

 inside front cover

 [image:]

 [image:]

 The Creative Programmer

 Wouter Groeneveld

 Foreword by Felienne Hermans

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Connor O’Brien

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Kathy Savadel

 	
 Proofreader:

 	
 Katie Tennant

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439054

contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 The creative road ahead

 1.1 What exactly is creativity?

 1.2 Why creativity?

 1.3 Different levels of creativity

 1.4 A road map to becoming more creative

 The seven Creative Programmer themes

 The Creative Programming Problem Solving Test

 1.5 The structure of the following chapters

 2 Technical knowledge

 2.1 No input, no creative output

 2.2 Gathering knowledge

 Diversify what goes in

 Moderate what goes in

 2.3 Internalizing knowledge

 Knowledge management

 2.4 Acting on knowledge

 From notebook to memex to genex

 From note to action

 A note on note maintenance

 From interruption to action

 2.5 A workflow example

 A five-step workflow

 The workflow in practice: Coding

 The workflow in practice: Learning new programming languages

 The workflow in practice: Writing

 3 Communication

 3.1 Collaborative teamwork

 What makes a Camerata tick

 Dream teams

 3.2 Collective geography

 Liquid networks

 Creativity is contagious

 Moving to stimulating environments

 Genius clusters

 3.3 Creative work in time

 The adoption curve

 3.4 When creative flow is impeded

 Social debt

 From technical to social debt

 Community smells

 Getting out of social debt

 4 Constraints

 4.1 Constraint-based thinking

 Greenfield or brownfield?

 A taxonomy of constraints

 4.2 Intrinsic constraints

 Intrinsic hardware constraints

 Intrinsic software constraints

 4.3 Imposed constraints

 4.4 Self-imposed constraints

 Passionate pixel artists

 Let limitations guide you to creative solutions

 Game Boying into constraints

 Limited (fantasy) consoles

 Limited programming languages

 Crack intros and the demoscene

 4.5 Hitting that sweet spot

 Facilitating abstraction with the right amount of constraints

 Sweetness or bitterness?

 4.6 Working with constraints in practice

 Divergent thinking

 Naivety and constraints

 A naive but legendary poet

 A naive James Bond

 Naive algorithm implementations

 5 Critical thinking

 5.1 Creative critical thinking

 5.2 The creative process

 Verifying critically

 Focused thinking

 Diffuse thinking

 Combining diffuse and focused thinking

 5.3 Creativity is the means, not the goal

 5.4 Common critical thinking fallacies

 Cross-language clashes

 The superior flash of insight

 Ignorance and Deliberate Discovery

 I am the greatest

 I am the fanciest

 First-Google-hit coding

 A long list of novice programming misconceptions

 Converting prejudice into insight

 5.5 Too much self-criticism

 5.6 Why others’ critical thinking matters

 6 Curiosity

 6.1 Curiosity jump-starts creativity

 6.2 Growing wonder and wanderlust

 Fixed and growth mindsets

 Believing is doing

 Growing out of your comfort zone

 Growth mindsets and creativity

 6.3 Staying on the curious course

 Persistence and grit

 Willpower is a depletable resource

 6.4 From curiosity to motivation

 Intrinsic motivation

 Extrinsic motivation

 Combining intrinsic and extrinsic motivation

 6.5 Multipotentiality

 Multiple true callings

 How to approach multiple interests

 Does specialism kill creativity?

 Generalism vs. specialism in tech

 6.6 Serendipitous discoveries

 How to stumble upon things

 Openness to experience

 6.7 About having fun

 Fooling around

 Just for fun: A bad guy bonus challenge

 7 Creative state of mind

 7.1 Getting in the right creative mood

 7.2 The flow of deep work

 The optimal experience

 Deep work

 Deep work and flow on the move

 Walking support or the lack thereof

 7.3 Interrupt!

 Increasing your awareness of interruptions

 Preparing for interruptions

 Knowing which interruptions to look out for

 Mindfulness increases focus

 7.4 Triggering creative insights

 Alone or together?

 Sleep and insight

 A note on stimulants

 7.5 A corporate creative state of mind

 Environmental creativity

 Workplaces as creative workshops

 Workplaces as a safe haven

 8 Creative techniques

 8.1 On filling a creative toolbox

 8.2 A selection: The artist’s toolbox

 Art-Based Learning

 Steal like an artist

 The power of time off

 8.3 A selection: The writer’s toolbox

 Vladimir Nabokov’s toolbox

 Geoff Dyer’s toolbox

 Anne Lamott’s toolbox

 8.4 A selection: The programmer’s toolbox

 Anna Bobkowska’s toolbox

 The Pragmatic Programmer’s toolbox

 Emily Morehouse’s toolbox

 9 Final thoughts on creativity

 9.1 Remember, everyone can be creative

 9.2 On the evolving perspective of creativity

 From technical individualism to a creative team player

 Revisiting the CPPST

 9.3 When not to be creative

 9.4 Further reading

 index

front matter

foreword

 When I heard that Wouter was going to write a book for Manning, I was very excited! Wouter is researching the skills programmers need to be productive and creative, and his work so far had gained attention only in academic circles. How wonderful, I thought, that a larger audience will now be able to read about ways in which we can get more creative in our work!

 Creativity, though, is a weird thing. We all agree programming is a creative endeavor, but what is creativity, and how can we get better at it? Isn’t being creative simply a matter of knowing a lot of things so you can apply the one that is most relevant? Wouter argues that yes, technical knowledge is a necessary condition, though not a sufficient one. He goes on to fill his book with a fantastic mix of engaging historical anecdotes, concrete practical exercises, and extensive references to papers, books, and essays for deeper reading both in and outside of programming.

 I very much appreciate Wouter’s honest reflections on his own strategies. It is easy to simply encourage the reader to do a certain thing (“always take notes” or “work well as a team by communicating more”). Wouter openly addresses how hard it is to do these things, talks about his own failures at doing so, and always ends with concrete advice that feels both actionable and doable—a rare combination.

 I love the fact that the book is filled with exercises and encouragement to try out techniques because if anything is hard to do in theory, it would be creativity! My own edition has now been filled with pages of scribbles and notes on which I could immediately apply Wouter’s lessons on organizing and following up, a sign that his exercises are truly engaging and encouraging!

 The book is deep in its different aspects of creativity, from note taking and brainstorming to creative teamwork and creative techniques to apply. In addition to the practical tips, the book is grounded in solid scientific work and introduces relevant theoretical constructs related to creativity. I learned about organizing knowledge, common pitfalls in critical thinking, and how to use constraints to boost your creativity.

 I don’t doubt that The Creative Programmer will be useful to any programmer, from high schoolers taking their first steps in Python to seasoned C++ developers with decades of experience. I can’t wait to see what creative projects readers will come up with!

