

 Inside front cover

 This is a quick lookup guide for common considerations in system design. After you read the book, you can refer to the appropriate sections when you design or review a scalable/distributed system and need a refresher or reference on a particular concept.

 	
 Concept

 	
 Chapter(s)/section(s)

 	
 Tradeoffs

 	
 1.1, 2

 	
 A simple full stack design

 	
 1.4

 	
 Functional partitioning, centralization of cross-cutting concerns

 	
 1.4.6, 6

 	
 Requirements

 	
 2, 3

 	
 Logging, monitoring, alerting

 	
 2.5

 	
 Distributed databases

 	
 4

 	
 Sampling

 	
 4.5, 11.8-10

 	
 Distributed transactions

 	
 5

 	
 Library vs. service

 	
 6.6, 12.6

 	
 REST, RPC, GraphQL, WebSocket

 	
 6.7

 	
 Graceful degradation

 	
 2, 3.3

 	
 Data migrations

 	
 7.7

 	
 Distributed rate limiting

 	
 8

 	
 Distributed notification service

 	
 9

 	
 Data quality

 	
 2.5.5, 10 (also covers auditing)

 	
 Exactly-once delivery

 	
 14

 	
 Personalization

 	
 1.4, 16

 	
 Lambda architecture

 	
 17

 	
 Authentication and authorization

 	
 13.3, appendix B

 [image:]

 Acing the System Design Interview

 Zhiyong Tan

 Forewords by Anthony Asta and Michael Elder

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical editor:

 	
 Mohit Kumar

 	
 Senior technical development editor:

 	
 Al Scherer

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Aleksandar Dragosavljević

 	
 Copy editor:

 	
 Katie Petito

 	
 Technical proofreader:

 	
 Victor Duran

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439108

 dedication

 To Mom and Dad.

 contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1.

 1 A walkthrough of system design concepts

 1.1 It is a discussion about tradeoffs

 1.2 Should you read this book?

 1.3 Overview of this book

 1.4 Prelude-A brief discussion of scaling the various services of a system

 The beginning-A small initial deployment of our app

 Scaling with GeoDNS

 Adding a caching service

 Content Distribution Network (CDN)

 A brief discussion of horizontal scalability and cluster management, continuous integration (CI) and continuous deployment (CD)

 Functional partitioning and centralization of cross-cutting concerns

 Batch and streaming extract, transform, and load (ETL)

 Other common services

 Cloud vs. bare metal

 Serverless-Function as a Service (FaaS)

 Conclusion-Scaling backend services

 2 A typical system design interview flow

 2.1 Clarify requirements and discuss tradeoffs

 2.2 Draft the API specification

 Common API endpoints

 2.3 Connections and processing between users and data

 2.4 Design the data model

 Example of the disadvantages of multiple services sharing databases

 A possible technique to prevent concurrent user update conflicts

 2.5 Logging, monitoring, and alerting

 The importance of monitoring

 Observability

 Responding to alerts

 Application-level logging tools

 Streaming and batch audit of data quality

 Anomaly detection to detect data anomalies

 Silent errors and auditing

 Further reading on observability

 2.6 Search bar

 Introduction

 Search bar implementation with Elasticsearch

 Elasticsearch index and ingestion

 Using Elasticsearch in place of SQL

 Implementing search in our services

 Further reading on search

 2.7 Other discussions

 Maintaining and extending the application

 Supporting other types of users

 Alternative architectural decisions

 Usability and feedback

 Edge cases and new constraints

 Cloud native concepts

 2.8 Post-interview reflection and assessment

 Write your reflection as soon as possible after the interview

 Writing your assessment

 Details you didn't mention

 Interview feedback

 2.9 Interviewing the company

 3 Non-functional requirements

 3.1 Scalability

 Stateless and stateful services

 Basic load balancer concepts

 3.2 Availability

 3.3 Fault-tolerance

 Replication and redundancy

 Forward error correction (FEC) and error correction code (ECC)

 Circuit breaker

 Exponential backoff and retry

 Caching responses of other services

 Checkpointing

 Dead letter queue

 Logging and periodic auditing

 Bulkhead

 Fallback pattern

 3.4 Performance/latency and throughput

 3.5 Consistency

 Full mesh

 Coordination service

 Distributed cache

 Gossip protocol

 Random Leader Selection

 3.6 Accuracy

 3.7 Complexity and maintainability

 Continuous deployment (CD)

 3.8 Cost

 3.9 Security

 3.10 Privacy

 External vs. internal services

 3.11 Cloud native

 3.12 Further reading

 4 Scaling databases

 4.1 Brief prelude on storage services

 4.2 When to use vs. avoid databases

 4.3 Replication

 Distributing replicas

 Single-leader replication

 Multi-leader replication

 Leaderless replication

 HDFS replication

 Further reading

 4.4 Scaling storage capacity with sharded databases

 Sharded RDBMS

 4.5 Aggregating events

 Single-tier aggregation

 Multi-tier aggregation

 Partitioning

 Handling a large key space

 Replication and fault-tolerance

 4.6 Batch and streaming ETL

 A simple batch ETL pipeline

 Messaging terminology

 Kafka vs. RabbitMQ

 Lambda architecture

 4.7 Denormalization

 4.8 Caching

 Read strategies

 Write strategies

 4.9 Caching as a separate service

 4.10 Examples of different kinds of data to cache and how to cache them

 4.11 Cache invalidation

 Browser cache invalidation

 Cache invalidation in caching services

 4.12 Cache warming

 4.13 Further reading

 Caching references

 5 Distributed transactions

 5.1 Event Driven Architecture (EDA)

 5.2 Event sourcing

 5.3 Change Data Capture (CDC)

 5.4 Comparison of event sourcing and CDC

 5.5 Transaction supervisor

 5.6 Saga

 Choreography

 Orchestration

 Comparison

 5.7 Other transaction types

 5.8 Further reading

 6 Common services for functional partitioning

 6.1 Common functionalities of various services

 Security

 Error-checking

 Performance and availability

 Logging and analytics

 6.2 Service mesh / sidecar pattern

 6.3 Metadata service

 6.4 Service discovery

 6.5 Functional partitioning and various frameworks

 Basic system design of an app

 Purposes of a web server app

 Web and mobile frameworks

 6.6 Library vs. service

 Language specific vs. technology-agnostic

 Predictability of latency

 Predictability and reproducibility of behavior

 Scaling considerations for libraries

 Other considerations

 6.7 Common API paradigms

 The Open Systems Interconnection (OSI) model

 REST

 RPC (Remote Procedure Call)

 GraphQL

 WebSocket

 Comparison

 Part 2.

