. Configuring QuickGallery

 Appendix E. Porting Server-Side Techniques

 E.1. Reading request headers

 E.1.1. PHP

 E.1.2. Java Servlet API

 E.1.3. .NET

 E.1.4. Ruby on Rails

 E.2. Adding response headers

 E.2.1. PHP

 E.2.2. Java Servlet API

 E.2.3. Java Server Pages

 E.2.4. .NET

 E.2.5. Ruby on Rails

 E.3. Reading a POST request body

 E.3.1. PHP

 E.3.2. Java Servlet API

 E.3.3. .NET

 E.3.4. Ruby on Rails

 E.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Dedication

 To Vesta, the goddess of tidy housekeeping, and every coder’s best friend

Foreword

 Niceness is key.

 Web development is traditionally centered around finding workarounds for problems when implementing something that looks easy
 enough to do on paper. Probably the most sinister and seemingly magical part of all is the web browser. Besides the fact that
 the major browsers all have various bugs and don’t completely support what is stated in the specs, you’ll quickly run into
 basic limitations, like missing user interface controls, unnecessarily complicated coding in JavaScript, and, of course, the
 dreaded cross-browser differences.

 Well, forget about all that. This book will show you how to use Prototype and Scriptaculous to concentrate on what’s really
 important: implementing your ideas.

 The simple premise of how to achieve this goal is niceness. The concept of niceness permeates both libraries, on all levels. First off, the libs are nice to you, as a developer. Most
 of the time, you can write a short line of code, and it just works. They also follow a consistent style throughout, so you
 don’t have to learn lots of stuff when you use a function for the first time. The source code is optimized to be very readable—just
 give it some time! The net effect is that you can create rich user interactivity in a very short time, extending this niceness
 directly to the user. You’ll actually get to make little tweaks to improve the user interface, instead of having to worry
 about how to get the underlying technology to work. This way, you can set up a productive “rinse and repeat” development cycle
 that easily allows you to get both designers and users on board early in the process (yes, “beta” is not just a hollow word).

 Prototype and Scriptaculous didn’t invent this approach—they both were born out of and borrow heavily from the Ruby on Rails
 web development framework. Many things will be quite familiar if you have worked with Rails—and if you haven’t, you should
 try it!

 Niceness goes a long way. It applies to all aspects of developing websites, from the underlying back end to seeing the user
 smile. To quote a Scriptaculous user, “The puff effect made me cry. They were tears of joy.” While you might not react quite
 like this, there are many ways to enjoy these libraries. Perhaps the most important one is being able to get home on time—because
 you finished early.

 So have fun creating the next nice thing on the Web, and, if you like, give back to the community what you’ve learned by joining
 IRC channels and mailing lists. Or, even nicer, write patches and do bug fixes, or create your own open source extensions
 for Prototype and Scriptaculous!

 THOMAS FUCHS

 CTO, wollzelle

 Creator of Scriptaculous

Preface

 A couple of years ago, JavaScript was generally looked down on as something that one did when one couldn’t be bothered doing
 proper programming. The advent of Ajax has given the language a smart new set of clothes, and it’s almost respectable to describe
 oneself as a JavaScript programmer. I’ve followed this transition myself, from doing JavaScript here and there because I had
 to, to figuring out some fairly neat tricks that just couldn’t be accomplished any other way.

 I even started to dig into the language itself, and was pleasantly surprised to find out that, although it wasn’t really that
 much like Java at all, it had a style and logic of its own. I got my head around prototype chains and started writing JavaScript
 objects. I was very pleased with myself the day I figured out how closures worked in JavaScript, and congratulated myself
 on achieving a certain level of mastery. Pride comes before the fall.

 I picked up Sam Stephenson’s Prototype library somewhere along the way, and copied a few lines of code written by someone
 else who had used it, and found that it provided shortcuts that speeded up my typing. It wasn’t long before curiosity got
 the better of me and I wanted to know how it worked. When I first read the source code for Prototype, I thought I’d stumbled
 across some arcane dialect of Perl. This didn’t look like the JavaScript that I was accustomed to writing, and I did the only
 thing a brave and seasoned programmer could do—I ran away and hid.

 I couldn’t keep away for long, though, and each time I looked, the coding style made more sense. I was kicking the tires of
 this new scripting language called Ruby at the same time and I started to make a few connections between the two, and gradually
 a pattern began to emerge. Along the way, I realized that Sam had forgotten more about closures, prototype chains, and all
 the other things that make JavaScript such a fun language, than I had learned in the first place. A lot of thought had gone
 into building up the library the way it was, so that a few well-placed lines of code early on could be exploited again and
 again elsewhere.

 Thomas Fuchs’s Scriptaculous library takes the same approach, building larger constructs out of well-designed parts, and then,
 with a flourish, wraps the whole thing up so that the novice can exploit all the power and grace of these libraries in a few
 lines of code. When I teach Ajax courses, the day on which we unwrap Scriptaculous and create singing, dancing, drag-and-dropping
 interactive user interfaces (OK, so I lied about the singing and dancing) often feels a bit like Christmas, as my students
 achieve things with a few lines of code and a couple of hours that look slicker and smarter than what they thought they could
 turn out in a week.

 You can use this book to find out how to harness the power of these libraries in a few lines of code, quickly. Prototype and
 Scriptaculous let you do the easy things easily, so that you can get on with the business side of your work, unencumbered
 by cross-browser worries or the burden of supporting your own libraries. You can also use the book to develop a deeper understanding
 of how these libraries work, and, as a consequence, how JavaScript works.

 For me, using Prototype and Scriptaculous has made JavaScript coding more fun. I hope that fun is catching. Enjoy.

 DAVE CRANE

Acknowledgments

 We would like to express our thanks and gratitude to the many people who contributed to make this project a reality and to
 turn our ideas into the book that you are now reading.

 To the reviewers who gave us feedback on the manuscript in its various stages of development and helped make it a much better
 book. They include Philip Hallstrom, Christopher Haupt, Derek Lakin, Jon Tirsen, Deepak Vohra, Jeff Cunningham, Christopher
 Bailey, Scott Shaw, Mark Eagle, and Benjamin Gorlick. Special thanks to Deepak Vohra who did a thorough technical proofread
 of the book just before it went to press.

 To the readers of Manning’s Early Access Program who helped ferret out many last-minute errors and inconsistencies in our
 draft chapters.

 To everyone at Manning Publications, especially publisher Marjan Bace and our editors Mike Stephens and Cynthia Kane, as well
 as the production team of Andy Carroll, Dottie Marisco, Gordan Salinovic, Elizabeth Martin, and Mary Piergies.

 To Thomas Fuchs for agreeing to write the foreword and to Tom Locke for contributing the chapter on Rails. Our sincere thanks
 for lending your names and efforts to our endeavor.

Dave Crane

 Above all, I’d like to thank Sam Stephenson and Thomas Fuchs for creating these remarkable libraries, and to the Prototype
 core development team—Justin Palmer, Andrew Dupont, Dan Webb, Scott Raymond, Mislav Marohnic, Christophe Porteneuve, Tobie
 Langel, and Seth Dillingham—for keeping the ball rolling at such dizzying speed while staying on course.

 I’d like to thank my colleagues Simon Warrick, Tim Wilson, Susannah Ellis, Simon Crossley, Rob Levine, and Miles Wilson at
 Historic Futures for their support for this project, and to Wendy, Nic, Graeme, and the team at Skillsmatter.com—and all my
 talented students—for helping to shape my thoughts on how this book should be written.

 And thanks to Bear and Tom for their invaluable help and insight in getting this book into shape.