 —Prof. Dr. Felienne Hermans

 Professor of Computer Science Education

 Vrije Universiteit Amsterdam

preface

 As much as technicality and program architectures bedazzled me in a good way during my 11 years as a software engineer, it was really the mysticism of nontechnical coding skills that kept calling my name. When I got involved in coaching and onboarding, I noticed a few odd things. Why was it that new recruits mostly caught up with our frameworks and best practices but sometimes failed to grasp what really matters: integrating into the team and solving problems? What does it mean to be a truly great programmer, besides the obvious technical mastery?

 This question kept me up at night and eventually lured me back to academia. More than four study-intensive years later, and having published multiple scientific papers on the subject, I can finally say I better understand what makes a truly great programmer: a Creative Programmer. The problem is that segregated academic publications—besides their excellent legibility—lack context and barely make it beyond university borders. I was also set on giving something back to the programming community. Thanks to the interest and help of Manning, the idea soon evolved into easily digestible chapters and an early-access release, kicking the feedback-rewrite cycle into overdrive.

 The result of our collaboration is a blend of theory and practice—a practical approach backed by scientific evidence that should help you with complex programming problems as a coder in the field. I’ve done my best to make this book as accessible (and as funny) as possible, both for the junior programmer and for the experienced guru. By the end of the book, all the tools you need to become a Creative Programmer should be in your hands. In total, we’ll cover seven distinct but intertwined themes: technical knowledge, communication, constraints, critical thinking, curiosity, a creative state of mind, and creative techniques.

 I hope the concepts explained in this book will jump-start your creative thinking and continue to be a useful guide for years to come. If there is anything you’d like to discuss or share, please feel free to reach out. I’m always happy to help, and feedback is more than welcome. As you’ll see later in the book, there’s no such thing as a Creative Programmer without a creative community.

 Thanks again for buying the book, and enjoy!

acknowledgments

 While the first draft of this book was written in solitude, many ideas that helped shape it were, of course, based on the superb work of others. Of those, I owe a special thanks to Andy Hunt. If not for discovering his Pragmatic Thinking & Learning guide in 2009, I would probably never have shown any interest in cognition and the psychology of programming.

 I thank all the wonderful people I’ve ever had the pleasure of working with and previous employers who allowed me to put together experimental courses on various aspects linked to the concepts of this book. A big thanks goes to my PhD supervisors, Joost Vennekens and Kris Aerts at KU Leuven, who let me choose my own path instead of forcing me to limit my topic to their research domain. I also thank all the participants in industry and academia who were interviewed as part of my research.

 I probably will never want to admit it, but the first draft of the book, while containing a lot of good ideas, was still in pretty rough shape. I owe a great deal to my editor, Connor O’Brien, for critically reviewing the chapters and forcing me to kill my darlings when needed. It has been a rocky ride, and the need for a careful balance between theory and practice may have caused a stir or two, but in the end, Connor always put me on the right track.

 Also, I thank associate publisher Michael Stephens for recognizing this book’s potential when we first met. A big thanks goes to all the other folks at Manning who helped put this out there.

 I thank the people who put in the effort to provide early feedback on the manuscript during various stages of its development: Abdul W. Yousufzai, Alessandro Campeis, Andres Sacco, Chuck Coon, Diego Casella, Đorđe Vukelić, Edin Kapić, Edmund Cape, George Onofrei, Germano Rizzo, Haim Raman, Jaume López, Jedidiah River Clemons-Johnson, Jeremy Chen, Joseph Perenia, Karl van Heijster, Malisa Middlebrooks, Manuel Rubio, Matteo Battista, Max Sadrieh, Muhammad Zohaib, Nghia To, Nouran Mahmoud, Oliver Forral, Or Golan, Orlando Alejo Méndez Morales, Pradeep Chellappan, Prajwal Khanal, Rich Yonts, Samuel Bosch, Sebastian Felling, Swapneelkumar Deshpande, and Vidhya Vinay.

 Other people also deserve special acknowledgment:

 	
 Yannick Lemmens, who laid eyes on one of the earliest versions of the manuscript. His enthusiasm certainly helped push this project forward.

 	
 Linus De Meyere, for always supporting my projects, however silly they may seem at first.

 	
 Peter Bridger, as my retro computing liaison and good friend, for sharing stories, happy and sad, and providing distractions when needed.

 	
 Felienne Hermans, for paving the way with her book The Programmer’s Brain, also published by Manning, showing coders (and publishers) there is a clear need for nontechnical technical books.

 	
 Daniel Graziotin, for helping to point me toward creativity research in the context of software development, even though he ended up pursuing another related topic himself.

 Lastly, the person I probably owe the most to: I thank my wife, Kristien Thoelen, for putting up with my grumbling and whining when hitting yet another (writing) roadblock. I have the feeling this won’t be my last book; sorry, honey!

about this book

 As the title implies, The Creative Programmer is primarily a book for programmers of all levels who are keen on improving their problem-solving skills with the help of creativity. By purchasing this book, you’ve already unlocked the first and most important part of your creative potential: the curiosity to learn something new! I hope the coming chapters contain enough information to keep that curiosity going.

 Unlike many Manning books, this one does not require any prior knowledge of certain programming languages or technologies. Instead, we’ll venture deep into the world of cognitive psychology to discover what it means to be a Creative Programmer. It does help if you’ve programmed before, but it’s not a strict requirement. The few code examples present are devoid of language-specific syntax and serve as a use case for specific creative concepts: no extensive programming language or design pattern knowledge is required.

 Even though these approaches to creativity, conventional and unconventional, will always be translated back into the world of the programmer, they might also appeal to noncoders who are involved in tech. Technical analysts will certainly also benefit from the revealed concepts, while engineering managers will learn how to better support their team creatively. With a bit of effort, most techniques can be translated into other domains. We’ll see examples of this as we make our way through the book.

How this book is organized

 Since creativity can be a confusing term, we first discuss the origin of the word, what it means to be creative, and how to measure it in chapter 1, which also serves as a guide to the creative road ahead.

 In each of chapters 2-8, a central theme related to creativity is revealed and explored in depth. These themes can also be found in the core concept graphic on the inside of the front cover. They are technical knowledge, communication, constraints, critical thinking, curiosity, a creative state of mind, and creative techniques. As you’ll soon discover, these themes are highly interconnected. While the book was written with the intention of reading the chapters in order, feel free to flip through them and follow your curiosity, cherry-picking topics here and there. Just make sure you don’t skip the important context.

 Chapter 9 closes with some final thoughts on creativity in the context of coding and offers a few moments of reflection to help you integrate what you’ve learned into your daily practice as a programmer. In case you’re still hungry for more after finishing this book, this chapter also contains a list of recommended readings, grouped by the main themes.