 7 Design Craigslist

 7.1 User stories and requirements

 7.2 API

 7.3 SQL database schema

 7.4 Initial high-level architecture

 7.5 A monolith architecture

 7.6 Using a SQL database and object store

 7.7 Migrations are troublesome

 7.8 Writing and reading posts

 7.9 Functional partitioning

 7.10 Caching

 7.11 CDN

 7.12 Scaling reads with a SQL cluster

 7.13 Scaling write throughput

 7.14 Email service

 7.15 Search

 7.16 Removing old posts

 7.17 Monitoring and alerting

 7.18 Summary of our architecture discussion so far

 7.19 Other possible discussion topics

 Reporting posts

 Graceful degradation

 Complexity

 Item categories/tags

 Analytics and recommendations

 A/B testing

 Subscriptions and saved searches

 Allow duplicate requests to the search service

 Avoid duplicate requests to the search service

 Rate limiting

 Large number of posts

 Local regulations

 8 Design a rate-limiting service

 8.1 Alternatives to a rate-limiting service, and why they are infeasible

 8.2 When not to do rate limiting

 8.3 Functional requirements

 8.4 Non-functional requirements

 Scalability

 Performance

 Complexity

 Security and privacy

 Availability and fault-tolerance

 Accuracy

 Consistency

 8.5 Discuss user stories and required service components

 8.6 High-level architecture

 8.7 Stateful approach/sharding

 8.8 Storing all counts in every host

 High-level architecture

 Synchronizing counts

 8.9 Rate-limiting algorithms

 Token bucket

 Leaky bucket

 Fixed window counter

 Sliding window log

 Sliding window counter

 8.10 Employing a sidecar pattern

 8.11 Logging, monitoring, and alerting

 8.12 Providing functionality in a client library

 8.13 Further reading

 9 Design a notification/alerting service

 9.1 Functional requirements

 Not for uptime monitoring

 Users and data

 Recipient channels

 Templates

 Trigger conditions

 Manage subscribers, sender groups, and recipient groups

 User features

 Analytics

 9.2 Non-functional requirements

 9.3 Initial high-level architecture

 9.4 Object store: Configuring and sending notifications

 9.5 Notification templates

 Notification template service

 Additional features

 9.6 Scheduled notifications

 9.7 Notification addressee groups

 9.8 Unsubscribe requests

 9.9 Handling failed deliveries

 9.10 Client-side considerations regarding duplicate notifications

 9.11 Priority

 9.12 Search

 9.13 Monitoring and alerting

 9.14 Availability monitoring and alerting on the notification/alerting service

 9.15 Other possible discussion topics

 9.16 Final notes

 10 Design a database batch auditing service

 10.1 Why is auditing necessary?

 10.2 Defining a validation with a conditional statement on a SQL query's result

 10.3 A simple SQL batch auditing service

 An audit script

 An audit service

 10.4 Requirements

 10.5 High-level architecture

 Running a batch auditing job

 Handling alerts

 10.6 Constraints on database queries

 Limit query execution time

 Check the query strings before submission

 Users should be trained early

 10.7 Prevent too many simultaneous queries

 10.8 Other users of database schema metadata

 10.9 Auditing a data pipeline

 10.10 Logging, monitoring, and alerting

 10.11 Other possible types of audits

 Cross data center consistency audits

 Compare upstream and downstream data

 10.12 Other possible discussion topics

 10.13 References

 11 Autocomplete/typeahead

 11.1 Possible uses of autocomplete

 11.2 Search vs. autocomplete

 11.3 Functional requirements

 Scope of our autocomplete service

 Some UX (user experience) details

 Considering search history

 Content moderation and fairness

 11.4 Nonfunctional requirements

 11.5 Planning the high-level architecture

 11.6 Weighted trie approach and initial high-level architecture

 11.7 Detailed implementation

 Each step should be an independent task

 Fetch relevant logs from Elasticsearch to HDFS

 Split the search strings into words, and other simple operations

 Filter out inappropriate words

 Fuzzy matching and spelling correction

 Count the words

 Filter for appropriate words

 Managing new popular unknown words

 Generate and deliver the weighted trie

 11.8 Sampling approach

 11.9 Handling storage requirements

 11.10 Handling phrases instead of single words

 Maximum length of autocomplete suggestions

 Preventing inappropriate suggestions

 11.11 Logging, monitoring, and alerting

 11.12 Other considerations and further discussion

 12 Design Flickr

 12.1 User stories and functional requirements

 12.2 Non-functional requirements

 12.3 High-level architecture

 12.4 SQL schema

 12.5 Organizing directories and files on the CDN

 12.6 Uploading a photo

 Generate thumbnails on the client

 Generate thumbnails on the backend

 Implementing both server-side and client-side generation

 12.7 Downloading images and data

 Downloading pages of thumbnails

 12.8 Monitoring and alerting

 12.9 Some other services

 Premium features

 Payments and taxes service

 Censorship/content moderation

 Advertising

 Personalization

 12.10 Other possible discussions

 13 Design a Content Distribution Network (CDN)

 13.1 Advantages and disadvantages of a CDN

 Advantages of using a CDN

 Disadvantages of using a CDN

 Example of an unexpected problem from using a CDN to serve images

 13.2 Requirements

 13.3 CDN authentication and authorization

 Steps in CDN authentication and authorization

 Key rotation

 13.4 High-level architecture

 13.5 Storage service

 In-cluster

 Out-cluster

 Evaluation

 13.6 Common operations

 Reads-Downloads

 Writes-Directory creation, file upload, and file deletion

 13.7 Cache invalidation

 13.8 Logging, monitoring, and alerting

 13.9 Other possible discussions on downloading media files

 14 Design a text messaging app

 14.1 Requirements

 14.2 Initial thoughts

 14.3 Initial high-level design

 14.4 Connection service

 Making connections

 Sender blocking

 14.5 Sender service

 Sending a message

 Other discussions

 14.6 Message service

 14.7 Message sending service

 Introduction

 High-level architecture

 Steps in sending a message

 Some questions

 Improving availability

 14.8 Search

 14.9 Logging, monitoring, and alerting

 14.10 Other possible discussion points

 15 Design Airbnb

 15.1 Requirements

 15.2 Design decisions

 Replication

 Data models for room availability

 Handling overlapping bookings

 Randomize search results

 Lock rooms during booking flow

 15.3 High-level architecture

 15.4 Functional partitioning

 15.5 Create or update a listing

 15.6 Approval service

 15.7 Booking service

 15.8 Availability service

 15.9 Logging, monitoring, and alerting

 15.10 Other possible discussion points

 Handling regulations

 16 Design a news feed

 16.1 Requirements

 16.2 High-level architecture

 16.3 Prepare feed in advance

 16.4 Validation and content moderation

 Changing posts on users' devices

 Tagging posts

 Moderation service

 16.5 Logging, monitoring, and alerting

 Serving images as well as text

 High-level architecture

 16.6 Other possible discussion points

 17 Design a dashboard of top 10 products on Amazon by sales volume

 17.1 Requirements

 17.2 Initial thoughts

 17.3 Initial high-level architecture

 17.4 Aggregation service

 Aggregating by product ID

 Matching host IDs and product IDs

 Storing timestamps

 Aggregation process on a host

 17.5 Batch pipeline

 17.6 Streaming pipeline

 Hash table and max-heap with a single host

 Horizontal scaling to multiple hosts and multi-tier aggregation

 17.7 Approximation

 Count-min sketch

 17.8 Dashboard with Lambda architecture

 17.9 Kappa architecture approach

 Lambda vs. Kappa architecture

 Kappa architecture for our dashboard

 17.10 Logging, monitoring, and alerting

 17.11 Other possible discussion points

 17.12 References

 Appendix A. Monoliths vs. microservices

 A.1 Disadvantages of monoliths

 A.2 Advantages of monoliths

 A.3 Advantages of services

 Agile and rapid development and scaling of product requirements and business functionalities

 Modularity and replaceability

 Failure isolation and fault-tolerance

 Ownership and organizational structure

 A.4 Disadvantages of services

 Duplicate components

 Development and maintenance costs of additional components

 Distributed transactions

 Referential integrity

 Coordinating feature development and deployments that span multiple services

 Interfaces

 A.5 References

 Appendix B. OAuth 2.0 authorization and OpenID Connect authentication

 B.1 Authorization vs. authentication

 B.2 Prelude: Simple login, cookie-based authentication

 B.3 Single sign-on (SSO)

 B.4 Disadvantages of simple login

 Complexity and lack of maintainability

 No partial authorization

 B.5 OAuth 2.0 flow

 OAuth 2.0 terminology

 Initial client setup

 Back channel and front channel

 B.6 Other OAuth 2.0 flows

 B.7 OpenID Connect authentication

 Appendix C. C4 Model

 Appendix D. Two-phase commit (2PC)

 index

 front matter

 foreword

 Over the course of the last 20 years, I have focused on building teams of distributed systems engineers at some of the largest tech companies in the industry (Google, Twitter, and Uber). In my experience, the fundamental pattern of building high-functioning teams at these companies is the ability to identify engineering talent that can demonstrate their mastery of system design through the interview process. Acing the System Design Interview is an invaluable guide that equips aspiring software engineers and seasoned professionals alike with the knowledge and skills required to excel in one of the most critical aspects of technical interviews. In an industry where the ability to design scalable and reliable systems is paramount, this book is a treasure trove of insights, strategies, and practical tips that will undoubtedly help readers navigate the intricacies of the system design interview process.

 As the demand for robust and scalable systems continues to soar, companies are increasingly prioritizing system design expertise in their hiring process. An effective system design interview not only assesses a candidate’s technical prowess but also evaluates their ability to think critically, make informed decisions, and solve complex problems. Zhiyong’s perspective as an experienced software engineer and his deep understanding of the system design interview landscape make him the perfect guide for anyone seeking to master this crucial skill set.

 In this book, Zhiyong presents a comprehensive roadmap that takes readers through each step of the system design interview process. After an overview of the fundamental principles and concepts, he then delves into various design aspects, including scalability, reliability, performance, and data management. With clarity and precision, he breaks down each topic, providing concise explanations and real-world examples that illustrate their practical application. He is able to demystify the system design interview process by drawing on his own experiences and interviews with experts in the field. He offers valuable insights into the mindset of interviewers, the types of questions commonly asked, and the key factors interviewers consider when evaluating a candidate’s performance. Through these tips, he not only helps readers understand what to expect during an interview but also equips them with the confidence and tools necessary to excel in this high-stakes environment.

 By combining the theory chapters of part 1 with the practical application chapters of part 2, Zhiyong ensures that readers not only grasp the theoretical foundations but also cultivate the ability to apply that knowledge to real-world scenarios. Moreover, this book goes beyond technical know-how and emphasizes the importance of effective communication in the system design interview process. Zhiyong explores strategies for effectively articulating ideas, presenting solutions, and collaborating with interviewers. This holistic approach recognizes that successful system design is not solely dependent on technical brilliance but also on the ability to convey ideas and work collaboratively with others.

 Whether you are preparing for a job interview or seeking to enhance your system design expertise, this book is an essential companion that will empower you to tackle even the most complex system design challenges with confidence and finesse.

 So, dive into the pages ahead, embrace the knowledge and insights, and embark on a journey to master the art of building scalable and reliable systems. You will undoubtedly position yourself as an invaluable asset to any organization and pave the way for a successful career as a software engineer.

 Start your path to acing the system design interview!

 —Anthony Asta

 Director of Engineering at LinkedIn

 (ex-Engineering Management at Google, Twitter, and Uber)

 Software development is a world of continuous everything. Continuous improvement, continuous delivery, continuous monitoring, and continuous re-evaluation of user needs and capacity expectations are the hallmarks of any significant software system. If you want to succeed as a software engineer, you must have a passion for continuous learning and personal growth. With passion, software engineers can literally change how our society connects with each other, how we share knowledge, and how we manage our lifestyles.

 Software trends are always evolving, from the trendiest programming language or framework to programmable cloud-native infrastructure. If you stick with this industry for decades, you’ll see these transitions several times over, just like I have. However, one immutable constant remains through it all: understanding the systematic reasoning of how a software system manages work, organizes its data, and interacts with humans is critical to being an effective software engineer or technology leader.

 As a software engineer and then IBM Distinguished Engineer, I’ve seen firsthand how design tradeoffs can make or break the successful outcomes of a software system. Whether you’re a new engineer seeking your first role or a seasoned technology veteran looking for a new challenge in a new company, this book can help you refine your approach to reasoning by explaining the tradeoffs inherent with any design choices.

 Acing the System Design Interview brings together and organizes the many dimensions of system design that you need to consider for any software system. Zhiyong Tan has brilliantly organized a crash course in the fundamentals of system design tradeoffs and presents many real-world case studies that you can use to reinforce your readiness for even the most challenging of system design interviews.

 Part 1 of the book begins with an informative survey of critical aspects of system design. Starting with non-functional requirements, you’ll learn about many of the common dimensions that you must keep in mind while considering system design tradeoffs. Following an elaboration on , you will walk through how to organize the application programming interface (API) specification to explain how your system design addresses the use cases of the interview problem statement. Behind the API, you’ll learn several industry best practices for organizing the system data model using industry-standard datastores and patterns for managing distributed transactions. And beyond addressing the prima facie use cases, you’ll learn about key aspects of system operation, including modern approaches to observability and log management.

 In part 2, ride along for 11 distinct system design problems, from text messaging to Airbnb. In each interview problem, you can pick up new skills on how to tease out the right questions to organize the non-functional system requirements, followed by what tradeoffs to invest in further discussion. System design is a skill set often rooted in an experience that lends itself well to learning from prior art and examples based on others’ experiences. If you internalize the many lessons and wisdom from the examples presented in this book, you’ll be well prepared for even the most challenging system design interview problems.

 I’m excited to see the contribution that Zhiyong Tan has made to the industry with the following work. Whether you are approaching the material after a recent graduation or after many years of already working in the industry, I hope you’ll find new opportunities for personal growth as I did when absorbing the experiences represented in Acing the System Design Interview.

