

 [image: cover]

Testing Java Microservices: Using Arquillian, Hoverfly, AssertJ, JUnit, Selenium, and Mockito

 Alex Soto Bueno, Andy Gumbrecht, and Jason Porter

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Cynthia Kane
Technical development editor: Adam Scheller
Project editor: Tiffany Taylor
Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreader: Joshua White
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617292897

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Dedication

 To my parents: thanks for the ZX Spectrum.

 A. S.

 To my children, Antony and Toriann. They get me, but they’ll never get this book!

 A. G.

 To the amazing community of software engineers: together we do amazing things! And to my family and especially my wife, Tessie:
 thanks for being with me on this crazy journey of life.

 J. P.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover

 Chapter 1. An introduction to microservices

 Chapter 2. Application under test

 Chapter 3. Unit-testing microservices

 Chapter 4. Component-testing microservices

 Chapter 5. Integration-testing microservices

 Chapter 6. Contract tests

 Chapter 7. End-to-end testing

 Chapter 8. Docker and testing

 Chapter 9. Service virtualization

 Chapter 10. Continuous delivery in microservices

 Appendix. Masking multiple containers with Arquillian Chameleon

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover

 Chapter 1. An introduction to microservices

 1.1. What are microservices, and why use them?

 1.1.1. Why use microservices?

 1.1.2. What are microservices?

 1.1.3. Continuous integration, deployment, and Docker

 1.2. Microservice networks and features

 1.2.1. Microservice networks

 1.2.2. Microservice features

 1.3. Microservice architecture

 1.3.1. Resource component

 1.3.2. Business-domain component

 1.3.3. Remote resources component

 1.3.4. Persistence component

 1.4. Microservice unit testing

 1.4.1. Solitary unit tests

 1.4.2. Sociable unit tests

 Summary

 Chapter 2. Application under test

 2.1. Getting started

 2.2. Prerequisites

 2.2.1. Java Development Kit

 2.2.2. Build tools

 2.2.3. Environment variables

 2.2.4. Integrated development environment (IDE)

 2.3. Architecture

 2.3.1. The game service

 2.3.2. The comments service

 2.3.3. The video service

 2.3.4. The aggregator service

 2.3.5. Overall architecture

 2.4. Application design patterns

 2.4.1. Anatomy

 2.4.2. ECB pattern

 2.4.3. Miscellaneous patterns

 2.5. Design decisions

 Summary

 Chapter 3. Unit-testing microservices

 3.1. Unit testing techniques

 3.1.1. Sociable unit tests

 3.1.2. Test doubles

 3.1.3. Solitary unit tests

 3.1.4. Unit testing in microservices

 3.2. Tools

 3.2.1. JUnit

 3.2.2. AssertJ

 3.2.3. Mockito

 3.2.4. Build-script modifications

 3.3. Writing unit tests for the Gamer app

 3.3.1. YouTubeVideoLinkCreator test

 3.3.2. YouTubeLink test

 3.3.3. Games test

 3.3.4. GamesService test

 3.3.5. GamesResource test

 Exercises

 Summary

 Chapter 4. Component-testing microservices

 4.1. The Arquillian test framework

 4.2. Introducing the @RunWith(Arquillian.class) annotation

 4.3. The ShrinkWrap utility class

 4.3.1. Building an archive with ShrinkWrap

 4.3.2. Adding content to the ShrinkWrap archive

 4.3.3. Adding resources

 4.3.4. Adding libraries and dependencies

 4.3.5. Adding complex dependencies with the Maven resolver

 4.3.6. Adding a service implementation

 4.4. Write once and reuse your code

 4.5. Build-script modifications

 4.5.1. Defining Maven dependencies

 4.5.2. Defining Gradle dependencies

 4.6. Overriding the default Arquillian configuration

 4.6.1. The container definition

 4.6.2. Specifying container properties

 4.7. Using Arquillian REST extensions

 4.7.1. The Arquillian REST client extension

 4.7.2. The Warp REST extension

 4.8. Testing Spring applications using Arquillian

 4.8.1. The Arquillian Spring Framework extension

 4.8.2. Testing Spring Boot applications

 4.9. More-complex Arquillian test examples

 4.9.1. Testing the remote component

 4.9.2. Testing the resource component

 4.9.3. Testing the domain component

 4.9.4. Testing the persistence component

 Exercises

 Summary

 Chapter 5. Integration-testing microservices

 5.1. Integration testing in the microservices architecture

 5.1.1. Gateway component layer

 5.1.2. Data mappers and repositories

 5.2. Persistence testing with the Arquillian Persistence Extension

 5.2.1. Declarative approach

 5.2.2. Programmatic approach

 5.2.3. Persistence testing with NoSQLUnit

 5.2.4. Persistence testing with Arquillian multideployment

 5.2.5. Persistence testing with Arquillian sequence

 5.2.6. Build-script modifications

 5.3. Writing integration tests for the Gamer application

 5.3.1. Testing the Comments class

 5.3.2. Testing the CommentsGateway class

 5.4. Exercises

 Summary

 Chapter 6. Contract tests

 6.1. Understanding contracts

 6.1.1. Contracts and monolithic applications

 6.1.2. Contracts and microservice applications

 6.1.3. Verifying with integration tests

 6.1.4. What are contract tests?

 6.1.5. Who owns the contracts?

 6.2. Tools

 6.2.1. Pact

 6.2.2. Pact in JVM languages

 6.2.3. Integrating Pact JVM into the Arquillian ecosystem with Algeron