 Finally, and by no means least, I’d like to thank the rest of the Crane family—Chia, Ben, and Sophie—for putting up with me
 while I wrote yet another book, my Mum and Dad, and my cats, for being so patient and understanding about not always getting
 fed quite on time.

Bear Bibeault

 I’d like to thank my friends at javaranch.com, who encouraged me to put pen to paper (rather, fingers to keyboard) and to
 “Go for it!” when I expressed an interest in writing. They include, but are not limited to, Ernest Friedman-Hill, Eric Pascarello,
 Ben Souther, Max Habibi, Mark Herschberg, and Kathy Sierra.

 I’d like to thank Paul Wheaton, owner of javaranch.com, for creating such a wonderful place to linger, learn, and help others.

 I’d like to thank Dave Crane and Michael Stephens for putting their trust in me and for giving me the opportunity to contribute
 to this work.

 I’d also like to thank my dogs Gizmo and Little Bear, whose visages appear in some of the screen captures in these pages,
 without their written consent, and who provided companionship by lying on my feet as I typed away.

 And I’d like to thank my partner Jay, who put up with all the long nights, the rants regarding Word, the moaning and groaning
 about browser idiosyncrasies, and who introduced me to the Mac all those years ago.

About this Book

 Prototype and Scriptaculous are both, like most software libraries, productivity tools. Coding in a web browser is a curious
 experience—it is much freer and more expressive than any desktop GUI toolkit, yet it is also lacking in some of the most basic
 facilities. I know of few desktop developers who tried to maintain their own drag-and-drop library or drop-down list widget
 as part of a product, and several DHTML/Ajax developers who did. This type of feature is rarely the raison d’être of a software
 project, but rather is a means to an end. Guddling around with the low-level code required to enable those means is, at best,
 a distraction, and at worst, a burden that can sink a project.

Audience

 This book is aimed at JavaScript coders with a clear purpose behind what they’re doing, who need to express their business
 ideas and concepts elegantly and to spend their time improving user workflow and satisfaction, or developing cool new features.
 Prototype and Scriptaculous let you express your code fluidly and elegantly, and you get to lead a full and rewarding life
 outside your programming job. If you like futzing around developing your own coordinate system, or reimplementing commonplaces
 in modern computing, such as tree widgets, sorting algorithms, and event listeners from scratch, then you’re out of luck here.
 Although, come to think of it, Prototype and Scriptaculous could certainly help you to do that faster, and better...

 Our second intended audience are the experienced Ajax programmers who want to improve their understanding of why these libraries
 work the way they do. We present most of the features in these libraries as straightforward recipes that anyone can use, but
 we also take the time to look at the internal workings of the key components and functions. Perhaps even more importantly,
 we have tried to pay attention to the bigger pattern, and to how the various pieces fit together into a relatively harmonious
 whole.

 Whether you’re simply looking to get the job done effectively, or want to hone your JavaScript skills to the next level, we
 hope that this book has something for you.

Roadmap

 We’ve divided the book into four parts, in order to provide some structure to our discussions. Part 1 concentrates on the centerpiece of the recent upsurge of interest in web-based clients, namely the asynchronous request.
 Ajax is a small piece of functionality with a big impact on many aspects of application design, and Prototype provides a lot
 of power in assisting us in doing that.

 Chapter 1 provides a general introduction to the Prototype and Scriptaculous libraries and their place in the modern Ajax landscape.
 Chapter 2 introduces our main sample application, a web-based image viewer called QuickGallery. In chapters 3 and 4, we use QuickGallery to explore the different styles of Ajax supported by Prototype, from the basic components required to
 make an Ajax request, through to the more sophisticated helpers developed in recent versions of Prototype, which address architectural
 issues in the way an application manages its HTTP traffic.

 Part 2 turns to the Scriptaculous libraries, devoting a chapter to each of the key components. Chapter 5 looks at the Effects subsystem, and takes us from the one-line instant gratification of invoking our first special effect,
 through customizing and composing effects, on to writing our own effect types.

 Chapter 6 examines the Controls subsystem, which provides out-of-the-box Ajax-enabled components for use on web pages. Again, we run
 the full gamut from one-line deployment to a thorough understanding of customization and composition of these components.
 We also show how to hook these up to processes on the server side, in order to deliver a highly interactive workflow.

 Chapter 7 looks at the drag-and-drop subsystems of Scriptaculous. In Scriptaculous, drag and drop is layered, with relatively simple
 objects providing the basic capabilities, and sophisticated drag-and-drop UI components being built on top of these. We describe
 both how these systems work, and how to use them in your own projects.

 Part 3 is intended mainly for the language aficionados. JavaScript is a malleable language and Prototype molds it into some very
 interesting, and useful, structures. We step through the various new capabilities that Prototype provides to the core object
 types, and illustrate each feature with a small practical example. In order to achieve maximum coverage of all the new features,
 we’ve adopted a snippet-based approach to this part of the book and we provide an interactive interpreter program that will
 execute these snippets for us.

 Chapter 8 looks at the JavaScript Object, the base class upon which all other JavaScript objects are founded. We show how to create
 new objects, and reusable types of objects, and how to work with JavaScript’s prototype-based system of inheritance. We then
 describe how the Prototype library has simplified these techniques, and show you how to create your own object hierarchies
 using Prototype.

 Chapter 9 looks at JavaScript functions and the related concept of closures. This is a small but powerful chapter, covering one of
 the most misunderstood and useful features of the JavaScript language. Closures can be difficult to work with, but Prototype
 provides a simpler approach.

 Chapter 10 looks at JavaScript arrays. It’s no overstatement to say that Prototype completely changes the way one works with Arrays,
 adding over thirty new methods. We cover each of these in depth, and look at how the magical new facilities can even be extended
 to objects other than bona fide arrays, such as collections of DOM elements and plain old JavaScript objects.

 In chapter 11, we look at Prototype’s support for the web browser environment, namely the Document Object Model and HTML forms. The functionality
 that we cover here greatly improves the experience of creating cross-browser user interfaces and it provides a useful low-level
 counterpart to the pyrotechnics of the Scriptaculous library that we described in part 2.

 Part 4 concludes our exploration of these libraries with a couple of advanced topics. Chapter 12 returns to the QuickGallery application that we described in part 1 and applies the knowledge garnered in parts 2 and 3 of the book to rapidly add new features to the app. This illustrates the process of using these libraries in real-world settings.

 Chapter 13 looks at the integration between Scriptaculous and Prototype and the Ruby on Rails framework, and shows how Rails builds
 upon these libraries to deliver even more elegance and ease of use.

 HTTP underlies everything we do on the Web, and when we’re using Ajax, we get a bit more control over how we use it. With
 great power comes great responsibility, as they say. Appendix A covers the basics of the protocol, and appendix B details the techniques we use in this book to profile the HTTP traffic from an app.

 The main examples in this book rely on PHP and Java on the server. Not all of our readers will be familiar with these technologies,
 so appendices C and D provide a step-by-step setup guide for the most popular operating systems, for the Java Tomcat web server and PHP/Apache
 respectively.

 The focus of this book is on JavaScript code and the server-side code that we present in these examples is, on the whole,
 quite simple. We do, however, use a few server-side tricks that are only likely to find use with Ajax. In appendix E, we provide a quick conversion guide on how to master these tricks in some of the popular sever-side languages that we don’t
 cover in detail in the main examples.