 Each section in chapters 2-8 contains an exercise to make you stop and think. Some of these are easily actionable while others may require more thought or a good night of sleep and a reread. I did my best to design these in such a way that they potentially ignite change, but I do expect you, the reader, to give them a fair chance. If you encounter any difficulties or don’t know how to apply something in your specific situation, feel free to reach out. I’m always happy to help where I can!

liveBook discussion forum

 Purchase of The Creative Programmer includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/the-creative-programmer/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image: Groeneveld]

 Wouter Groeneveld is a software engineer, computer science education researcher, and professional bread baker. Wouter was an enterprise software engineer for 11 years with a passion for inspiring and teaching others. After a few years of experience, he became involved in teaching, coaching, and onboarding. Witnessing the failure of many software projects led him to ask the following question: What makes a good software engineer? That question ultimately caused him to quit his job in the industry in 2018 and rejoin academia. Since then, Wouter has been conducting research on nontechnical skills in the software engineering world. He has written extensively about the topic. A list of his academic publications can be found at https://brainbaking.com/works/papers/ (all papers are open access). He also runs a blog at https://brainbaking.com/.

about the cover illustration

 The figure on the cover of The Creative Programmer is “Homme Ostjak à la Chasse d’Hermine,” or “Ostyak man hunting ermine,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 The creative road ahead

 This chapter covers

 	
Definitions and the origin of the term “creativity”

 	
Reasons for being creative

 	
An overview of the seven Creative Programmer themes

 	
The Creative Programming Problem-Solving Test

 We humans love to create. Homo faber—creating to control our fate and environment—is a manifestation of man’s innate being in nature, according to philosopher and novelist Umberto Eco.1 By buying this book, you’ve made your first step toward your innate being as a creative programmer. Congrats, and welcome!

 Chances are that you’ve decided to read this book to become a better programmer. You’ve come to the right place. Only, don’t expect the unfolding of the latest technical marvels, such as a just-in-time compiler of some virtual machine, or to learn more about programming language x or y. This is far from your average programming book.

 Instead, we’ll be working on a different level. You’ll learn how highly creative individuals (and groups) approach problems, what their habits and thought processes are like, and how they arrive at both more productive and more creative solutions. Once you’re a certified Creative ProgrammerTM, you’ll unravel any technical marvel with ease and learn multiple programming languages at once—well, at least according to the theory. Whether you just picked up programming as a new discipline or you’re an experienced developer, my hope is that you will acquire at least a few new creative tricks to have up your sleeve.

 More experience in a technical trade such as programming does not necessarily equal more creative output. I’ve been in the software development industry for more than a decade and have witnessed few highs and a lot of lows. Software seems to be doomed to fail. Pragmatic programmer and cocreator of the “Manifesto for Agile Software Development” Andy Hunt started his book Pragmatic Thinking & Learning on a similar troubling note:2

 Whether you’re a programmer or frustrated user, you may have already suspected that software development must be the most difficult endeavor ever envisioned and practiced by humans. Its complexity strains our best abilities daily, and failures can often be spectacular—and newsworthy.

 Although Andy’s approach is to teach you how to think and learn, my approach is to teach you how to approach problems more creatively. After witnessing so many software failures (and [un]consciously helping conceive them), I’ve become convinced that the deficit may be one of nontechnical skills, not of technical ability. This obsession even led me back to academia, where I have spent the past four years researching creativity in software engineering. The fruit of my hybrid industry-academia work lies in your hands—provided you’re an old-school book person. But before we can get cracking, we first need to get a few questions out of the way.

1.1 What exactly is creativity?

 Psychology scholars have been squabbling over this question for decades. The result is the existence of about 100 different definitions of creativity. When you ask your 10-year-old daughter what creativity is, she might insist on sharing her paintbrush to find out together. Your stingy neighbor, on the other hand, thinks that tax evasion is creative. After carefully inspecting the internals of a computer, you yourself might conclude that they are all wrong: it’s the engineers who come up with this that are creative! Who’s right?

 One possible solution would be to boil down the essence of all different opinions into a single definition. Creativity researchers Kaufman and Sternberg3 say an idea is creative if it meets these descriptions:

 	
 It is considered novel and original.

 	
 It is of high quality.

 	
 It is relevant to the task at hand.

 Throwing a NoSQL database at a problem might be a qualitative solution, as has been proven in the past, but I doubt it is an original idea. If your problem is not data related, then it might not even be relevant. Still, if you or your team has never worked with NoSQL databases before, it might be considered novel.

 This essentialists’ take on creativity comes with many drawbacks; for example, it completely ignores context. Creativity research is making a gradual shift toward a more systemic approach that takes into account contextual parameters. This sounds complicated, and I can almost hear you bracing yourself for yet another dry academic definition. Fortunately, quite the opposite is true.

 EXERCISE When do you think something is considered creative? Ponder that question for a few minutes. When was the last time that something you came up with was considered very creative?

 Done? Right. I’ll lift the curtain for you: something is creative when someone else says it is. There, isn’t that easy? Creativity is a social verdict.4 Your peers decide whether or not your programming efforts led to something creative. You cannot possibly declare that yourself. It is a sociocultural phenomenon.

 Art experts who proclaim a particular painting to be a stroke of genius dictate our opinion as laypersons (figure 1.1). In response, we dutifully sigh in awe. If that painting was considered plain and uninteresting by critics, we wouldn’t bother to look. It would probably never make it to a museum wall. Because we don’t have the necessary technical knowledge about painting, we have to rely on the experts in the field.

 [image: CH01_F01_Groeneveld]

 Figure 1.1 What is art? According to Marchel Duchamp, a signed urinal can be art. A New York gallery rejected it. Duchamp’s Fontaine did manage to shake things up quite a bit in the domain of 20th-century art. It is now considered highly creative. Source: public domain.

 The same is true for programming—or any other domain. If your teammates pat you on the back saying, “Nice code! A creative way to circumvent the problem!” then you’re suddenly promoted to a creative programmer, on the condition that your teammates as experts in programming are not just fooling around. Yet, that very same solution could be considered boring by another team or in another company: been there, done that.

 Thinking about creativity in a systematic way also explains the sad prevalence of unsung geniuses. It goes without saying that if none of Vincent van Gogh’s paintings had been found, we would not consider him a creative genius. And if none of the art experts in the field had accepted van Gogh’s paintings as evocative and groundbreaking, we would not consider him a creative genius. In fact, that is exactly what happened during his lifetime. His paintings were consistently rejected by the Paris Salon curators, who were responsible for the official art exhibition of the Académie des Beaux-Arts between 1748 and 1890. Their conservatism didn’t last long. The critical mass grew and dethroned the classicists in favor of Impressionism, as the Impressionists started holding their own independent exhibitions. Time and place are equally important contributors to creativity, as we will see in later chapters. Many of van Gogh’s works are now among the most expensive paintings ever sold.

 The origins of the creative

 The way in which we perceive creativity has changed many times throughout the history of humankind. Nowadays, we immediately think of art when we hear the term. In ancient Greece, art (technê in Greek, later adapted to technology) involved strict adherence to rules. Painters and sculpturers imitated; they did not create—only poets were allowed “freedom of action.” Artists discovered; they did not invent.

