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QUANTA AND FIELDS




INTRODUCTION

The history of physics has witnessed a number of brilliant, transformative ideas. But when it comes to truly revolutionary shifts—changes of paradigm that upend the way we think about the nature of reality—there have really only been two: classical mechanics in the late seventeenth century, and quantum mechanics in the early twentieth.

Classical mechanics was the theme of The Biggest Ideas in the Universe: Space, Time, and Motion, in which we emphasized the idea of the Newtonian/Laplacian paradigm, all the way up through spacetime and relativity. Now it’s time for us to go quantum.

Quantum mechanics is, according to our best current understanding, the way the world works. The first hints of the need for a change came from work by Max Planck and Albert Einstein that indicated light was not merely a wave, as physicists had previously thought. In the right circumstances, light comes in particles we now call photons. These particles are an example of the quanta of the title—discrete bundles of energy emerging out of the rules of quantum mechanics. But it’s subtler than that. Under different circumstances, things we think of as particles, like electrons and protons and neutrons, exhibit wave-like behavior. Quantum mechanics is going to continually frustrate our desire to put the behavior of physical systems into neat, commonsensical boxes.

Don’t feel bad if the ideas of quantum mechanics seem alien at first. The truth is that physicists themselves don’t agree on what, at rock bottom, quantum mechanics actually says. Physicists are extremely good at using quantum mechanics. We can predict the structure of atoms and molecules or calculate the scattering of particles off each other with exquisite precision. But it’s a bit of a black box. The top quantum physicists in the world don’t agree on what is going on to produce the results they predict and observe so successfully.

This lack of intellectual consensus can be traced to the fact that quantum mechanics seems to attribute special properties to the act of “measuring” or “observing” a physical system. In classical physics, objects have properties like positions and velocities, and you can directly measure them with as much accuracy as you like. Quantum objects seem profoundly different. Measuring the properties of a quantum system tends to dramatically change those properties. In some perfectly reasonable ways of thinking about the theory, a particle such as an electron doesn’t even have properties like “position” or “momentum”—those are possible measurement outcomes, not intrinsic features of the quantum system itself.

For the most part, we’re not going to worry about any of that.* Here at the Biggest Ideas in the Universe, our attitude is that of hardnosed physicists, using well-established ideas to make testable predictions about the world. That will give us more than enough to chew on. The foundational issues are indisputably important; understanding quantum mechanics at a deep level might very well turn out to be crucial to pushing beyond our current theories toward a much more comprehensive picture of reality. But the focus of this book will be on understanding the concepts underlying those current theories, and how they have given us an unprecedentedly accurate picture of the physical world.

The concepts in question include quantum mechanics itself; quantum field theory, which arises naturally when one combines quantum mechanics with the requirements of special relativity; and various deep ideas that have arisen within quantum field theory, including Feynman diagrams, renormalization, gauge theories, symmetry breaking, and the spin-statistics connection.

It’s an enormous amount of material, which I’ve endeavored to boil down to its bare essence. The trick, as with the previous book, is that we are going to include enough mathematical specifics to understand the ideas for real, without reaching a level of detail required to solve problems in the manner of a graduate student studying for their doctorate. You will learn the same ideas that they will, but you won’t have to pull all-nighters doing problem sets.

That requires a slightly different strategy than we employed in Space, Time, and Motion, although the basic aspiration is the same. In that book, I could literally show you all of the equations exactly as a professional would learn them. Here, there is just too much information to make that workable. Quantum field theory is loaded down with nitpicky details and layers of notation, which can get in the way of focusing on the central ideas. And it’s the ideas that matter to us. So there will be times when we will ignore coupling constants, hide indices, treat matrices like numbers. I promise you that this is all in the service of helping you understand what’s really going on, not in obscuring it.

Still, there is going to be math. In Space, Time, and Motion we introduced the basic ideas of calculus, including derivatives (rates of change) and integrals (accumulated amounts of change). In later chapters we dealt with tensors, and the use of Greek letters to denote spacetime indices. All of those are going to be here, in force. As well as the basic physics ideas of mass, energy, and relativity. If you are already familiar with those concepts, this book will be entirely selfcontained. If not, Space, Time, and Motion should convey everything you need to know.