 6.3. Build-script modifications

 6.3.1. Using Pact JVM for contract testing

 6.3.2. Using Arquillian Algeron for contract testing

 6.4. Writing consumer-driven contracts for the Gamer application

 6.4.1. Consumer side of the comments service

 6.4.2. Provider side of the comments service

 6.5. Contract type summary

 Exercise

 Summary

 Chapter 7. End-to-end testing

 7.1. End-to-end tests in the overall testing picture

 7.2. End-to-end testing techniques

 7.2.1. Vertical tests

 7.2.2. Horizontal tests

 7.3. Introduction to end-to-end testing tools

 7.3.1. Arquillian Cube

 7.3.2. Arquillian Drone

 7.3.3. Arquillian Graphene 2

 7.3.4. JMeter

 7.3.5. Cukes in Space

 7.4. Example end-to-end test

 7.4.1. Building the microservices

 7.4.2. Adding the build dependencies and configuration

 7.4.3. Adding @Deployment and @TargetsContainer to the test

 7.4.4. Cross-origin resource sharing

 7.4.5. Coping with a mixed environment using @ClassRule

 7.4.6. Operating on the deployments with @OperateOnDeployment

 7.4.7. Introducing @Drone, page objects, @Location, and the WebDriver

 7.4.8. Working with page objects in a test

 7.4.9. Running the test

 7.5. Exercise

 Summary

 Chapter 8. Docker and testing

 8.1. Tools in the Docker ecosystem

 8.1.1. Docker

 8.1.2. Docker Machine

 8.1.3. Docker Compose

 8.2. Arquillian Cube

 8.2.1. Setting up Arquillian Cube

 8.2.2. Writing container tests

 8.2.3. Writing integration tests

 8.2.4. Writing end-to-end tests

 8.3. Rest API

 8.4. Arquillian Drone and Graphene

 8.4.1. Integrating Arquillian Cube and Arquillian Drone

 8.4.2. Integrating Arquillian Cube and Arquillian Graphene

 8.5. Parallelizing tests

 8.6. Arquillian Cube and Algeron

 8.7. Using the container-objects pattern

 8.7.1. Using a flexible container-object DSL

 8.8. Deployment tests and Kubernetes

 8.9. Build-script modifications

 8.9.1. Arquillian Cube Docker

 8.9.2. Arquillian Cube Docker JUnit rule

 8.9.3. Arquillian Cube Kubernetes

 8.9.4. Arquillian Cube OpenShift

 8.10. Testing the Dockerfile for the video service

 Exercise

 Summary

 Chapter 9. Service virtualization

 9.1. What is service virtualization?

 9.1.1. Why use service virtualization?

 9.1.2. When to use service virtualization

 9.2. Mimicking service responses with Hoverfly

 9.2.1. Hoverfly modes

 9.2.2. JUnit Hoverfly

 9.2.3. Configuring Hoverfly

 9.3. Build-script modifications

 9.4. Using service virtualization for the Gamer application

 Summary

 Chapter 10. Continuous delivery in microservices

 10.1. What is continuous delivery?

 10.2. Continuous delivery and the microservices architecture

 10.3. Orchestrating continuous delivery

 10.3.1. Working with Jenkins

 10.3.2. The Jenkins pipeline

 10.3.3. Deploying with certainty

 10.4. Jenkins

 10.4.1. Defining a pipeline

 10.4.2. Example of a Jenkins pipeline

 Summary

 Appendix. Masking multiple containers with Arquillian Chameleon

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 In the early days of programming, there were no frameworks. Tests consisted of ad hoc snippets of code that were put in place
 to ensure that important software features did roughly what they were supposed to. Storage space was very limited and precious
 at the time.

 Eventually, unit testing progressed from being a buzzword to being the de facto means for thoroughly testing software. Space
 concerns diminished to the point that they were a lame excuse for not writing test code. Today, it’s fair to say that all
 developers learn and employ the unit-testing methodology early on, and it has become fundamental to successful software development.

 Today’s enterprise applications require far more than just simple unit tests to maintain their integrity. Customers have become
 more demanding, and acceptance criteria are generally much higher. Multiple testing strategies must be applied throughout
 the development process if we’re to successfully meet this call.

 This book was written not only to address many of today’s current enterprise testing needs but also to add significant value
 by helping you decide how to approach the future testing requirements and challenges posed by the introduction of microservices
 into your architecture.

 It has taken us a long time to write this book: it has gone from being a small, single-chapter booklet on using a specific
 framework, to a 10-chapter, feature-packed epic that presents multiple testing strategies and options for you to choose from.
 We have learned much along the way, as this technology continually evolves. To provide as many options as possible, we’ve
 tried to focus more on strategies, methodology, and solutions rather than on super-clean code and a stunning, yet ultimately
 unusable, application. If we can help you walk away with some good ideas for how to test your own applications, then we’ve
 achieved our goal.

 We hope you enjoy our candid style of writing, and we’d like to thank you for taking the time to read this book.

Acknowledgments

 This book has had input from three independent developers, and we would first like to thank each other for all the hard work
 and feedback. Well done, and a pat on the back to each other!