 In later Christian-dominated Europe, creativity was reserved for God’s act of creation from nothing (creatio ex nihilo). We humble humans merely made (facere) stuff; we couldn’t—and weren’t allowed to—create.

 Only during the Renaissance period did philosophers and artists begin to see themselves as inventors, shaping new objects according to their own ideas, gradually freeing art from craft and moving toward creativity. It would take two more centuries before the term was actually applied—and it was met with heavy Christian resistance.

 Creativity would not gain traction in scientific research until the 1950s. It is, just like programming, a relatively new concept!

 I might come up with a clever variant of ext4, the most popular journaling file system for Linux. I might perhaps call it WouterFS. That does ooze with creativity (and decadence). If I never introduce it to someone else, there’s a slim chance it would get picked up after my death. Luckily, I’m a realist. Technology changes too rapidly, and by then, they’ll probably be about to roll out ext65, which most likely will make WouterFS redundant. Maybe one day I will find the courage to show my implementation to a few of the ext maintainers. If it is seen as mundane and dismissed—and the chances of that are high—I’ll have to accept my defeat. But if my code is seen as creative, they might even patch a few features into ext4. In other words, all I can do is my best, but it is not up to me to declare my work as creative.

1.2 Why creativity?

 That does sound rather depressing, doesn’t it? Why would you bother reading a book about becoming a creative programmer if it’s up to someone else’s whims? Because many habits and personality traits explained in the coming chapters greatly increase your potential to be a creative programmer.

 Still, that does not answer the why question. Why bother becoming a creative programmer when you’re already a competent programmer? The answer is—again—multidimensional. Let’s examine the major reasons to lead a creative developer’s life.

 The first reason, simply put, is that employers ask for it. For years, nearly every software development job advertisement contains the word “creative.”5 Everyone knows that job ads are bulging with meaningless words made up by the Human Resources department to attract as many candidates as possible. Soft skills are all the rage these days. Instead of scanning ads, my colleagues and I conducted our own research by simply asking software development experts: “Which non-technical skills do you think are needed to excel as a developer?”6 Guess which word popped up? If you want to sell yourself, you’ll have to be creative.

 EXERCISE When do you consider your own programming work to be creative? When is it anything but creative? When do you consider others’ code creative? Is there a difference? You might be reluctant to answer such mundane questions because the answers might yield (un)pleasant surprises.

 As for the reason why creativity is such a sought-after skill, the answer lies in problem solving. When conventional methods fail, bringing in a splash of creativity might be the way to go. Knowing how the creative process works is half the solution. For example, if your web application is struggling with handling thousands of requests per second, it might be a good idea to look at message queuing, load balancing, caching, or coroutines. If nobody on the team suggests any of these, you’ll likely go in circles. A creative programmer breaks those circles.

 Sometimes, though, problem solving is not enough. Sometimes, the problem hasn’t yet been found—let alone defined. In cases like that, your typical problem-solving skills won’t be very effective: you will need to rely on your creative senses to see the problem.

 When Charles Darwin left Plymouth on the Beagle in 1831, a voyage that would last five years, he had no intention of linking natural selection with the origin of species: the problem domain didn’t even exist yet. The British Royal Navy researchers were tasked only with charting the coastline of South America. The exotic vegetation and animals Darwin encountered and meticulously kept notes of planted the seeds for his theory that would be conceived only years after the voyage itself.

 Darwin wasn’t a problem solver; he was a problem finder. What can we as programmers learn from Darwin’s way of thinking? We’re usually swamped with small and well-defined (sub)problems, tasks in a swim lane that somehow have to make it to the “done” column. But perhaps, somewhere along the journey, enough dots are collected and later connected to form an entirely new question. Perhaps we discover a problem our clients didn’t even know they had. A creative programmer is both a problem finder and a problem solver. We will revisit Darwin’s voyage around the world in chapter 6.

 The second reason to care about the creative judgments of others is because the opinion of your peers should matter. In case you haven’t noticed yet, software development is a team-based activity. Creativity is meaningless in isolation (more about that in chapter 3) exactly because it is a social construct. The psychological safety that emerges from mutual respect makes everyone feel more at ease, thereby increasing the jelling of the team. This opens up the possibility for you to learn and grow and to help others learn and grow as well.

 Creative product vs. process

 Note that, when admiring creative work, we almost always admire the product: the end result, after the flow of ample blood, sweat, and tears. The end result could be a clever algorithm or a newly invented design pattern. Those would attract admiration primarily from software developers. The end result could also be the whole application, which, ideally, your end users also would call creative.

 Instead of the end product, the process that leads up to the work can also be creative. However, the process is mostly invisible and hence impossibly difficult to evaluate. Creative processes might yield creative products. The emphasis is on might here: the result could also be a train wreck. The opposite also is true: a creative product can be the result of a conventional process.

 Inviting experts to judge the creativity of a product is called the Consensual Assessment Technique, a popular term coined by Teresa Amabile in 1988. Next time you’re watching America’s Got Talent, remember that it’s adhering to sound academic methods!

 A third reason to be creative is because creativity equals fun. Many experts we interviewed mentioned the sole reason for being a programmer is the possibility of being creative. Creative programmers deeply enjoy their work. They love taking a deep dive, getting out of their comfort zone, connecting unusual ideas, discussing different approaches with others, and being in the flow. In short, creative programmers give in to their creative urge. They become Umberto Eco’s homo faber.

 Many creators hope to achieve immortality through their creative work that might outlive their feeble body. The lucky few who realize their dream of leaving a permanent mark on the world are hailed as true geniuses. We, as programmers, working with highly volatile technology, might be better off taming our immortal aspirations. I bet by the time this book is published, dozens of existing technical books on programming can be safely moved to the “vintage” bookshelf. And we all know what that means.

1.3 Different levels of creativity

 You might have noticed I’ve casually used the word genius in the context of creativity. Of course, it doesn’t take a genius to be creative. Researchers tried to classify different levels of creativity and came up with the following taxonomy:7

 	
 little-c, or everyday creativity—This is personal creativity: doing something original you haven’t done before, for instance, cross-compiling your C++11 game of life implementation to the Game Boy Advance.

 	
 Big-C, or eminent creativity—Doing something original nobody has done before, for instance, porting Ruby 3 to run on your 486 machine under DOS 6.22. Hey, there’s an idea . . .

 Linus Torvalds is a Big-C creator. He completely changed the domain of operating systems (and version control). According to some scholars, “geniuses” are responsible for important creative products that alter the whole domain. On the other hand, coming up with a creative solution for your web app’s request throughput problem won’t likely shake things up.

