

 [image: cover]

Mule in Action, Second Edition

 David Dossot, John D'Emic, and Victor Romero

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.20
Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Jeff Bleiel, Nermina Miller
Copyeditor: Melinda Rankin
Proofreaders: Katie Tennant, Andy Carroll
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617290824

 Printed in the United States of America

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Core Mule

 Chapter 1. Discovering Mule

 Chapter 2. Processing messages with Mule

 Chapter 3. Working with connectors

 Chapter 4. Transforming data with Mule

 Chapter 5. Routing data with Mule

 Chapter 6. Working with components and patterns

 2. Running Mule

 Chapter 7. Integration architecture with Mule

 Chapter 8. Deploying Mule

 Chapter 9. Exception handling and transaction management with Mule

 Chapter 10. Securing Mule

 Chapter 11. Tuning Mule

 3. Traveling further with Mule

 Chapter 12. Developing with Mule

 Chapter 13. Writing custom cloud connectors and processors

 Chapter 14. Augmenting Mule with orthogonal technologies

 Appendix A. Mule Expression Language

 Appendix B. Component and transformer annotations quick reference

 Appendix C. Mule Enterprise Edition

 Appendix D. A sample Mule application

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Core Mule

 Chapter 1. Discovering Mule

 1.1. Enterprise Integration Patterns and service-oriented architecture

 1.2. The Mule project

 1.3. Competition

 1.4. Mule: a quick tutorial

 1.4.1. Installing Mule Studio

 1.4.2. Designing the flow

 1.5. Running, testing, and deploying the application

 1.5.1. Running the application

 1.5.2. Testing the flow

 1.5.3. Working with the XML configuration

 1.5.4. Deploying to the Mule standalone server

 1.6. Summary

 Chapter 2. Processing messages with Mule

 2.1. Going with the flow

 2.1.1. The response phase

 2.1.2. Subflows

 2.1.3. Private flows

 2.2. Interacting with messages

 2.2.1. Message sources

 2.2.2. Message processors

 2.2.3. Message exchange patterns

 2.2.4. Endpoint URIs

 2.3. Exploring the Mule message

 2.3.1. Message properties

 2.3.2. Understanding property scopes

 2.3.3. Using message attachments

 2.4. Speaking the Mule Expression Language

 2.4.1. Using expressions

 2.5. Summary

 Chapter 3. Working with connectors

 3.1. Understanding connectors

 3.1.1. Configuring connectors with XML

 3.1.2. Configuring connectors with Mule Studio

 3.2. Using the file transport

 3.3. Using the HTTP transport

 3.3.1. Sending and receiving data using HTTP

 3.3.2. Using web services with Mule

 3.4. Using the JMS transport

 3.4.1. Sending JMS messages with the JMS outbound endpoint

 3.4.2. Receiving JMS messages with the JMS inbound endpoint

 3.4.3. Using selector filters on JMS endpoints

 3.4.4. Using JMS synchronously

 3.5. Using email

 3.5.1. Receiving email with the IMAP transport

 3.5.2. Sending mail using the SMTP transport

 3.6. Using the FTP transport

 3.6.1. Receiving files with inbound FTP endpoints

 3.6.2. Sending files with outbound FTP endpoints

 3.7. Using databases

 3.7.1. Using a JDBC inbound endpoint to perform queries

 3.7.2. Using a JDBC outbound endpoint to perform insertions

 3.7.3. NoSQL with MongoDB

 3.8. Using the VM transport

 3.8.1. Introducing reliability with the VM transport

 3.9. Using the Twitter cloud connector

 3.9.1. Twitter

 3.10. Summary

 Chapter 4. Transforming data with Mule

 4.1. Working with transformers

 4.2. Configuring transformers

 4.3. Using core transformers

 4.3.1. Dealing with bytes

 4.3.2. Compressing data

 4.3.3. Modifying properties, flow variables, and session variables

 4.3.4. Transforming with expressions

 4.3.5. Enriching messages

 4.3.6. Automagic transformation

 4.4. Using XML transformers

 4.4.1. XPath and Mule

 4.4.2. Transforming format with XSL

 4.4.3. XML object marshaling

 4.5. Transforming JSON with Mule

 4.5.1. Querying JSON with MEL

 4.5.2. JSON object marshaling with Mule

 4.6. Scripting transformers

 4.7. Summary

 Chapter 5. Routing data with Mule

 5.1. Deciding how to route a message

 5.1.1. Using the choice router

 5.2. Using filters

 5.2.1. Filtering by payload type and header

 5.2.2. Filtering text and XML

 5.2.3. Filtering with expressions

 5.2.4. Logical filtering

 5.2.5. Ensuring atomic delivery with the idempotent filter

 5.2.6. Using the message filter

 5.3. Routing to multiple recipients

 5.3.1. Dispatching messages with the all router

 5.3.2. Scatter/gather IO with the all router

 5.3.3. Going async with the async processor

 5.4. Routing and processing groups of messages

 5.4.1. Splitting up messages

 5.4.2. Aggregating messages

 5.4.3. Routing collections

 5.5. Guaranteed routing

 5.5.1. Resiliency for unreliable transports

 5.5.2. Defining failure expressions

 5.6. Summary

 Chapter 6. Working with components and patterns

 6.1. Using Mule components

 6.1.1. Executing business logic

 6.1.2. Resolving the entry point

 6.1.3. Configuring the component

 6.1.4. Annotating components

 6.1.5. Handling workload with a pool

 6.1.6. Scripting components

 6.1.7. Component lifecycle

 6.2. Simplifying configuration with configuration patterns

 6.2.1. Using the simple service pattern

 6.2.2. Using the bridge

 6.2.3. Using the validator

 6.2.4. Using the HTTP proxy

 6.2.5. Using the WS proxy

 6.2.6. Reusing common configuration elements

 6.3. Summary

 2. Running Mule

 Chapter 7. Integration architecture with Mule

 7.1. Structuring integration applications

 7.1.1. Guerrilla SOA with hub and spoke

 7.1.2. Mule as the enterprise service bus

 7.1.3. Mule as a mediation layer

 7.2. Mule implementation patterns

 7.2.1. Using a canonical data model

 7.2.2. Reliability patterns with asynchronous messaging

 7.2.3. Proxying SOAP requests with CXF

 7.3. Summary

 Chapter 8. Deploying Mule

 8.1. Deploying standalone Mule applications

 8.1.1. Packaging a standalone Mule app

 8.1.2. Deploying applications to Mule

 8.1.3. Configuring logs

 8.1.4. Inter-application communication with Mule

 8.1.5. Embedding web applications in Mule

 8.2. Deploying Mule to a web container

 8.3. Deploying applications to CloudHub

 8.4. Embedding Mule into an existing application

 8.5. Deploying Mule for high availability

 8.5.1. High availability via fault tolerance

 8.6. Summary

 Chapter 9. Exception handling and transaction management with Mule

 9.1. Dealing with errors

 9.1.1. Using reconnection strategies

 9.1.2. Creating reconnection strategies

 9.1.3. Handling exceptions

 9.1.4. Using exception strategies

 9.2. Using transactions with Mule

 9.2.1. Single-resource transaction

 9.2.2. Transactions against multiple resources

 9.2.3. Transaction demarcation

 9.3. Summary

 Chapter 10. Securing Mule

 10.1. Spring Security 3.0 and Mule

 10.1.1. User security with an in-memory user service

 10.1.2. User security with LDAP

 10.1.3. Securing endpoints with security filters

 10.2. Securing HTTP using SSL

 10.2.1. Setting up an HTTPS server

 10.2.2. Setting up an HTTPS client

 10.3. Securing SOAP with Mule

 10.4. Message encryption with Mule

 10.4.1. Using password-based payload encryption

 10.4.2. Decrypting message payloads with PGP

 10.5. Summary

 Chapter 11. Tuning Mule