Code conventions

 The code examples that we present in this book cover a number of programming languages, including JavaScript, Java, JSP, Ruby,
 and PHP. We present the longer pieces of code in these languages as “listings” with their own headers. Smaller bits of code
 are simply run inline with the text. In all cases, we present the code using a monospaced font, to differentiate it from the rest of the text. Many longer listings have numbered annotations that we refer to in the text,
 and, in several cases where we’re looking at incremental changes to a piece of code, we have highlighted the modified parts
 in bold.

 In chapters 8 through 11, we deal with the lower-level language features of the Prototype library, and so are dealing almost exclusively with small
 fragments of code. Rather than present all the example code inline, we’ve given these examples the status of “snippets.” These
 are similar to listings, with the important distinction that they can be run inside the interactive interpreter (the Scratchpad
 application) that we introduce in chapter 8 and use throughout these chapters. This interpreter allows us to visualize the nonvisual effects of the code we’re discussing,
 and each snippet is accompanied by a screenshot showing its output in the interpreter.

Code downloads

 The complete example code for the book can be downloaded from the Manning website page for this book, at http://www.manning.com/crane3. This includes the interactive interpreter required to run the snippets, and the larger examples for the other chapters.
 Some of these require a Java web server or Apache/PHP setup to run them. We step through the business of setting these up
 to run the examples in appendices C and D.

What’s next?

 Our book should give you a thorough grounding in Prototype and Scriptaculous, but we can’t cover every question that might
 arise within these pages. Manning provides an online forum for talking to the authors of every book that it publishes, and
 you can reach Dave, Bear, and Tom at the Author Online forum for this book at http://www.manning-sandbox.com/forum.jspa?forumID=276.

 Prototype and Scriptaculous have a vigorous online presence beyond our involvement in the book, of course. Prototype’s official
 documentation site can be found at http://www.prototypejs.org/. Scriptaculous is documented mainly via Wiki at http://wiki.script.aculo.us. General questions about both libraries can also be addressed to the Ruby on Rails Spinoffs group, which can be found at
 http://groups.google.com/group/rubyonrails-spinoffs?hl=en. Despite the name, the group isn’t exclusively used by Ruby coders, and serves the wider constituency of Prototype and Scriptaculous
 users.

 We look forward to hearing from you!

Author Online

 Purchase of Prototype and Scriptaculous in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to http://www.manning.com/crane3. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some
 challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, re-telling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Prototype and Scriptaculous in Action is an “Ichlogan,” or an inhabitant of Turkey dressed in a regional costume. The illustration is taken from a collection of
 costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page
 is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the
 figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would
 no doubt be surprised to find their art gracing the front cover of a computer programming book... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Getting Started

 This book is intended as an in-depth introduction to the Prototype and Scriptaculous libraries. When documenting libraries,
 it is important to present a feature-by-feature account of the details, but also to present the libraries in context, and
 show how they fit into the bigger picture. This part of the book deals with the bigger picture.

 Chapter 1 provides an introduction to both libraries and concludes with a quick example of how they can be made to work for us. Prototype
 and Scriptaculous are designed to make the development of Ajax web applications simpler and easier, and to remove a lot of
 the repetitive drudge work. We therefore present the same application twice, first with and then without the help of these
 powerful libraries.

 We devote the rest of this part of the book to exploring a more detailed example application—an image browser called QuickGallery.
 We introduce the vanilla, non-Ajax version of the app in chapter 2, and discuss some of the limitations of traditional web applications. In chapters 3 and 4, we set about resolving these issues by introducing a variety of techniques for Ajax-enabling the QuickGallery app.

 The real purpose of chapters 3 and 4 is not to show you how to make a better image browser. Throughout these chapters, we explore Prototype’s Ajax helper classes
 and examine not only how they work, but what they can do to improve the workflow of a web application. We conclude by evaluating
 the various styles of Ajax that Prototype enables.

Chapter 1. Introducing Prototype and Scriptaculous

 In this chapter

	The history of Ajax

 	Introducing Prototype and Scriptaculous

 	Applying Prototype and Scriptaculous

Ajax is growing up fast. One of the signs of that growth is the appearance, and widespread adoption, of a number of third-party
 libraries that make it easier to work with Ajax, and the web technologies that support it, such as DOM, CSS, and, above all,
 JavaScript. This book covers two related JavaScript libraries in depth: Prototype and Scriptaculous. Prototype provides many
 small-scale features that make it easier to work with Ajax applications. Scriptaculous leverages these features to build a
 number of higher-level user interface components. Together, they can give your Ajax development the edge, making it easy to
 express your ideas in JavaScript, and ridiculously easy to make your user interface sing.

 In this chapter, we’ll set the scene for the Prototype and Scriptaculous libraries, describing how they relate to the bigger
 picture of Ajax development, and why we thought it useful to write a book about them. We understand that Manning readers are
 typically a practical bunch, so we’ll also take the libraries out for a quick spin in this chapter, using them to turbocharge
 a plain old Ajax application by cutting out a lot of unnecessary low-level code, and making it easy to create a fluid, pleasant
 user interface. In subsequent chapters, we’ll drill down into the details of the libraries, and provide all the details you’ll
 need to turbocharge your applications in a similar way.

 In part 1 of this book, we’ll concentrate on Ajax; that is, the business of communicating between the browser and the server without
 causing the full page to refresh. By the end of part 1, you’ll be able to make use of Prototype’s support for Ajax in a variety of ways. From there, we’ll move on to look at Scriptaculous
 in more detail in part 2, and at Prototype’s support for JavaScript and the DOM in part 3. In part 1, we’ll also introduce an example application, which we’ll return to in part 4 of the book to apply what we’ve learned. We’ll begin, though, with a brief review of Ajax, in order to set the context in
 which Prototype and Scriptaculous work.

1.1. A brief history of Ajax

 Ajax is a recently coined term used to describe the business of programming highly interactive web-based interfaces using
 nothing more than HTML, Cascading Style Sheets (CSS), and a good dose of JavaScript. People have been writing this sort of application for several years, but Jesse James Garrett
 only christened the practice in February 2005, and it has since gone on to become one of the hot tech topics.

 The adoption of Ajax by the web community has been rapid, and the landscape has changed considerably. Prototype and Scriptaculous
 are in the thick of these changes, and it’s useful to see where they’re coming from. So, let’s briefly put our tech-archaeologist hats on and
 dig through the history of Ajax.

 1.1.1. Prehistory

 If the history of Ajax began with Garrett’s article in 2005, then the discipline has a rich prehistory, in which the techniques
 behind Ajax were being explored without a name around which to rally the various practitioners. Ajax was first made possible
 by the invention of an ActiveX component called XMLHttpRequest. This component allowed web applications to contact the web
 server without refreshing the entire page, but rather passing the response to a script for processing. These hidden requests
 for data are generally referred to as asynchronous, a term that provides the first “A” in Ajax. Browsers had long been able to manipulate the user interface programmatically
 using the Document Object Model (DOM) and CSS, but without the ability to fetch anything new from the server; full-page refreshes were still frequent. Adding
 XMLHttpRequest into the mix made it possible for an entire application workflow to be encapsulated within a single web page,
 which simply reorganized itself in response to asynchronous requests for data made while the user was working.

 Technologically, this was a cool new toy to play with. In usability terms, it offered a major breakthrough, because it allows
 the user to continue working while the browser waits for the server to respond to a request. Without Ajax, web-based apps
 are characterized by frequent periods of inactivity while a new page is requested, and this stop-start pattern is unsuitable
 for any serious application. Nonetheless, web-based apps are beloved of tech support departments because they don’t need to
 be installed on the user’s machine, and can be upgraded instantly. The tension between these two factors is resolved by Ajax,
 making Ajax-powered web apps a compelling alternative to desktop apps and thick clients in a wide variety of applications.