 Of course, as with all things in this world, the taxonomy had to be criticized. little-c is sometimes portrayed as too mundane and bland. The greatness of Big-C might have creators succumb to the pressure. Creativity researcher Mark Runco completely dismisses the distinction between little and big, proclaiming that reality is not categorical.8 Others develop their own version in response: there are H-creativity (historic: does the invention affect the history books?) and P-creativity (personal creativity), and there are more hidden layers between little-c and Big-C called mini-c and Pro-c. Some researchers, such as Mihaly Csikszentmihalyi, interview creative geniuses to extract practices for everyday creators, whereas others claim this gives a distorted picture. In short, academic creativity research is a bit of a mess. Still, thinking about creativity in terms of different “levels,” as clarified in figure 1.2, can be helpful.

 [image: CH01_F02_Groeneveld]

 Figure 1.2 An example of different inner circles in which a programmer works. A piece of code deemed creative by close colleagues might bubble up and be lauded as creative by the team. However, another team might have done the same: at the company level, your fame comes to an abrupt end. Because creativity is socioculturally dependent, switching teams also changes the interpretation of creativity. Being mindful of these inner circles can be very useful. Helping the team and company be creative means spreading the word, but starting with yourself.

1.4 A road map to becoming more creative

 This book is not about how to become a genius, which has little to do with “creative genes”: you will soon discover, there is no such thing. Instead, it is about the process of problem-solving. By applying different creative methods and insights into creativity, neatly wrapped in seven distinct but heavily intertwined themes, it is my hope that you will be able to become a better programmer. In case you are not a programmer, don’t worry: you will see that many of these methods can be easily transferred to other domains.

 Andy Hunt’s Pragmatic Thinking & Learning starts with a beautiful hand-drawn mind map that doubles as a road map. Because his book also leans to the softer side of programming, I’ve let myself be inspired by his drawing and used it to brighten up a research9—which was considered very creative and promptly accepted. The mind map, as visible in figure 1.3 and at the beginning of this book, also serves as a guide for this book. Each “tentacle” in the map represents a chapter with a distinct theme related to creativity.

 [image: CH01_F03_Groeneveld]

 Figure 1.3 The Creative Programmer mind map that ties together all seven chapters of this book.

 NOTE All illustrated figures in this book are hand drawn by me to better fit the creativity theme.

1.4.1 The seven Creative Programmer themes

 The following adventures await us.

 Technical knowledge

 Anyone who produces something creative must have a firm grasp of the state of affairs in their domain. This might sound so obvious that it almost seems excessive to waste a whole chapter on. A programmer can’t be a creative programmer if they are not a programmer in the first place. Even though learning before doing is quite self-evident, pausing and thinking about various ways to consume information, continuously learn, be aware of cognitive biases, and manage knowledge still pay off.

 Creative programmers understand how to convert a steady stream of knowledge into new ideas.

 Collaboration/communication

 Creativity never happens in isolation: refinement of ideas is a social process. Without any kind of feedback, it will be impossible to upgrade your slightly original idea into an excellent one. Your peers can act as catalysts for change. In chapter 3, we’ll explore the concept of genius clusters, how to build dream teams, and techniques to enhance the creativity of teams. In a paper my colleagues and I published,10 this theme is called communication, so we stuck with that term, but in hindsight, collaboration might be a more fitting name.

 Creative programmers are always aware of the subtle interplay between ideas, individuals, and teams.

 Constraints

 Tackling any kind of problem involves taking constraints into account, whether they are self-imposed or external. Contrary to popular belief, constraints actually spark creativity instead of diminishing it. We will explore multiple cases of creative outbursts that are the result of converting what might look like annoying limitations into sudden advantages.

 Creative programmers know how to take advantage of imposed constraints instead of only complaining about them in retrospect.

 Critical thinking

 Coming up with a lot of ideas is only half the work: the other half, which is arguably more difficult, involves vigorous scrapping until the best idea is left standing. Then and only then, it might be time for action. In chapter 5, we’ll try to engage in a symbiotic relationship between critical thinking and our everlasting fountain of crazy ideas. We’ll discover that creativity is not only about generating ideas but also about decision making and execution.

 Creative programmers are able to fluently switch between sprawling ideation and critical evaluation.

 Curiosity

 Why did you pick up this book? Were you curious about its contents? Are you eager to learn? Are you determined to read this book cover to cover? If the answer is yes, we’re off to a great start here! According to creativity researcher Mihaly Csikszentmihalyi, curiosity and perseverance are the two most defining personality traits for creativity.11 We’ll regularly revisit Csikszentmihalyi’s excellent work on this subject in the coming chapters.

 Curiosity leads to an implicit motivation to learn new things (technical knowledge). Curiosity leads to asking “why” questions (critical thinking). We’ll discuss why having a sense of wonder is advantageous, not only for the absent-minded professor but also for the creative programmer.

 Creative state of mind

 We all know that frequent interruptions are detrimental to the programming flow. Getting into the right state of mind will greatly improve your creative work. We’ll inspect how flow and insight work, what insight priming can bring to the table, and how to increase those ever-so-important but fickle “aha” moments.

 Working on your individual state of mind is one thing. Enhancing the collective state of mind of your team or company is another—and both are equally important to a creative programmer.

 Creative techniques

 Last, we will discuss several practical, creative techniques that can positively affect the concepts explained in all of the preceding chapters. Just like creativity’s systemic definition, these techniques are intertwined with all dimensions of creative problem solving. They do not necessarily fit neatly into one distinct theme. We’ll take a critical look at classic brainstorming sessions and more unconventional techniques, such as giving your ideas some legs.

1.4.2 The Creative Programming Problem Solving Test

 What if you wanted to follow along in this book and gauge your growing creative programming potential related to a specific assignment or project? A lot of creativity assessment tools exist that measure specific bits and pieces, as we’ll soon discover in the coming chapters. Some determine your divergent thinking skills, and others are mostly focused on evaluating the end product. Unfortunately, none of the existing tools are composed from within the computing domain and apply a systems view.

 To do exactly that, my colleagues and I have designed a self-assessment survey for creative problem-solving based on the seven themes discussed in this book.12 The survey has been validated for first- and last-year software engineering students and was verified by several industry experts. It is by no means a catchall solution to measure creativity, but it’s the closest thing we have nowadays for programmers to identify the level of engagement for each of the seven themes.

 The questions will make more sense as soon as you’ve finished reading each particular chapter. Some questions will leave you wondering whether or not they neatly fit into a single theme. Don’t worry; many don’t: as we’ll soon discover, creativity doesn’t easily let itself be pushed into a single category.

 Perhaps it’s a good idea to fill in the questionnaire now, before moving on to the first chapter, to get a general idea of your current state as a creative programmer. Remember, it’s a self-assessment test, so try to be honest—lying will only trick you into thinking there’s little room for improvement! When filling in the test, try to relate the questions to a recent specific assignment. The answers will likely vary from project to project.

 Each question should yield a number: 1 (completely disagree), 2 (disagree), 3 (neither agree nor disagree), 4 (agree), or 5 (completely agree). Feel free to take out a pencil and insert “X”s in the rubric where appropriate.

 Table 1.1 The full set of 56 questions from the Creative Programming Problem Solving Test rubric

 	
 1. Technical knowledge

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 I have gained a lot of knowledge during the project.