 11.1. Staged event-driven architecture

 11.1.1. Roll your own SEDA

 11.2. Understanding thread pools and processing strategies

 11.2.1. Processing strategies and synchronicity

 11.2.2. Transport peculiarities

 11.2.3. Tuning thread pools

 11.2.4. Tuning processing strategies

 11.3. Identifying performance bottlenecks

 11.3.1. Profiler-based investigation

 11.3.2. Performance guidelines

 11.4. Summary

 3. Traveling further with Mule

 Chapter 12. Developing with Mule

 12.1. Understanding the Mule context

 12.1.1. Accessing the Mule context

 12.1.2. Using the Mule context

 12.2. Connecting to Mule

 12.2.1. Reaching a local Mule application

 12.2.2. Reaching a remote Mule application

 12.2.3. Reaching out with transports

 12.3. Using the Mule API

 12.3.1. Being lifecycle aware

 12.3.2. Intercepting messages

 12.3.3. Listening to notifications

 12.3.4. Configuring Mule data persistence

 12.4. Testing with Mule

 12.4.1. Functional testing

 12.4.2. Behavior stubbing

 12.4.3. Load testing

 12.5. Debugging with Mule

 12.5.1. Logging messages

 12.5.2. Step debugging a Mule application

 12.6. Summary

 Chapter 13. Writing custom cloud connectors and processors

 13.1. Simplifying Mule development with the DevKit

 13.2. Introduction to authoring cloud connectors

 13.2.1. Rendering extensions configurable

 13.2.2. Managing connections

 13.2.3. Creating message processors

 13.2.4. Creating intercepting message processors

 13.2.5. Creating simple REST consumers

 13.2.6. Creating transformers

 13.2.7. Creating message sources

 13.2.8. Integrating Mule extensions with Mule Studio

 13.3. Creating a REST connector

 13.4. Summary

 Chapter 14. Augmenting Mule with orthogonal technologies

 14.1. Augmenting Mule flows with business process management

 14.2. Complex event processing

 14.2.1. Using CEP to monitor event-driven systems

 14.2.2. Sentiment analysis using Esper and Twitter

 14.3. Using a rules engine with Mule

 14.3.1. Using Drools for selective message enrichment

 14.3.2. Message routing with Drools

 14.4. Polling and scheduling

 14.4.1. Using the poll message processor

 14.4.2. Scheduling with the Quartz transport

 14.5. Summary

 Appendix A. Mule Expression Language

 A.1. MEL quick reference

 A.1.1. Context objects

 A.1.2. Context variables

 A.1.3. Context functions

 A.1.4. Imported classes

 A.2. Customizing MEL

 Appendix B. Component and transformer annotations quick reference

 Appendix C. Mule Enterprise Edition

 High-availability clustering

 Mule Management Console

 Additional and enhanced transports

 DataMapper

 Anypoint Enterprise Security

 Anypoint Service Registry

 Hardened code line

 Support and services

 Appendix D. A sample Mule application

 D.1. The Mule application configuration

 D.2. ProductImportFunctionalTestCase

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Secretly, my wife still harbors a little regret about the lost weekends I spent coding Mule, but without her Mule would not
 have been created and this book would not exist.

 Like thousands of developers before me, I was continually struggling with the complexities of systems and application integration.
 The problem was that the proprietary solutions of the day—there were no open source alternatives back then—set out to address
 integration by adding another piece of complexity to the problem. These products made far too many assumptions about the environment
 and architecture, masking the ugliness with heavyweight tools, slick demo applications, and suave salesmanship. I used to
 spend long hours trying to work around integration products rather than being able to leverage them. This resulted in me venting
 to the point where my wife firmly suggested that I stop complaining and do something about it. A Mule was born.

 Ten years on and Mule is the most widely used integration platform to connect any application, data service or API, across
 the cloud and on-premises. As SaaS, mobile, and big data converge, enterprises face a choice: become overwhelmed by the resulting
 explosion of endpoints or seize the opportunity to gain competitive advantage. Companies can no longer compete using only
 the assets, technology, and talent within their four walls. In the era of the new enterprise, companies must combine a surge
 of applications, data, partners, and customers into a single, high-performing entity.

 Integration, services, and APIs have become critically important parts of application developers’ lives in the new enterprise.
 No application is an island, and increasingly applications will use data from 10 or more data sources and services from within
 and outside the company. Couple this with the rise of SaaS, mobile, and cloud computing, and we have an evolution from traditional
 application development to an assembly model, where data is served in many forms from many sources inside and outside of the
 firewalls.

 Since the first revision of Mule in Action, MuleSoft has launched the Anypoint Platform to address a broader set of enterprise needs that includes SOA use cases such
 as legacy modernization and web services; SaaS integration to connect cloud and on-premises applications for data sync, batch, and process automation use cases; and API creation and publishing support for mobile APIs, B2B gateways, and device APIs. The product offering has been expanded with the introduction of RAML support and the API Designer, APIkit, and API Management.
 Some of these capabilities are outside the scope of this book, but at the core of the Anypoint Platform is Mule.

 This book provides thorough coverage of all aspects of the Mule core runtime. It provides great examples of fundamental things
 you’ll most likely need to do with Mule, from creating and consuming services to working with various technologies such as
 JMS, web services, FTP, relational databases, and NoSQL. Importantly, it covers how to test, deploy, monitor, and tune Mule
 applications, topics that are critical for deploying Mule to production.

 This book is also a great guide for anyone using CloudHub, the leading integration platform as a service (iPaaS). CloudHub
 has Mule at its core, so integration applications can run on Mule or CloudHub.

 The great yet subtle element of this book is that the authors have captured the essence of pragmatism that is the founding
 principle of Mule. The notion that you can start small and build a complete enterprise or hybrid architecture over time is
 compelling. Each chapter explains the tools provided by Mule for building service-oriented applications. The chapters cover
 the spectrum: configuration basics, message routing, data transformation, publishing services, and creating RESTful APIs.

 This publication marks a significant milestone for Mule. It demonstrates that the ideals of open source and community building
 really do work. The authors—David Dossot, John D’Emic, and Victor Romero—are long-time community members and have made many
 contributions to the project; this book is a significant and lasting addition. This is the must-have guide for all current
 and prospective Mule users; it explains all aspects of Mule without going into unnecessary detail, focusing on the concepts
 most important for building integration applications. Read on to learn how to unlock the power of Mule.