 XMLHttpRequest was made available with Internet Explorer 5, in 2000. However, the adoption of Ajax didn’t happen then. Everyone
 who saw Microsoft Exchange Web Mail thought it was pretty neat, but few rushed in to copy it. Maybe the fact that it relied
 on ActiveX, and was therefore limited to Microsoft operating systems was seen as too great a drawback. Maybe broadband penetration
 wasn’t sufficiently advanced to consider providing apps that required a constant connection to the server. Maybe it just looked
 too complicated or different. Whatever the case, the capability wasn’t exploited by many, and it would take several years
 before widespread interest in the techniques developed and the barrier imposed by the stop-start workflow was finally lifted.

 1.1.2. The pioneer phase

 In these days of Ajax prehistory, a few hardy individuals—Eric Costello, Erik Hatcher, and Jim Ley, to name but three—explored
 the possibilities of communicating asynchronously with the server, and they even published descriptions of the techniques
 that they developed, sometimes using XMLHttpRequest and sometimes falling back on other browser features such as IFrames to
 enable asynchronous traffic. As well as these publicly visible efforts, several corporate or private developers (including
 ourselves) were also discovering the techniques and putting them to use internally.

 Another group of pioneers deserves a mention in this section. These are the people who were exploring the JavaScript language
 and the browser environment in which JavaScript commonly sits. Doug Crockford did pioneering work on object-oriented JavaScript
 techniques back when it was generally regarded as a toy for script-kiddies. Piers-Paul Koch explored the intricacies of cross-browser
 behavior, and Dan Steinberg and Mike Foster developed entire frameworks for cross-browser DOM manipulation, some of which
 even predated XMLHttpRequest’s first appearance. JavaScript is the glue that holds Ajax applications together, and the work
 of these four has done a great deal to inform current thinking on Ajax web development.

 When Ajax became a household name, there was already a rich seam of work by Crockford, Koch, and others waiting to be discovered.
 However, communication between these efforts was limited, given the low profile of the subject prior to 2005, and the early
 Ajax landscape consisted largely of roll-your-own solutions and makeshift frameworks. With more eyes on the subject of developing
 large, robust JavaScript applications, though, the amount of effort in this area intensified.

 1.1.3. The settlers arrive

 The year 2005 saw an explosion in the number of Ajax and JavaScript frameworks, helper libraries, and other projects aimed
 at assisting in the development of Ajax apps. Ajax in Action (by Dave Crane and Eric Pascarello with Darren James) included a list of over forty frameworks, and several were certainly
 left out. The pioneers were being followed by a wave of settlers, staking out territory and busily setting up small settlements.
 Inevitably, some of these withered, and others grew into small towns. Over the next year or two, we can expect to see a reduction
 in completely hand-coded Ajax applications, as best practices and the results learned from other people’s mistakes crystallize
 into frameworks and utilities.

 Prototype and Scriptaculous are two of the more successful of these JavaScript frameworks, and they have grown quite a community
 in a short time. (In fact, according to the Ajaxian.com 2006 frameworks and libraries survey, Prototype and Scriptaculous
 dominated the field at 43 and 33 percent adoption respectively.) A large part of their design is focused on making Ajax development
 faster, easier, and more enjoyable. The impact of these, and other, frameworks on the nature of Ajax development is likely
 to be considerable.

 1.1.4. Civilization

 That brings our history of Ajax development up to the present day. The phase that we’d consider analogous to “civilization”
 hasn’t happened yet. (We won’t even stop to consider the subsequent descent into barbarism that tends to plague real-world
 empires!) There are still many ways to get the job done using Ajax, and many of these ways are only partly compatible. In
 this book, you’ll learn the details of one particular way, but we’ll also look at how Prototype and Scriptaculous can interact
 with other popular frameworks.

 And so, without any further ado, let’s start to unpack Prototype and Scriptaculous, and see what they’re capable of.

1.2. What is Prototype?

 We’ll look at Prototype first, because it is the more fundamental of the two libraries. Prototype provides a set of language
 extensions for JavaScript, for the browser environment, and for the XMLHttpRequest object. Scriptaculous (and other libraries,
 such as Rico) build on Prototype’s foundations to create widgets and other end-user “stuff.”

 It might seem odd to state that a JavaScript library can extend the language in which it was written, but that’s exactly what
 Prototype does. JavaScript provides a mechanism known as prototype-based inheritance (from which this library derived its
 name). In fact, several scripting languages provide features for extending the base objects of the language. Ruby does it,
 and many of the extensions provided by Prototype are borrowed from Ruby. Once could describe Prototype’s goal as making JavaScript
 feel more like Ruby.

 The good news for most of us is that it isn’t necessary to understand everything that’s going on under the hood in order to
 get the benefits of Prototype. We will look under Prototype’s hood in part 3 of the book, but if you simply want to get the job done without worrying about extending the extensions yourself, parts 1 and 2 will explain everything in detail.

 Right now, though, we’ll run through the features that Prototype does provide, in order to give a more concrete sense of its
 scope and the issues it is designed to address. We’ll group these into features that address the core language, and those
 that are designed specifically for web browsers.

 1.2.1. JavaScript language features

 JavaScript is a general-purpose programming language. As an Ajax developer, you’ll generally be using Prototype inside a web
 browser, but certain parts of it, such as objects, features, arrays, strings, and numbers, are designed to enhance the JavaScript
 language itself.

The JavaScript Object class

 At the core of most JavaScript programming is the base class Object. Creating an Object in JavaScript can be accomplished
 in as few as two characters:

 var myObject = {};

 myObject is endowed with a number of useful features and methods, such as a toString() method, the prototype-based inheritance mechanism, and the ability to absorb new properties and methods on the fly. We’ll
 look in more detail at the JavaScript Object in chapter 8.

 Using the prototype property of Object, it is possible to create proper object-oriented hierarchies of object types similar
 to those that a Java or C# programmer would be used to. That is, it’s possible, but it is rather cumbersome. Prototype adds
 useful features to the Object that make it a lot easier and more natural to develop object type hierarchies. We’ll see these
 capabilities in action as we examine other parts of Prototype, and Scriptaculous, which make heavy use of these functions.

JavaScript functions

 JavaScript Function objects represent pieces of code that one can call, passing arguments into them, and that will return
 a result. In this, they’re very similar to the methods that OO-programmers attach to objects.

 A JavaScript function, unlike a Java or C# method, is a first-class citizen in the language. It can be referenced directly,
 passed as an argument to other functions, and even attached to arbitrary objects. This freedom gives the JavaScript programmer
 the opportunity to indulge in all sorts of strange and clever hacks. For the more practical among us, understanding JavaScript
 Function objects is important because the browser event model relies upon them. Prototype comes to our rescue here again,
 making it easier to bind Function objects to JavaScript objects in the way that the event model commonly calls for. We’ll examine functions in detail in chapter 9.

JavaScript arrays

 In JavaScript, arrays are expandable, numerically indexed lists of variables. The base language supports accessing array members
 using square braces notation, like this:

 var element = myArray[3];

 Iterating through the members of an array is generally done using a for() loop, like this:

 for (var i=0;i<myArray.length;i++){
 alert(myArray[i]);
}

 The Ruby programming language has a much richer way of interacting with arrays, based on an Enumeration type. Prototype has
 ported this concept over to JavaScript, and enhanced the native arrays with a similar functionality. If you’re used to working
 with Ruby’s Enumerable types, Prototype offers a home away from home. And even if you don’t know Ruby, Prototype’s array extensions
 are easy to pick up, and will soon become a powerful addition to your repertoire. Chapter 10 provides the details.

