

 [image: cover]

Serverless Architectures on AWS: With examples using AWS Lambda

 Peter Sbarski

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Toni Arritola
Technical development editor: Kostas Passadis
Project editors: Kevin Sullivan and Janet Vail
Copyeditor: Linda Recktenwald
Proofreader: Melody Dolab
Technical proofreader: David Fombella Pombal
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617293825

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Dedication

 To my mum and dad, who always supported and encouraged my passion for computing

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover

 1. First steps

 Chapter 1. Going serverless

 Chapter 2. Architectures and patterns

 Chapter 3. Building a serverless application

 Chapter 4. Setting up your cloud

 2. Core Ideas

 Chapter 5. Authentication and authorization

 Chapter 6. Lambda the orchestrator

 Chapter 7. API Gateway

 3. Growing your Architecture

 Chapter 8. Storage

 Chapter 9. Database

 Chapter 10. Going the last mile

 Appendix A. Services for your serverless architecture

 Appendix B. Installation and setup

 Appendix C. More about authentication and authorization

 Appendix D. Lambda insider

 Appendix E. Models and mapping

 Appendix F. S3 event message structure

 Appendix G. Serverless Framework and SAM

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover

 1. First steps

 Chapter 1. Going serverless

 1.1. How we got to where we are

 1.1.1. Service-oriented architecture and microservices

 1.1.2. Software design

 1.2. Principles of serverless architectures

 1.2.1. Use a compute service to execute code on demand

 1.2.2. Write single-purpose stateless functions

 1.2.3. Design push-based, event-driven pipelines

 1.2.4. Create thicker, more powerful front ends

 1.2.5. Embrace third-party services

 1.3. Transitioning from a server to services

 1.4. Serverless pros and cons

 1.4.1. Decision drivers

 1.4.2. When to use serverless

 1.5. Summary

 Chapter 2. Architectures and patterns

 2.1. Use cases

 2.1.1. Application back end

 2.1.2. Data processing and manipulation

 2.1.3. Real-time analytics

 2.1.4. Legacy API proxy

 2.1.5. Scheduled services

 2.1.6. Bots and skills

 2.2. Architectures

 2.2.1. Compute as back end

 2.2.2. Legacy API proxy

 2.2.3. Hybrid

 2.2.4. GraphQL

 2.2.5. Compute as glue

 2.2.6. Real-time processing

 2.3. Patterns

 2.3.1. Command pattern

 2.3.2. Messaging pattern

 2.3.3. Priority queue pattern

 2.3.4. Fan-out pattern

 2.3.5. Pipes and filters pattern

 2.4. Summary

 Chapter 3. Building a serverless application

 3.1. 24-Hour Video

 3.1.1. General requirements

 3.1.2. Amazon Web Services

 3.1.3. Creating your first Lambda function

 3.1.4. Naming your Lambda

 3.1.5. Testing locally

 3.1.6. Deploying to AWS

 3.1.7. Connecting S3 to Lambda

 3.1.8. Testing in AWS

 3.1.9. Looking at logs

 3.2. Configuring Simple Notification Service

 3.2.1. Connecting SNS to S3

 3.2.2. Getting email from SNS

 3.2.3. Testing SNS

 3.3. Setting video permissions

 3.3.1. Creating the second function

 3.3.2. Configuring and securing

 3.3.3. Testing the second function

 3.4. Generating metadata

 3.4.1. Creating the third function and FFprobe

 3.5. Finishing touches

 3.6. Exercises

 3.7. Summary

 Chapter 4. Setting up your cloud

 4.1. Security model and identity management

 4.1.1. Creating and managing IAM users

 4.1.2. Creating groups

 4.1.3. Creating roles

 4.1.4. Resources

 4.1.5. Permissions and policies

 4.2. Logging and alerting

 4.2.1. Setting up logging

 4.2.2. Log retention

 4.2.3. Filters, metrics, and alarms

 4.2.4. Searching log data

 4.2.5. S3 and logging

 4.2.6. More on alarms

 4.2.7. CloudTrail

 4.3. Costs

 4.3.1. Creating billing alerts

 4.3.2. Monitoring and optimizing costs

 4.3.3. Using the Simple Monthly Calculator

 4.3.4. Calculating Lambda and API Gateway costs

 4.4. Exercises

 4.5. Summary

 2. Core Ideas

 Chapter 5. Authentication and authorization

 5.1. Authentication in a serverless environment

 5.1.1. A serverless approach

 5.1.2. Amazon Cognito

 5.1.3. Auth0

 5.2. Adding authentication to 24-Hour Video

 5.2.1. The plan

 5.2.2. Invoking Lambda directly

 5.2.3. 24-Hour Video website

 5.2.4. Auth0 configuration

 5.2.5. Adding Auth0 to the website

 5.2.6. Testing Auth0 integration

 5.3. Integration with AWS

 5.3.1. User profile Lambda

 5.3.2. API Gateway

 5.3.3. Mappings

 5.3.4. Invoking Lambda via API Gateway

 5.3.5. Custom authorizer

 5.4. Delegation tokens

 5.4.1. Real-world examples

 5.4.2. Provisioning delegation tokens

 5.5. Exercises

 5.6. Summary

 Chapter 6. Lambda the orchestrator

 6.1. Inside Lambda

 6.1.1. Event models and sources

 6.1.2. Push and pull event models

 6.1.3. Concurrent executions

 6.1.4. Container reuse