 —Michael D. Elder

 Distinguished Engineer & Senior Director, PayPal

 Former IBM Distinguished Engineer and IBM Master Inventor, IBM

 preface

 It is Wednesday at 4 p.m. As you leave your last video interview for your dream company, you are filled with a familiar mix of feelings: exhaustion, frustration, and déjà vu. You already know that in one to two days you will receive the email that you have seen so many times in your years as an engineer. “Thank you for your interest in the senior software engineer role at XXX. While your experience and skill set are impressive, after much consideration, we regret to inform you that we will not be proceeding with your candidacy.”

 It was the system design interview again. You had been asked to design a photo-sharing app, and you made a brilliant design that is scalable, resilient, and maintainable. It used the latest frameworks and employed software development lifecycle best practices. But you could see that the interviewer was unimpressed. They had that faraway look in their eyes and the bored, calm, polite tone that told you they believed they spent their time with you on this interview to be professional and to deliver “a great candidate experience.”

 This is your seventh interview attempt at this company in four years, and you have also interviewed repeatedly at other companies you really want to join. It is your dream to join this company, which has a userbase of billions and develops some of the most impressive developer frameworks and programming languages that dominate the industry. You know that the people you will meet and what you will learn at this company will serve you well in your career and be a great investment of your time.

 Meanwhile, you have been promoted multiple times at the companies you have worked at, and you’re now a senior software engineer, making it even harder when you don’t pass the interviews for the equivalent job at your dream companies. You have been a tech lead of multiple systems, led and mentored teams of junior engineers, and authored and discussed system designs with senior and staff engineers, making tangible and valuable contributions to multiple system designs. Before each interview at a dream company, you read through all the engineering blog posts and watched all their engineering talks published in the last three years. You have also read every highly rated book on microservices, data-intensive applications, cloud-native patterns, and domain-driven design. Why can’t you just nail those system design interviews?

 Has it just been bad luck all these attempts? The supply versus demand of candidates versus jobs at those companies? The statistical unlikelihood of being selected? Is it a lottery? Do you simply have to keep trying every six months until you get lucky? Do you need to light incense and make more generous offerings to the interview/performance review/promotion gods (formerly known as the exam gods back in school)?

 Taking a deep breath and closing your eyes to reflect, you realize that there is so much you can improve in those 45 minutes that you had to discuss your system design. (Even though each interview is one hour, between introductions and Q&A, you essentially have only 45 minutes to design a complex system that typically evolves over years.) Chatting with your fellow engineer friends confirms your hypothesis. You did not thoroughly clarify the system requirements. You assumed that what was needed was a minimum viable product for a backend that serves mobile apps in storing and sharing photos, and you started jotting down sample API specifications. The interviewer had to interrupt you to clarify that it should be scalable to a billion users. You drew a system design diagram that included a CDN, but you didn’t discuss the tradeoffs and alternatives of your design choices. You were not proactive in suggesting other possibilities beyond the narrow scope that the interviewer gave you at the beginning of the interview, such as analytics to determine the most popular photos or personalization to recommend photos to share with a user. You didn’t ask the right questions, and you didn’t mention important concepts like logging, monitoring, and alerting.

 You realize that even with your engineering experience and your hard work in studying and reading to keep up with industry best practices and developments, the breath of system design is vast, and you lack much formal knowledge and understanding of many system design components that you’ll never directly touch, like load balancers or certain NoSQL databases, so you cannot create a system design diagram of the level of completeness that the interviewer expects, and you cannot fluently zoom in and out when discussing various levels of the system. Until you learn to do so, you cannot meet the hiring bar, and you cannot truly understand a complex system or ascend to a more senior engineering leadership or mentorship role.

 acknowledgments

 I thank my wife Emma for her consistent encouragement in my various endeavors, diving into various difficult and time-consuming projects at work, writing various apps, and writing this book. I thank my daughter Ada, my inspiration to endure the frustration and tedium of coding and writing.

 I thank my brother Zhilong, who gave me much valuable feedback on my drafts and is himself an expert in system design and video encoding protocols at Meta. I thank my big sister Shumin for always being supportive and pushing me to achieve more.

 Thank you, Mom and Dad, for your sacrifices that made it all possible.

 I wish to thank the staff at Manning for all their help, beginning with my book proposal reviewers Andreas von Linden, Amuthan Ganeshan, Marc Roulleau, Dean Tsaltas, and Vincent Liard. Amuthan provided detailed feedback and asked good questions about the proposed topics. Katie Sposato Johnson was my guide for the 1.5-year process of reviewing and revising the manuscript. She proofread each chapter, and her feedback considerably improved the book’s presentation and clarity. My technical editor, Mohit Chilkoti, provided many good suggestions to improve clarity and pointed out errors. My review editor Adriana Sabo and her team organized the panel reviews, which gathered invaluable feedback that I used to substantially improve this book. To all the reviewers: Abdul Karim Memon, Ajit Malleri, Alessandro Buggin, Alessandro Campeis, Andres Sacco, Anto Aravinth, Ashwini Gupta, Clifford Thurber, Curtis Washington, Dipkumar Patel, Fasih Khatib, Ganesh Swaminathan, Haim Raman, Haresh Lala, Javid Asgarov, Jens Christian B. Madsen, Jeremy Chen, Jon Riddle, Jonathan Reeves, Kamesh Ganesan, Kiran Anantha, Laud Bentil, Lora Vardarova, Matt Ferderer, Max Sadrieh, Mike B., Muneeb Shaikh, Najeeb Arif, Narendran Solai Sridharan, Nolan To, Nouran Mahmoud, Patrick Wanjau, Peiti Li, Péter Szabó, Pierre-Michel Ansel, Pradeep Chellappan, Rahul Modpur, Rajesh Mohanan, Sadhana Ganapathiraju, Samson Hailu, Samuel Bosch, Sanjeev Kilarapu, Simeon Leyzerzon, Sravanthi Reddy, Vincent Ngo, Zoheb Ainapore, Zorodzayi Mukuya, your suggestions helped make this a better book.

 I’d like to thank Marc Roulleau, Andres von Linden, Amuthan Ganesan, Rob Conery, and Scott Hanselman for their support and their recommendations for additional resources.

 I wish to thank the tough northerners (not softie southerners) Andrew Waldron and Ian Hough. Andy pushed me to fill in many useful gritty details across all the chapters and guided me on how to properly format the figures to fit the pages. He helped me discover how much more capable I am than I previously thought. Aira Dučić and Matko Hrvatin helped much with marketing, and Dragana Butigan-Berberović and Ivan Martinović did a great job on formatting. Stjepan Jureković and Nikola Dimitrijević guided me through my promo video.

 about this book

 This book is about web services. A candidate should discuss the system’s requirements and then design a system of reasonable complexity and cost that fulfills those requirements.

 Besides coding interviews, system design interviews are conducted for most software engineering, software architecture, and engineering manager interviews.

 The ability to design and review large-scale systems is regarded as more important with increasing engineering seniority. Correspondingly, system design interviews are given more weight in interviews for senior positions. Preparing for them, both as an interviewer and candidate, is a good investment of time for a career in tech.

 The open-ended nature of system design interviews makes it a challenge to prepare for and know how or what to discuss during an interview. Moreover, there are few dedicated books on this topic. This is because system design is an art and a science. It is not about perfection. It is about making tradeoffs and compromises to design the system we can achieve with the given resources and time that most closely suits current and possible future requirements. With this book, the reader can build a knowledge foundation or identify and fill gaps in their knowledge.

 A system design interview is also about verbal communication skills, quick thinking, asking good questions, and handling performance anxiety. This book emphasizes that one must effectively and concisely express one’s system design expertise within a less-than-1-hour interview and drive the interview in the desired direction by asking the interviewer the right questions. Reading this book, along with practicing system design discussions with other engineers, will allow you to develop the knowledge and fluency required to pass system design interviews and participate well in designing systems in the organization you join. It can also be a resource for interviewers who conduct system design interviews.

 Who should read this book

 This book is for software engineers, software architects, and engineering managers looking to advance their careers.

 This is not an introductory software engineering book. This book is best used after one has acquired a minimal level of industry experience—perhaps a student doing a first internship may read the documentation websites and other introductory materials of unfamiliar tools and discuss them together with other unfamiliar concepts in this book with engineers at her workplace. This book discusses how to approach system design interviews and does not duplicate introductory material that we can easily find online or in other books. At least intermediate proficiency in coding and SQL are assumed.

 How this book is organized: A roadmap

 This book has 17 chapters across two parts and four brief appendixes.

 Part 1 is presented like a typical textbook, with chapters that cover various topics discussed in a system design interview.

 Part 2 consists of discussions of sample interview questions that reference the concepts covered in part 1. Each chapter was chosen to use some or most of the concepts covered in part 1. This book focuses on general web services, and we exclude highly specialized and complex topics like payments, video streaming, location services, or database development. Moreover, in my opinion, asking a candidate to spend 10 minutes to discuss database linearizability or consistency topics like coordination services, quorum, or gossip protocols does not reveal any expertise other than having read enough to discuss the said topic for 10 minutes. An interview for a specialized role that requires expertise on a highly specialized topic should be the focus of the entire interview and deserves its own dedicated books. In this book, wherever such topics are referenced, we refer to other books or resources that are dedicated to these said topics.

 liveBook discussion forum

 Purchase of Acing the System Design Interview includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/acing-the-system-design-interview/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Other online resources

 	
 https://github.com/donnemartin/system-design-primer

 	
 https://bigmachine.io/products/mission-interview/

 	
 http://geeksforgeeks.com

 	
 http://algoexpert.io

 	
 https://www.learnbay.io/

 	
 http://leetcode.com

 	
 https://bigmachine.io/products/mission-interview/

 about the author

 Zhiyong Tan is a manager at PayPal. Previously, he was a senior full-stack engineer at Uber, a software engineer at Teradata, and a data engineer at various startups. Over the years, he has been on both sides of the table in numerous system design interviews. Zhiyong has also received prized job offers from prominent companies such as Amazon, Apple, and ByteDance/TikTok.

 About the technical editor

 Mohit Chilkoti is a Platform Architect at Chargebee. He is an AWS-certified Solutions Architect and has designed an Alternative Investment Trading Platform for Morgan Stanley and a Retail Platform for Tekion Corp.

 about the cover illustration

 The figure on the cover of Acing the System Design Interview is “Femme Tatar Tobolsk,” or “A Tatar woman from the Tobolsk region,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1784. The illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1.