 ROSS MASON
FOUNDER, MULESOFT
CREATOR OF THE MULE PROJECT

Preface

 The integration and IT landscapes have dramatically evolved since the first edition of this book was released in 2009. Both
 API and mobile platform adoption have exploded, changing the way IT thinks about application integration. Advances in virtualization
 technology and the ever-decreasing price of storage have led to massive, horizontally scalable computation and data storage
 approaches. The broader acceptance of polyglot application development has led to cross-platform messaging solutions. Businesses
 are beginning to realize the value of the convergence of these as big data and are extracting real value from them.

 In many ways, the early promises of service-oriented architecture are being realized, albeit in ways very different than originally
 intended. The world has largely moved away from SOAP and XML and their associated standards, in favor of RESTful, JSON-based
 APIs. UDDI, never widely adopted, is being replaced by lighter-weight mechanisms for service discovery that look very much
 like “App Stores” for APIs. Messaging solutions are more lightweight and decentralized than their previously monolithic predecessors.
 Finally, top-down-driven integration and mediation solutions have been supplanted with bottom-up, agile frameworks.

 As anyone who has been around the block a few times knows, however, the old stuff never really goes away. An insurance company’s
 mainframe that has been processing claim data without a hiccup for years isn’t going to be suddenly replaced, nor is the full
 stack of SOAP services carefully implemented by a financial institution before the emergence of REST. Nobody is going to flip
 the switch overnight on a production, multimillion-row, geographically distributed database simply because a newer technology
 exists.

 Mule is a platform to tie all of this together. This book will show you how to use Mule to develop, deploy, manage, and extend
 integration applications.

 The authors have used Mule extensively for years, successfully delivering implementations to both startups and established
 enterprises, including insurance companies, financial institutions, and governments. In these contexts, they’ve used Mule
 in a variety of capacities, from a lightweight mediation layer to full-blown ESB implementations.

Acknowledgments

 We’d like to thank our development editors at Manning, Jeff Bleiel and Nermina Miller, who have patiently supported us during
 the whole process. We also want to thank Katie Tennant, our awesome proofreader at Manning.

 We want to extend further thanks to our reviewers, whose insights helped us build a better book: Amjad Mogal, Andrew Johnson,
 Brad Johnson, Chris Mathews, Dan Barber, Davide Piazza, Frank Crow, Jesus de Oliveira, Joan Picanyol i Puig, Keith McAlister,
 Lee Dyson, Magnus Larsson, Nicolas Mondada, Ramiro Rinaudo, and Wayne Ellis.

 Special thanks to Ross Mason for writing the foreword to our book, and to our technical proofreaders, Alberto Aresca, Felix
 Manuel Jerez, German Solis, Juan Alberto Lopez Cavallotti, and Sebastian Beltramini, from MuleSoft. We’re also very grateful
 to Daniel Feist and the MuleSoft Engineering Team for their deep and extended feedback on the manuscript.

David

 I would like to thank my family for their support during this book update, which evolved into something more like a rewrite!
 I’m also grateful to our readers for their continuous feedback and sustained interest in this book.

John

 I would like to thank my wife, Catherine, and my son, Johnny, for putting up with me for two years while we “updated” this
 book for Mule 3.x. I also want to thank everyone at MuleSoft for their guidance and support throughout the entire process.

Victor

 I would like to thank my mom for instilling a love of knowledge in me, my grandmother for teaching me the value of hard work,
 and the rest of my family for being such an inspiration. I would also like thank my friends and colleagues for their unconditional
 support during the creation of this book.

About this Book

 Mule, as the preeminent, open source integration platform, provides a framework for implementing integration solutions. The
 book will give you the tools for using Mule effectively. It’s not a user guide; Mule’s comprehensive user guide is available
 online already. Instead, it’s a review of Mule’s main moving parts and features put in action in real-world contexts. After
 a little bit of history and some fundamentals of configuring Mule, we’ll walk you through the family of components that you’ll
 use in your projects. We’ll then review some runtime concerns such as exception handling, transactions, security, and monitoring.
 Then we’ll delve into advanced subjects such as programming with Mule’s API, tuning, and working with complementary technologies
 such as BPM and CEP.

Who should read this book

 This book is primarily targeted at developers who want to solve integration challenges using the Mule platform. It’s also
 useful for architects and managers who are evaluating Mule as an integration platform or ESB solution. Additionally, system
 administrators tasked with supporting Mule instances will find this book, part 2 in particular, of value.

How to use this book

 Each chapter in this book builds on the previous chapter. Readers new to Mule are encouraged to read the book with this in
 mind. Readers familiar with Mule 2.x will find part 1 particularly useful, as it describes and provides examples of the new configuration syntax in depth. This book isn’t intended
 as a reference manual; we deliberately chose to provide examples of working Mule configurations over tables of XML schema
 elements and screenshots of Mule Studio. More importantly, providing such a book would duplicate the content already available
 at www.mulesource.org, the Mule Javadocs, and the XSD documentation—sources from which complete reference documentation is available. We hope that
 reading Mule in Action gives you the skills to use these resources effectively.

Roadmap

 The first part of this book will take you through a journey of discovery of the core aspects of Mule and will provide the
 fundamental knowledge you need to get started building integration applications with this ESB. After explaining the origin
 of the field of enterprise application integration, the first chapter sets the stage for the rest of the book by getting you
 started with your very first Mule project. Chapter 2 will make your head spin with the introduction of numerous essential concepts related to message processing in Mule, which
 will be referred to throughout the book. But fear not, chapter 3 will start building on this new knowledge by introducing you to transports and connectors, the basic building blocks required
 to start integrating systems. Chapter 4 will expand your knowledge by adding the notion of message transformation, one of the main activities performed by Mule.
 Going further, chapter 5 will delve into the crucial aspect of routing messages, while chapter 6 will detail how to handle these messages with components and configuration patterns.

 The second part is not only focused on applying all the knowledge previously acquired but also on learning how to build and
 run production-grade Mule applications. With all the building blocks in hand, where does one need to start and what must be
 considered to succeed with Mule? These are the important questions answered in chapter 7. Chapter 8 covers the different deployment strategies supported by Mule, so you can decide on the best approach for your needs and particular
 environment. Chapter 9 digs into exception handling and transaction management so you can learn how to increase the reliability of your applications.
 Securing Mule is a must in publicly exposed applications or anytime sensitive data is processed; chapter 10 will tell you all about Mule’s security model. Finally, chapter 11 details strategies for testing and improving the performance of your applications.

 The third part of the book will expand your horizon by giving you the tools and knowledge to go further with Mule. Chapter 12 will dive deep in Mule’s internal API, opening the door to complex and rich interactions with the integration framework in
 ways that the XML configuration alone can’t do. Chapter 13 explains in detail how DevKit, a free tool provided by MuleSoft, can be used to create custom extensions to Mule. Finally,
 chapter 14 presents how Mule can be made even smarter with the integration of business rules and complex event processor engines.

 In order to preserve the reading flow of the book, we’ve extracted reference material in appendixes. The Mule Expression Language
 is detailed in appendix A, while appendix B covers Mule’s specific annotations that you can use in your custom code. Appendix C introduces the features available in the Enterprise Edition of Mule. Finally, a complete Mule application is described in
 appendix D.