 6.1.5. Cold and warm Lambda

 6.2. Programming model

 6.2.1. Function handler

 6.2.2. Event object

 6.2.3. Context object

 6.2.4. Callback function

 6.2.5. Logging

 6.3. Versioning, aliases, and environment variables

 6.3.1. Versioning

 6.3.2. Aliases

 6.3.3. Environment variables

 6.4. Using the CLI

 6.4.1. Invoking commands

 6.4.2. Creating and deploying functions

 6.5. Lambda patterns

 6.5.1. Async waterfall

 6.5.2. Series and parallel

 6.5.3. Using libraries

 6.5.4. Move logic to another file

 6.6. Testing Lambda functions

 6.6.1. Testing locally

 6.6.2. Writing tests

 6.6.3. Testing in AWS

 6.7. Exercises

 6.8. Summary

 Chapter 7. API Gateway

 7.1. API Gateway as the interface

 7.1.1. Integration with AWS services

 7.1.2. Caching, throttling, and logging

 7.1.3. Staging and versioning

 7.1.4. Scripting

 7.2. Working with the API Gateway

 Creating a new API

 7.2.2. Creating the resource and method

 7.2.3. Configuring method execution

 7.2.4. The Lambda function

 7.2.5. Updating the website

 7.3. Optimizing the gateway

 7.3.1. Throttling

 7.3.2. Logging

 7.3.3. Caching

 7.4. Stages and versions

 7.4.1. Creating a stage variable

 7.4.2. Using stage variables

 7.4.3. Versions

 7.5. Exercises

 7.6. Summary

 3. Growing your Architecture

 Chapter 8. Storage

 8.1. Smarter storage

 8.1.1. Versioning

 8.1.2. Hosting a static website

 8.1.3. Storage classes

 8.1.4. Object lifecycle management

 8.1.5. Transfer acceleration

 8.1.6. Event notifications

 8.2. Secure upload

 8.2.1. Architecture

 8.2.2. Upload policy Lambda

 8.2.3. S3 CORS configuration

 8.2.4. Uploading from the website

 8.3. Restricting access to files

 8.3.1. Removing public access

 8.3.2. Generating presigned URLs

 8.4. Exercises

 8.5. Summary

 Chapter 9. Database

 9.1. Introduction to Firebase

 9.1.1. Data structure

 9.1.2. Security rules

 9.2. Adding Firebase to 24-Hour Video

 9.2.1. Architecture

 9.2.2. Setting up Firebase

 9.2.3. Modifying Transcode Video Lambda

 9.2.4. Transcode Video Firebase Update

 9.2.5. Connecting Lambda

 9.2.6. Website

 9.2.7. End-to-end testing

 9.3. Securing access to files

 9.3.1. Signed URL Lambda

 9.3.2. API Gateway settings

 9.3.3. Updating the website again

 9.3.4. Improving performance

 9.3.5. Improving Firebase security

 9.4. Exercises

 9.5. Summary

 Chapter 10. Going the last mile

 10.1. Deployment and frameworks

 10.2. Toward better microservices

 10.2.1. Handling errors

 10.3. Step Functions

 10.3.1. Image-processing example

 10.4. AWS Marketplace

 10.5. Where from here

 Appendix A. Services for your serverless architecture

 A.1. API Gateway

 A.2. Simple Notification Service

 A.3. Simple Storage Service

 A.4. Simple Queue Service

 A.5. Simple Email Service

 A.6. Relational Database Service and DynamoDB

 A.7. CloudSearch

 A.8. Elastic Transcoder

 A.9. Kinesis Streams

 A.10. Cognito

 A.11. Auth0

 A.12. Firebase

 A.13. Other services

 Appendix B. Installation and setup

 B.1. Preparing your system

 B.2. Setting up an IAM user and CLI

 B.3. Setting user permissions

 B.4. Making new S3 buckets

 B.5. Creating an IAM role

 B.6. Preparing for Lambda

 B.7. Configuring Elastic Transcoder

 B.8. Setting up npm

 Appendix C. More about authentication and authorization

 C.1. Basics of authentication and authorization

 C.2. JSON Web Token

 Appendix D. Lambda insider

 D.1. Execution environment

 D.2. Limitations

 D.3. Working with older runtimes

 D.3.1. Succeed

 D.3.2. Fail

 D.3.3. Done

 Appendix E. Models and mapping

 E.1. Get video list

 E.1.1. GET method

 E.1.2. Handling errors

 E.1.3. Deploying API Gateway

 Appendix F. S3 event message structure

 F.1. S3 structure

 F.2. A few things to remember

 Appendix G. Serverless Framework and SAM

 G.1. Serverless Framework

 G.1.1. Installation

 G.1.2. Beginning Serverless Framework

 G.1.3. Using the Serverless Framework

 G.1.4. Packaging

 G.1.5. Testing

 G.1.6. Plugins

 G.1.7. Examples

 G.2. Serverless Application Model

 G.2.1. Getting started

 G.2.2. Example with SAM

 G.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 BY PATRICK DEBOIS, DEVOPS JEDI

 FOUNDER OF DEVOPSDAYS

 CTO, SMALL TOWN HEROES

 Write programs that do one thing and do it well. Write programs designed to work together. These are the core ideas of the
 Unix philosophy, first articulated by Unix designer Ken Thompson. In recent years, companies like Google, Netflix, Uber, and
 Airbnb have proven that in modern distributed systems you can easily replace the word programs with the word services. The
 latest twist on this idea, serverless computing, is a manifestation of how the intelligent combination of hosted services
 and self-managing infrastructure can result in significant improvements in development time and operating cost.