 This part of the book discusses common topics in system design interviews. It sets the stage for part 2, where we discuss sample system design interview questions.

 We begin in chapter 1 by walking through a sample system and introducing many system design concepts along the way without explaining them in detail, then deep dive into these concepts in subsequent chapters.

 In chapter 2, we discuss one’s experience in a typical system design interview. We’ll learn to clarify the requirements of the question and what aspects of the system to optimize at the expense of others. Then we discuss other common topics, including storing and searching data, operational concerns like monitoring and alerting, and edge cases and new constraints.

 In chapter 3, we dive into non-functional requirements, which are usually not explicitly requested by the customer or interviewer and must be clarified prior to designing a system.

 A large system may serve hundreds of millions of users and receive billions of data read and write requests every day. We discuss in chapter 4 how we can scale our databases to handle such traffic.

 The system may be divided into services, and we may need to write related data to these multiple services, which we discuss in chapter 5.

 Many systems require certain common functionalities. In chapter 6, we discuss how we can centralize such cross-cutting functionalities into services that can serve many other systems.

 1 A walkthrough of system design concepts

 This chapter covers

 	Learning the importance of the system design interview

 	Scaling a service

 	Using cloud hosting vs. bare metal

 A system design interview is a discussion between the candidate and the interviewer about designing a software system that is typically provided over a network. The interviewer begins the interview with a short and vague request to the candidate to design a particular software system. Depending on the particular system, the user base may be non-technical or technical.

 System design interviews are conducted for most software engineering, software architecture, and engineering manager job interviews. (In this book, we collectively refer to software engineers, architects, and managers as simply engineers.) Other components of the interview process include coding and behavioral/cultural interviews.

 1.1 A discussion about tradeoffs

 The following factors attest to the importance of system design interviews and preparing well for them as a candidate and an interviewer.

 Run in performance as a candidate in the system design interviews is used to estimate your breadth and depth of system design expertise and your ability to communicate and discuss system designs with other engineers. This is a critical factor in determining the level of seniority at which you will be hired into the company. The ability to design and review large-scale systems is regarded as more important with increasing engineering seniority. Correspondingly, system design interviews are given more weight in interviews for senior positions. Preparing for them, both as an interviewer and candidate, is a good investment of time for a career in tech.

 The tech industry is unique in that it is common for engineers to change companies every few years, unlike other industries where an employee may stay at their company for many years or their whole career. This means that a typical engineer will go through system design interviews many times in their career. Engineers employed at a highly desirable company will go through even more system design interviews as an interviewer. As an interview candidate, you have less than one hour to make the best possible impression, and the other candidates who are your competition are among the smartest and most motivated people in the world.

 System design is an art, not a science. It is not about perfection. We make tradeoffs and compromises to design the system we can achieve with the given resources and time that most closely suits current and possible future requirements. All the discussions of various systems in this book involve estimates and assumptions and are not academically rigorous, exhaustive, or scientific. We may refer to software design patterns and architectural patterns, but we will not formally describe these principles. Readers should refer to other resources for more details.

 A system design interview is not about the right answer. It is about one’s ability to discuss multiple possible approaches and weigh their tradeoffs in satisfying the requirements. Knowledge of the various types of requirements and common systems discussed in part 1 will help us design our system, evaluate various possible approaches, and discuss tradeoffs.

 1.2 Should you read this book?

 The open-ended nature of system design interviews makes it a challenge to prepare for and know how or what to discuss during an interview. An engineer or student who searches for online learning materials on system design interviews will find a vast quantity of content that varies in quality and diversity of the topics covered. This is confusing and hinders learning. Moreover, until recently, there were few dedicated books on this topic, though a trickle of such books is beginning to be published. I believe this is because a high-quality book dedicated to the topic of system design interviews is, quoting the celebrated 19th-century French poet and novelist Victor Hugo, “an idea whose time has come.” Multiple people will get this same idea at around the same time, and this affirms its relevance.

 This is not an introductory software engineering book. This book is best used after one has acquired a minimal level of industry experience. Perhaps if you are a student in your first internship, you can read the documentation websites and other introductory materials of unfamiliar tools and discuss them together with other unfamiliar concepts in this book with engineers at your workplace. This book discusses how to approach system design interviews and minimizes duplication of introductory material that we can easily find online or in other books. At least intermediate proficiency in coding and SQL is assumed.

 This book offers a structured and organized approach to start preparing for system design interviews or to fill gaps in knowledge and understanding from studying the large amount of fragmented material. Equally valuably, it teaches how to demonstrate one’s engineering maturity and communication skills during a system design interview, such as clearly and concisely articulating one’s ideas, knowledge, and questions to the interviewer within the brief ~50 minutes.

 A system design interview, like any other interview, is also about communication skills, quick thinking, asking good questions, and performance anxiety. One may forget to mention points that the interviewer is expecting. Whether this interview format is flawed can be endlessly debated. From personal experience, with seniority one spends an increasing amount of time in meetings, and essential abilities include quick thinking, being able to ask good questions, steering the discussion to the most critical and relevant topics, and communicating one’s thoughts succinctly. This book emphasizes that one must effectively and concisely express one’s system design expertise within the <1 hour interview and drive the interview in the desired direction by asking the interviewer the right questions. Reading this book, along with practicing system design discussions with other engineers, will allow you to develop the knowledge and fluency required to pass system design interviews and participate well in designing systems in the company you join. It can also be a resource for interviewers who conduct system design interviews.

 One may excel in written over verbal communication and forget to mention important points during the ~50-minute interview. System design interviews are biased in favor of engineers with good verbal communication and against engineers less proficient in verbal communication, even though the latter may have considerable system design expertise and have made valuable system design contributions in the organizations where they worked. This book prepares engineers for these and other challenges of system design interviews, shows how to approach them in an organized way, and coaches how not to be intimidated.

 If you are a software engineer looking to broaden your knowledge of system design concepts, improve your ability to discuss a system, or are simply looking for a collection of system design concepts and sample system design discussions, read on.

 1.3 Overview of this book

 This book is divided into two parts. Part 1 is presented like a typical textbook, with chapters that cover the various topics discussed in a system design interview. Part 2 consists of discussions of sample interview questions that reference the concepts covered in part 1 and also discusses antipatterns and common misconceptions and mistakes. In those discussions, we also state the obvious that one is not expected to possess all knowledge of all domains. Rather, one should be able to reason that certain approaches will help satisfy requirements better, with certain tradeoffs. For example, we don’t need to calculate file size reduction or CPU and memory resources required for Gzip compression on a file, but we should be able to state that compressing a file before sending it will reduce network traffic but consume more CPU and memory resources on both the sender and recipient.

 An aim of this book is to bring together a bunch of relevant materials and organize them into a single book so you can build a knowledge foundation or identify gaps in your knowledge, from which you can study other materials.

 The rest of this chapter is a prelude to a sample system design that mentions some of the concepts that will be covered in part 1. Based on this context, we will discuss many of the concepts in dedicated chapters.

 1.4 Prelude: A brief discussion of scaling the various services of a system

 We begin this book with a brief description of a typical initial setup of an app and a general approach to adding scalability into our app’s services as needed. Along the way, we introduce numerous terms and concepts and many types of services required by a tech company, which we discuss in greater detail in the rest of the book.

 Definition The scalability of a service is the ability to easily and cost-effectively vary resources allocated to it to serve changes in load. This applies to both increasing or decreasing user numbers and/or requests to the system. This is discussed more in chapter 3.

 1.4.1 The beginning: A small initial deployment of our app

 Riding the rising wave of interest in artisan bagels, we have just built an awesome consumer-facing app named Beigel that allows users to read and create posts about nearby bagel cafes.

 Initially, Beigel consists primarily of the following components:

 	
 Our consumer apps. They are essentially the same app, one for each of the three common platforms:

 	
 A browser app. This is a ReactJS browser consumer app that makes requests to a JavaScript runtime service. To reduce the size of the JavaScript bundle that users need to download, we compress it with Brotli. Gzip is an older and more popular choice, but Brotli produces smaller compressed files.

 	
 An iOS app, which is downloaded on a consumer’s iOS device.

 	
 An Android app, which is also downloaded on a consumer’s Android device.

 	
 A stateless backend service that serves the consumer apps. It can be a Go or Java service.

 	
 A SQL database contained in a single cloud host.

 We have two main services: the frontend service and the backend service. Figure 1.1 illustrates these components. As shown, the consumer apps are client-side components, while services and database are server-side components.

 Note Refer to sections 6.5.1 and 6.5.2 for a discussion on why we need a frontend service between the browser and the backend service.

 [image:]

 Figure 1.1 Initial system design of our app. For a more thorough discussion on the rationale for having three client applications and two server applications (excluding the SQL application/database), refer to chapter 6.

 When we first launch a service, it may only have a small number of users and thus a low request rate. A single host may be sufficient to handle the low request rate. We will set up our DNS to direct all requests to this host.

 Initially, we can host the two services within the same data center, each on a single cloud host. (We compare cloud vs. bare metal in the next section.) We configure our DNS to direct all requests from our browser app to our Node.js host and from our Node.js host and two mobile apps to our backend host.

 1.4.2 Scaling with GeoDNS

 Months later, Beigel has gained hundreds of thousands of daily active users in Asia, Europe, and North America. During periods of peak traffic, our backend service receives thousands of requests per second, and our monitoring system is starting to report status code 504 responses due to timeouts. We must scale up our system.

 We have observed the rise in traffic and prepared for this situation. Our service is stateless as per standard best practices, so we can provision multiple identical backend hosts and place each host in a different data center in a different part of the world. Referring to figure 1.2, when a client makes a request to our backend via its domain beigel.com, we use GeoDNS to direct the client to the data center closest to it.

 [image:]

 Figure 1.2 We may provision our service in multiple geographically distributed data centers. Depending on the client’s location (inferred from its IP address), a client obtains the IP address of a host of the closest data center, to which it sends its requests. The client may cache this host IP address.

 If our service serves users from a specific country or geographical region in general, we will typically host our service in a nearby data center to minimize latency. If your service serves a large geographically distributed userbase, we can host it on multiple data centers and use GeoDNS to return to a user the IP address of our service hosted in the closest data center. This is done by assigning multiple A records to our domain for various locations and a default IP address for other locations. (An A record is a DNS configuration that maps a domain to an IP address.)