 A huge thank you goes out to absolutely everyone involved in the Arquillian project, especially Aslak Knutsen, Dan Allen,
 Bartosz Majsak, and Matous Jobanek. Once you reach the end of the book, we’re sure you’ll understand how much effort has been
 put into this truly amazing project and how it will aid you in testing software.

 The Open Source Software (OSS) community provides many extremely useful tools that enable everyone to test efficiently. Much
 of the work done on these projects is performed through the tireless and often thankless work contributed by dedicated developers
 during their free time. We thank you wholeheartedly for your valued efforts. We would like to encourage you, the reader, to
 also thank these incredible people at every opportunity.

 A big thank you to Daniel Bryant and Marcin Grzejszczak for their time discussing contract testing.

 Cynthia Kane and Tiffany Taylor, our editors, were invaluable in pushing us forward when our motivation lagged. Writing a
 book in your spare time is challenging, to say the least. Thank you, Cynthia and Tiffany, for putting up with us. We also
 thank everyone else at Manning who made this book possible: publisher Marjan Bace and the editorial and production teams.

 Joshua White provided extensive proof-testing on the technical side: thanks to him for ironing out the glitches. He was our
 test tester!

 To everyone involved in providing feedback, a thank-you for taking the time to read and reread the book in order to help us
 produce the final material. These include our technical peer reviewers, led by Aleksandar Dragosavljević, Alex Jacinto, Anshuman
 Purohit, Boris Vasile, Conor Redmond, Eddú Meléndez Gonzales, Ethan A. Rivett, Fabrizio Cucci, Gualtiero Testa, Henrik Løvborg,
 Jan Paul Buchwald, Jonathan Thoms, José Díaz, Kiran Anantha, Leo van den Berg, Mari Machado, Nilesh Thali, Piotr Gliźniewicz,
 Robert Walsh, Yagiz Erkan, and Zorodzayi Mukuya.

 Last but certainly not least, we thank our wives and families for putting up with the long weekends, late hours, frustrations,
 and ups and downs of writing a book. We couldn’t have done it without their support!

About this book

 It’s apparent to every developer today that testing applications is a basic requirement of software development. This wasn’t
 always the case, and testing frameworks have come a long way since the early days. This book isn’t about the theory of why we test, because there’s plenty of information on that subject out there already. It was more important for us to figure
 out how to test, and how to convey that information to others. This book is very much focused on that approach, and the included
 application code provides a hands-on example from the start.

 A lot of information is of course available in the cloud, but more often than not, we find that when we actually have time
 to read, we’re not connected to the cloud (or choose not to be connected to it). It’s also nice to have a readily available
 resource that pulls all the useful information into one place—and we hope this book will serve as that type of resource for
 you.

 Testing is a general term, but testing is composed of a patchwork of technologies that you need to combine in order to gain the most
 benefit. We’ve collected a wide range of popular topics and components, and presented them in a way we feel makes the most
 sense for readers.

Who should read this book

 We’d love to say “everyone,” but this isn’t much of a story book. Our target audience members are Java developers of Enterprise
 Edition (Java EE and Spring) applications. If that’s you, then this book will show you how to take unit testing to the next
 level.

 If you aren’t specifically a Java developer, this book may still be of interest to you. Much of the information provided is
 relevant and transferable to any programming language.

 As the title suggests, we’re targeting the popular transition to a microservice-based architecture. But we also provide a
 lot of information related to more general EE testing, so don’t be concerned that we’ve left things out—we just cover microservices
 in more depth.

Roadmap

 This book has 10 chapters. Here’s a quick guide to what we cover:

 	
Chapter 1 offers an introduction to and explanation of our preferred microservice terminology.

 	
Chapter 2 presents our prerequisite expectations for reading this book and building the code, to save you time in the long run.

 	
Chapter 3 will brush you up on common unit-testing techniques, methodologies, and best practices.

 	
Chapter 4 takes a deep dive into the Arquillian testing framework.

 	
Chapter 5 explains how to create integration tests for dependent microservices.

 	
Chapter 6 discusses consumer-driven and contract testing.

 	
Chapter 7 explores ad hoc, end-to-end testing techniques and tools.

 	
Chapter 8 covers creating reproducible testing environments with Docker.

 	
Chapter 9 explores service-virtualization concepts and implementations.

 	
Chapter 10 discusses continuous delivery and the Jenkins build pipeline.

 The order of the chapters was chosen to introduce the fundamental topics in a natural progression. Each chapter builds on
 the next, but the book can also be read in your own order of interest. The programming language used in the book is Java,
 but the principles discussed can be applied to any language and framework.

Code conventions and downloads

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In some cases, even this wasn’t enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 The source code for the book’s examples is available at www.manning.com/books/testing-java-microservices.

Book forum

 Purchase of Testing Java Microservices includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/testing-java-microservices. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 ALEX SOTO is a Java Champion and software engineer working at Red Hat on developing new tools to make better testing experiences. He
 enjoys the Java world, as well as software automation, and believes in the open source software model. Alex is the creator
 of the NoSQLUnit project, a member of the JSR374 (Java API for JSON Processing) Expert Group, and an international speaker.

 Alex began programming with ZX Spectrum (in the good old days, using the POKE command) and had several different computers, such as an 80286. (He’s grateful to his parents, Mili and Ramon, for buying
 them.) After graduating as a computer engineer from La Salle Universitat Ramon Llull, he started his professional career in
 Aventia, developing a platform for generating and validating electronic signatures. Then he moved to Grifols to develop diagnostic
 medical devices; strict testing was an important part of the lifecycle of the software. Later, he worked for Everis, in the
 banking sector; Scytl, developing electronic voting systems; and CloudBees.