 Serverless Architectures on AWS balances emerging serverless design patterns with a set of practical, down-to-earth case studies, making it ideal for both
 beginners and advanced practitioners. Serverless is a new discipline, and this author succeeds in covering a wide spectrum
 of topics without losing depth and focus. He writes with clear passion, an eye for detail, and a treasure trove of knowledge
 to share.

 Serverless computing requires a shift in how you build software architectures, and as with many paradigm shifts, you have
 to unlearn some of your habits. While being enthusiastic about the new technology, the author goes to great lengths to point
 out the benefits and limits of these new types of architectures. As a bonus, he gives insight into his own journey running
 a real-life serverless-based architecture. His “put your money where your mouth is” attitude shows the ultimate payoff of
 serverless, helping your business to focus and succeed.

Foreword

 BY DR. DONALD F. FERGUSON

 CTO AND CoFOUNDER, SEEKA TV

 ADJUNCT PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE, COLUMBIA UNIVERSITY

 Many technologies have profoundly transformed application development, testing, and delivery. Cloud computing and various
 forms of “as-a-service” are examples of technologies that are redefining application development and delivery. Many teams
 and projects struggle and sometimes fail when attempting to exploit new technology. The primary reason for failure is applying
 the current application architecture and programming model to a radically different technology. Well-designed, implemented,
 and delivered cloud-spanning applications are radically different from traditional applications. Serverless Architectures on AWS does an excellent job of explaining the new application architecture and provides detailed, practical guidance on how to
 succeed.

 Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS) are cloud versions of the
 on-premise application and infrastructure architecture. The models deliver value but can never fully exploit the potential
 of the cloud. SaaS provides semi-standard solutions to business problems but doesn’t enable rapid development and deployment
 of more targeted applications. IaaS and PaaS deliver resource usage efficiency but don’t eliminate the cost to configure and
 manage software server infrastructure. None of these models enable exploitation of the explosion in web-callable APIs that
 form the API economy. Serverless architectures are the only architectures that eliminate the cost of server software and deliver the flexibility to rapidly develop, deploy,
 and manage targeted, focused cloud applications.

 Part I—First Steps of this book provides the foundation for building serverless architecture. The section explains the new architecture’s essential
 features and benefits. This includes a clear explanation of the technology’s pros and cons and guidance for selection. Equally
 important, the section introduces architecture design patterns. Realizing best practices through applying design patterns is the single most important factor in the successful adoption
 of transformational computing technology. The section explains the patterns within the context of a real solution that the
 author implemented using serverless architectures: “Code rules and slides drool.” The author’s practical experience and success
 are a primary reason for my recommending this book.

 People often mistakenly equate serverless with a specific technology; for example, AWS Lambda functions. Serverless architecture
 is much broader and includes UI design, publish/subscribe infrastructure, workflows/orchestration, active databases, API gateways
 and management, and data services. In aggregate, these technologies can be overwhelming. Serverless Architectures on AWS explains the contributing technologies’ roles and uses. The book also provides a detailed walkthrough on how to use Amazon
 Web Services’ implementation of the technology through building a working application. The initial cookbook and tutorial are
 core to being able to repeatably and reliably use the technology.

 The data layer and security are two of the hardest architecture areas of any application. Serverless Architectures on AWS has detailed sections on both topics. The material explains the concepts (for example, authentication and authorization),
 positions the concepts within application scenarios (for example, web applications), and provides concrete, detailed examples
 of how to design and implement security and the data layer. The details include examples using non-AWS technology like Auth0
 and Google Firebase.

 My company is building its solution using AWS and serverless architecture. In this endeavor I’ve found this book and the author’s
 other material to be essential to our progress. I teach advanced topics in computer science at Columbia University, where
 the classes focus on internet applications and cloud-spanning applications. This book’s material is a foundation for much
 of what I teach. My experience demonstrates that Serverless Architectures on AWS is a pivotal book that’s crucial to exploitation of cloud computing. The detailed information about AWS within the context
 of a real application is priceless, and the concepts and patterns apply to any serverless solution using any technology.

Preface

 The first time I heard about AWS Lambda was from Sam Kroonenburg. Lambda had just been released, but Sam was already excited
 by its prospects. He told me about execution of functions in the cloud, the potential for automation within AWS, and development
 of event-driven workflows. It was fascinating and full of endless potential. The thought of being able to run my code without
 having to provision or look after infrastructure seemed very cool and not a moment too soon. As a software engineer, I always
 wanted to focus on architecture and code rather than infrastructure, operations, and system management. Here was my opportunity
 to do so with Amazon Web Services.

 After some months, the API Gateway came out and solved one of the biggest problems with Lambda at the time. It became possible
 to invoke Lambda functions using standard HTTP requests. The dream of creating fast, scalable back ends for applications without
 having to touch a server was happening right in front of us. The first major serverless project I worked on, started by Sam
 Kroonenburg, was A Cloud Guru, which grew into a large learning-management system. This platform, entirely serverless, cost
 very little to run and allowed for quick iteration cycles. It was a lot of fun to work on because we could focus on adding
 business value and new features without having to worry about infrastructure management or complex operations, and the platform
 could scale like crazy.