JavaScript strings and numbers

 The String and Number classes in JavaScript allow methods to be attached to the language primitives directly. Functions attached
 to strings can be called directly from the primitive:

 "abcdefghijklm".substring(4,10)

 This line will evaluate to the string “efghij”, for example. With numbers, it is necessary to reference the number as a variable
 first:

 var x=123456789; x.toExponential()

 This evaluates to the string “1.23456789e+8”.

 The standard methods on JavaScript primitives mostly relate to formatting and some helpers for generating HTML content. Prototype
 extends both String and Number with some useful utilities that make it easier to work with HTML colors, that support internationalized
 text, and provide other useful features.

 That wraps up the features of Prototype that affect the core JavaScript language. Let’s look now at what Prototype can do
 specifically within the web browser.

 1.2.2. Web browser features

 More lines of JavaScript code have been written for use inside web browsers than for any other environment. When coding in
 such an environment, various parts of the web browser are exposed to the JavaScript interpreter, and Prototype offers support
 for the web coder in various ways. We’ll map out the territory here; these topics will be covered in detail in chapter 11.

The Document Object Model

 The Document Object Model (DOM for short) is the mechanism by which the visual elements of a web page are exposed to the JavaScript
 interpreter. When we hide or show on-screen elements in response to a mouseclick or keypress, build a DHTML navigation menu,
 or create a browser-based animation, we’re using the DOM. Programming the DOM used to be a major exercise in cross-browser
 workarounds and tricks, but the major browser vendors have, in recent years, converged around the W3C standards, and cross-browser
 DOM programming is no longer the problem that it was. However, the W3C model is rather verbose and unwieldy, and writing code
 against it can become an exercise in stamina.

 Prototype provides a few helper methods that ease some of the strain of DOM programming, and we’ll look at these in chapter 11. For now, let’s continue our quick tour of Prototype’s features.

HTML forms

 HTML forms are a mainstay of web application development, and, in the pre-Ajax era, presented the only serious way to elicit
 information from a user. With Ajax, other input mechanisms, such as drag and drop, can be used as part of a conversation between
 the browser and the server, but forms still have a very important role to play. Prototype provides a set of utilities for
 working with HTML forms, which we’ll cover in chapter 11.

JavaScript events

 Event handling is central to the Ajax user interface. Although the major browsers have converged in their DOM-manipulation
 APIs, the event models of the Internet Explorer and Mozilla browsers still differ considerably, in both the calling semantics
 and the implementation details. Prototype provides some excellent cross-browser support when coding events, and it extends the Function object to make it easy to work with event handling, as we noted earlier.

Ajax utilities

 The final feather in Prototype’s cap is its support for Ajax. All major browsers support a version of the XMLHttpRequest object
 that makes Ajax possible, either as an ActiveX component or as a native JavaScript object. XMLHttpRequest, however, exposes
 the HTTP protocol at a very low level, which gives the developer a lot of power, but also requires her to write a lot of code
 in order to do simple things.

 Prototype uses its own object inheritance system to provide a hierarchy of Ajax helper objects, with generic base classes
 being subclassed by more focused helpers that allow the most common types of Ajax requests to be coded in a single line. By
 making Ajax this easy, Prototype provides even more value to web developers.

1.3. What is Scriptaculous?

 Prototype provides an extremely solid foundation for developing complex, well-structured code, but on its own does little
 beyond that. The onus of developing the functionality that the end user will see still rests firmly with the developer.

 Scriptaculous is a library that makes use of Prototype to deliver a rich set of high-level functionality that the developer
 can put to work directly in creating polished interactive user interfaces. On its own, Prototype smoothes out many of the
 wrinkles of Ajax development. When used with Scriptaculous, it transforms the way in which we approach the web user interface,
 by making features such as animation and dragging and dropping as simple as a few lines of code.

 Like Prototype, Scriptaculous covers several distinct areas. Let’s look at each briefly in turn.

 1.3.1. Visual effects

 It is common when writing any computer application to wish to draw the user’s attention to some part of the interface, in
 order to provide visual feedback. A button may wish to announce that it is clickable when the mouse moves over it. Lists of
 items may wish to notify the user when new items arrive or old ones vanish, particularly if it is the result of a background
 process. It’s easy to overdo this type of functionality and end up with a user interface that distracts users or gets in their
 way, but such effects, if well done, can make an application more pleasant to use. In the world of web applications, in which
 a user may go elsewhere with a few keystrokes, making an application easy to use is imperative.

 Scriptaculous makes it easy to create visual feedback of this type through its Effects library. This library is remarkable
 not only for the quality and range of effects that it enables, but for the high quality of the underlying design of the code,
 which makes it easy to compose multiple effects, run arbitrary code before, during, and after the effect, and synchronize
 effects with one another. Needless to say, this good design is made possible by the language features provided by Prototype.

 In addition to being directly available to the coder, the Effects package is used within Scriptaculous to add visual feedback
 to the other main packages. Let’s look at them now.

 1.3.2. Drag and drop

 Before Ajax, clicking on hyperlinks or submitting HTML forms could only initialize requests to the server. Now that requests
 can be fired programmatically, other types of user interaction can be used to trigger requests too, so a wider range of user
 interaction techniques are finding their way into web applications.

 Dragging and dropping is a common user interface metaphor in desktop applications, and in many cases it provides the most
 convenient and intuitive way of interacting with a computer. The DOM has no direct support for drag-and-drop events, and implementing
 drag and drop in JavaScript means relying on nothing more than mouse click and movement events.

 The good news is that Scriptaculous implements a feature-complete drag-and-drop system that can be applied to most types of
 DOM elements with relatively little code. The look and feel of the interaction can be customized using the Effects library,
 and custom event handlers provide callbacks for all stages of the drag-and-drop event.

 1.3.3. Components

 The features that we’ve discussed so far are frameworks that can be used to enhance a coder’s application. Scriptaculous also
 provides a number of complete widgets, in the Components library. At the time of writing, the Components library contains
 two components: the AutoCompleter can attach a predictive drop-down element to any text field, which can endow an ordinary
 HTML Form element with features similar to Google Suggest; the in-place editor allows any DOM element to transform itself
 into a text input field and back again.

 In addition to these high-level components, Scriptaculous provides a few helpers and utilities of its own. We’ll conclude
 our initial review of the library with a look at these.

 1.3.4. Utilities and testing frameworks

 Scriptaculous provides some further extensions to the core JavaScript objects and DOM that are mainly concerned with easier
 manipulation of the user interface. These build on top of the extensions defined by Prototype.

 In addition, Scriptaculous provides a complete unit-testing framework that runs inside the browser. This is designed mainly
 for internal use by the Scriptaculous development team, as the entire library is well covered by tests, but it can be used
 as a standalone testing library too.

 This concludes our initial review of the Prototype and Scriptaculous libraries. Before we look in more detail at the features
 of each in subsequent chapters, we’ll quickly demonstrate what Prototype and Scriptaculous can do to help an ordinary Ajax
 application.

1.4. Applying Prototype and Scriptaculous

 Writing Ajax applications by hand requires an intimate knowledge of JavaScript’s language features, many of which are rather
 exotic to those of us coming to Ajax from server-based web coding, familiar with languages such as Java, PHP, and C#. Worse,
 we will need to master the subtleties of cross-browser incompatibilities. Prototype and Scriptaculous have many language and
 cross-browser features built in, and they can help to ease the pain a great deal.