Code conventions and downloads

 The code examples in this book are abbreviated in the interest of space. In particular, namespace declarations in the XML
 configurations and package imports in Java classes have been omitted. The reader is encouraged to use the source code of the
 book when working with the examples. The line length of some of the examples exceeds that of the page width. In these cases,
 the \ or [image:] markers are used to indicate that a line has been wrapped for formatting. Code annotations highlight certain lines of code
 in some of the listings.

 The source code of the book is available from the publisher’s website at www.manning.com/MuleinActionSecondEdition and from GitHub here: https://github.com/ddossot/mule-in-action-2e. The required configuration to run these examples is the following:

 	JDK 1.6 with unlimited JCE cryptography

 	Maven 3

 	Mule 3.4.x Community Release

Author Online

 Purchase of Mule in Action, Second Edition, includes free access to a private web forum run by Manning Publications where
 you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To
 access the forum and subscribe to it, point your web browser to www.manning.com/MuleinActionSecondEdition. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 DAVID DOSSOT has worked as a software engineer and architect for more than 18 years. He’s been using Mule since 2005 in a variety of different
 contexts and has contributed many extensions to the project. His focus is on building distributed and scalable server-side
 applications for the JVM and the Erlang VM. David is a member of IEEE, the Computer Society, and AOPA, and holds a production
 systems engineering diploma from ESSTIN.

 JOHN D’EMIC has worked in various capacities as a system administrator, software engineer, and enterprise architect for more than 15
 years. He has been working with Mule in a variety of capacities since 2006 and is currently principal solutions architect
 at MuleSoft. John holds a BS in Computer Science from St. John’s University.

 VICTOR ROMERO currently works as a solutions architect at MuleSoft in London. He started his career in the dot-com era and has been a regular
 contributor to open source software ever since. Originally from the sunny city of Malaga, Spain, his international achievements
 include integrating to the cloud from a skyscraper in New York City and creating networks for an Italian government licensee
 in Rome.

About the Cover Illustration

 The figure on the cover of Mule in Action, Second Edition is captioned “A man and his mule from the village of Bgrud in Istria, Croatia.” The illustration is taken from a reproduction
 of an album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic
 Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in
 Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
 palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied
 by descriptions of the costumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell the inhabitant of one continent from another and today the residents of the picturesque towns
 and villages on the Istrian Peninsula on the Adriatic coast of Croatia are not readily distinguishable from the residents
 of other parts of Europe and the world. Perhaps we have traded cultural diversity for a more varied personal life—certainly
 for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Core Mule

 Mule is a lightweight, event-driven enterprise service bus and an integration platform and broker. As such, it resembles more
 a rich and diverse toolbox than a shrink-wrapped application. In the first chapter of this book, we’ll introduce you to the
 history of its origins and the competing projects that exist on the market, and then we’ll immediately dive into a quick tutorial
 that will get your feet wet and your mouth watering!

 In chapter 2, we’ll go through an extensive review of the principles involved in processing messages with Mule. You’ll learn the notions
 of flows, message sources, and processors and will look deep into the structure of the Mule message. The Mule Expression Language
 (MEL) will be introduced too.

 Chapter 3 will be the first one dedicated to one of the major moving parts of Mule: transports and connectors. You’ll discover the
 most prominent protocols that the platform supports in the context of actual configuration samples. You’ll also learn how
 connectors can help you interact with the cloud by looking at a simple Twitter example.

 A second important feature of Mule is message transformation. Chapter 4 will show you how to take advantage of Mule transformers and how to create new ones.

 Message routing is a crucial facet of enterprise message buses. We’ll explore the advanced capacities of Mule in this domain
 in chapter 5.

 Finally, we’ll close this first part with chapter 6, which will focus on components and patterns, the places where message and business logic happens in Mule.

Chapter 1. Discovering Mule

 This chapter covers

 	An introduction to enterprise integration

 	Building, testing, and deploying your first Mule application

 All it takes is a simple request: send this to Salesforce, publish that to Twitter, connect to the inventory mainframe. All
 of a sudden, your application, which was living a happy digital life in splendid isolation, has to connect to a system that’s
 not only remote but also exotic. It speaks a different language, or speaks a known language but uses a bizarre protocol, or
 it can only be spoken to at certain times during the night...in Asia. It goes up and down without notice. Soon, you start
 thinking in terms of messages, transformation, protocols, and connectors. Welcome to the world of integration!

 The IT landscape has been shaped by years of software evolution, business mergers, and third-party API integration, which
 led to a complex panorama of heterogeneous systems of all ages and natures. Strategic commercial decisions or critical reorganizations
 heavily rely on these systems working together as seamlessly as possible. The need for application integration is thus a reality
 that all enterprise developers will have to deal with during the course of their careers. As Michael Nygard, author of Release It! (Pragmatic Bookshelf, March 2007) states, “Real enterprises are always messier than the enterprise architecture would ever admit. New technologies never quite fully supplant old ones. A
 mishmash of integration technologies will be found, from flat-file transfer with batch processing to publish/subscribe messaging.”

 Developing integration applications encompasses a variety of difficulties:

 	
Protocol— Applications can accept input from a variety of means, ranging from a local filesystem to a RESTful API.

 	
Data format— Speaking the right protocol is only part of the solution, since applications can use almost any form of representation for
 the data they exchange.

 	
Invocation styles— Synchronous, asynchronous, RPC, messaging, and batch call semantics entail very different integration strategies.

 	
Lifecycle and management— Applications of different origins that serve varied purposes tend to have disparate development, maintenance, and operational
 lifecycles.

 	
Error handling— Error handling is crucial in any application and is amplified with applications that are forced to integrate with remote,
 and often unreliable, systems.

 	
Monitoring— Integration applications often have more esoteric monitoring requirements than a traditional web or server-side application.
 These include the monitoring of transactions per second, awareness of the latency of remote servers, and the absence of events,
 to name a few.

 This book is about Mule, the leading open source enterprise integration platform, which will help you tackle these difficulties
 and much more. Mule frees you from much of the plumbing associated with enterprise application integration, allowing you to
 focus on your application’s core requirements.

 In this chapter, you’ll gain a high-level understanding of Mule before we dive head first into building a real, complete Mule
 application. This will prepare you for the rest of the book, in which you’ll learn how Mule lets you focus your development
 effort on solving business problems instead of fighting low-level integration “donkey work.”

1.1. Enterprise Integration Patterns and service-oriented architecture

 The last decade or so has seen a renaissance of application integration. Gone are the days of proprietary messaging stacks
 and closed APIs. Open platforms, protocols, and services dominate the landscape. Nothing is more evidence of this than the
 “API Explosion” of recent years as companies, organizations, and governments race to expose their data. REST, JSON, and lightweight
 message brokers lead the charge but, as always, don’t allow you to throw out what’s already in place (or more importantly,
 what already works). These nimble new technologies also don’t solve what is ultimately the bigger problem: how these services
 are composed into distributed applications.