 While building A Cloud Guru, we also realized that being serverless wasn’t just about running code in Lambda. It was also
 about using third-party services and products. We used a managed authentication service and a managed database that saved
 us weeks, if not months, of development time. We identified aspects of our system that were important but that we didn’t need
 to build, like payment processing and customer messaging. We found great third-party services that worked brilliantly with
 our serverless back end and integrated them with the rest of our system.

 The third key component was, of course, selecting the right patterns and architectures. We recognized that event-driven architectures
 were natural to serverless applications, and we worked to make our entire system event-driven. We thought about security,
 reliability, and scalability, and how functions and back end services needed to be composed to make the most of them.

 Having helped to build one of the first large-scale serverless applications and having reviewed other serverless systems since
 then, one thing is clear to me: the combination of scalable cloud functions, reliable third-party services, and serverless
 architectures and patterns is the next step in the evolution of cloud computing. Over the next few years, we’ll see startups
 and established enterprises adopt the serverless approach. It will help them innovate and move more quickly than their competition.
 This book is a glimpse of what this future holds and an instruction manual for how to get started today. I hope that you enjoy
 Serverless Architectures on AWS and join me on this serverless journey.

Acknowledgments

 This book wouldn’t have been written without the encouragement, feedback, and support of my colleagues, peers, family, and
 friends. I’m lucky to have been surrounded by talented people who lent me their ear and gave invaluable advice and opinion.

 I’m grateful to many people for helping me, but there are a few I’d like to mention by name. First and foremost, I would like
 to thank my editor, Toni Arritola, who made the writing of this book a great experience. Toni’s thoughtful feedback on the
 book’s structure, language, and narrative was extraordinarily helpful. Her attention to detail, ability to respond at all
 times of the day, and enthusiasm were—and remain—second to none.

 Austen Collins, the creator of the Serverless Framework, made a major contribution to the book in the form of a section on
 the Serverless Framework. There’s no one better to write about a framework than its creator, so I’m thankful to Austen for
 volunteering his time and effort. I hope that everyone who reads this book—and, in particular, reads Austen’s excellent treatise—spends
 time learning, understanding, and adopting the Serverless Framework.

 I’d also like to thank Sam Kroonenburg, who introduced me to the serverless way and helped with thoughtful feedback and review
 throughout the writing of this book. Sam’s enthusiasm for AWS Lambda and ideas on architecture and design inspired me to put
 pen to paper in the first place. Another special thank-you goes to Ryan Brown, who read the book and gave detailed, blow-by-blow
 commentary and critique. This book is far better for Ryan’s reading and careful and considered feedback.

 Additional thanks must go out to Donald Ferguson and Patrick Debois for writing two very special forewords. Donald and Patrick
 have done a lot for software engineering and for the serverless community especially. I’m in awe of their accomplishments
 and very thankful for their time and involvement.

 I’d like to thank a few others who gave me feedback and encouragement. These people include Ryan Kroonenburg, Mike Chambers,
 John McKim, Adrian Cantrill, Daniel Parker, Allan Brown, Nick Triantafillou, Drew Firment, Neil Walker, Alex Mackey, and Ilia
 Mogilevsky. I’d like to thank Mike Stephens of Manning, Kostas Passadis, and David Fombella Pombal for helping to bring this
 book to fruition. In addition, these acknowledgments wouldn’t be complete if I didn’t thank the Manning reviewers who generously
 read and commented on the text during its development, including Alain Couniot, Andy Wiesendanger, Colin Joyce, Craig Smith,
 Daniel Vásquez, Diego Santiviago, John Huffman, Josiah Dykstra, Kent R. Spillner, Markus Breuer, Saioa Picado Fernández, Sau
 Fai Fong, Sean Hull, and Vijaykumar Borkar.

 Finally, I’d like to thank my family, including my dad and brother, and all my other relatives, for finding the inner strength
 to listen to me talk about the book at every gathering. And I’d like to thank Durdana Masud, who helped me greatly throughout
 my writing, starting with positive cheer and inspiration to looking at umpteen color palettes in an effort to help me select
 colors for the original images used in the manuscript. Thank you.

About this Book

 Whether you are a beginner or an expert, just starting out in IT or have years of experience, this book will take you on a
 journey through serverless architectures. You’ll learn about key patterns, find out about the pros and cons of applying serverless
 methodologies, and build your own serverless video-sharing website using AWS Lambda, API Gateway, Elastic Transcoder, S3,
 Auth0, and Firebase. You’ll also learn a lot about AWS and recommended frameworks for organizing and deploying your serverless
 applications.

 This book is organized into three parts. The first takes you through basic serverless principles and discusses key architectures
 and patterns. You begin building your first event-driven pipeline using AWS Lambda and learn about key AWS services, like
 the omnipresent and all-powerful Identity and Access Management service.

 The second part focuses on authentication and authorization, AWS Lambda, and the API Gateway. All chapters in this part are
 important to understanding and building serverless applications. After you read and work through them, you’ll have a thorough
 grasp of the key technologies needed for serverless applications.