 When a client makes a request to the server, the GeoDNS obtains the client’s location from their IP address and assigns the client the corresponding host IP address. In the unlikely but possible event that the data center is inaccessible, GeoDNS can return an IP address of the service on another data center. This IP address can be cached at various levels, including the user’s Internet Service Provider (ISP), OS, and browser.

 1.4.3 Adding a caching service

 Referring to figure 1.3, we next set up a Redis cache service to serve cached requests from our consumer apps. We select certain backend endpoints with heavy traffic to serve from the cache. That bought us some time as our user base and request load continued to grow. Now, further steps are needed to scale up.

 [image:]

 Figure 1.3 Adding a cache to our service. Certain backend endpoints with heavy traffic can be cached. The backend will request data from the database on a cache miss or for SQL databases/tables that were not cached.

 1.4.4 Content distribution network

 Our browser apps had been hosting static content/files that are displayed the same to any user and unaffected by user input, such as JavaScript, CSS libraries, and some images and videos. We had placed these files within our app’s source code repository, and our users were downloading them from our Node.js service together with the rest of the app. Referring to figure 1.4, we decided to use a third-party content distribution network (CDN) to host the static content. We selected and provisioned sufficient capacity from a CDN to host our files, uploaded our files onto our CDN instance, rewrote our code to fetch the files from the URLs of the CDN, and removed the files from our source code repository.

 [image:]

 Figure 1.4 Adding a CDN to our service. Clients can obtain CDN addresses from the backend, or certain CDN addresses can be hardcoded in the clients or Node.js service.

 Referring to figure 1.5, a CDN stores copies of the static files in various data centers across the world, so a user can download these files from the data center that can provide them the lowest latency, which is usually the geographically closest one, though other data centers may be faster if the closest one is serving heavy traffic or suffering a partial outage.

 [image:]

 Figure 1.5 The left illustration shows all clients downloading from the same host. The right illustration shows clients downloading from various hosts of a CDN. (Copyright cc-by-sa https://creativecommons.org/licenses/by-sa/3.0/. Image by Kanoha from https://upload.wikimedia.org/wikipedia/commons/f/f9/NCDN_-_CDN.png.)

 Using a CDN improved latency, throughput, reliability, and cost. (We discuss all these concepts in chapter 3.) Using a CDN, unit costs decrease with demand because maintenance, integration overhead, and customer support are spread over a larger load.

 Popular CDNs include CloudFlare, Rackspace, and AWS CloudFront.

 1.4.5 A brief discussion of horizontal scalability and cluster management, continuous integration, and continuous deployment

 Our frontend and backend services are idempotent (we discuss some benefits of idempotency and its benefits in sections 4.6.1, 6.1.2, and 7.7), thus they are horizontally scalable, so we can provision more hosts to support our larger request load without rewriting any source code and deploy the frontend or backend service to those hosts as needed.

 Each of our services has multiple engineers working on its source code. Our engineers submit new commits every day. We change software development and release practices to support this larger team and faster development, hiring two DevOps engineers in the process to develop the infrastructure to manage a large cluster. As scaling requirements of a service can change quickly, we want to be able to easily resize its cluster. We need to be able to easily deploy our services and required configurations to new hosts. We also want to easily build and deploy code changes to all the hosts in our service’s cluster. We can take advantage of our large userbase for experimentation by deploying different code or configurations to various hosts. This section is a brief discussion of cluster management for horizontal scalability and experimentation.

 CI/CD and Infrastructure as Code

 To allow new features to be released quickly while minimizing the risk of releasing bugs, we adopt continuous integration and continuous deployment with Jenkins and unit testing and integration testing tools. (A detailed discussion of CI/CD is outside the scope of this book.) We use Docker to containerize our services, Kubernetes (or Docker Swarm) to manage our host cluster including scaling and providing load balancing, and Ansible or Terraform for configuration management of our various services running on our various clusters.

 Note Mesos is widely considered obsolete. Kubernetes is the clear winner. A couple of relevant articles are https://thenewstack.io/apache-mesos-narrowly-avoids-a-move-to-the-attic-for-now/ and https://www.datacenterknowledge.com/business/after-kubernetes-victory-its-former-rivals-change-tack.

 Terraform allows an infrastructure engineer to create a single configuration compatible with multiple cloud providers. A configuration is authored in Terraform’s domain-specific language (DSL) and communicates with cloud APIs to provision infrastructure. In practice, a Terraform configuration may contain some vendor-specific code, which we should minimize. The overall consequence is less vendor lock-in.

 This approach is also known as Infrastructure as Code. Infrastructure as Code is the process of managing and provisioning computer data centers through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools (Wittig, Andreas; Wittig, Michael [2016]. Amazon Web Services in Action. Manning Publications. p. 93. ISBN 978-1-61729-288-0).

 Gradual rollouts and rollbacks

 In this section, we briefly discuss gradual rollouts and rollbacks, so we can contrast them with experimentation in the next section.

 When we deploy a build to production, we may do so gradually. We may deploy the build to a certain percentage of hosts, monitor it and then increase the percentage, repeating this process until 100% of production hosts are running this build. For example, we may deploy to 1%, 5%, 10%, 25%, 50%, 75%, and then finally 100%. We may manually or automatically roll back deployments if we detect any problems, such as:

 	
 Bugs that slipped through testing.

 	
 Crashes.

 	
 Increased latency or timeouts.

 	
 Memory leaks.

 	
 Increased resource consumption like CPU, memory, or storage utilization.

 	
 Increased user churn. We may also need to consider user churn in gradual outs—that is, that new users are signing on and using the app, and certain users may stop using the app. We can gradually expose an increasing percentage of users to a new build and study its effect on churn. User churn may occur due to the mentioned factors or unexpected problems such as many users disliking the changes.

 For example, a new build may increase latency beyond an acceptable level. We can use a combination of caching and dynamic routing to handle this. Our service may specify a one-second latency. When a client makes a request that is routed to a new build, and a timeout occurs, our client may read from its cache, or it may repeat its request and be routed to a host with an older build. We should log the requests and responses so we can troubleshoot the timeouts.

 We can configure our CD pipeline to divide our production cluster into several groups, and our CD tool will determine the appropriate number of hosts in each group and assign hosts to groups. Reassignments and redeployments may occur if we resize our cluster.

 Experimentation

 As we make UX changes in developing new features (or removing features) and aesthetic designs in our application, we may wish to gradually roll them out to an increasing percentage of users, rather than to all users at once. The purpose of experimentation is to determine the effect of UX changes on user behavior, in contrast to gradual rollouts, which are about the effect of new deployments on application performance and user churn. Common experimentation approaches are A/B and multivariate testing, such as multi-armed bandit. These topics are outside the scope of this book. For more information on A/B testing, refer to https://www.optimizely.com/optimization-glossary/ab-testing/. For multivariate testing, see Experimentation for Engineers by David Sweet (Manning Publications, 2023) or https://www.optimizely.com/optimization-glossary/multi-armed-bandit/ for an introduction to multi-armed bandit.)

 Experimentation is also done to deliver personalized user experiences.

 Another difference between experimentation vs. gradual rollouts and rollbacks is that in experimentation, the percentage of hosts running various builds is often tuned by an experimentation or feature toggle tool that is designed for that purpose, while in gradual rollouts and rollbacks, the CD tool is used to manually or automatically roll back hosts to previous builds if problems are detected.

 CD and experimentation allow short feedback cycles to new deployments and features.

 In web and backend applications, each user experience (UX) is usually packaged in a different build. A certain percentage of hosts will contain a different build. Mobile apps are usually different. Many user experiences are coded into the same build, but each individual user will only be exposed to a subset of these user experiences. The main reasons for this are:

 	
 Mobile application deployments must be made through the app store. It may take many hours to deploy a new version to user devices. There is no way to quickly roll back a deployment.

 	
 Compared to Wi-Fi, mobile data is slower, less reliable, and more expensive. Slow speed and unreliability mean we need to have much content served offline, already in the app. Mobile data plans in many countries are still expensive and may come with data caps and overage charges. We should avoid exposing users to these charges, or they may use the app less or uninstall it altogether. To conduct experimentation while minimizing data usage from downloading components and media, we simply include all these components and media in the app and expose the desired subset to each individual user.

 	
 A mobile app may also include many features that some users will never use because it is not applicable to them. For example, section 15.1 discusses various methods of payment in an app. There are possibly thousands of payment solutions in the world. The app needs to contain all the code and SDKs for every payment solution, so it can present each user with the small subset of payment solutions they may have.

 A consequence of all this is that a mobile app can be over 100MB in size. The techniques to address this are outside the scope of this book. We need to achieve a balance and consider tradeoffs. For example, YouTube’s mobile app installation obviously cannot include many YouTube videos.

 1.4.6 Functional partitioning and centralization of cross-cutting concerns

 Functional partitioning is about separating various functions into different services or hosts. Many services have common concerns that can be extracted into shared services. Chapter 6 discusses the motivation, benefits, and tradeoffs.

 Shared services

 Our company is expanding rapidly. Our daily active user count has grown to millions. We expand our engineering team to five iOS engineers, five Android engineers, 10 frontend engineers, 100 backend engineers, and we create a data science team.

 Our expanded engineering team can work on many services beyond the apps directly used by consumers, such as services for our expanding customer support and operations departments. We add features within the consumer apps for consumers to contact customer support and for operations to create and launch variations of our products.

 Many of our apps contain search bars. We create a shared search service with Elasticsearch.

 In addition to horizontal scaling, we use functional partitioning to spread out data processing and requests across a large number of geographically distributed hosts by partitioning based on functionality and geography. We already did functional partitioning of our cache, Node.js service, backend service, and database service into separate hosts, and we do functional partitioning for other services as well, placing each service on its own cluster of geographically distributed hosts. Figure 1.6 shows the shared services that we add to Beigel.

 [image:]

 Figure 1.6 Functional partitioning. Adding shared services.

 We added a logging service, consisting of a log-based message broker. We can use the Elastic Stack (Elasticsearch, Logstash, Kibana, Beats). We also use a distributed tracing system, such as Zipkin or Jaeger or distributed logging, to trace a request as it traverses through our numerous services. Our services attach span IDs to each request so they can be assembled as traces and analyzed. Section 2.5 discusses logging, monitoring, and alerting.

 We also added monitoring and alerting services. We build internal browser apps for our customer support employees to better assist customers. These apps process the consumer app logs generated by the customer and present them with good UI so our customer support employees can more easily understand the customer’s problem.