It will be a breathtaking ride. At the dawn of the twentieth century, classical mechanics was firmly entrenched. Twenty-five years later, we saw the first complete formulations of quantum mechanics. Twenty-five years after that, quantum electrodynamics was the first well-established quantum field theory. And twenty-five years after that, physicists had put together the Standard Model of particle physics, which remains triumphant to this day. That’s the journey on which we are embarking, and it involves some of the most amazing ideas human beings have ever come across.

_____________

I have once again been extraordinarily fortunate to receive detailed feedback on drafts of this book. Enormous gratitude goes to Scott Aaronson, Justin Clarke-Doane, Ira Rothstein, and Matt Strassler, who kept my physics honest and my explanations not as convoluted as they would otherwise have been. My agent, Katinka Matson, has provided sage advice along the way. And huge thanks to my editor, Stephen Morrow, who has been patient and understanding and singularly helpful in shaping this book series into something I hope people will learn from and enjoy.

Patience was especially called for this time around, as the writing process was interrupted by a cross-country move and beginning a position at Johns Hopkins. Thanks to all my new colleagues and students for making everything as smooth as possible and being understanding when I wasn’t always as available as I might have liked.

Most of all, thanks to my wife, Jennifer, who picked up and moved with me, shouldered most of the burden of shaping our new home, and always keeps my writing honest. Looking forward to this new and exciting chapter.

The plot of the Mexican-hat potential in Chapter 10 is adapted from a Mathematica code by Vitaliy Kaurov (https://mathematica.stackexchange.com/questions/19578/how-can-i-make-a-plot-of-the-higgs-potential). The image of the LIGO observatory in Hanford in Chapter 11 is from the LIGO collaboration (https://www.ligo.org/multimedia/gallery/lho-images/Aerial5.jpg). The plot of nuclides in Chapter 12 is based on an example from Learning Scientific Programming with Python by Christian Hill (https://scipython.com).

______________

* If you’re interested, I’m happy to recommend my book Something Deeply Hidden (Oneworld, 2019) for an introduction to the thorny problems at the heart of quantum mechanics. And for a fascinating history of the subject, check out Adam Becker’s What Is Real? (John Murray, 2018).



ONE

WAVE FUNCTIONS

As the nineteenth century drew to a close, you would have forgiven physicists for hoping that they were on track to understand everything. The universe, according to this tentative picture, was made of particles that were pushed around by fields.

The idea of fields filling space had really taken off over the course of the 1800s. Earlier, Isaac Newton had presented a beautiful and compelling theory of motion and gravity, and Pierre-Simon Laplace had shown how we could reformulate that theory in terms of a gravitational field stretching between every object in the universe. A field is just something that has a value at each point in space. The value could be a simple number, or it could be a vector or something more complicated, but any field exists everywhere through space.

But if all you cared about was gravity, the field seemed optional—a point of view you could choose to take or not, depending on your preferences. It was equally okay to think as Newton did, directly in terms of the force created on one object by the gravitational pull of others without anything stretching between them.

That changed in the nineteenth century, as physicists came to grips with electricity and magnetism. Electrically charged objects exert forces on each other, which is natural to attribute to the existence of an electric field stretching between them. Experiments by Michael Faraday showed that a moving magnet could induce electrical current in a wire without actually touching it, pointing to the existence of a separate magnetic field, and James Clerk Maxwell managed to combine these two kinds of fields into single a theory of electromagnetism, published in 1873. This was an enormous triumph of unification, explaining a diverse set of electrical and magnetic phenomena in a compact theory. “Maxwell’s equations” bedevil undergraduate physics students to this very day.

One of the triumphant implications of Maxwell’s theory was an understanding of the nature of light. Rather than a distinct kind of substance, light is a propagating wave in the electric and magnetic fields, also known as electromagnetic radiation. We think of electromagnetism as a “force,” and it is, but Maxwell taught us that fields carrying forces can vibrate, and in the case of electric and magnetic fields those vibrations are what we perceive as light. The quanta of light are particles called photons, so we will sometimes say “photons carry the electromagnetic force.” But at the moment we’re still thinking classically.