 Until Hohpe and Woolf’s seminal publication of Enterprise Integration Patterns (Addison-Wesley, November 2003), there was little in the way of prescribed solutions to solve these, and many other, integration
 challenges. When developers of integration applications finally had a catalog of patterns, they were still left with little
 in the way of implementations. This is how Mule and many other open source and commercial integration frameworks received
 their cue. The integration developer was now freed from having to implement the patterns and could once again focus on the
 solutions.

 A parallel phenomena to the publishing of Enterprise Integration Patterns was the emergence of service-oriented architecture. Service-oriented architecture, or SOA, is a software architecture style
 that acknowledges the need for integration up front by providing well-defined, programmatic means for interacting with an
 application. Initially embodied by the heavyweight SOAP specification and more recently refined by the widespread adoption
 of REST and JSON, SOA has become pervasive in the modern software development landscape.

 	

 Guerrilla SOA

 Early SOA adoption was usually done with heavyweight integration technologies like SOAP, verbose XML, and the complicated
 infrastructures and tooling that come along with these technologies. Compounding this complexity was an unfortunately common
 “waterfall” approach to integration development, in which existing infrastructures were “converted” to SOA over a long period
 of time. The fate of many such projects is unfortunately obvious to anyone reading this book.

 Guerrilla SOA, a concept introduced by Jim Webber (www.infoq.com/interviews/jimwebber-qcon-london), is the idea that service-oriented architecture can be introduced in a lean, incremental, and agile manner. We’ll see in
 this book how Mule, along with lightweight messaging patterns, alleviates the pain of introducing SOA to your applications.

 We’ll cover Guerrilla SOA, as well as other architectural approaches, in chapter 7.

 	

 There is a natural, but unfortunate, tendency to integrate applications informally. This often leads to “spaghetti integration,”
 as illustrated by figure 1.1. Applications in such implementations are connected directly to each other in a “point-to-point” manner. On a small scale
 this might be OK. Pain quickly becomes apparent, however, as the number of integration points grows. The application becomes
 mission critical, and your remote systems begin to change.

 Figure 1.1. Point-to-point, or spaghetti, integration

 [image:]

 A pattern described in Enterprise Integration Patterns that solves this problem received attention from the industry and community: the message bus, commonly called an enterprise service bus, or ESB, when implemented. The ESB, depicted in figure 1.2, provides a solution to the problem of point-to-point integration. An ESB architecture prescribes placing a dedicated integration
 application, called a bus, in between all of your integration points. Your previous point-to-point integrations now all talk
 to the bus, which decouples them from the remote applications.

 Figure 1.2. Application integration with an ESB

 [image:]

 This decoupling is achieved by protocol adaptation and a canonical data format. Protocol adaptation means the bus can communicate
 over different transport protocols, like HTTP or FTP. A canonical data format is a common format all messages are transformed
 to, usually a common Java domain model or XML schema. This allows you to centralize concerns like security, auditing, and
 routing onto the ESB framework. It also means your client applications are insulated from the volatility typically present
 in integrating with remote applications. This provides the flexibility to do things such as swap out one vendor API for another
 without having to modify every downstream application.

 Although Mule is often billed as an ESB, it’s important to note that an ESB is an architecture and not a product. We’ll discuss
 using Mule as an ESB, as well as in many other ways, in chapter 7.

1.2. The Mule project

 The Mule project was started with the motivation to make life simpler for developers of integration applications. A major
 driver for the project was the need to build a lightweight, modular integration solution that could scale from an application-level
 messaging framework to an enterprise-wide, highly distributable enterprise services bus.

 	

 What’s in the name

 “After working on a couple of bespoke ESB systems, I found that there was a lot of infrastructure work to be done before you
 can really start thinking about implementing any logic. I regard this infrastructure work as ‘donkey work’ as it needs doing
 for every project. I preferred Mule over Donkey and Ass just didn’t seem right ;-). A Mule is also commonly referred to as
 a carrier of load, moving it from one place to another. The load we specialize in moving is your enterprise information.”

 —Ross Mason, cofounder of MuleSoft

 	

 Mule’s core is an event-driven framework combined with a unified representation of messages, expandable with pluggable extensions.
 These extensions provide support for a wide range of transports or add extra features, such as distributed transactions, security, and management. Mule’s developer-friendly
 framework offers programmers the means to graft on additional behavior such as specific message processing or custom data
 transformation. This philosophy has allowed Mule to quickly adapt to and support emergent trends in enterprise computing,
 such as NoSQL, distributed memory grids, and lightweight messaging protocols like AMQP and ZeroMQ.

 This orientation toward software developers helps Mule to remain focused on its core goals and to carefully avoid entering
 the philosophical debate about the role of an ESB in an integration scenario. Although Mule is often billed as an ESB, and
 can be used in such a fashion, the framework makes no dictation on the architecture of your integration applications. Moreover,
 Mule was conceived as an open source project, forcing it to stick to its mission to deliver a down-to-earth integration framework
 and not to digress to less-practical or broader concerns. Finally, the strategic decision to develop Mule in the open allowed
 contributors to provide patches and improvements, turning it into a solid and proven platform.

 Mule 3, released in 2010, represented a significant departure from Mule 2 (on which the first edition of this book was based).
 The most noticeable differences reside in new configuration mechanisms that aim to simplify Mule configuration. Most specifically,
 the introduction of the “flow” construct frees the user from the rigid service-based configuration model of Mule 2. Flows
 allow the free composition of message processors, contributing to the prodigious simplification of the often-verbose XML configurations
 in Mule 2.

 Mule Studio, introduced in 2012, further simplifies integration application development with Mule. Mule Studio is a graphical,
 Eclipse-based development environment. Among its features are drag-and-drop composition of flows, full XML round-tripping,
 and the ability to run Mule applications directly in the IDE or deploy them to a server or to the cloud.

 Extending and developing for Mule has also been greatly simplified. Mule DevKit, which we’ll cover in depth in chapter 13, makes it easy to write custom Mule components that fully integrate with the Mule ecosystem. Annotations have also been widely
 adopted by the framework, simplifying the development and testing of these components. Cloud connectors streamline integration
 with remote APIs and platforms. A new deployment model trivializes packaging and deploying Mule applications.

 The configuration and developer simplifications in Mule 3 are complemented by incremental changes to the framework. Expression
 evaluation has been standardized by the Mule Expression Language. REST support is now native and is coupled with support for
 JSON.

1.3. Competition

 The large enterprise players (IBM, Oracle, Red Hat, and so on) all have an ESB in their catalog. They are typically based
 on their middleware technologies and are usually at the core of a much broader SOA product suite. There are also some commercial
 ESBs that have been built by vendors not in the field of Java EE application servers, like the ones from Progress Software
 and Software AG.

 	

 Mule Enterprise Edition

 A commercially supported version of Mule with additional features and support options is supplied by MuleSoft. More details
 about Mule EE can be found in appendix C.