 API gateway and service mesh are two ways to centralize cross-cutting concerns. Other ways are the decorator pattern and aspect-oriented programming, which are outside the scope of this book.

 API gateway

 By this time, app users make up less than half of our API requests. Most requests originate from other companies, which offer services such as recommending useful products and services to our users based on their in-app activities. We develop an API gateway layer to expose some of our APIs to external developers.

 An API gateway is a reverse proxy that routes client requests to the appropriate backend services. It provides the common functionality to many services, so individual services do not duplicate them:

 	
 Authorization and authentication, and other access control and security policies

 	
 Logging, monitoring, and alerting at the request level

 	
 Rate limiting

 	
 Billing

 	
 Analytics

 Our initial architecture involving an API gateway and its services is illustrated in figure 1.7. A request to a service goes through a centralized API gateway. The API gateway carries out all the functionality described previously, does a DNS lookup, and then forwards the request to a host of the relevant service. The API gateway makes requests to services such as DNS, identity and access control and management, rate-limiting configuration service, etc. We also log all configuration changes done through the API gateway.

 [image:]

 Figure 1.7 Initial architecture with our API gateway and services. Requests to services go through the API gateway

 However, this architecture has the following drawbacks. The API gateway adds latency and requires a large cluster of hosts. The API gateway host and a service’s host that serves a particular request may be in different data centers. A system design that tries to route requests through API gateway hosts and service hosts will be an awkward and complex design.

 A solution is to use a service mesh, also called the sidecar pattern. We discuss service mesh further in chapter 6. Figure 1.8 illustrates our service mesh. We can use a service mesh framework such as Istio. Each host of each service can run a sidecar along the main service. We use Kubernetes pods to accomplish this. Each pod can contain its service (in one container) as well as its sidecar (in another container). We provide an admin interface to configure policies, and these configurations can be distributed to all sidecars.

 [image:]

 Figure 1.8 Illustration of a service mesh. Prometheus makes requests to each proxy host to pull/scrape metrics, but this is not illustrated in the diagram because the many arrows will make it too cluttered and confusing. Figure adapted from https://livebook.manning.com/book/cloud-native/chapter-10/146.

 With this architecture, all service requests and responses are routed through the sidecar. The service and sidecar are on the same host (i.e., same machine) so they can address each other over localhost, and there is no network latency. However, the sidecar does consume system resources.

 Sidecarless service mesh—The cutting edge

 The service mesh required our system to nearly double the number of containers. For systems that involve communication between internal services (aka ingress or east-west), we can reduce this complexity by placing the sidecar proxy logic into client hosts that make requests to service hosts. In the design of sidecarless service mesh, client hosts receive configurations from the control plane. Client hosts must support the control plane API, so they must also include the appropriate network communication libraries.

 A limitation of sidecarless service mesh is that there must be a client who is in the same language as the service.

 The development of sidecarless service mesh platforms is in its early stages. Google Cloud Platform (GCP) Traffic Director is an implementation that was released in April 2019 (https://cloud.google.com/blog/products/networking/traffic-director-global-traffic-management-for-open-service-mesh).

 Command Query Responsibility Segregation (CQRS)

 Command Query Responsibility Segregation (CQRS) is a microservices pattern where command/write operations and query/read operations are functionally partitioned onto separate services. Message brokers and ETL jobs are examples of CQRS. Any design where data is written to one table and then transformed and inserted into another table is an example of CQRS. CQRS introduces complexity but has lower latency and better scalability and is easier to maintain and use. The write and read services can be scaled separately.

 You will see many examples of CQRS in this book, though they will not be called out. Chapter 15 has one such example, where an Airbnb host writes to the Listing Service, but guests read from the Booking Service. (Though the Booking Service also provides write endpoints for guests to request bookings, which is unrelated to a host updating their listings.)

 You can easily find more detailed definition of CQRS in other sources.

 1.4.7 Batch and streaming extract, transform, and load (ETL)

 Some of our systems have unpredictable traffic spikes, and certain data processing requests do not have to be synchronous (i.e., process immediately and return response):

 	
 Some requests that involve large queries to our databases (such as queries that process gigabytes of data).

 	
 It may make more sense to periodically preprocess certain data ahead of requests rather than process it only when a request is made. For example, our app’s home page may display the top 10 most frequently learned words across all users in the last hour or in the seven days. This information should be processed ahead of time once an hour or once a day. Moreover, the result of this processing can be reused for all users, rather than repeating the processing for each user.

 	
 Another possible example is that it may be acceptable for users to be shown data that is outdated by some hours or days. For example, users do not need to see the most updated statistics of the number of users who have viewed their shared content. It is acceptable to show them statistics that are out-of-date by a few hours.

 	
 Writes (e.g., INSERT, UPDATE, DELETE database requests) that do not have to be executed immediately. For example, writes to the logging service do not have to be immediately written to the hard disk drives of logging service hosts. These write requests can be placed in a queue and executed later.

 In the case of certain systems like logging, which receive large request volumes from many other systems, if we do not use an asynchronous approach like ETL, the logging system cluster will have to have thousands of hosts to process all these requests synchronously.

 We can use a combination of event streaming systems like Kafka (or Kinesis if we use AWS) and batch ETL tools such as Airflow for such batch jobs.

 If we wish to continuously process data, rather than periodically running batch jobs, we can use streaming tools such as Flink. For example, if a user inputs some data into our app, and we want to use it to send certain recommendations or notifications to them within seconds or minutes, we can create a Flink pipeline that processes recent user inputs. A logging system is usually streaming because it expects a non-stop stream of requests. If the requests are less frequent, a batch pipeline will be sufficient.

 1.4.8 Other common services

 As our company grows and our userbase expands, we develop more products, and our products should become increasingly customizable and personalized to serve this large, growing, and diverse userbase. We will require numerous other services to satisfy the new requirements that come with this growth and to take advantage of it. They include the following:

 	
 Customer/external user credentials management for external user authentication and authorization.

 	
 Various storage services, including database services. The specific requirements of each system mean that there are certain optimal ways that the data it uses should be persisted, processed, and served. We will need to develop and maintain various shared storage services that use different technologies and techniques.

 	
 Asynchronous processing. Our large userbase requires more hosts and may create unpredictable traffic spikes to our services. To handle traffic spikes, we need asynchronous processing to efficiently utilize our hardware and reduce unnecessary hardware expenditure.

 	
 Notebooks service for analytics and machine learning, including experimentation, model creation, and deployment. We can use our large customer base for experimentation to discover user preferences, personalize user experiences, attract more users, and discover other ways to increase our revenue.

 	
 Internal search and subproblems (e.g., autocomplete/typeahead service). Many of our web or mobile applications can have search bars for users to search for their desired data.

 	
 Privacy compliance services and teams. Our expanding user numbers and large amount of customer data will attract malicious external and internal actors, who will attempt to steal data. A privacy breach on our large userbase will affect numerous people and organizations. We must invest in safeguarding user privacy.

 	
 Fraud detection. The increasing revenue of our company will make it a tempting target for criminals and fraudsters, so effective fraud detection systems are a must.

 1.4.9 Cloud vs. bare metal

 We can manage our own hosts and data centers or outsource this to cloud vendors. This section is a comparative analysis of both approaches.

 General considerations

 At the beginning of this section, we decided to use cloud services (renting hosts from providers such as Amazon’s AWS, DigitalOcean, or Microsoft Azure) instead of bare metal (owning and managing our own physical machines).

 Cloud providers provide many services we will require, including CI/CD, logging, monitoring, alerting, and simplified setup and management of various database types including caches, SQL, and NoSQL.

 If we chose bare metal from the beginning, we would have set up and maintained any of these services that we require. This may take away attention and time from feature development, which may prove costly to our company.

 We must also consider the cost of engineering labor vs. cloud tools. Engineers are very expensive resources, and besides being monetarily costly, good engineers tend to prefer challenging work. Bore them with menial tasks such as small-scale setups of common services, and they may move to another company and be difficult to replace in a competitive hiring market.

 Cloud tools are often cheaper than hiring engineers to set up and maintain your bare-metal infrastructure. We most likely do not possess the economies of scale and their accompanying unit cost efficiencies or the specialized expertise of dedicated cloud providers. If our company is successful, it may reach a growth stage where we have the economies of scale to consider bare metal.

 Using cloud services instead of bare metal has other benefits including the following.

 Simplicity of setup

 On a cloud provider’s browser app, we can easily choose a package most suited for our purposes. On bare metal, we would need steps such as installing server software like Apache or setting up network connections and port forwarding.

 Cost advantages

 Cloud has no initial upfront cost of purchasing physical machines/servers. A cloud vendor allows us to pay for incremental use and may offer bulk discounts. Scaling up or down in response to unpredictably changing requirements is easy and fast. If we choose bare metal, we may end up in a situation where we have too few or too many physical machines. Also, some cloud providers offer “auto-scaling” services, which automatically resize our cluster to suit the present load.

 That being said, cloud is not always cheaper than bare metal. Dropbox (https://www.geekwire.com/2018/dropbox-saved-almost-75-million-two-years-building-tech-infrastructure/) and Uber (https://www.datacenterknowledge.com/uber/want-build-data-centers-uber-follow-simple-recipe) are two examples of companies that host on their own data centers because their requirements meant it was the more cost-efficient choice.

 Cloud services may provide better support and quality

 Anecdotal evidence suggests that cloud services generally provide superior performance, user experience, and support and have fewer and less serious outages. A possible reason is that cloud services must be competitive in the market to attract and retain customers, compared to bare metal, which an organization’s users have little choice but to use. Many organizations tend to value and pay more attention to customers than internal users or employees, possibly because customer revenue is directly measurable, while the benefit of providing high-quality services and support to internal users may be more difficult to quantify. The corollary is that the losses to revenue and morale from poor-quality internal services are also difficult to quantify. Cloud services may also have economies of scale that bare metal lacks because the efforts of the cloud service’s team are spread across a larger user base.

 External-facing documentation may be better than internal-facing documentation. It may be better written, updated more often, and placed on a well-organized website that is easy to search. There may be more resources allocated, so videos and step-by-step tutorials may be provided.

 External services may provide higher-quality input validation than internal services. Considering a simple example, if a certain UI field or API endpoint field requires the user to input an email address, the service should validate that the user’s input is actually a valid email address. A company may pay more attention to external users who complain about the poor quality of input validation because they may stop using and paying for the company’s product. Similar feedback from internal users who have little choice may be ignored.