 Alex likes to spend his free time with his wife Jessica and his two daughters, Ada and Alexandra (ninetes dels meus ulls).

 ANDY GUMBRECHT is a senior software engineer at Tomitribe. He’s been interested in anything “computer” since around the age of 12, when
 he was fortunate to get his hands on a Sinclair ZX81 with a whopping 1 KB of memory. Many of the early examples available
 were long lists of binary that needed to be typed in by hand. Sometimes that worked out, but Andy soon employed his brother
 John as his QA tester to ensure he’d gotten it right. That was when he first learned the value of testing code.

 Dabbling in machine code and BASIC continued to improve Andy’s skills at optimizing code. Later, and after a short spell as
 a Royal Engineer on operations in the British army, he returned to college in Germany to gain some paper qualifications. He
 interned at PROVOX Sytemplanung GmbH and stayed for many years, working on government software.

 Andy started to work on open source software around 2007 and has been involved in the Apache OpenEJB/Apache TomEE Application
 Server project since 2009, where he’s now a member of the Project Management Committee.

 JASON PORTER has been crafting software since he was 12. A couple of years before that, he discovered the amazing world of computers and
 programming on an old 80286 while looking through games written in BASIC. His interest in programming led him to Java and
 then C/C++. He became involved in web development in the early days, with Netscape Navigator and Internet Explorer. Fighting
 with things like DHTML and layers occupied his time. At the venerable age of 15, Jason got a job with a local web development
 company and spent time coding websites and writing CGI scripts in Perl. (He tries to forget those days, though.) Since that
 time, he’s worked in various industries, coding in Java, PHP, Ruby, C#, and JavaScript. He primarily considers himself a backend
 developer, but the entire coding landscape is his playground.

 At Red Hat, Jason has worked on various frameworks, websites, and integrations. He’s spoken in the United States and internationally
 and is tickled every time he can help someone better understand a programming concept or new technology. Jason lives in Utah
 with his lovely wife and five children, whom he can’t program as easily as a computer.

About the cover

 The figure on the cover of Testing Java Microservices, titled “Visitor to the Tuileries Gardens,” is a hand-colored woodcut from a drawing by Eugène Lami (1800-1890). The illustration
 was included in an essay in vol. 3 of Les Français peints par eux-mêmes: Encyclopédie morale du dix-neuvième siècle (“The French painted by themselves: moral encyclopedia of the nineteenth century”), a multivolume work by Louis Curmer, published
 in Paris in the early 1940s. This work presented a fascinating picture of French society through representative characters
 and was particularly interested in popular types and small trades. Five volumes were devoted to Parisians and three to the
 French provinces and colonies.

 The diversity of the figures in this collection reminds us vividly of the uniqueness and individuality of the world’s towns
 and regions just 200 years ago. This was a time when the dress codes of two regions separated by a few dozen miles identified
 people uniquely as belonging to one or the other. The collection brings to life a sense of isolation and distance of that
 period—and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It’s now often hard
 to tell the inhabitant of one continent from another. Perhaps we’ve traded a cultural and visual diversity for a more varied
 personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life of two centuries ago.

Chapter 1. An introduction to microservices

 This chapter covers

 	Why move toward a new microservice architecture?

 	What microservices are today, and where the future may lead

 	The basic component makeup of a microservice

 	Testing strategies

 Traditional monolithic applications are deployed as a single package, usually as a web or enterprise-archive file (WAR or
 EAR). They contain all the business logic required to complete multiple tasks, often alongside the components required to
 render the user interface (UI, or GUI for graphical user interface). When scaling, this usually means taking a complete copy of that entire application archive onto a new server node (basically,
 deploying it to another server node in a cluster). It doesn’t matter where the load or bottleneck is occurring; even if it’s
 only in a small cross section of the application, scaling this way is an all-or-nothing approach. Microservices are specifically
 designed to target and change this all-or-nothing aspect by allowing you to break your business logic into smaller, more manageable elements that can be employed in multiple ways.

 This book isn’t intended to be a tutorial on the varied microservice architectures that are available today; we’ll assume
 you have some understanding of the subject. Rather, we’re going to help you overcome the challenges involved in testing the common features that all microservice applications share. In order to do that, in this chapter we’ll establish some common
 ground about what a microservice is, so that you can relate to where we’re coming from when we discuss these topics in later
 chapters.

 Shifting toward the ever-more-popular microservice architecture means you need to adopt new strategies in development, testing,
 and restructuring/refactoring and move away from some of the purely monolithic-application practices.

 Microservices offer you the advantage of being able to scale individual services, and the ability to develop and maintain
 multiple services in parallel using several teams, but they still require a robust approach when it comes to testing.

 In this book, we’ll discuss various approaches for using this new, more focused way of delivering tightly packaged “micro”
 services and how to resolve the complex testing scenarios that are required to maintain stability across multiple teams. Later
 chapters will introduce an example application and how to develop testing strategies for it; this will help you better understand
 how to create your own test environments.