 	

 Commercial ESBs mainly distinguish themselves from Mule in the following aspects:

 	Prescriptive deployment model, whereas Mule supports a wide variety of deployment strategies (presented in chapter 8)

 	Prescriptive SOA methodology, whereas Mule can embrace the architectural style and SOA practices in place where it’s deployed

 	Mainly focused on higher-level concerns, whereas Mule deals extensively with all the details of integration

 	Strict full-stack web service orientation, whereas Mule’s capabilities as an integration framework open it to all sorts of
 other protocols

 Mule is not the only available open source ESB. To name a few, major OSS actors such as Red Hat and Apache provide their own
 solutions. Spring also provides an integration framework built on their dependency injection container. Although most of these
 products use proprietary architectures and configurations, the integration products from the Apache Software Foundation are
 notably standards-focused: ServiceMix was previously based on the Java Business Integration (JBI) specification, Tuscany follows
 the standards defined by the OASIS Open Composite Services Architecture (SCA and SDO), and Synapse has extensive support for
 WS-* standards.

 One way to decide whether a tool is good for you is to get familiar with it and see if you can wrap your mind around its concepts
 easily. This chapter will provide that. Now let’s dive in head first and create a real, working Mule application.

1.4. Mule: a quick tutorial

 To frame the examples in this book, we hereby introduce you to Prancing Donkey Maltworks, Inc. Prancing Donkey is a rapidly
 expanding, medium-sized, US-based microbrewery. Its small but competent development group has selected Mule to ease the integration
 pains as they grow.

 Our tour of Mule will begin with a tutorial. You’ll build an application to allow third parties to register products for sale
 on www.theprancingdonkey.com, Prancing Donkey’s online store. This application will allow Prancing Donkey’s partners to post product data, formatted as
 JSON, to an HTTP URL. Once the data is accepted, it will be transformed from its original format, a stream of bytes, into
 a String and placed in a JMS queue from which subsequent processing can take place. This tutorial will demonstrate common
 tasks you’ll perform when building applications with Mule.

 You’ll start by creating a new Mule project for your application using Mule Studio. You’ll then author an integration flow
 to process product data and test it with an embedded version of the Mule Server in Mule Studio. You’ll formalize this test
 by writing a functional test to programmatically assert that your flow behaves the way you expect. Finally, you’ll download
 the Mule Server and deploy your packaged application to it, demonstrating a typical lifecycle of building, testing, and deploying
 a Mule application.

 1.4.1. Installing Mule Studio

 Mule Studio can be downloaded from www.mulesoft.org. Once you download it, uncompress the archive and double-click on the Mule icon, and you’ll be presented with a screen like
 the one in figure 1.3.

 Figure 1.3. Launching Mule Studio

 [image:]

 Before you can create a project, you’ll need to install the Mule Community Runtime. To do this, click Help and then Install
 New Software. In the screen that follows, expand the drop-down list prefixed with Work With: and select Mule ESB Runtimes
 for Studio. Finally, select Mule ESB Server Runtime 3.4.0 CE, as illustrated in figure 1.4.

 Figure 1.4. Installing the community runtime

 [image:]

 You can now click Create a Project to get started (figure 1.5).

 Figure 1.5. Creating a new Mule project

 [image:]

 Here you set the project’s name, give it a description, and select the Mule runtime—in this case, Mule 3.4.0 Community Edition,
 which is the most recent as of this writing.

 Clicking Next again gives you the opportunity to enable Maven for this project. Skip this part, and the next few steps, by
 clicking Next, and then you’ll click Finish to start authoring your flow (figure 1.6).

 Figure 1.6. Defining the initial flow

 [image:]

 After you set the name and description of the flow, you can dive in and use Mule Studio to graphically define your integration.

 1.4.2. Designing the flow

 Flows are the primary mechanism for building integration applications with Mule. A flow consists of a source of data followed
 by a series of message processors. A message begins its life from an inbound endpoint, which could be an HTTP POST or the
 scheduled polling of a database table, and is processed by the subsequent processors in the flow in the order in which they
 are defined. Flows support multiple invocation styles as defined by their exchange pattern. A one-way exchange pattern typically means the flow is asynchronous, for instance. The request-response exchange pattern means the flow will return a result. A flow can optionally end with an outbound endpoint, which sends the
 message to another flow or server.

 The palette on the right-hand side of the screen contains the library of endpoints and message processors you’ll use to build
 your flows. Use the filter search box to find the HTTP endpoint and drag it into your flow. Your screen should now look something
 like figure 1.7.

 Figure 1.7. Dragging the HTTP inbound endpoint to the flow

 [image:]

 The vertical orientation of the HTTP endpoint indicates that the flow’s exchange pattern is request-response. Exchange patterns
 indicate if a flow returns a result or not. Let’s configure the flow’s exchange pattern to one-way, along with the host, port,
 and path the HTTP server will be listening on. You can do this by right-clicking on the HTTP endpoint, which will show you
 something that looks like figure 1.8.

 Figure 1.8. Configuring the HTTP endpoint’s properties

 [image:]

 You now need to add two more message processors to this flow: the byte-array-to-string transformer and the JMS outbound endpoint.
 The byte-array-to-string transformer is needed to transform the HTTP inbound endpoint’s default payload type, a stream of
 bytes, to an instance of a String. You’ll once again drag these from the library of processors on the right into your flow,
 leaving you with something that looks like figure 1.9.

 Figure 1.9. Adding the byte-array-to-string transformer and JMS outbound endpoint to the flow

 [image:]

 Now right-click on the JMS endpoint and define the queue to dispatch to (figure 1.10).

 Figure 1.10. Configuring the JMS endpoint’s properties

 [image:]

 You might notice that the JMS endpoint has a red X on it. This is because you haven’t configured a JMS broker for it to connect
 to. Let’s configure it to use an instance of ActiveMQ, an Apache-licensed, open source messaging broker that supports JMS,
 running on localhost (you’ll install ActiveMQ in a second). To do this you’ll need to right-click on the endpoint, select the References tab and click on the Plus icon, as illustrated in figures 1.11 and 1.12. You need to change the JMS spec to 1.1.

 Figure 1.11. Configuring the JMS connector

 [image:]

 Figure 1.12. Configuring the ActiveMQ connector

 [image:]

 Now let’s set up a local ActiveMQ instance that you can use to test with. Download ActiveMQ (http://activemq.apache.org/download-archives.html; we tested with version 5.5.1), uncompress the file, navigate into the bin directory, and then run activemq start.

 Let’s take a step back and consider what you’ve done. Products will be posted to the HTTP endpoint as JSON. The byte-array-to-string
 transformer converts the raw bytes of the HTTP POST to a String. We’ll discuss transformers in depth in chapter 4. The JMS outbound endpoint then finally dispatches the String to the specified JMS queue. Endpoints are Mule’s mechanism
 for getting data into and out of flows. We’ll discuss both in detail in chapter 3.

1.5. Running, testing, and deploying the application

 We just finished developing our first Mule application as well as setting up a messaging broker for it to interact with. Now
 let’s see how we can run, test, and deploy the application.

 1.5.1. Running the application

 Before you can run the application, you’ll need to add the JAR for ActiveMQ to your project. The procedure is identical to
 adding a JAR to any Eclipse project. Right-click on Mule Runtime in the Project Explorer pane on the left, select Build Path,
 and then select Configure Build Path. At this point, you’ll be presented with a screen like that in figure 1.13, in which you can add the ActiveMQ JAR to the project.