 In this section, we’ll look at a simple Ajax application that allows a user to assign a rating to an article (or a tune, picture,
 or anything else). We’ll show how to code the app by hand, and then refactor it using Prototype and Scriptaculous to simplify
 a few knotty bits of JavaScript and add a few quick wins too. So, without further ado, let’s have a look at the Ratings application.

 1.4.1. Introducing the Ratings example

 The Ratings example is a simple widget built using Ajax and DHTML techniques that can be easily inserted into a web page to
 show an interactive display of the rating that the user has assigned to an item. Figure 1.1 shows the widget’s visual components.

 Figure 1.1. Ratings widget embedded in a web page. The small arrow icons are buttons allowing the user to increase or decrease the number
 of stars assigned to an item—in this case an article. (Icons are from the “Nuvola” icon set by David Vignoni, http://www.icon-king.com.)

 [image:]

 Operating the widget is simple enough. The user can increase or decrease the rating by clicking on the blue arrow buttons
 with the mouse, and the number of stars is incremented or decremented, within the range of zero to five. When the user changes
 the rating, the widget also makes an asynchronous call to the server to update the central records. We won’t worry for now
 about what the server does with that information, or what the response is.

 That’s our brief, then. As coders, we’re more interested in getting under the hood and seeing how the implementation is done.
 Let’s run through a few highlights of the code now. The complete code for the app is available for download at http://www.manning.com/crane3.

Using the component

 We have striven to follow best practices in writing the app, and we tried to make it simple for designers to use without having
 to write a lot of JavaScript themselves, or to prepare a complex HTML template. As a result, the Ratings app creates all of
 its user interface programmatically, and the designer need only specify an empty HTML element within which it will sit. Needless
 to say, we’ve separated our various resources out nicely, providing a .js file containing all the code, a CSS stylesheet,
 and a set of images.

 To incorporate the widget into a page, then, the designer needs to add a few lines of code in the header of the page:

 [image:]

 The Rating object is defined in the JavaScript library, which we’ll look at shortly. The constructor for the object takes
 two arguments: the ID of the HTML element in which it will render itself, and a caption to be displayed. We’ve specified a target element called myRating, so we’ll define this in the HTML like so:

 <div id='myRating'>

 That’s everything that our design team needs to do to use the widget. Let’s see what goes on behind the scenes, when the widget
 is activated.

Initializing the user interface

 The constructor function for the Rating object is relatively simple, taking a note of the main arguments and then delegating
 to a second function updateUI(). Listing 1.1 shows the code for these functions.

 Listing 1.1. User interface code for Rating object

 [image:]

 There is quite a lot going on here, so let’s pick through it piece by piece. The updateUI() method takes an optional argument delta, which we’ll ignore when we initially call it in the constructor [image:]. It then proceeds to build up a set of HTML markup as a string, defining the UI that we saw in figure 1.1 as an HTML table. This string is then assigned to the target element using the innerHTML property [image:].

 We go on to assign event handlers to the buttons. The next line looks quite strange—we are defining a variable called rating that is a direct reference to this [image:]. The reason for this is rather arcane. We are going to create a closure when we define the event handler, and the special
 variable this cannot be passed in to a closure. We create rating as a copy in order to pass it in.

 In the next few lines we’re back on fairly safe ground. We’ve added unique IDs to our buttons in the big innerHTML string that we just wrote, so now we can programmatically reference the button elements [image:].

Adding event handlers

 We go on to define an event handler for the entire widget ([image:] in listing 1.1). This is an anonymous function, defined inline. Because of the way the JavaScript event model works, when the function is
 called, the variable this will no longer refer to the Rating object, but to the HTML element that fired the event. We refer to the variable rating, which is bound to the function as part of the closure, in order to see the Rating object inside the event-handling code.

 It’s a common mistake to refer to this inside event handlers, and writing this code took a few goes to straighten all the ratings and thises out, but we’ve done it. When the buttons are pressed, we re-render the entire UI by calling updateUI() again, this time with the delta argument to indicate that the rating is going up or down.

 Finally, we tell the server that the rating for this item has changed [image:]. We’ll be using core Ajax techniques to do this, and we’ll look at these in a minute. First, let’s review what we’ve done
 in order to get our two buttons up and running. We’ve visited a number of unusual language features in JavaScript, including
 the ability of Function objects to be called with arbitrary contexts (i.e., the variable that evaluates to this within the function), and the ability of Function objects to create closures implicitly. Both of these require quite a deep
 understanding of the language, which is fine if we like collecting unusual programming languages, but if we’re a Java or PHP
 coder seconded into doing a bit of Ajax work, it’s quite a lot to take on board.

 We’ll soon see how Prototype and Scriptaculous can help to keep the language out of our hair. First, let’s have a look at
 the Ajax code.

Making an asynchronous HTTP call

 We’re going to use the XMLHttpRequest object to contact the server whenever the user clicks one of the buttons. As we noted
 earlier, XMLHttpRequest confers the ability to work with the HTTP protocol at quite a low level, and it is consequently not
 very straightforward to use for extremely simple tasks. There are several wrappers for the XMLHttpRequest available now, and
 we’ll see the one provided by Prototype in a minute. To emphasize the difference, though, we’re going to use the raw XMLHttpRequest
 in this example. Listing 1.2 shows the code required to do so.

 Listing 1.2. Ajax call code for Rating object

 [image:]

 Again, the code required to do the job isn’t that small. Let’s pick through the main points. First, we need to get hold of
 an XMLHttpRequest object. In some browsers it’s a native object, and in others it’s an ActiveX component, and we try to account
 for all the possibilities [image:]. By luck, we’ve got it the right way around here, testing for a native object first. Internet Explorer 7 has arrived upon
 the scene, and it supports a native XMLHttpRequest, as well as ActiveX for backward compatibility. If we’d tested for ActiveX
 first, we would have ended up using ActiveX unnecessarily under IE 7, and potentially blocking browsers where ActiveX controls
 have been locked down, but our Ajax code would otherwise have worked. We could have supported older versions of IE by checking
 for alternative ActiveX types too, but that’s a lot of background knowledge required to implement a simple rating widget,
 so users of IE 5.5 are maybe out of luck with our app.

 The second point to note is that strange closure trick again. We define the variable rating [image:] and refer to it inside the event handler [image:]. In this case, the event handler is simply a one-line call to another function, which might leave us wondering why the onReadyState() function wasn’t assigned directly if we didn’t understand the intricacies of implicit closures in JavaScript.

 We’re calling a server-side process that talks in terms of standard querystring key-value pairs. Almost every server-side
 language provides automatic parsing of querystrings, but with XMLHttpRequest, we need to build up the string manually [image:], remembering to call encodeURI() for each value. We then need to set a few crucial HTTP headers before we’re ready to send out our request [image:]. It’s a little-known fact that the convenience methods we’re used to on the server, such as Java Servlet’s request.getParameter() and PHP’s $_GET array, will only be populated if the request has a content type of application/x-www-form-urlencoded. HTML forms fill this in for us automatically, but with XMLHttpRequest, we need to do it ourselves.

 Once the request goes out, our callback handler is busy. Rather than being called once when the request completes, it is notified
 at various stages in the life-cycle of the request, which is great for implementing progress bars, but something of an overhead
 for us here. A readystate value of 4 corresponds to a completed request, so we simply check for that [image:] and call either the success handler [image:] or the error handler [image:] depending on the HTTP code of our response.

 Let’s review what we’ve been through here. Once more, everything is done, and it works, but we’ve gone to rather a lot of
 effort, and we’ve needed rather an intimate knowledge of the HTTP protocol, particularly concerning how querystrings are encoded
 in requests and are only decoded on the server if the right set of HTTP headers is applied. Furthermore, we’ve had to get
 our heads around closures once again.