 When an error occurs, a high-quality service should return instructive error messages that guide the user on how to remedy the error, preferably without the time-consuming process of having to contact support personnel or the service’s developers. External services may provide better error messages as well as allocate more resources and incentives to provide high-quality support.

 If a customer sends a message, they may receive a reply within minutes or hours, while it may take hours or days to respond to an employee’s questions. Sometimes a question to an internal helpdesk channel is not responded to at all. The response to an employee may be to direct them to poorly written documentation.

 An organization’s internal services can only be as good as external services if the organization provides adequate resources and incentives. Because better user experience and support improve users’ morale and productivity, an organization may consider setting up metrics to measure how well internal users are served. One way to avoid these complications is to use cloud services. These considerations can be generalized to external vs. internal services.

 Last, it is the responsibility of individual developers to hold themselves to high standards but not to make assumptions about the quality of others’ work. However, the persistent poor quality of internal dependencies can hurt organizational productivity and morale.

 Upgrades

 Both the hardware and software technologies used in an organization’s bare metal infrastructure will age and be difficult to upgrade. This is obvious for finance companies that use mainframes. It is extremely costly, difficult, and risky to switch from mainframes to commodity servers, so such companies continue to buy new mainframes, which are far more expensive than their equivalent processing power in commodity servers. Organizations that use commodity servers also need the expertise and effort to constantly upgrade their hardware and software. For example, even upgrading the version of MySQL used in a large organization takes considerable time and effort. Many organizations prefer to outsource such maintenance to cloud providers.

 Some disadvantages

 One disadvantage of cloud providers is vendor lock-in. Should we decide to transfer some or all components of our app to another cloud vendor, this process may not be straightforward. We may need considerable engineering effort to transfer data and services from one cloud provider to another and pay for duplicate services during this transition.

 There are many possible reasons we will want to migrate out of a vendor. Today, the vendor may be a well-managed company that fulfills a demanding SLA at a competitive price, but there is no guarantee this will always be true. The quality of a company’s service may degrade in the future, and it may fail to fulfill its SLA. The price may become uncompetitive, as bare metal or other cloud vendors become cheaper in the future. Or the vendor may be found to be lacking in security or other desirable characteristics.

 Another disadvantage is the lack of ownership over the privacy and security of our data and services. We may not trust the cloud provider to safeguard our data or ensure the security of our services. With bare metal, we can personally verify privacy and security.

 For these reasons, many companies adopt a multi-cloud strategy, using multiple cloud vendors instead of a single one, so these companies can migrate away from any particular vendor at short notice should the need suddenly arise.

 1.4.10 Serverless: Function as a Service (FaaS)

 If a certain endpoint or function is infrequently used or does not have strict latency requirements, it may be cheaper to implement it as a function on a Function as a Service (FaaS) platform, such as AWS Lambda or Azure Functions. Running a function only when needed means that there does not need to be hosts continuously waiting for requests to this function.

 OpenFaaS and Knative are open-source FaaS solutions that we can use to support FaaS on our own cluster or as a layer on AWS Lambda to improve the portability of our functions between cloud platforms. As of this book’s writing, there is no integration between open-source FaaS solutions and other vendor-managed FaaS such as Azure Functions.

 Lambda functions have a timeout of 15 minutes. FaaS is intended to process requests that can complete within this time.

 In a typical configuration, an API gateway service receives incoming requests and triggers the corresponding FaaS functions. The API gateway is necessary because there needs to be a continuously running service that waits for requests.

 Another benefit of FaaS is that service developers need not manage deployments and scaling and can concentrate on coding their business logic.

 Note that a single run of a FaaS function requires steps such as starting a Docker container, starting the appropriate language runtime (Java, Python, Node.js, etc.) and running the function, and terminating the runtime and Docker container. This is commonly referred to as cold start. Frameworks that take minutes to start, such as certain Java frameworks, may be unsuitable for FaaS. This spurred the development of JDKs with fast startups and low memory footprints such as GraalVM (https://www.graalvm.org/).

 Why is this overhead required? Why can’t all functions be packaged into a single package and run across all host instances, similar to a monolith? The reasons are the disadvantages of monoliths (refer to appendix A).

 Why not have a frequently-used function deployed to certain hosts for a certain amount of time, (i.e., with an expiry)? Such a system is similar to auto-scaling microservices and can be considered when using frameworks that take a long time to start.

 The portability of FaaS is controversial. At first glance, an organization that has done much work in a proprietary FaaS like AWS Lambda can become locked in; migrating to another solution becomes difficult, time-consuming, and expensive. Open-source FaaS platforms are not a complete solution, because one must provision and maintain one’s own hosts, which defeats the scalability purpose of FaaS. This problem becomes especially significant at scale, when FaaS may become much more expensive than bare metal.

 However, a function in FaaS can be written in two layers: an inner layer/function that contains the main logic of the function, wrapped by an outer layer/function that contains vendor-specific configurations. To switch vendors for any function, one only needs to change the outer function.

 Spring Cloud Function (https://spring.io/projects/spring-cloud-function) is an emerging FaaS framework that is a generalization of this concept. It is supported by AWS Lambda, Azure Functions, Google Cloud Functions, Alibaba Function Compute, and may be supported by other FaaS vendors in the future.

 1.4.11 Conclusion: Scaling backend services

 In the rest of part 1, we discuss concepts and techniques to scale a backend service. A frontend/UI service is usually a Node.js service, and all it does is serve the same browser app written in a JavaScript framework like ReactJS or Vue.js to any user, so it can be scaled simply by adjusting the cluster size and using GeoDNS. A backend service is dynamic and can return a different response to each request. Its scalability techniques are more varied and complex. We discussed functional partitioning in the previous example and will occasionally touch on it as needed.

 Summary

 	
 System design interview preparation is critical to your career and also benefits your company.

 	
 The system design interview is a discussion between engineers about designing a software system that is typically provided over a network.

 	
 GeoDNS, caching, and CDN are basic techniques for scaling our service.

 	
 CI/CD tools and practices allow feature releases to be faster with fewer bugs. They also allow us to divide our users into groups and expose each group to a different version of our app for experimentation purposes.

 	
 Infrastructure as Code tools like Terraform are useful automation tools for cluster management, scaling, and feature experimentation.

 	
 Functional partitioning and centralization of cross-cutting concerns are key elements of system design.

 	
 ETL jobs can be used to spread out the processing of traffic spikes over a longer time period, which reduces our required cluster size.

 	
 Cloud hosting has many advantages. Cost is often but not always an advantage. There are also possible disadvantages such as vendor lock-in and potential privacy and security risks.

 	
 Serverless is an alternative approach to services. In exchange for the cost advantage of not having to keep hosts constantly running, it imposes limited functionality.

 2 A typical system design interview flow

 This chapter covers

 	Clarifying system requirements and optimizing possible tradeoffs

 	Drafting your system’s API specification

 	Designing the data models of your system

 	Discussing concerns like logging, monitoring, and alerting or search

 	Reflecting on your interview experience and evaluating the company

 In this chapter, we will discuss a few principles of system design interviews that must be followed during your 1 hour system design interview. When you complete this book, refer to this list again. Keep these principles in mind during your interviews:

 	
 Clarify functional and non-functional requirements (refer to chapter 3), such as QPS (queries per second) and P99 latency. Ask whether the interviewer desires wants to start the discussion from a simple system and then scale up and design more features or start with immediately designing a scalable system.

 	
 Everything is a tradeoff. There is almost never any characteristic of a system that is entirely positive and without tradeoffs. Any new addition to a system to improve scalability, consistency, or latency also increases complexity and cost and requires security, logging, monitoring, and alerting.

 	
 Drive the interview. Keep the interviewer’s interest strong. Discuss what they want. Keep suggesting topics of discussion to them.

 	
 Be mindful of time. As just stated, there is too much to discuss in 1 hour.

 	
 Discuss logging, monitoring, alerting, and auditing.

 	
 Discuss testing and maintainability including debuggability, complexity, security, and privacy.

 	
 Consider and discuss graceful degradation and failure in the overall system and every component, including silent and disguised failures. Errors can be silent. Never trust anything. Don’t trust external or internal systems. Don’t trust your own system.

 	
 Draw system diagrams, flowcharts, and sequence diagrams. Use them as visual aids for your discussions.

 	
 The system can always be improved. There is always more to discuss.

 A discussion of any system design interview question can last for many hours. You will need to focus on certain aspects by suggesting to the interviewer various directions of discussion and asking which direction to go. You have less than 1 hour to communicate or hint the at full extent of your knowledge. You must possess the ability to consider and evaluate relevant details and to smoothly zoom up and down to discuss high-level architecture and relationships and low-level implementation details of every component. If you forget or neglect to mention something, the interviewer will assume you don’t know it. One should practice discussing system design questions with fellow engineers to improve oneself in this art. Prestigious companies interview many polished candidates, and every candidate who passes is well-drilled and speaks the language of system design fluently.

 The question discussions in this section are examples of the approaches you can take to discuss various topics in a system design interview. Many of these topics are common, so you will see some repetition between the discussions. Pay attention to the use of common industry terms and how many of the sentences uttered within the time-limited discussion are filled with useful information.

 The following list is a rough guide. A system design discussion is dynamic, and we should not expect it to progress in the order of this list:

 	
 Clarify the requirements. Discuss tradeoffs.

 	
 Draft the API specification.

 	
 Design the data model. Discuss possible analytics.

 	
 Discuss failure design, graceful degradation, monitoring, and alerting. Other topics include bottlenecks, load balancing, removing single points of failure, high availability, disaster recovery, and caching.

 	
 Discuss complexity and tradeoffs, maintenance and decommissioning processes, and costs.

 2.1 Clarify requirements and discuss tradeoffs

 Clarifying the requirements of the question is the first checkbox to tick off during an interview. Chapter 3 describes the details and importance of discussing functional and non-functional requirements.

 We end this chapter with a general guide to discussing requirements in an interview. We will go through this exercise in each question of part 2. We emphasize that you keep in mind that your particular interview may be a unique situation, and you should deviate from this guide as required by your situation.

 Discuss functional requirements within 10 minutes because that is already ≥20% of the interview time. Nonetheless, attention to detail is critical. Do not write down the functional requirements one at a time and discuss them. You may miss certain requirements. Rather, quickly brainstorm and scribble down a list of functional requirements and then discuss them. We can tell the interviewer that we want to ensure we have captured all crucial requirements, but we also wish to be mindful of time.