 The third part addresses those additional services and architectures needed to build real-world applications. A key focus
 is file and data storage using S3 and Google’s Firebase, respectively. The final chapter adds more information about some
 of the techniques and services that you can apply to grow your serverless applications.

 At the end of the book, you’ll find seven appendixes that give you additional information on various topics. The last appendix,
 for example, covers the Serverless Framework and the Serverless Application Mode (SAM); you should definitely read through
 and try the steps in this appendix.

 AWS and other services like Auth0 and Firebase evolve quickly, so don’t be surprised if some of the screenshots or instructions
 are different by the time you read this book. The fundamentals of serverless event-driven architectures remain the same, but
 some of the minor things, such as button positioning or labels, may change over time. This book is suitable for developers
 and solution architects who are new to AWS and cloud computing, as well as for those who are veterans. My hope is that you’ll
 discover a new way to build applications that is cheaper, more scalable, and heaps more fun!

Code conventions

 This book provides many examples of code. These appear throughout the text and as separate code listings. Code appears in
 a fixed-width font just like this, so you’ll know when you see it.

Getting the source code

 All of the source code used in the book is available on the Manning website (https://manning.com/books/serverless-architectures-on-aws) or in my GitHub repository (https://github.com/sbarski/serverless-architectures-aws). I love GitHub, so if you’d like to contribute to the source code, please open a pull request. If you see a problem, please
 file an issue.

Author online

 Purchase of Serverless Architectures on AWS includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/books/serverless-architectures-on-aws. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the Author

 [image:]

 PETER SBARSKI is Vice President of Engineering at A Cloud Guru and the organizer of Serverlessconf, the world’s first conference dedicated
 entirely to serverless architectures and technologies. He enjoys running in-person workshops and writing an occasional blog
 post on serverless architectures. Peter has an extensive career working in IT and has led teams across large enterprise solutions
 with a focus on web and AWS cloud technologies. His specialties include back end architecture, microservices, and orchestration
 of systems.

 Peter holds a PhD in computer science from Monash University, Australia, and can be followed on Twitter (@sbarski) and GitHub
 (https://github.com/sbarski).

About the Cover

 The figure on the cover of Serverless Architectures on AWS is captioned “Man from Stupno/Sisak, Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional
 costumes from the mid-nineteenth century by Nikola Arsenoviç, published by the Ethnographic Museum in Split, Croatia, in 2003.
 The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
 core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book
 includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes
 and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life. Manning celebrates the inventiveness and initiative of the computer business with book
 covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books
 and collections like this one.

Part 1. First steps

 You’re now taking the first steps toward mastery of serverless architectures. The first part of this book takes you through
 the concepts and introduces you to the five principles of serverless architectures. You’ll learn about several useful designs
 and architectures, and you’ll begin building your own media-transcoding pipeline using Lambda, S3, and the Elastic Transcoder.
 Beginning with the third chapter and continuing thereafter, you’ll find fun exercises to try in your spare time. These exercises
 are optional but highly recommended, because they’ll reinforce your knowledge and understanding of serverless technologies
 and architectures.

Chapter 1. Going serverless

 This chapter covers

 	Traditional system and application architectures

 	Key characteristics of serverless architectures and their benefits

 	How serverless architectures and microservices fit into the picture

 	Considerations when transitioning from server to serverless

 If you ask software developers what software architecture is, you might get answers ranging from “it’s a blueprint or a plan”
 to “a conceptual model” to “the big picture.” It’s undoubtedly true that architecture, or lack thereof, can make or break
 software. Good architecture may help to scale a web or mobile application, and poor architecture may cause serious issues
 that necessitate a costly rewrite. Understanding the implication of choice regarding architecture and being able to plan ahead
 is paramount to creating effective, high-performing, and ultimately successful software systems.

 This book is about how to go beyond traditional back-end architectures that require you to interact with a server in some
 shape or form. It describes how to create serverless back ends that rely entirely on a compute service such as Amazon Web Services (AWS) Lambda and an assortment of useful third-party
 APIs, services, and products. It shows how to build the next generation of systems that can scale and handle demanding computational
 requirements without having to provision or manage a single server. Importantly, this book describes techniques that can help
 developers quickly deliver products to market while maintaining a high level of quality and performance by using services
 and architectures that today’s cloud has to offer.

 The first chapter of this book is about why we think serverless is a game changer for software developers and solution architects.
 This chapter introduces key services such as AWS Lambda and describes the principles of serverless architecture to help you
 understand what makes a true serverless system.

 	

 What’s in a name?
 Before we start, we should mention that the word serverless is a bit of a misnomer. Whether you use a compute service such as AWS Lambda to execute your code, or interact with an API,
 there are still servers running in the background. The difference is that these servers are hidden from you. There’s no infrastructure
 for you to think about and no way to tweak the underlying operating system. Someone else takes care of the nitty-gritty details
 of infrastructure management, freeing your time for other things. Serverless is about running code in a compute service and
 interacting with services and APIs to get the job done.

 	

1.1. How we got to where we are

 If you look at systems powering most of today’s web-enabled software, you’ll see back-end servers performing various forms
 of computation and client-side front ends providing an interface for users to operate via their browser, mobile, or desktop
 device.