 You’ll see and use many features of the Arquillian test framework, which was specifically designed to tackle many of the common
 testing challenges you’ll face. An array of mature extensions have been developed over the years, and although other tools
 are available, Arquillian is our tool of choice—so expect some bias. That said, Arquillian also provides close integration
 with many testing tools you may already be familiar with.

 	

 A note about software versions

 This book uses many different software packages and tools, all of which change periodically. We tried throughout the book
 to present examples and techniques that wouldn’t be greatly affected by these changes. All examples require Java 8, although
 when we finished the book, Java 10 had been released. We haven’t updated the examples because in terms of testing microservices,
 the release doesn’t add anything new. Something similar is true for JUnit 5. All of the examples are written using JUnit 4.12,
 because when we started writing the book, JUnit 5 wasn’t yet in development. At the time we finished the book, not all of
 the frameworks explained here have official support for JUnit 5, so we decided to skip updating the JUnit version. Other libraries,
 such as Spring Boot and Docker (Compose), have evolved as well during the development of the book, but none of these changes
 have a significant impact on how to write tests.

 	

1.1. What are microservices, and why use them?

 In this section, we present what we believe is a reasonably good interpretation of the currently available answers to these
 questions. What you learn will provide a solid basis for understanding the microservice architecture, but expect innovation
 over time. We won’t make any predictions: as stated, our principle focus for the book is testing microservices, which is unlikely
 to change in any significant way.

 It isn’t important that you fully understand the microservice architecture at this point. But if, after reading this chapter,
 the term microservice is still a dark void for you, we encourage you to gather more information from your own sources.

 	

 Tip

 You may find it useful to join the open discussions at MicroProfile (http://microprofile.io). This is an initiative by the likes of IBM, London Java Community (LJC), RedHat, Tomitribe, Payara, and Hazelcast to develop
 a shared definition of Enterprise Java for microservices, with the goal of standardization.

 	

 1.1.1. Why use microservices?

 Before we delve into the nature of microservices, let’s answer the “why” question. Until recently, it’s been commonplace to
 develop monolithic applications, and that’s still perfectly acceptable for any application that doesn’t require scaling. The
 problem with scaling any kind of monolithic application is straightforward, as shown in figure 1.1. Microservices aren’t here to tell you that everything else is bad; rather, they offer an architecture that is far more resilient
 than a monolith to changes in the future.

 Figure 1.1. Scaling a monolithic application

 [image:]

 Microservices enable you to isolate and scale smaller pieces of your application, rather than the entire application. Imagine that you’ve extracted some core business logic in your application to services A and B. Let’s say service
 A provides access to an inventory of items, and B provides simple statistics. You notice that on average, service A is called one million times per hour and service B is called only once per day. Scaling a monolithic application would mean
 adding a new node with the application that includes both services A and B.

 Wouldn’t it be better if you only needed to scale service A? This is where the potential of microservices becomes apparent:
 in the new architecture, shown in figure 1.2, services A and B become microservices A and B. You can still scale the application, but this additional flexibility is the
 point: you can now choose to scale where the load is greatest. Even better, you can dedicate one team of developers to maintaining
 microservice A and another to microservice B. You don’t need to touch the application to add features or fix bugs in either
 A or B, and they can also be rolled out completely independently of each other.

 Figure 1.2. Scaling a microservice independently of the main application

 [image:]

 Companies like Netflix, Google, Amazon, and eBay have based much of their platforms on a microservice architecture, and they’ve
 all been kind enough to share much of this information freely. But although considerable focus is placed on web applications,
 you can apply a microservice architecture to any application. We hope this whets your appetite!

 1.1.2. What are microservices?

 At first glance, the term micro may conjure up images of a tiny application with a small footprint. But regarding application size, there are no rules, other
 than a rule of thumb. A microservice may consist of several, several hundred, or even several thousand lines of code, depending
 on your specific business requirements; the rule of thumb is to keep the logic small enough for a single team to manage. Ideally,
 you should focus on a single endpoint (which may in turn provide multiple resources); but again, there’s no hard-and-fast
 rule. It’s your party.

 The most common concept is that a single application should be the uppermost limit of a microservice. In the context of a
 typical application server running multiple applications, this means splitting applications so they’re running on a single
 application server. In theory, think of your first microservice as a single piece of a jigsaw puzzle, and try to imagine how
 it will fit together with the next piece.

 You can break a monolithic application into its logical pieces, as shown in figure 1.3. There should be just enough information within each piece of the puzzle to enable you to build the greater picture. In a
 microservice architecture, these pieces are much more loosely coupled; see figure 1.4.

 Figure 1.3. Each service is part of the big picture.

 [image:]

 Figure 1.4. Each microservice is still part of the picture but is isolated within a separate environment.

 [image:]

 1.1.3. Continuous integration, deployment, and Docker

 The decoupling of application elements into scalable microservices means you’ll have to start thinking about the continuous integration (CI) and continuous delivery (CD) pipelines from an early stage. Instead of one build script and one deployment, you’ll need multiple independent builds that
 must be sewn together for integration testing and deployment to different hosts.

 You’ll find that far less work is involved than you may think. This is largely due to the fact that a microservice is, for
 all intents and purposes, an application like any other. The only difference is that a microservice packages the application
 together with its runtime environment. The easiest and most recognized way to do this today is to create and deploy a microservice
 as a Docker image (www.docker.com).