 We can begin by spending 30 seconds or 1 minute discussing the overall purpose of the system and how it fits into the big-picture business requirements. We can briefly mention endpoints common to nearly all systems, like health endpoints, signup, and login. Anything more than a brief discussion is unlikely to be within the scope of the interview. We then discuss the details of some common functional requirements:

 	
 Consider user categories/roles:

 	
 Who will use this system and how? Discuss and scribble down user stories. Consider various combinations of user categories, such as manual versus programmatic or consumer versus enterprise. For example, a manual/consumer combination involves requests from our consumers via our mobile or browser apps. A programmatic/enterprise combination involves requests from other services or companies.

 	
 Technical or nontechnical? Design platforms or services for developers or non-developers. Technical examples include a database service like key-value store, libraries for purposes like consistent hashing, or analytics services. Non-technical questions are typically in the form of “Design this well-known consumer app.” In such questions, discuss all categories of users, not just the non-technical consumers of the app.

 	
 List the user roles (e.g., buyer, seller, poster, viewer, developer, manager).

 	
 Pay attention to numbers. Every functional and non-functional requirement must have a number. Fetch news items? How many news items? How much time? How many milliseconds/seconds/hours/days?

 	
 Any communication between users or between users and operations staff?

 	
 Ask about i18n and L10n support, national or regional languages, postal address, price, etc. Ask whether multiple currency support is required.

 	
 Based on the user categories, clarify the scalability requirements. Estimate the number of daily active users and then estimate the daily or hourly request rate. For example, if a search service has 1 billion daily users, each submitting 10 search requests, there are 10 billion daily requests or 420 million hourly requests.

 	
 Which data should be accessible to which users? Discuss the authentication and authorization roles and mechanisms. Discuss the contents of the response body of the API endpoint. Next, discuss how often is data retrieved—real-time, monthly reports, or another frequency?

 	
 Search. What are possible use cases that involve search?

 	
 Analytics is a typical requirement. Discuss possible machine learning requirements, including support for experimentation such as A/B testing or multi-armed bandit. Refer to https://www.optimizely.com/optimization-glossary/ab-testing/ and https://www.optimizely.com/optimization-glossary/multi-armed-bandit/ for introductions to these topics.

 	
 Scribble down pseudocode function signatures (e.g., fetchPosts(userId)) to fetch posts by a certain user and match them to the user stories. Discuss with the interviewer which requirements are needed and which are out of scope.

 Always ask, “Are there other user requirements?” and brainstorm these possibilities. Do not allow the interviewer to do the thinking for you. Do not give the interviewer the impression that you want them to do the thinking for you or want them to tell you all the requirements.

 Requirements are subtle, and one often misses details even if they think they have clarified them. One reason software development follows agile practices is that requirements are difficult or impossible to communicate. New requirements or restrictions are constantly discovered through the development process. With experience, one learns the clarifying questions to ask.

 Display your awareness that a system can be expanded to serve other functional requirements in the future and brainstorm such possibilities.

 The interviewer should not expect you to possess all domain knowledge, so you may not think of certain requirements that require specific domain knowledge. What you do need is demonstrate your critical thinking, attention to detail, humility, and willingness to learn.

 Next, discuss non-functional requirements. Refer to chapter 3 for a detailed discussion of non-functional requirements. We may need to design our system to serve the entire world population and assume that our product has complete global market dominance. Clarify with your interviewer whether we should design immediately for scalability. If not, they may be more interested in how we consider complicated functional requirements. This includes the data models we design. After we discuss requirements, we can proceed to discuss our system design.

 2.2 Draft the API specification

 Based on the functional requirements, determine the data that the system’s users expect to receive from and send to the system. We will generally spend less than five minutes scrabbling down a draft of the GET, POST, PUT, and DELETE endpoints, including path and query parameters. It is generally inadvisable to linger on drafting the endpoints. Inform the interviewer that there is much more to discuss within our 50 minutes, so we will not use much time here.

 You should have already clarified the functional requirements before scribbling these endpoints; you are past the appropriate section of the interview to clarify functional requirements and should not do so here unless you missed anything.

 Next, propose an API specification and describe how it satisfies the functional requirements, then briefly discuss it and identify any functional requirements that you may have missed.

 2.2.1 Common API endpoints

 These are common endpoints of most systems. You can quickly go over these endpoints and clarify that they are out of scope. It is very unlikely that you will need to discuss them in detail, but it never hurts to display that you are detail-oriented while also seeing the big picture.

 Health

 GET /health is a test endpoint. A 4xx or 5xx response indicates the system has production problems. It may just do a simple database query, or it may return health information such as disk space, statuses of various other endpoints, and application logic checks.

 Signup and login (authentication)

 An app user will typically need to sign up (POST /signup) and log in (POST /login) prior to submitting content to the app. OpenID Connect is a common authentication protocol, discussed in appendix B.

 User and content management

 We may need endpoints to get, modify, and delete user details. Many consumer apps provide channels for users to flag/report inappropriate content, such as content that is illegal or violates community guidelines.

 2.3 Connections and processing between users and data

 In section 2.1, we discussed the types of users and data and which data should be accessible to which users. In section 2.2, we designed API endpoints for users to CRUD (create, read, update, and delete) data. We can now draw diagrams to represent the connections between user and data and to illustrate various system components and the data processing that occurs between them.

 Phase 1:

 	
 Draw a box to represent each type of user.

 	
 Draw a box to represent each system that serves the functional requirements.

 	
 Draw the connections between users and systems.

 Phase 2:

 	
 Break up request processing and storage.

 	
 Create different designs based on the non-functional requirements, such as real-time versus eventual consistency.

 	
 Consider shared services.

 Phase 3:

 	
 Break up the systems into components, which will usually be libraries or services.

 	
 Draw the connections.

 	
 Consider logging, monitoring, and alerting.

 	
 Consider security.

 Phase 4:

 	
 Include a summary of our system design.

 	
 Provide any new additional requirements.

 	
 Analyze fault-tolerance. What can go wrong with each component? Network delays, inconsistency, no linearizability. What can we do to prevent and/or mitigate each situation and improve the fault-tolerance of this component and the overall system?

 Refer to appendix C for an overview of the C4 model, which is a system architecture diagram technique to decompose a system into various levels of abstraction.

 2.4 Design the data model

 We should discuss whether we are designing the data model from scratch or using existing databases. Sharing databases between services is commonly regarded as an antipattern, so if we are using existing databases, we should build more API endpoints designed for programmatic customers, as well as batch and/or streaming ETL pipelines from and to those other databases as required.

 The following are common problems that may occur with shared databases:

 	
 Queries from various services on the same tables may compete for resources. Certain queries, such as UPDATE on many rows, or transactions that contain other long-running queries may lock a table for an extended period of time.

 	
 Schema migrations are more complex. A schema migration that benefits one service may break the DAO code of other services. This means that although an engineer may work only on that service, they need to keep up to date with the low-level details of the business logic and perhaps even the source code of other services that they do not work on, which may be an unproductive use of both their time and the time of other engineers who made those changes and need to communicate it to them and others. More time will be spent in writing and reading documentation and presentation slides and in meetings. Various teams may take time to agree on proposed schema migrations, which may be an unproductive use of engineering time. Other teams may not be able to agree on schema migrations or may compromise on certain changes, which will introduce technical debt and decrease overall productivity.

 	
 The various services that share the same set of databases are restricted to using those specific database technologies (.g., MySQL, HDFS, Cassandra, Kafka, etc.), regardless of how well-suited those technologies are to each service’s use cases. Services cannot pick the database technology that best suits their requirements.

 This means that in either case we will need to design a new schema for our service. We can use the request and response bodies of the API endpoints we discussed in the previous section as starting points to design our schema, closely mapping each body to a table’s schema and probably combining the bodies of read (GET) and write (POST and PUT) requests of the same paths to the same table.

 2.4.1 Example of the disadvantages of multiple services sharing databases

 If we were designing an ecommerce system, we may want a service that can retrieve business metric data, such as the total number of orders in the last seven days. Our teams found that without a source of truth for business metric definitions, different teams were computing metrics differently. For example, should the total number of orders include canceled or refunded orders? What time zone should be used for the cutoff time of “seven days ago”? Does “last seven days” include the present day? The communication overhead between multiple teams to clarify metric definitions was costly and error-prone.

 Although computing business metrics uses order data from the Orders service, we decide to form a new team to create a dedicated Metrics service, since metric definitions can be modified independently of order data.

 The Metrics service will depend on the Orders service for order data. A request for a metric will be processed as follows:

 	
 Retrieve the metric.

 	
 Retrieve the related data from the Orders service.

 	
 Compute the metric.

 	
 Return the metric’s value.

 If both services share the same database, the computation of a metric makes SQL queries on Orders service’s tables. Schema migrations become more complex. For example, the Orders team decides that users of the Order table have been making too many large queries on it. After some analysis, the team determined that queries on recent orders are more important and require higher latency than queries on older orders. The team proposes that the Order table should contain only orders from the last year, and older orders will be moved to an Archive table. The Order table can be allocated a larger number of followers/read replicas than the Archive table.

 The Metrics team must understand this proposed change and change metric computation to occur on both tables. The Metrics team may object to this proposed change, so the change may not go ahead, and the organizational productivity gain from faster queries on recent order data cannot be achieved.

 If the Orders team wishes to move the Order table to Cassandra to use its low write latency while the Metrics service continues using SQL because of its simplicity and because it has a low write rate, the services can no longer share the same database.

 2.4.2 A possible technique to prevent concurrent user update conflicts

 There are many situations where a client application allows multiple users to edit a shared configuration. If an edit to this shared configuration is nontrivial for a user (if a user needs to spend more than a few seconds to enter some information before submitting their edit), it may be a frustrating UX if multiple users simultaneously edit this configuration, and then overwrite each other’s changes when they save them. Source control management prevents this for source code, but most other situations involve non-technical users, and we obviously cannot expect them to learn git.

 For example, a hotel room booking service may require users to spend some time to enter their check-in and check-out dates and their contact and payment information and then submit their booking request. We should ensure that multiple users do not overbook the room.

 Another example may be configuring the contents of a push notification. For example, our company may provide a browser app for employees to configure push notifications sent to our Beigel app (refer to chapter 1). A particular push notification configuration may be owned by a team. We should ensure that multiple team members do not edit the push notification simultaneously and then overwrite each other’s changes.