 Figure 1.13. Adding a JAR

 [image:]

 Now you’re ready to run your application. Before you do that, however, let’s modify your flow to log some output to the console.
 This will give you some visual feedback that things are behaving properly.

 You can do this by selecting a logger and dragging it into the flow after the byte-array-to-string transformer and before
 the JMS outbound endpoint. You’ll set the message attribute to print a String followed by the payload of the message, using the Mule Expression Language. The Mule Expression
 Language, or MEL, is a lightweight scripting language that’s evaluated at runtime. The payload, in this case, will be the
 JSON content of the data being sent to Mule. This is illustrated in figure 1.14.

 Figure 1.14. Adding a logger to the flow

 [image:]

 Right-clicking the project on the Project Explorer page and selecting Run As and then Mule Application, as illustrated in
 figure 1.15, will launch the app in an embedded Mule instance. You should see something like figure 1.16 in your console, illustrating the app is running.

 Figure 1.15. Running the application

 [image:]

 Figure 1.16. Examining the console output

 [image:]

 After posting some JSON data using a tool such as curl or Rest Console to http://localhost:8080/products, you should see something
 like the following logged to the console:

 INFO 2013-07-09 08:17:43,468
[[chapter01].connector.http.mule.default.receiver.02]
org.mule.api.processor.LoggerMessageProcessor:
We received a message: {"name":"Widget",
 "price": 9.99,
 "weight": 1.0,
 "sku": "abcd-12345"}

 The logger shows that your byte-array-to-string transformer has successfully transformed the InputStream to a String. Now let’s check ActiveMQ’s console to make sure the message is in the queue. Point a browser at http://localhost:8161/admin/queues.jsp,
 and you should see one message in the products queue, similar to what’s shown in figure 1.17.

 Figure 1.17. Looking at the products queue

 [image:]

 Now that you’ve manually verified that the flow works, let’s write a functional test so that you can programmatically verify
 that it works.

 1.5.2. Testing the flow

 You’re now ready to write a test for the flow you’ve written. Create a class called ProductServiceFunctionalTestCase. You can do this by right-clicking on src/test/java in the Package Explorer on the right side of the screen, then selecting
 New, and then Class. Modify the newly created class to look like the following listing.

 Listing 1.1. Extending FunctionalTestCase to ensure that your configuration works

 [image:]

 We’ll discuss testing in detail in chapter 12, but let’s do a quick rundown of the previous listing to get a preview. The provided TestCase extends Functional-TestCase, a base class provided by Mule that abstracts the details of starting and stopping a Mule instance from your tests. The method’s
 abstract getConfigResources() method points the test case at the configuration to use to bootstrap Mule.

 Mule’s testing framework uses JUnit 4, as you can probably tell by the @Test annotation on testCanRegisterProducts. You’ll use the MuleClient, a facility described in depth in chapter 12, to interact with the Mule flow programatically. Your test data, in this case some simple JSON, is defined at [image:]. You POST the JSON to the HTTP endpoint [image:], and then wait for it to appear on the JMS queue [image:]. Once you either receive the message or RECEIVE_TIMEOUT is met, your assertions, starting with [image:], are run. You first do a series of assertions that ensure your response or payload isn’t null and that an exception wasn’t
 thrown during processing. You then assert that the payload on the JMS queue matched the data you posted to the HTTP endpoint
 [image:].

 Go ahead and run the test by right-clicking on the test case and selecting Run As and then JUnit Test. This will start an
 instance of Mule that your test will be executed against. If everything went well, you should see a green bar indicating that
 the test passed (see figure 1.18).

 Figure 1.18. Running the FunctionalTestCase

 [image:]

 1.5.3. Working with the XML configuration

 It’s possible to develop extremely sophisticated integration applications using the graphical editor of Mule Studio. Eventually,
 however, you’ll probably need to at least look at, if not edit, the Mule XML configuration that’s generated by Mule Studio.
 This not only enables you to understand what your flows are doing behind the scenes, but also gives you the ability to fully
 harness Mule’s power as an integration framework.

 	

 Studio and XML examples

 The examples in this book will mostly focus on the XML configuration of flows. We will, however, show the corresponding screenshots
 of the flows in Mule Studio where it makes sense. It’s also important to note that no functionality in the CE version of Mule
 is dependent on Mule Studio. Your choice of IDE, or your choice to use no IDE, is largely irrelevant when working with Mule
 applications.

 	

 Clicking on the Configuration XML tab below the flow will show you the Mule configuration XML that corresponds to this application.
 The next listing shows what the XML looks like for the flow you developed.

 Listing 1.2. The product registration flow

 [image:]

 [image:]

 The first thing to notice about this configuration file is the declaration of namespaces [image:]. These namespaces implement the XML domain-specific language used by Mule’s XML configuration. The flow and its message processors’
 configurations follow. These map one-to-one to the elements you dragged in the graphical view.

 	

 Automatic namespace imports

 Users of Mule 2 will be happy to note that Studio automatically imports namespace declarations for you, freeing you from having
 to manually add them every time you introduce a new transport or module into your Mule application.

 	

 1.5.4. Deploying to the Mule standalone server

 Confident that your application is in good shape thanks to your testing, you’re now ready to deploy. Before that, however,
 you need a running Mule server. You can download the Mule standalone server from www.mulesoft.org/download-mule-esb-community-edition. You’ll want to download the Mule ESB standalone runtime (without Mule Studio). Uncompress the file, navigate into the bin
 directory, and run the mule executable to start a standalone instance of the Mule server.

 Now you’ll use Mule Studio to build your deployment artifact. First you need to export the application as a Mule deployable
 archive. You can do this by right-clicking on the project, selecting Export, selecting Mule Studio Project to Mule Deployable
 Archive (includes Studio metadata), and then setting the path to where you want the ZIP file, Mule’s deployment artifact,
 saved. This is illustrated in figures 1.19, 1.20, and 1.21.

 Figure 1.19. Choose to export the application.

 [image:]

 Figure 1.20. Choose the format to export to.

 [image:]

 Figure 1.21. Choose where to save the resulting ZIP file.

 [image:]

 Now that you’ve exported the Mule application as a ZIP file, you can deploy it.[1] This is accomplished by copying the ZIP file to the apps directory of wherever you installed the Mule standalone server.
 After a few seconds, you should see something like the following appear on the console on which Mule is running:

 1 We’ll discuss Mule deployment options in detail in chapter 8.

 INFO 2011-12-19 10:01:07,741 [Mule.app.deployer.monitor.1.thread.1]
org.mule.module.launcher.DeploymentService:
++
+ Started app 'productservice-1.0-SNAPSHOT' +

++

 That’s it! You’ve developed a functional, well-tested, integration application with around 20 lines of XML and a small amount
 of Java. Hopefully you can appreciate the relative difficulty of implementing a similar approach without Mule; you would need
 to do the following:

 	Bootstrap a web server to accept HTTP requests

 	Configure and manage the JMS connection factories, sessions, and so on

 	Figure out a way to functionally test the application

 	Decide how to package and deploy the application

 That’s a lot of time being wasted writing code that isn’t solving your goal: bridging an HTTP request to JMS. Throughout this
 book, you’ll see numerous examples of how Mule simplifies and speeds up common integration tasks.