 	

 	

 	

 	

 	

 	
 I learned and applied new practical programming techniques.

 	

 	

 	

 	

 	

 	
 I have gained insight into the problem domain.

 	

 	

 	

 	

 	

 	
 The technical aspect of programming appealed to me.

 	

 	

 	

 	

 	

 	
 I thought about my learning process and how to improve it.

 	

 	

 	

 	

 	

 	
 I felt comfortable with this project because many aspects were unknown.

 	

 	

 	

 	

 	

 	
 I tried to relate the new knowledge to something I know.

 	

 	

 	

 	

 	

 	
 Thanks to the project I also gained knowledge of other things outside of coding.

 	

 	

 	

 	

 	

 	
 2. Communication

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 I regularly asked for feedback from my fellow colleagues.

 	

 	

 	

 	

 	

 	
 I visualized the problem on a whiteboard or on paper.

 	

 	

 	

 	

 	

 	
 I regularly asked feedback from my clients and/or end users.

 	

 	

 	

 	

 	

 	
 I helped my teammates with their own tasks.

 	

 	

 	

 	

 	

 	
 My own tasks were completed on time so that teammates did not run into deadline troubles.

 	

 	

 	

 	

 	

 	
 I supported the ideas and efforts of my teammates.

 	

 	

 	

 	

 	

 	
 I was so proud of our result that I showed it to everyone.

 	

 	

 	

 	

 	

 	
 I thoroughly thought through suggestions made by others.

 	

 	

 	

 	

 	

 	
 3. Constraints

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 I regularly thought about the correctness of my solution.

 	

 	

 	

 	

 	

 	
 I did not perform less well due to time pressure.

 	

 	

 	

 	

 	

 	
 I tried to make my code as elegant as possible.

 	

 	

 	

 	

 	

 	
 I tried to identify the constraints of the assignment.

 	

 	

 	

 	

 	

 	
 I had the program tested by friends and/or family (if possible).

 	

 	

 	

 	

 	

 	
 I could make good decisions even though there was a lot of creative freedom.

 	

 	

 	

 	

 	

 	
 Coding on short notice accelerated my learning process.

 	

 	

 	

 	

 	

 	
 I regularly tested the program myself and paid attention to its ease of use.

 	

 	

 	

 	

 	

 	
 4. Critical thinking

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 In discussions about problems, I often suggested alternatives.

 	

 	

 	

 	

 	

 	
 I regularly carefully weighed up the various options we had.

 	

 	

 	

 	

 	

 	
 I dared to completely rewrite my code when it didn’t go well.

 	

 	

 	

 	

 	

 	
 I used multiple sources to find out information myself.

 	

 	

 	

 	

 	

 	
 I think it was important to ask teammates how they implemented something.

 	

 	

 	

 	

 	

 	
 I always check the credibility of the source when I look something up.

 	

 	

 	

 	

 	

 	
 It was important that I 100% understood why something works the way it did.

 	

 	

 	

 	

 	

 	
 Looking at other projects made me reflect on my own.

 	

 	

 	

 	

 	

 	
 5. Curiosity

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 During the project, I got very much out of my comfort zone.

 	

 	

 	

 	

 	

 	
 Many parts of the project piqued my curiosity.

 	

 	

 	

 	

 	

 	
 I enjoyed getting involved in many aspects of the project.

 	

 	

 	

 	

 	

 	
 I enjoyed really immersing myself in some aspects.

 	

 	

 	

 	

 	

 	
 I was stimulated by the complexity of the project.

 	

 	

 	

 	

 	

 	
 I felt the urge to implement extras.

 	

 	

 	

 	

 	

 	
 I had a lot of fun while developing the project.

 	

 	

 	

 	

 	

 	
 I didn’t have to commit and push myself to finish the project.

 	

 	

 	

 	

 	

 	
 6. Creative state of mind

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 I remained focused for a long time on one part of the project.

 	

 	

 	

 	

 	

 	
 I used productivity tools to focus more on the essence of the problem.

 	

 	

 	

 	

 	

 	
 I found the experience to be very rewarding.

 	

 	

 	

 	

 	

 	
 Time seemed to fly while working.

 	

 	

 	

 	

 	

 	
 I found that I knew enough to meet the high demands of the project.

 	

 	

 	

 	

 	

 	
 Programming went almost automatically.

 	

 	

 	

 	

 	

 	
 I knew exactly what I wanted to achieve.

 	

 	

 	

 	

 	

 	
 I was not concerned with what outsiders thought of my code.

 	

 	

 	

 	

 	

 	
 7. Creative techniques

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 I used many different methods to solve a single problem.

 	

 	

 	

 	

 	

 	
 I employed knowledge from another domain to solve something.

 	

 	

 	

 	

 	

 	
 I combined different ideas to tackle a problem.

 	

 	

 	

 	

 	

 	
 I deliberately took occasional breaks to let things sink in.

 	

 	

 	

 	

 	

 	
 I brainstormed with others to come up with new ideas.

 	

 	

 	

 	

 	

 	
 I took a step back now and then to see things as a whole.

 	

 	

 	

 	

 	

 	
 In case of problems I let myself be inspired by other projects.

 	

 	

 	

 	

 	

 	
 I never felt completely stuck.

 	

 	

 	

 	

 	

 If you calculate an average for each theme, you can sketch out the results in the form of a spider diagram, such as the one in figure 1.4. In contrast with other assessment tools we’ll encounter in later chapters, it is impossible to further reduce the outcome to a single digit. That would completely negate contextual links of creative problem solving that we have so carefully tried to preserve.

 [image: CH01_F04_Groeneveld]

 Figure 1.4 A spider graph of a possible Creative Programming Problem Solving Test (CPPST) result. If you’re too lazy to draw something like this, try out the online survey at https://brainbaking.com/cppst/.

 Filling in the questionnaire can yield interesting and different results depending on the project you’re working on: it’s purposely very much context bound. Perhaps you’re bored with one project, resulting in a low curiosity score. Or you’re going all out at a technical level with another project, resulting in a high technical knowledge score. Again, don’t worry too much about that score—the CPPST tool primarily serves as a way to gain some insight in your current personal creative process. As you work your way through the book, consider going back to the questions now and then to see whether you’re improving in practice.

1.5 The structure of the following chapters

 Each chapter after this one starts with a background story to set the scene and provide examples of creative thinking inside and outside the world of technology. You might also notice my tendency to use video game references as contextual assistants, next to conventional examples. This isn’t just because I happen to like games. Dozens of studies—including those of my colleagues and I—have proven that visual examples better capture interest, and game use triggers playful learning. Because this is a book about creative programming, it would be a shame not to dig up stories about game development. After all, aren’t they also considered pieces of art?