 	

 Note

 Docker is the world’s leading software-containerization platform. If you’re not sure what Docker is, then at some point please
 visit www.docker.com and follow the “What is Docker?” tutorial. Don’t worry, though—we’ll guide you through this pipeline when we put all the
 microservice elements together toward the end of the book.

 	

 The heavyweight CI/CD contenders are Travis (https://travis-ci.org), Bamboo (https://de.atlassian.com/software/bamboo), and Jenkins (https://jenkins.io). They all provide great support for microservices and deployment pipelines for Docker images; but in this book, we’ll use
 Jenkins, because it’s open source and has a huge community. It’s not necessarily the easiest to use, but it offers by far
 the most features via plugins. In chapter 8, we’ll highlight all the involved technologies in detail and guide you through the development of a viable CI/CD pipeline.

1.2. Microservice networks and features

 Microservices are loosely coupled, which leads to new questions. How are microservices coupled, and what features does this architecture offer? In the following
 sections, we’ll look at some answers. But for all intents and purposes, each microservice is isolated by a network boundary.

 1.2.1. Microservice networks

 Microservices are most commonly integrated over a RESTful (Representational State Transfer) API using HTTP or HTTPS, but they
 can be connected by anything that’s considered a protocol to access an endpoint to a resource or function. This is a broad
 topic, so we’re only going to discuss and demonstrate Java REST using JAX-RS.

 	

 Tip

 If you’re unfamiliar with RESTful web services using JAX-RS (https://jax-rs-spec.java.net), now would be a good time to read up on these topics.

 	

 With this information, your initial ideas for microservices should be starting to take form. Let’s continue with our earlier
 example. Microservice A, the inventory service, is isolated by a network layer from the UI and from microservice B, the statistics
 service. B communicates with A to collect statistics using the defined request-and-response protocols. They each have their own domain
 and external resources and are otherwise completely separate from each other. The UI service is able to call both A and B
 to present information in a human-readable form, a website, or a heavy client, as shown in figure 1.5.

 Figure 1.5. Each service communicates by defined protocols.

 [image:]

 	

 Hypermedia

 Services should be developed with hypermedia in mind. This is the latest buzzword; it implies that services should be self-documenting in their architecture, by providing
 links to related resources in any response. Currently there’s no winner in this category, and it would be unfair to start
 placing bets now, but you can take a look at the front runners and make an educated guess: JSON-LD (http://json-ld.org), JSON Hypertext Application Language (HAL, https://tools.ietf.org/html/draft-kelly-json-hal-08), Collection+JSON (https://github.com/collection-json/spec), and Siren (https://github.com/kevinswiber/siren).

 	

 Tests must be designed to cover comprehensively any and all interaction with external services. It’s important to get this
 right, because network interaction will always present its own set of challenges. We’ll cover this extensively in chapter 5.

 By now it should be clear that a microservice can be large in terms of application size, and that “micro” refers to the public-facing
 surface area of the application. Cloud space is cheap today, so the physical size of a microservice is less relevant than
 in the past.

 Another concern that we often hear mentioned is, “What about network speed?” Microservices are generally hosted in the same
 local network, which is typically Gigabit Ethernet or better. So, from a client perspective, and given the ease of scaling
 microservices, response times are likely to be much better than expected. Again, don’t take our word for it; think of Netflix,
 Google, Amazon/AWS, and eBay.

 1.2.2. Microservice features

 In our example, both microservices A and B can be developed independently and deployed by two entirely different teams. Each
 team only needs to understand the resource-component layer of the microservice on which they’re working, rather than the entire
 business-domain component. This is the first big win: development can be much faster and easier to understand in the given
 context.

 JavaScript Object Notation (JSON, www.json.org) and Extensible Markup Language (XML, www.w3.org/XML) are the common resource languages, so it’s easy to write clients for such services. Some cases may dictate a different approach,
 but the basic scenarios remain essentially the same: the endpoints are accessible from a multitude of devices and clients
 using defined protocols.

 Multiple microservices form a network of connected applications, where each individual microservice can be scaled independently.
 Elastic deployment on the cloud is now commonplace, and this enables an individual service to scale automatically up or down—for example, based on load.

 Some other interesting benefits of microservices are improved fault isolation and memory management. In a monolithic application,
 a fault in a single component can bring down an entire server. With resilient microservices, the larger part of the picture
 will continue to function until the misbehaving service issue is resolved. In figure 1.6, is the statistics service really necessary for the application to function as a whole, or can you live without it for a
 while?

 Figure 1.6. Resilient design using circuit breakers

 [image:]

 Of course, as is the nature of all good things, microservices have drawbacks. Developers need to learn and understand the
 complexities of developing a distributed application, including how best to use IDEs, which are often orientated toward monolithic
 development. Developing use cases spanning multiple services that aren’t included in distributed transactions requires more
 thought and planning than for a monolith. And testing is generally more difficult, at least for the connected elements, which
 is why we wrote this book.

1.3. Microservice architecture

 The anatomy of a microservice can be varied, as shown in figure 1.7, but design similarities are bound to occur. These elements can be grouped together to form the application-component layers.
 It’s important to provide test coverage at each layer, and you’ll likely be presented with new challenges along the way; we’ll
 address these challenges and offer solutions throughout the book.

 Figure 1.7. The basic microservice components

 [image:]

 Let’s look at these microservice component layers from the top down.