1.6. Summary

 By this point you’ve received a primer on enterprise integration, learned about the philosophy and features of Mule 3, and
 written, tested, and deployed a working Mule app. We’re now ready to formally begin our discussion of Mule; next, we’ll discuss
 processing messages with Mule.

Chapter 2. Processing messages with Mule

 This chapter covers

 	What role flows play in Mule

 	How messages are created

 	The structure of Mule messages

 	The Mule Expression Language

 Mule is a workhorse whose sole purpose in life is to move your messages around. It actually does way more than just moving
 messages: it’s also able to transform, enrich, and smartly route them. Picture a mail delivery service that would automatically
 rewrite letters in the preferred language of the recipient, while decorating them with illustrations that appeal to the culture
 of the addressee.

 Where does such capacity come from? The answer is two words: control and abstraction.

 Mule gives you complete control over the way messages flow through it. We said the word: Mule indeed uses flows as the main control structure in its configuration files. You’ve already seen a flow in the very first chapter of this book;
 it was used by Prancing Donkey to accept product registration data. In this chapter, you’ll learn more about flows and how they work, and the kind of control they give you when processing messages.

 Mule also uses a set of abstractions that allows users to deal with complex message processing scenarios in a unified manner
 using consistent and generic artifacts. In this chapter, we’ll look into the abstractions that sit at the core of Mule, namely:

 	The Mule message

 	Message sources and processors

 	Exchange patterns

 	Endpoint URIs

 We’ll take the time to delve deep into these abstractions, how they operate, and why they’re important. We’ll also look at
 how these abstractions are put in motion inside flows and how the Mule Expression Language dynamizes configurations. For this,
 we’ll look at more examples from Prancing Donkey’s systems, including their email order handler and part of their invoicing
 chain.

 The journey may feel arid at times, but it’s a necessary voyage, so grab a fresh bottle of Prancing Donkey Pale Ale, relax,
 and get ready for the ride!

 In Mule, things start moving when they get assembled in a flow. So let’s just go with it...

2.1. Going with the flow

 Flows are the foremost elements of a Mule configuration. They typically start with a message source (discussed in section 2.2.1) followed by message processors (discussed in section 2.2.2), all chained together by the sole virtue of being encompassed by the flow element. Flows impose virtually no limit to the
 type of message processors that can be added in them or in what order they can be added.

 Let’s circle back to the product registration flow you’ve already seen in section 1.4.2. Listing 2.1 shows this flow with a slight modification that you, astute reader, have certainly already spotted: a logger element has
 been added to allow Prancing Donkey to perform some activity auditing.

 Listing 2.1. The product registration flow, now with logging

 <flow name="product-registration">
 <http:inbound-endpoint
 address="http://api.prancingdonkey.com/products"
 method="POST" />
 <byte-array-to-string-transformer />
 <logger level="INFO" category="products.registration" />
 <jms:outbound-endpoint queue="products" />
</flow>

 The same flow represented in Mule Studio would look like figure 2.1.

 Figure 2.1. The product registration flow in Mule Studio

 [image:]

 So where’s the message source? And what are the message processors? Let’s represent this flow slightly differently and make
 the difference between message sources and processors more apparent. Figure 2.2 uses ovals for message sources and rectangles for message processors. We’ll use the same representation in upcoming similar
 diagrams.

 Figure 2.2. A symbolic representation of the product registration flow that highlights its message source and processors

 [image:]

 In a flow, messages are produced by the message source and then processed along the top-down path, going from message processor
 to message processor. Following the message processors along this path gives you a good idea about how requests will be handled
 in a flow. Later in this chapter, and further in the book, you’ll see that this path can be altered by message processors.
 For example, routing message processors (discussed in chapter 5) allows you to exert even more control on the paths followed by messages.

 	

 Exceptional circumstances

 Another important aspect of controlling message flows resides in exception handling. You’ll learn how to define alternate
 flow paths when exceptions occur in chapter 9.

 	

 If a message processor in a flow returns null, processing will be stopped right away. The response phase, discussed in the next section, won’t even be fired. Note that
 regular transformers or components can’t return null, but instead return a Null-Payload,[1] which doesn’t affect the flow execution.

 1 Mule takes care of returning a NullPayload even if the transformer or component has returned null. This doesn’t apply to custom message processors.

 Each flow represents a meaningful unit of work in your overall message processing needs. For example, receiving messages from
 a source, transforming them to a canonical form, and then sending them to another flow via an outbound endpoint for subsequent
 processing is a typical unit of work you’ll naturally roll out in one flow.

 Mule offers specialized flow elements, named configuration patterns; these patterns are preconfigured flows designed to perform
 very specific tasks. Configuration patterns will be discussed in section 6.2.

 	

 Services = Flows + Constraints

 Mule 2–style services are flows with extra constraints added that severely limit the types of message processors that can
 fit in them. Services have been kept in Mule 3 for backward compatibility. They are now legacy and shouldn’t be used anymore.

 	

 So far we’ve considered flows in one direction only: the top-down path. This path is the one taken by a message that comes
 into Mule and gets processed. But what about the opposite way? Let’s look at how flows behave when it comes to building and
 delivering responses.

 2.1.1. The response phase

 Understanding the response phase of flows is crucial to mastering the art of moving messages around Mule. We’ll take our time
 and do a deep dive into this concept so that you feel confident with what’s happening inside your flows.

 The first thing to realize is that the response phase is implicit; it’s always present and, by default, consists of a simple
 echo of the message as it is at the end of the request phase, which is the top-down path in the flow. Though not apparent,
 the flow shown in listing 2.2 (used by Prancing Donkey for exposing their Accounts REST resource) has a response phase.

 Listing 2.2. A flow with an implicit response phase

 <flow name="accountService">
 <http:inbound-endpoint exchange-pattern="request-response"
 host="localhost"
 port="8080"
 path="services" />
 <jersey:resources>
 <component class="com.prancingdonkey.resource.Accounts" />
 </jersey:resources>
</flow>

 Mule Studio makes this response phase very apparent. Look at figure 2.3; the bottom part of the flow where arrows are pointed left (back to the HTTP-inbound endpoint) represents the response phase.

 Figure 2.3. Mule Studio clearly shows the response phase.

 [image:]

 The payload and properties used for the response are what they were in the Mule message when it hit the end of the flow (in
 top-bottom order). When a flow contains branching (like with a choice router; see section 5.1), it actually ends up having not a single but several possible endings, one at the end of each routing branch.

 With this in mind, the second thing to consider is that Mule gives you the capacity to hook into the response phase with a
 specific configuration element appropriately named response. This allows you to add in a flow message processor that will only be called during the response phase. What can be a little confusing about elements in the response phase is that they kick-in in reverse order, from the bottom of the flow
 to its top (or more accurately, from where the flow ended back to where it started).

 Take a look at the configuration in listing 2.3; can you guess what the response will be if we send a message to it with a payload of “hello”?