 Chapters are also generously sprinkled with exercises marked with a distinct border. This isn’t a technical programming book, so the exercises aren’t as hands-on as you might be used to. However, they are still valuable as thinking exercises and can serve well as subjects of retrospectives. Of course, I can’t force you to suddenly be creative—all I can do is point in the right direction. Converting those pointers into action is up to you.

 Sometimes, as an aside, I’ll digress from the topic to provide additional amusing and insightful background stories. You will recognize these off-topic sections as gray blocks in between the regular text. If you’re in a hurry, they can be skipped, although you’ll likely miss out on creative triggers if you decide to do so.

 Each chapter ends with a checklist that summarizes the new concepts covered in that particular chapter. These can serve as a reminder, but please take their context into account: just scanning the summaries isn’t going to get you closer to creative coding mastery; neither do they serve as a complete overview of best practices.

 You are now ready for your creative adventure. Let’s dive in.

 1.Umberto Eco. The open work (Anna Cancogni, trans.). Cambridge: Harvard University Press, 1989.

 2.Andy Hunt. Pragmatic thinking & learning: Refactor your Wetware. Pragmatic Bookshelf, 2008.

 3.James C Kaufman and Robert J Sternberg. Creativity. Change: The Magazine of Higher Learning, 2007.

 4.Vlad Petre Glăveanu, Michael Hanchett Hanson, John Baer, et al. Advancing creativity theory and research: A socio-cultural manifesto. The Journal of Creative Behavior, 2020.

 5.Judy L. Wynekoop and Diane B Walz. Investigating traits of top performing software developers. Information Technology & People, 2000.

 6.Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. Non-cognitive abilities of exceptional software engineers: A Delphi study. Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 2020.

 7.Peter Merrotsy. A note on big-C creativity and little-C creativity. Creativity Research Journal, 2013.

 8.Mark A Runco. “Big C, little c” creativity as a false dichotomy: Reality is not categorical. Creativity Research Journal, 2014.

 9.Wouter Groeneveld, Laurens Luyten, Joost Vennekens, and Kris Aerts. Exploring the role of creativity in software engineering. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Society.

 10.Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. Non-cognitive abilities of exceptional software engineers: A Delphi study. Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 2020.

 11.Mihaly Csikszentmihalyi. Creativity: Flow and the psychology of discovery and invention. Harper Perennial, reprint edition, 2013.

 12.Wouter Groeneveld, Lynn Van den Broeck, Joost Vennekens, and Kris Aerts. Self-assessing creative problem solving for aspiring software developers: A pilot study. Proceedings of the 2022 ACM Conference on Innovations and Technology in Computer Science Education, 2022.

2 Technical knowledge

 This chapter covers

 	
How to gather, internalize, and act on knowledge

 	
The Zettelkasten knowledge management technique

 	
A workflow for keeping smart notes

 A lonely crow disturbs the otherwise peaceful silence of an ancient Corsican night. A Spanish-born Roman citizen passes the evening with his two best friends: pen and ink. After being exiled from Rome by the dictator Claudius, Seneca the Younger spent eight highly productive years on the island of Corsica, publishing various consolations on anger and death. Writing, as Seneca proclaimed, is how one should exercise oneself. Not a single night would pass without him writing in his journal. As he explained to a friend, “I scan the whole of my day and retrace all my deeds and words. I conceal nothing from myself, I omit nothing. For why should I shrink from any of my mistakes, when I may commune thus with myself?” The sleep that would follow his self-examination felt particularly satisfying.

 Seneca’s daily note-taking habits gained traction during his extended stay in Alexandria. His struggle with tuberculosis forced him to take an extended leave from Rome. For almost 10 years, in convalescence, he did what any Stoic philosopher would do: study and write, building both mental and physical strength. Seneca looked into combining Stoicism with Pythagoreanism. He read and debated the works of Epicurus, who ended up being the most cited writer in Seneca’s works. Seneca said we should read like spies in the enemy’s camp, always looking to learn from our intellectual and philosophical opponents. Sadly, all works from Seneca’s Alexandrian period are lost. According to recent estimations, about half of his tragedies and philosophical essays are gone.

 Seneca’s journaling served three main purposes: (1) self-examination, (2) gaining and connecting knowledge, and (3) retaining knowledge. He would argue that to lead by example, you first have to analyze your own actions—and those of others. Unlike other journalers of that time, Seneca wrote with the intention to publish. He wanted his writings to be discovered and read, to influence others and conserve ideas.

 Nineteen centuries later, a German academic rummages through paperwork in a set of small drawers of a heavy apothecary cabinet. He holds a small piece of paper in his hand, speedily scanning the contents of certain drawers, until a mumbled “aha!” announces his arrival at the right drawer. The paper disappears into the cabinet, and the academic sinks back into his office chair, returning his attention to that huge stack of papers in dire need of grading (figure 2.1).

 [image: CH02_F01_Groeneveld]

 Figure 2.1 Niklas Luhmann in his home office, consulting his notes. Photo © Michael Wiegert-Wegener / University Archives Bielefeld.

 That person is Niklas Luhmann, one of the most productive and renowned social scientists of the 20th century. During his academic career, he published 50 books and more than 600 articles. When asked how he managed such a feat, his answer was humble: he said his productivity stems from a “conversation” with his notes. His famous systems theory—an integrated take on communication, societal, and evolution theory—was the product of conversations with his Zettelkasten (“slip box”).

 Thanks to his ingenious knowledge storage and generation system, Luhmann managed to connect seemingly unrelated domains and produce novel insights. These new insights would in turn be stored in the Zettelkasten, steadily growing his external body of knowledge. Although Luhmann wasn’t the first to use an interlinked index card system to organize intellectual work—16th-century polymath Conrad Gessner had already mentioned writing down ideas on slips of paper to arrange into larger clusters—his (now fully digitized) Zettelkasten archive provided more insight into the prolific brilliance of it, inspiring many contemporary note takers and digital note-taking apps.

 Another century passed. In 2010, Russian software engineer Andrey Breslav and the JetBrains R&D team discussed development and production problems in large-scale back-end codebases. Whiteboard sketches would later become the groundwork for a new programming language known as Kotlin; however, Breslav and his language design team had little intention of creating yet another shiny new toy for fashion-conscious developers to play around with. Kotlin was designed to be “pragmatic, concise, safe, and interoperable,” according to the Kotlin website.

 Those four cornerstones caused the team to thoroughly inspect existing programming languages and steal ideas that work but, more importantly, leave out the fancy fluff. As Breslav said in his GeekOUT 2018 talk “Languages Kotlin Learned From,”1 being wary of using existing ideas is counterproductive. Instead, they turned toward Java (classes, autoboxing, runtime safety guarantees, etc.), Scala (primary constructors, the val keyword, etc.), C# (some ideas of get/set properties and extensions, internal visibility, easy string interpolation, etc.), and Groovy (the it shorthand, passing lambdas without parentheses, etc.), and implemented what worked. “Thanks a lot, authors of Groovy; it’s been a pleasure borrowing features from you,” concluded Breslav.