 In a typical web application, the server accepts HTTP requests from the front end and processes requests. Data might travel
 through numerous application layers before being saved to a database. The back end, finally, generates a response—it could
 be in the form of JSON or fully rendered markup—which is sent back to the client (figure 1.1). Naturally, most systems are more complex once elements such as load balancing, transactions, clustering, caching, messaging,
 and data redundancy are taken into account. Most of this software requires servers running in data centers or in the cloud
 that need to be managed, maintained, patched, and backed up.

 Figure 1.1. This is a basic request-response (client-server) message exchange pattern that most developers are familiar with. There’s
 only one web server and one database in this figure. Most systems are much more complex.

 [image:]

 Provisioning, managing, and patching of servers is a time-consuming task that often requires dedicated operations people.
 A non-trivial environment is hard to set up and operate effectively. Infrastructure and hardware are necessary components
 of any IT system, but they’re often also a distraction from what should be the core focus—solving the business problem.

 Over the past few years, technologies such as platform as a service (PaaS) and containers have appeared as potential solutions
 to the headache of inconsistent infrastructure environments, conflicts, and server management overheard. PaaS is a form of cloud computing that provides a platform for users
 to run their software while hiding some of the underlying infrastructure. To make effective use of PaaS, developers need to
 write software that targets the features and capabilities of the platform. Moving a legacy application designed to run on
 a standalone server to a PaaS service often leads to additional development effort because of the ephemeral nature of most
 PaaS implementations. Still, given a choice, many developers would understandably choose to use PaaS rather than more traditional,
 more manual solutions thanks to reduced maintenance and platform support requirements.

 Containerization is a way of isolating an application with its own environment. It’s a lightweight alternative to full-blown
 virtualization. Containers are isolated and lightweight but they need to be deployed to a server—whether in a public or private
 cloud or onsite. They’re an excellent solution when dependencies are in play, but they have their own housekeeping challenges
 and complexities. They’re not as easy as being able to run code directly in the cloud.

 Finally, we make our way to Lambda, which is a compute service from Amazon Web Services. Lambda can execute code in a massively
 parallelized way in response to events. Lambda takes your code and runs it without any need to provision servers, install
 software, deploy containers, or worry about low-level detail. AWS takes care of provisioning and management of their Elastic
 Compute Cloud (EC2) servers that run the actual code and provides a high-availability compute infrastructure—including capacity
 provisioning and automated scaling—that the developer doesn’t need to think about. The words serverless architectures refer to these new kinds of software architectures that don’t rely on direct access to a server to work. By taking Lambda
 and making use of various powerful single-purpose APIs and web services, developers can build loosely coupled, scalable, and
 efficient architectures quickly. Moving away from servers and infrastructure concerns, as well as allowing the developer to primarily focus on code, is the
 ultimate goal behind serverless.

 1.1.1. Service-oriented architecture and microservices

 Among system and application architectures, service-oriented architecture (SOA) has a lot of name recognition among software
 developers. It’s an architecture that clearly conceptualized the idea that a system can be composed of many independent services.
 Much has been written about SOA, but it remains controversial and misunderstood because developers often confuse design philosophy
 with specific implementation and attributes.

 SOA doesn’t dictate the use of any particular technology. Instead, it encourages an architectural approach in which developers
 create autonomous services that communicate via message passing and often have a schema or a contract that defines how messages
 are created or exchanged. Service reusability and autonomy, composability, granularity, and discoverability are all important
 principles associated with SOA.

 Microservices and serverless architectures are spiritual descendants of service--oriented architecture. They retain many of
 the aforementioned principles and ideas while attempting to address the complexity of old-fashioned service-oriented architectures.

On microservices

 There has been a recent trend to implement systems with microservices. Developers tend to think of microservices as small,
 standalone, fully independent services built around a particular business purpose or capability.

 Ideally, microservices should be easy to replace, with each service written in an appropriate framework and language. The
 mere fact that microservices can be written in different general-purpose or domain-specific languages (DSL) is a drawing card
 for many developers. Benefits can be gained from using the right language or a specialized set of libraries for the job. Nevertheless,
 it can often be a trap, too. Having a mix of languages and frameworks can be hard to support, and, without strict discipline,
 can lead to confusion down the road.

 Each microservice can maintain state and store data. And if microservices are correctly decoupled, development teams can work
 and deploy microservices independently of one another. On the other hand, eventual consistency, transaction management, and
 complex error recovery can make things more difficult (especially without a sound plan).

 It can be argued that serverless architecture embodies many principles from microservices too. After all, depending on how
 you design the system, every compute function could be considered to be its own standalone service. But you don’t need to
 fully embrace the microservices mantra if you don’t want to.

 Serverless architectures give you the freedom to apply as few or as many microservice principles as you would like without
 forcing you down a single path. This book shows examples of architectures where parts of a monolithic system are re-implemented
 as serverless architecture without applying all of the microservices tenets. It’s then up to you to decide how far to take
 your architecture based on your requirements and preference (chapter 10 has more to say on the issue of microservices and design).

 1.1.2. Software design

 Software design has evolved from the days of code running on a mainframe to multitier systems where the presentation, data,
 and application/logic tiers feature prominently in many designs. Within each tier there may be multiple logical layers that
 deal with particular aspects of functionality or domain. There are also cross-cutting components, such as logging or exception-handling
 systems, that can span numerous layers. The preference for layering is understandable. Layering allows developers to decouple
 concerns and have more maintainable applications.