 	

 Note

 A microservice should encapsulate and expose a well-defined area of logic as a service. That doesn’t mean that you can’t allow
 interaction from other systems by other means. For example, your service may expose specific documents that are stored in
 Elasticsearch (ES). In such a case, it’s perfectly legitimate for other applications to talk natively to ES in order to seed
 the documents.

 	

 1.3.1. Resource component

 Resources are responsible for exposing the service interaction via a chosen protocol. This interaction occurs using mapped
 objects, usually serialized using JSON or XML. These mapped objects represent the input and/or output of the business domain.
 Sanitization of the incoming objects and construction of the protocol-specific response usually occur at this layer; see figure 1.8.

 Figure 1.8. The resource component publicly exposes the service.

 [image:]

 	

 Note

 Now that we’re here, it’s worth mentioning that the resource-component layer is the layer that puts the micro in microservice.

 	

 For the rest of this book, and for the sake of simplicity, we’ll focus on the most common form of resource providers today:
 RESTful endpoints.[1] If you aren’t familiar with RESTful web services, please take the time to research and understand this important topic.

 1

See “What Are RESTful Web Services?” in the Java EE 6 tutorial, http://mng.bz/fIa2.

 1.3.2. Business-domain component

 The business-domain component is the core focus of your service application and is highly specific to the logical task for
 which the service is being developed. The domain may have to communicate with various other services (including other microservices)
 in order to calculate a response or process requests to and from the resource component; see figure 1.9.

 Figure 1.9. The business-domain component is your service’s business logic.

 [image:]

 A bridge is likely to be required between the domain component and the resource component, and possibly the remote component.
 Most microservices need to communicate with other microservices at some point.

 1.3.3. Remote resources component

 This component layer is where your piece of the jigsaw puzzle may need to connect to the next piece, or pieces, of the picture.
 It consists of a client that understands how to send and receive resource objects to and from other microservice endpoints,
 which it then translates for use in the business component layer; see figure 1.10.

 Figure 1.10. The remote resources component is the gateway to other services.

 [image:]

 Due to the nature of remote resources, you must pay special attention to creating a resilient design. A resilient framework
 is designed to provide features such as circuit breakers and timeout fallbacks in the event of a failure. Don’t try to reinvent
 the wheel: several resilient frameworks are available to choose from, including our top pick, Hystrix (https://github.com/Netflix/Hystrix/wiki), which is open source and contributed by Netflix.

 A gateway service should act as a bridge between the domain component and the client component. It’s responsible for translating
 request-and-response calls to and from any remote resource via the client. This is the best place to provide a graceful failure
 if the resource can’t be reached.

 The client is responsible for speaking the language of your chosen protocol. Nine times out of ten, this will be JAX-RS (https://jax-rs-spec.java.net) over HTTP/S for RESTful web services.

 We highly recommend the open source services framework Apache CXF (http://cxf.apache.org) for this layer, because it’s fully compliant with JAX-WS, JAX-RS, and others, and it won’t tie you down to a specific platform.

 1.3.4. Persistence component

 More often than not, an application requires some type of persistence or data retrieval (see figure 1.11). This usually comes in the form of an object-relational mapping (ORM)[2] mechanism, such as the Java Persistence API (JPA),[3] but could be something as simple as an embedded database or properties file.

 2

See “Hibernate ORM: What Is Object/Relational Mapping?” http://hibernate.org/orm/what-is-an-orm.

 3

See “Introduction to the Java Persistence API” in the Java EE 6 tutorial, http://mng.bz/Cy69.

 Figure 1.11. The persistence component is for data storage.

 [image:]

1.4. Microservice unit testing

 Chapter 3 will take a deep dive into real unit-testing scenarios. The next few paragraphs are an introduction to the terminology we’ll
 use and what to expect as you develop your testing strategies.

 A typical unit test is designed to be as small as possible and to test a trivial item: a unit of work. In the microservice context, this unit of work may be more difficult to represent, due to the fact that there’s often much
 more underlying complexity to the service than is apparent at first glance.

 Unit testing can often lead to the conclusion that you need to refactor your code in order to reduce the complexity of the
 component under test. This also makes testing useful as a design tool, especially when you’re using test-driven development
 (TDD). A beneficial side effect of unit testing is that it lets you continue developing an application while detecting regressions
 at the same time.

 Although you’re likely to encounter more-detailed scenarios along the way, there are basically two styles of unit testing:
 sociable and solitary. These styles are loosely based on whether the unit test is isolated from its underlying collaborators. Both styles are nonexclusive,
 and they complement each other nicely. You should count on using both, depending on the nature of the testing challenge. We’ll
 expand on these concepts throughout the book.

 1.4.1. Solitary unit tests

 Solitary unit testing should focus on the interaction around a single object class. The test should encompass only the class’s
 own dependents or dependencies on the class. You’ll usually test resource, persistence, and remote components using solitary
 tests, because those components rarely need to collaborate with each other; see figure 1.12.

 Figure 1.12. Predominantly solitary unit-test components

 [image:]

 You need to isolate individual classes for testing by stubbing or mocking all collaborators within that class. You should
 test all the methods of the class, but not cross any boundaries to other concrete classes. Basically, this means all injected
 fields should receive either a mock or stubbed implementation that only returns canned responses. The primary aim is for the
 code coverage of the class under test to be as high as possible.