 Their design philosophy clearly paid off. Next to Java, Kotlin is now the most popular language on the Java Virtual Machine (18%, according to Snyk’s 2020 JVM Ecosystem report2), and yearly Stack Overflow Insights3 report a steady increase in overall popularity, surpassing Ruby and closely following Go.

2.1 No input, no creative output

 What is the greatest common divisor of Seneca’s knowledgeable and still-popular Stoic writings, Niklas Luhmann’s Zettelkasten apothecary cabinet that is fed index cards, and the birth of the Kotlin programming language? All three examples showcase that creativity begets creativity. Every intention is based on a previous one. Seneca closely followed rival schools and internalized that knowledge to produce something new. Luhmann conversed with his notes, which told him to connect information he otherwise would have forgotten. Breslav first turned to other programming languages, inspecting what worked there, to avoid creating something original but ultimately unsuitable.

 All creative work starts with input. If there is no input, there can be no output. In an effort to better understand the role of creativity in software engineering, my colleagues and I asked many developers to identify the requirements for creativity.4 Technical knowledge was consistently mentioned first. I’m sure this won’t come as a big surprise—that’s the reason this is the first major Creative Programmer theme.

 Creativity can be approached from different perspectives, such as inspirationalist (free association, playfulness, lateral thinking, etc.), situationalist (depending on social context, embedded in the community), and structuralist (studying and analyzing techniques and methods). Let’s get the structuralist approach to creativity out of the way before moving on to the situationalist approach in chapter 3 and the inspirationalist in chapters 4, 5, and 6.

 A musician with little knowledge of instruments, existing play styles, and perhaps various vocal techniques cannot be expected to deliver a truly creative record. A painter can’t produce creative work without extensive knowledge of drawing techniques. Although we might get fooled by the simplicity contemporary art pieces seem to embody, art usually requires technical knowledge and years of experience to deconstruct colors and compositions to their essence. Of course, there are always exceptions to the rule.

 The same is true for us programmers: we can’t be creative with Java code without extensive knowledge of the Java Virtual Machine (JVM) and its ecosystem. In his GeekOUT talk, Breslav admitted to having overlooked Swift as a potential influence. At that time, it was also very new, and nobody on the team knew about it. Without Groovy’s influence, the keywords with and it would not exist in the Kotlin world.5

 But what exactly is extensive knowledge? What is the best way to gain, retain, and create new knowledge? And when it comes to creativity, are we really only talking about technical knowledge here? Welcome to the wonderful world of cognitive psychology.

 Many forward-thinking technology firms take continuous learning seriously. They offer learning days, hackathons, innumerable books and courses to plow through, and even Google-inspired “20% time,” where one day a week you can toy with a pet project that ideally grows into Gmail-like greatness. (Google gradually dialed back on this creative free time. We’ll get back to this in chapter 8.) Whether it’s called continuous learning, lifelong learning, or self-improvement, the premise remains the same: we’re here to learn.

 One of our interviewees managed to beautifully set the scene for this chapter by stating the following:

 The bottom line is that creativity is the brew of different inputs—and usually, I actively look up those inputs . . . , or something forms in my mind by structuring those inputs, or when I ask for feedback to take into account; that’s something I often do.

 But where does that input come from? Some developers might answer with their preferred tech news site (e.g., dzone.com, slashdot.org, lobste.rs) or the blog of their favorite coding idol. These would all be valid yet very narrow-minded sources of information. Let us start by considering the big picture.

2.2 Gathering knowledge

 Curiosity will inevitably lead to the accumulation of new knowledge—we’ll learn more about that in chapter 6. Before continuing, I’d like you to think about the way you typically gather information.

 EXERCISE What are your regular sources of new input? When was the last time you actively pondered the contents of those sources instead of zipping through them? When was the last time you took notes? Finally, when was the last time you effectively used something you’ve picked up from those sources?

 I hope you didn’t struggle to remember the last time you applied something from those sources. If so, it might be worth reconsidering what goes in. As they say, garbage in, garbage out. I wouldn’t put it that bluntly, but if you stick to scrolling through Facebook—which can be a valuable source of input—you won’t make much progress in helping to solve that programming problem your team is having difficulties with.

 The knowledge-gathering problem is much more severe today than it was in the nineties. The days of a simple bookmark in Netscape Navigator, the only door to the internet, are long gone. How should we keep track of the stuff we’re interested in?

2.2.1 Diversify what goes in

 Diversifying means two things. First, don’t put all your eggs in one basket. As a Java developer, read about threading models on the JVM as well as on Goroutines in Go and concurrent actors implemented in Ruby. Having an idea of how concurrency works in other languages will allow you to better reflect on what works and what doesn’t in the language you’re currently working with. If you love the ease of use of Goroutines but you’re stuck with the JVM, you might come up with a few cleverly written wrappers to take away the rough edges.

 As a developer, read books on compilers and programming languages as well as on philosophy and psychology. It is only natural to go deep into the technical side of things: after all, that is probably one of the reasons why you’re a programmer in the first place. However, do not neglect other domains! I felt the need to add an exclamation mark here because investing in a variety of technical topics seems to be universally accepted, while the nontechnical topics are left Alone in the Dark. Creative programmers excel at making connections across domains, not merely within their comfy programming domain. Learning about psychology will help you better understand the various moral implications of technology. Learning about history is a great way to situate and help evaluate the rapidly evolving technologies. Many workplaces increasingly expect programmers to be experts in one or two topics. That view is very narrow minded and anything but creative. We’ll delve into the specialist versus generalist debate in detail in chapter 6.

 Second, diversify in the medium. Pick up a book or two. (I’ll admit that writing “Read more books!” in a book is not the best way to convey the message. If this all sounds a bit too obvious, it’s probably because it is.) Attend a conference or a class. Subscribe to a newsletter. Become a regular blog reader—or, even better, a writer. Talk to others about the things that puzzle you. Ask for feedback. Join a reading group. And so forth.

 Domain general vs. domain specific

 Is creativity domain general or domain specific? This is another question that academics like to answer with knives out.6 On the one hand, you’ll need to invest a good amount of time and effort to get to know Ruby before being able to express yourself fluently in that language: perhaps the magical 10,000 hours, as suggested by famous Canadian journalist and author Malcolm Gladwell in his book Outliers? The Dreyfus model of skill acquisition also claims that you’ll likely need 10 years of deliberate practice to fully master something. According to the model, to change a domain, one must first fully master it. The question is whether the domain is Ruby programming or programming in general.

OEBPS/OEBPS/Images/CH01_F02_Groeneveld.png

OEBPS/OEBPS/Images/IFC_F01_Groeneveld.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F03_Groeneveld.png

OEBPS/cover1.jpeg

OEBPS/OEBPS/Images/Groeneveld.png

OEBPS/OEBPS/Images/CH02_F01_Groeneveld.png

OEBPS/OEBPS/Images/CH01_F01_Groeneveld.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F04_Groeneveld.png