 After writing this application, I refactored the code to use Prototype and Scriptaculous features in a few places, to make
 it easier to work with. Let’s look at how it simplified things.

 1.4.2. Adding Prototype and Scriptaculous

 We can see the first advantage of using Prototype and Scriptaculous before we open the files. The main code file, ratings.js
 (see listing 1.3), is roughly 20 percent smaller as a result of our work, which certainly suggests that these libraries can help our productivity.
 However, that in itself doesn’t tell us very much. Let’s step through the refactoring and look at the details.

DOM helper methods

 Prototype comes equipped with a range of helper methods that make it easier to work with the DOM. The simplest of all is a
 function named simply $() (and, yes, that is a valid name for a variable in JavaScript). In our original code, we’ve been looking up DOM elements by
 their IDs, like this:

 this.body=document.getElementById(divId);

 Prototype allows us to rewrite this as simply as this:

 this.body=$(divId);

 For now, it’s enough to know that we’ve saved ourselves from some tedious typing. In fact, $() is a lot more powerful than document.getElementById(), as we’ll see in chapter 11, but for now, let’s leave it at that, and look at the next item.

Event handlers

 In the original version of the code, we had to get our heads around closures and function contexts when writing the event
 handler for the buttons (see [image:] in listing 1.1). This had two practical consequences. First, we had to define the event-handler code inline as an anonymous function, in
 order to get the closure to work. Sometimes it’s good to use anonymous inline functions, but here we did it because we had
 no choice. Second, we had to refer to the Rating object as rating rather than this inside the event-handler code, which felt a bit odd.

 While writing the event handler, we also had to write some cross-browser code to handle the different ways of obtaining the
 event object and its target element.

 Prototype can relieve us of all these chores with a single call. Function.bindAsEventListener() wraps an ordinary function up as an event handler, creating the closure for us, sorting out the function context issues,
 and presenting us with a robust, cross-browser event object whose target element we can readily access. Listing 1.3 shows the modified code, with changes shown in bold.

 Listing 1.3. Modified event-handler code

 [image:]

 We’re using two event-handler features to get around differences in the cross-browser event models here. Event.observe() [image:] allows us to attach multiple handler functions to an HTML element safely. Function.bindAsEventListener() [image:] turns an ordinary function into an event handler, supplying it with a cross-browser event object, and passing in the first
 argument as the event context. Here, we’ve passed our Rating object in, which means that we can define our event-handling
 code as an ordinary member function of the Rating prototype [image:].

 The clickHandler() function that we define contains the same logic as its anonymous predecessor but is certainly easier to read. We can access
 the HTML element that fired the event in a single line of code [image:], and we refer to the member variables of the object in a natural way using this.

 There is an even bigger win to be made, though, when sending the Ajax request to update the server. Let’s look at that next.

Ajax requests made easy

 Coding the Ajax request required not just a detailed knowledge of JavaScript language internals, but of the HTTP protocol
 too. Knowledge is good, but we were in a hurry, and figuring out the details slowed us down rather a lot.

 Prototype provides a utility object, the Ajax.Request, which encapsulates a lot of this complexity so that we don’t have to
 in a simple case like this (but we still can when we’re in HTTP power-coding mode!). Listing 1.4 shows the revised Ajax code.

 Listing 1.4. Modified Ajax request code

 [image:]

 When writing our own Ajax call, we had to manually encode and create a querystring (see [image:] in listing 1.2). Here, we’re using Prototype’s $H() function (yes, these guys like short names!) to create a Hash object out of an ordinary JavaScript object [image:]. We’ll look at Hashes in more detail in chapter 10; for now, suffice it to say that Hash has a predefined toQueryString() method that will create our parameters for us. The syntax may look a little odd at first, especially if you don’t realize
 that $H() is just a JavaScript function, but once you get it, it saves a lot of trouble in remembering to call encodeURI() every time you create a querystring.

 Now on to the biggest improvement in the coding—making the request. The Ajax.Request object takes two arguments in its constructor
 [image:]. The first is the URL on the server, and the second is a JavaScript object stuffed full of optional arguments. (We’ll see
 this idiom a lot throughout this book, in the predefined objects and in our own code.) We specify the HTTP method as POST,
 and pass in our querystring. Details such as MIME type will be taken care of for us.

 We also add in two callback handlers. Ajax.Request allows us to define suitably high-level callbacks, for success and failure
 of the request [image:]. Note that we’re using Function.bind() here. Like bindAsEventListener(), this simply ensures that when the callback is invoked, it will have the context object that we want it to have.

 We no longer need to write a callback that will be invoked multiple times during the request, because in this simple case,
 we don’t need to. Prototype handles all that and the HTTP response codes for us. Compared to listing 1.2, tellServer() has shrunk by at least 50 percent, and we’ve gotten rid of onReadyState() altogether.

 We could rest on our laurels right now, but let’s make one final change to the application before we wrap up this chapter,
 and show off one of Scriptaculous’s useful features.

Adding polish to the user interface

 Our refactored app is matching the original version feature for feature with less effort. While coding up the original app,
 we thought of several “nice to have” features that there just wasn’t time to implement. Well, we’ve saved ourselves a little
 bit of time now, so let’s have a look at one of them.

 When the user modifies the rating, there is no visual feedback beyond the star disappearing. A little animation might make
 the app more satisfying to use, and might ultimately increase uptake of the project. This sort of benefit is hard to gauge,
 though, so we don’t want to spend too much effort on it, lest it distract us from more serious matters.

 Using Scriptaculous’s Effects library, we can animate the adding and removing of stars in only a few lines of code, as shown
 in listing 1.5. (We’ve reproduced the entire function here—the new code is highlighted in bold).

 Listing 1.5. Adding effects to the Ratings app

 [image:]

 In the previous versions of the application, we always corrected the rating score before rendering. In this case, when we
 decrement, we want to initially draw in one extra star, and then get rid of it, so we correct the rating beforehand only if
 the score has gone up [image:]. After everything has rendered, we then set up the effects and decrement the score if necessary [image:].

 The effects themselves are ridiculously easy to use, requiring only the ID of the element to operate upon. We therefore need
 to provide ID attributes for our images [image:], but that’s a minor hardship. The constructors can, like Ajax.Request, also accept an object full of options, but we’ll leave
 that for a more detailed look in chapter 5.

 By adding these few lines of code, a newly improved rating will flash on and off briefly to announce its presence, and a reduced
 rating will see the leftmost star drop off the bottom of the page. It’s hard to present this as a still picture in a book,
 unfortunately, but you can download the code and see it for yourself.

 That concludes our first taste of what these libraries can do for us. In subsequent chapters, we’ll dig more methodically
 into this rich seam.

1.5. Summary

 In this chapter, we looked at the development of Ajax technologies. As long ago as the late 1990s, preliminary explorations
 of asynchronous communication between the browser and server were being undertaken, mostly in isolation. In early 2005, the
 coining of the name Ajax provided a much-needed focal point for these explorations. Since then, there has been a major drive
 toward increasing the ease of development of Ajax, in which frameworks and libraries are playing an important part. It is
 no longer sufficient to be able to make an Ajax app work; we now need it to work smoothly and robustly, and it must be easy
 to develop and maintain.

 We introduced Prototype and Scriptaculous, two best-of-breed JavaScript and Ajax libraries, and we looked at their main purposes
 and constituent pieces. Prototype is a relatively low-level library, providing additional language features and facilities.
 Scriptaculous makes use of Prototype to provide a number of higher-level widgets and components, mostly aimed at creating
 user interfaces.