 But the converse can also be true. Having too many layers can lead to inefficiencies. A small change can often cascade and
 cause the developer to modify every layer throughout the system, costing considerable time and energy in implementation and
 testing. The more layers there are, the more complex and unwieldy the system might become over time. Figure 1.2 shows an example of a tiered architecture with multiple layers.

 Figure 1.2. A typical three-tier application is usually made up of presentation, application, and data tiers. A tier may have multiple
 layers with specific responsibilities.

 [image:]

 Serverless architectures can help with the problem of layering and having to update too many things. There’s room for developers
 to remove or minimize layering by breaking the system into functions and allowing the front end to securely communicate with
 services and even the database directly, as shown in figure 1.3. All of this can be done in an organized way to prevent spaghetti implementations and dependency nightmares by clearly defining
 service boundaries, allowing Lambda functions to be autonomous, and planning how functions and services will interact.

 Figure 1.3. In a serverless architecture there’s no single traditional back end. The front end of the application communicates directly
 with services, the database, or compute functions via an API gateway. Some services, however, must be hidden behind compute
 service functions, where additional security measures and validation can take place.

 [image:]

 A serverless approach doesn’t solve all problems, nor does it remove the underlying intricacies of the system. But when implemented
 correctly it can provide opportunities to reduce, organize, and manage complexity. A well-planned serverless architecture
 can make future changes easier, which is an important factor for any long-term application. The next section and later chapters
 discuss the organization and orchestration of services in more detail.

 	

 Tiers vs. layers
 There is confusion among some developers about the difference between layers and tiers. A tier is a module boundary that exists to provide isolation between major components of a system. A presentation tier that’s visible
 to the user is separate from the application tier, which encompasses business logic. In turn, the data tier is another separate
 system that can manage, persist, and provide access to data. Components grouped in a tier can physically reside on different
 infrastructures.

 Layers are logical slices that carry out specific responsibilities in an application. Each tier can have multiple layers within
 it that are responsible for different elements of functionality such as domain services.

 	

1.2. Principles of serverless architectures

 Here we define five principles of serverless architectures that describe how an ideal serverless system should be built. Use
 these principles to help guide your decisions when building serverless applications:

 	Use a compute service to execute code on demand (no servers).

 	Write single-purpose stateless functions.

 	Design push-based, event-driven pipelines.

 	Create thicker, more powerful front ends.

 	Embrace third-party services.

 Let’s look at each of these principles in more detail.

 1.2.1. Use a compute service to execute code on demand

 Serverless architectures are a natural extension of ideas raised in SOA. In serverless architecture all custom code is written
 and executed as isolated, independent, and often granular functions that are run in a stateless compute service such as AWS
 Lambda. Developers can write functions to carry out almost any common task, such as reading and writing to a data source,
 calling out to other functions, and performing a calculation. In more complex cases, developers can set up more elaborate
 pipelines and orchestrate invocations of multiple functions. There might be scenarios where a server is still needed to do
 something. These cases, however, may be far and few between, and as a developer you should avoid running and interacting with
 a server if possible.

 	

 So, what is Lambda exactly?
 AWS Lambda is a compute service that executes code written in JavaScript (node.js), Python, C#, or Java on AWS infrastructure.
 Source code (JARs or DLLs in case of Java or C#) is zipped up and deployed to an isolated container that has an allocation
 of memory, disk space, and CPU. The combination of code, configuration, and dependencies is typically referred to as a Lambda function. The Lambda runtime can invoke a function multiple times in parallel. Lambda supports push and pull event models of operation
 and integrates with a large number of AWS services. Chapter 6 covers Lambda in more detail, including its event model, methods of invocation, and best practice with regard to design.
 Note that Lambda isn’t the only game in town. Microsoft Azure Functions, IBM Bluemix, OpenWhisk, and Google Cloud Functions
 are other compute services you might want to look at.

 	

 1.2.2. Write single-purpose stateless functions

 As a software engineer, you should try to design your functions with the single responsibility principle (SRP) in mind. A
 function that does just one thing is more testable and robust and leads to fewer bugs and unexpected side effects. By composing
 and combining functions and services in a loose orchestration, you can build complex back-end systems that are still understandable
 and easy to manage. A granular function with a well-defined interface is also more likely to be reused within a serverless
 architecture.

 Code written for a compute service such as Lambda should be created in a stateless style. It must not assume that local resources or processes will survive beyond the immediate session (chapter 6 has more to say on this). Statelessness is powerful because it allows the platform to quickly scale to handle an ever-changing
 number of incoming events or requests.

 1.2.3. Design push-based, event-driven pipelines

 Serverless architectures can be built to serve any purpose. Systems can be built serverless from scratch, or existing monolithic
 applications can be gradually reengineered to take advantage of this architecture. The most flexible and powerful serverless
 designs are event-driven. In chapter 3, for example, you’ll build an event-driven, push-based pipeline to see how quickly you can put together a system to encode
 video to different bitrates and formats. You’ll achieve this by connecting Amazon’s Simple Storage Service (S3), Lambda, and
 Elastic Transcoder together (figure 1.4).

 Figure 1.4. A push-based pipeline style of design works well with serverless architectures. In this example a user uploads a video, which
 is transcoded to a different format.