 1.4.2. Sociable unit tests

 Sociable unit testing focuses on testing the behavior of modules by observing changes in their state. This approach treats
 the unit under test as a black box tested entirely through its interface. The domain component is nearly always a candidate
 for sociable testing, because it needs to collaborate in order to process a request and return a response; see figure 1.13.

 Figure 1.13. Predominantly sociable unit-test component

 [image:]

 You may still need to stub or mock some complex collaborators of the class under test, but this should be as far along as
 possible within the hierarchy of collaborating objects. You shouldn’t only be testing that a specific class sends and receives
 correct payloads, but also that the class collaborators are operating as expected within the class. The test coverage should ideally include all models, variables and fields as well as the class collaborators.
 It’s also important to test that the class can correctly handle any response, including invalid responses (negative testing).

Summary

 	
A microservice is a part of a monolithic application that has been dissected into a smaller logical element.

 	Microservices benefit your application by allowing targeted scaling and focused development.

 	Microservices offer a logical way to meet scalability requirements by providing the ability to scale not only where performance is required, but also when.

 	You can break monolithic applications into smaller elements that can be used as microservices.

 	Microservices allow several teams to focus on individual, nonconflicting tasks that make up the bigger picture.

 	Solitary unit tests are used for components that don’t store state or don’t need to collaborate in order to be tested.

 	Sociable unit tests are used for components that must collaborate or store state in order to be tested.

Chapter 2. Application under test

 This chapter covers

 	Exploring a sample application

 	Understanding critical parts of the code

 	Developing microservices with Java EE and Spring Boot

 The previous chapter introduced you to microservices, including their basic anatomy and architecture. This introduction was
 intended to give you insight into the kinds of tests you might need to write for a microservice-based architecture.

 This chapter introduces the application that will be used throughout the book to demonstrate the development and testing of
 a microservices architecture. Our goal is to provide an easy-to-follow example that will help you understand the relevance
 of each kind of test that will be applied. We try to follow best practices for a microservices architecture, but we make some
 design choices for the sake of simplicity and also purely for educational purposes. For instance, we may use more technologies
 than necessary, or simplify the number of layers used in a microservice because they don’t add value from a testing point
 of view. In such cases, we point out the reason for a particular approach and discuss how to perform these tasks in real-world
 programming. It’s ultimately your responsibility as a developer to choose the appropriate tools to use, but we always offer
 a recommended approach.

2.1. Getting started

 The example application, Gamer, is a simple software portal for gamers. Its purpose is to expose information about software
 games and to let gamers not only read important facts about games and watch videos of games being played, but also comment
 on and leave a star rating for played games. Although this application is intentionally simple, it covers all the main topics
 needed to showcase the microservices architecture. Throughout the book, we’ll guide you through the various kinds of tests
 to be written for a microservices-based application.

 We’ll start by providing some use cases for the Gamer app, to get a high-level view of the actions a gamer can take. Gamers
 want to be able to do these things:

 	Search for games by name, so they can see a list of games that match their interests

 	Read about important aspects of a game, such as its publication date and which platforms are supported

 	Read other gamers’ comments about a game, to help them decide whether they’ll enjoy it and want to buy it

 	Write comments about a game, so other gamers can benefit from their evaluation of it

 	Assign a star rating to a game and quickly see the games with the highest ratings

 	Watch game-related videos such as trailers, tutorials, and real in-game play

 Let’s begin by defining the data required for this application. We won’t focus on technical details just yet—this section
 only describes the conceptual data model.

 The main entity is a game. Table 2.1 shows the parts that make up a game.

 Table 2.1. The parts of a game

 	
 Field

 	
 Description

 	title
 	String representing the name of the game

 	cover
 	URL of an image of the game cover

 	ReleaseDate
 	The game’s release date

 	Publisher
 	The game’s publisher

 	Developer
 	The game’s developer

 Table 2.2 shows the parts that make up a release date.

 Table 2.2. Parts of a release date

 	
 Field

 	
 Description

 	platform
 	Platform name under which the game was released

 	date
 	Date (day, month, and year) when the game was released for a platform

 Table 2.3 shows the parts that make up a comment.

 Table 2.3. Parts of a comment

 	
 Field

 	
 Description

 	comment
 	String containing the comment message

OEBPS/01fig03_alt.jpg

OEBPS/01fig04_alt.jpg
User Inventory Persistence
interface service service
Statistics Images Email
service service service

OEBPS/01fig01.jpg
Amonolithic application
packages everything together.

Scaling it adds a complete copy
to muttiple nodes (servers).

OEBPS/01fig02.jpg
The application calls services A and B.

Scale A to distribute the load.

it

Ais under load.

VAN

Bis not.

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig05.jpg

OEBPS/01fig07.jpg
Resource (REST API)

Business
domain

Persistence Remote
ORM resources

OEBPS/01fig06.jpg
H
{ Error
i response

Incoming
request

Is circuit
closed?

Is sleep time
completed?

Circuit breaker logical flow v

OEBPS/cover.jpg
Arguilan, Ho
ot Jnit, Sl
and Mockito

L | FTTHD

OEBPS/01fig09.jpg
Business

domain

OEBPS/01fig08.jpg
-

Resource (REST API)

OEBPS/01fig11.jpg
Persistence
ORM

OEBPS/01fig10.jpg
Remote
resources

OEBPS/01fig13.jpg
Business

domain

OEBPS/01fig12.jpg
-

Resource (RESTAPI)

Persistence
ORM
Remote
resources