OEBPS/circle_1.jpg

OEBPS/circle_2.jpg

OEBPS/014fig01.jpg
stylesheet Import CS$
text/css" href-rcss/ratings.css™> - Stylesheet

<script type='text/javascript' Import
src='scripts/ratings.js’></script> JavaScri
<script type='text/javascript'>
window. onload=function () { Create Rating
new Rating(object

"myRating","rate this article"
i
i

</seripts>

OEBPS/015fig01.jpg
funcrdon Rating (divid, dare) {
this body=docunent .getElenentByTd (divid) ;
this title=daca;
this.rating-1;
this updater () ;

)

Define
constructor

Rating.prototypes{
updateUT : funct ion (delta) {
if (ldelta){ delta=0; }
if (deltas0) {
this.ratingrs;
Jelse if (delta<o)
this. rating
)
var innera"<table borders'0'><trs<td widths'42'>"

+ncspan class='title’s"+this.titles"s/spans</td>"
anctdsr;
for (var

iicthis.rating;iss) {
| mesratine srca" inages/star.png' />
Snnersate/tdse/trsctdst
+"<ing srce'images/up.png' ide'plus_"+this.titles"'/>"
+rcing src='images/down.png’ id='minus_'+this. titles®! />t
are/tasctast
+nediv id='message_"+this.names"! classs'message’s</divst
4re/tdse/trse/tablest;
this.body. innerHTML=inner; <—@) Assign HTML to target
' Make reference for closure

this.plusButton=docunent
getElementByTd("plus_"+this.title) ; Reference

this minusButto: button widgets
getElementByTd ("minus_"+this.title) ;
this.body. onclicksfunction (event) (Assignevent

~(event) ? event : window.event; o s
var targets (e.target) ?
e.target : e.srcElement;
if (carget.iderating.plusButton.id
& rating. rating<s) {
rating.updateVI (1) ;
Jelse if (target.id--rating.minusButton.id
& rating.rating>0) {
rating.updatelI(-1);

) Inform
this. tellserver () ; server

1,

OEBPS/m.jpg

OEBPS/01fig01.jpg
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu f
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id e

rate eiusmod temy
‘enim ad minir

this nisi ut aliquip
in reprehende

artlcle nulla pariatur.
sunt i culpa

Lorem ipsum

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
laboris nisi ut aliguip ex ea commodo conseguat, Duis aute irure dolor in}

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/circle_3.jpg

OEBPS/circle_5.jpg

OEBPS/circle_4.jpg

OEBPS/cover.jpg
Prototype &

Dave (rane
Bear Bibeault

\ with Tom Locke
Toreword by Thomas fuchs

uuuuuuu

OEBPS/017fig01.jpg
duilfervwe: Sungtion il
if (window.XMLHCtpRequest) {
this.request=new XNLHttpRequest (); Obtain XHR
} else if (window.ActiveXObject) { object
this. request-new
ActiveXobject ("MiCroSOft XNLHTTR) ;
)

it (ithis.request) {
this.showlessage ("no Ajax support”) ;

}
try{ Make reference
var rating=this; for closure
var params="name=" < Create encoded
+encodeURI (this.nane) @) querystring

+"arating
+encodeURI (this. rating) ;

this. request .onreadystatechange

unction () {

rating.onkeadyState (] ;

i
this. request.open(
"POST", "updateRating.php", true
i
this.request . setRequestHeader (
‘Content -Type',
'application/x-wwu-forn-urlencoded’
)i
this.request . setRequestHeader (
"Content -Length"
params, length

v Send
this. request . send (parans) ; request
Jeaten (err)
this.onAjaxError (err.msg) ;
)
)
onReadyState: function () {
var reg-this.request; Check request
var ready=req.readyState; readystate
eq.status;
00 || heepstatus==0) { Gall success
this.onAjaxLoad.call (this) ; handler
Jelse{
this.onkjaxBrror. call(el
this, "HTTP code "+httpStatus ool

)i
}

i
Y
onAjaxLoad: function () {
this.shoutessage (
"server OK "+this.request.responseText
)i
b
onAjaxError: function (msg) {
this.shoutessage (
"server error"+((msg) ? " - "amsg: %)
¥i
4
shoultessage : function (stx) {
docurent . getElementById
("message_"+this. name)
innerHTML=str;

OEBPS/circle_6.jpg

OEBPS/circle_8.jpg

OEBPS/circle_7.jpg

OEBPS/022fig01.jpg
tellServer:function(}{
var params-$i(
{name: this.nane, Oeate?,.
rating:this.raing) querystring
) -toQuerystring () ;
new Ajax. Request (Create Ajax Request
“updateratings .php" . object

{

method: *post ",
parameters: params,
onsuccess:
this.onAjaxiosd
.bind(this), Declare callback
onFailure: handlers
this.onAjaxBrror
-bind(this)
}
)i
)
onAjaxioad: function (transport) {
this.showessage
("server OK "stransport.responseText) ;
1
onAjaxError: function (transport) {
this . showtiessage
(vserver error [*stransport.httpStatus+*]®);

OEBPS/021fig01.jpg
updateUI:function(delta) {
if (1delta){ delta=0;)
if (deltas0) {
this.ratinges;
}
var inner=r<table border='0's<trs<td width='42's"
+icspan class-'title!stithis. titless/span></td>"
rctdst;
for (var i=0;i<this.rating:iss)(
, ks "eing sre-'images/star.png' id='ratingstar "sicti />’
inner+=re/tdse/trsctdst
+icing sro-'images/up.png’ id='plus_"sthis.titlest />t
+1cing sro='images/down.png’ id='minus_"sthis.titleet />t
re/tds<tast
+1cdiv id-'message_r+this.names!! class-'message’></divst
+e/td></trse/tablest;
this body. innerHTHL=inner;
var rating-this;
this.plusButton=$("plus_"+this.title);
this minusButton=$ ("minus_"+this.title);

Event.abserve (Bind event to
ghis.body, DOM node
"elicks,
this.clickHandler Create event
.bindAsEventListener (this) < handler
)i
this.tellServer();
) Define
clickHandler: function (event) { handler code
var target-Event.element (event) ; T
if (target==this.plusButton tanget

&& this.rating<s){
this.updateuI(1);

Jelse if (target=sthis.minusButton
&& this.rating>0){
this.updateVI(-1);

}

;

OEBPS/024fig01.jpg
updateUI:function(delta){

if (1delta){ delta=0; }

if (delta>0){ Increment
this.ratinges; rating

}

var inner=rctable border='0's<trs><td width='42">"
+v<span class='title's"+this.titles"</td>"
wretdst;
for (var i=t

;icthis. rating; iss) {
inner+="<img src='images/star.png'"
+rid-rratingstar_reient/on <

Provide
) image IDs

inners=n</td></troctds"
+1<ing srce'images/up.png' id='plus_"+this.titles"!/>"
+reing sro='images/down.png’ id='minus_r+this.titlesr: />
+re/tdsetdst
+1<div id='message_"sthis.names!! classs'message’></div>"
+e/tds</tese/tablest;

this.body. innerHTHL=inner;

var ratingsthis;

this.plusButton=§ ("plus_"+this.title) ;

this minusButton=$ ("minus_"+this.title) ;

Event .cbserve (this.body, "click",

this.clickiiandler bindAsEventListener (this)) ;

this. tellServer();

if (delta<o){
new Effect.DropOut("ratingstar_0

Animate and

this.rating--; decrement
Jelse if (delta>0){
new Effect.Pulsate Animate

ratingstar_"+(this.rating-1)); addition