 [image:]

 Building event-driven, push-based systems will often reduce cost and complexity (you won’t need to run extra code to poll
 for changes) and potentially make the overall user experience smoother. It goes without saying that although event-driven,
 push-based models are a good goal, they might not be appropriate or achievable in all circumstances. Sometimes you’ll have
 to implement a Lambda function that polls the event source or runs on a schedule. We’ll cover different event models and you’ll
 work through examples in later chapters.

 1.2.4. Create thicker, more powerful front ends

 It’s important to remember that custom code running in Lambda should be quick to execute. Functions that terminate sooner
 are cheaper because Lambda pricing is based on the number of requests, the duration of execution, and the amount of allocated
 memory. Having less to do in Lambda is cheaper. Moreover, building a rich front end (in lieu of a complex back end) that can
 talk to third-party services directly can be conducive to a better user experience. Fewer hops between online resources and
 reduced latency will result in a better perception of performance and usability of the application. In other words, you don’t
 have to route everything through a compute service. Your front end may be able to communicate directly with a search provider,
 a database, or another useful API.

 Digitally signed tokens can allow front ends to talk to disparate services, including databases, in a secure manner. This
 is in contrast to traditional systems where all communication flows through the back-end server.

 Not everything, however, can or should be done in the front end. There are secrets that cannot be trusted to the client device.
 Processing a credit card or sending emails to subscribers must be done only by a service that runs outside the end user’s
 control. In this case, a compute service must be used to coordinate action, validate data, and enforce security.

 The other important point to consider is consistency. If the front end is responsible for writing to multiple services and
 fails midway through, it can leave the system in an inconsistent state. In this scenario, a Lambda function should be used
 because it can be designed to gracefully handle errors and retry failed operations.

 1.2.5. Embrace third-party services

 Third-party services are welcome to join the show if they can provide value and reduce custom code. It goes without saying,
 however, that when a third-party service is considered, factors such as price, capability, availability, documentation, and
 support must be assessed. It’s far more useful for developers to spend time solving a problem unique to their domain than
 re-creating functionality already implemented by someone else. Don’t build for the sake of building if viable third-party
 services and APIs are available. Stand on the shoulders of giants to reach new heights. Appendix A has a short list of Amazon Web Services and non-Amazon Web Services we’ve found useful. We’ll look at most of those services
 in more detail as we move through the book.

1.3. Transitioning from a server to services

 One advantage of the serverless approach is that existing applications can be gradually converted to serverless architecture.
 If a developer is faced with a monolithic code base, they can gradually tease it apart and create Lambda functions that the
 application can communicate with.

 The best approach is to initially create a prototype to test developer assumptions about how the system would function if
 it was going to be partly or fully serverless. Legacy systems tend to have interesting constraints that require creative solutions;
 and as with any architectural refactors at a large scale, there are inevitably going to be compromises. The system may end
 up being a hybrid—see figure 1.5—but it may be better to have some of its components use Lambda and third-party services rather than remain with an unchanged
 legacy architecture that no longer scales or that requires expensive infrastructure to run.

OEBPS/01fig03_alt.jpg
Lambda functions can
communicate with other
AWS products and make
calls to non-AWS services.

\

Appicaiion user

\ !
Authentication
= -~ < Reporting
Presentation
ter
APl File
Database e e
Lambda Lamida Lambda Lambda Lambda
function |~ " function function function |~ | function
Search Payment Notification Log Analytics
service service service service service

OEBPS/01fig04_alt.jpg
L. Simple torage Jervice. 3. Hlastic franscoder.
Uploading a video to an Transcoding service
§3 bucket triggers an executes the job and
event in AWS. A Lambda encodes new videos.
function is wired up to

respond to events.

5. Lambda Function.

A Lambda function
responds to the event
and creates metadata
about the videos that is
pushed to the database

Upload new Update.
videofle metadata
Create
Save new
ranscode.
e Videos,
\ \

2. Lambda Function. 4. Simple Storage Service.

A Lambda function responds The newly encoded videos are

to the event and creates an saved to a new §3 bucket by

Elastic Transcoder job to create the Elastic Transcoder.

new videos from the source fle. triggers another event.

Save
Dispatch Create
metadata o
notifcation noification bl
I { I

8. Notification Service. 7. Lambda Function. 6. Database.
Notification service Achange to the Metadata is saved
sends an email to database automatically to the database.
the user. triggers a Lambda

function that creates
Py oo rher ey

OEBPS/01fig01_alt.jpg
| User performs an action

that requires data from a

database to be displayed.
\

4. A request Is formed
and sent from the client

to the web server.

3. The request is
processed and the
database is queried.

L L J
rppicaton or | Web clent '\‘ Vieb sorver | osame
) (prosentaton e | (empicatontion | e
6. Information is displayed 5. An appropriate response 4. Data s retrieved.
0 the weet. . penerated and sent back.

OEBPS/01fig02_alt.jpg
APPICHSON User

I Layering helps to
M} segregate concerns, but
Presentation loqlc e __~ more layers can also
[__clensidomoss | make changes harder
and slower to implement.
Prosariaton [Clon-so sonvealayor | H
o I
l 8 Cross-cutting concerns
[[Appiication programming interface | slolE ‘span numeraous layers.
m EHE ot kot i
HERER M. 2|2 (3 logging, which can happen
Business/domain m & atevery layer,
= !
Applcationor o e IW
Crossauting
concems.

eyl

OEBPS/common0a.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xxifig01.jpg

OEBPS/common0b.jpg

OEBPS/cover.jpg