Take a single charged particle, like an electron. Left sitting by itself, it will have an electric field surrounding it, with lines of force pointing toward the electron. The force will fall off as an inversesquare law, just as in Newtonian gravity.* If we move the electron, two things happen: First, a charge in motion creates a magnetic field as well as an electric one. Second, the existing electric field will adjust how it is oriented in space, so that it remains pointing toward the particle. And together, these two effects (small magnetic field, small deviation in the existing electric field) ripple outward, like waves from a pebble thrown into a pond. Maxwell found that the speed of these ripples is precisely the speed of light—because it is light. Light, of any wavelength from radio to x-rays and gamma rays, is a propagating vibration in the electric and magnetic fields. Almost all the light you see around you right now has its origin in a charged particle being jiggled somewhere, whether it’s in the filament of a lightbulb or the surface of the sun.

Simultaneously in the nineteenth century, the role of particles was also becoming clear. Chemists, led by John Dalton, championed the idea that matter was made of individual atoms, with one specific kind of atom associated with each chemical element. Physicists belatedly caught on, once they realized that thinking of gases as collections of bouncing atoms could explain things like temperature, pressure, and entropy.

But the term “atom,” borrowed from the ancient Greek idea of an indivisible elementary unit of matter, turned out to be a bit premature. Though they are the building blocks of chemical elements, modern-day atoms are not indivisible. A quick-and-dirty overview, with details to be filled in later: atoms consist of a nucleus made of protons and neutrons, surrounded by orbiting electrons. Protons have positive electrical charge, neutrons have zero charge, and electrons have negative charge. We can make a neutral atom if we have equal numbers of protons and electrons, since their electrical charges will cancel each other out. Protons and neutrons have roughly the same mass, with neutrons being just a bit heavier, but electrons are much lighter, about 1/1,800th the mass of a proton. So most of the mass in a person or another macroscopic object comes from the protons and neutrons. The lightweight electrons are more able to move around and are therefore responsible for chemical reactions as well as the flow of electricity. These days we know that protons and neutrons are themselves made of smaller particles called quarks, which are held together by gluons, but there was no hint of that in the early 1900s.

This picture of atoms was put together gradually. Electrons were discovered in 1897 by British physicist J. J. Thompson, who measured their charge and established that they were much lighter than atoms. So somehow there must be two components in an atom: the lightweight, negatively charged electrons, and a heavier, positively charged piece. A few years later Thompson suggested a picture in which tiny electrons floated within a larger, positively charged volume. This came to be called the plum pudding model, with electrons playing the role of the plums.

The plum pudding model didn’t flourish for long. A famous experiment by Ernest Rutherford, Hans Geiger, and Ernest Marsden shot alpha particles (now known to be nuclei of helium atoms) at a thin sheet of gold foil. The expectation was that they would mostly pass right through, with their trajectories slightly deflected if they happened to pass through an atom and interact with the electrons (the plums) or the diffuse positively charged blob (the pudding). Electrons are too light to disturb the alpha particles’ trajectories, and a spread-out positive charge would be too diffuse to have much effect. But what happened was, while most of the particles did indeed zip through unaffected, some bounced off at wild angles, even straight back. That could only happen if there was something heavy and substantial for the particles to carom off of. In 1911 Rutherford correctly explained this result by positing that the positive charge was concentrated in a massive central nucleus. When an incoming alpha particle was lucky enough to score a direct hit on the small but heavy nucleus, it would be deflected at a sharp angle, which is what was observed. In 1920 Rutherford proposed the existence of protons (which were just hydrogen nuclei, so had already been discovered), and in 1921 he theorized the existence of neutrons (which were eventually discovered in 1932).

So far, so good, thinks our imagined fin de siècle physicist. Matter is made of particles, the particles interact via forces, and those forces are carried by fields. The entire mechanism would run according to rules established by the framework of classical physics. For particles this is pretty familiar: we specify the positions and the momenta of all the particles, then use one of our classical techniques (Newton’s laws or their equivalent) to describe their dynamics. Fields work in essentially the same way, except that the “position” of a field is its value at every point in space, and its “momentum” is how fast it’s changing at every point. The overall classical picture applies in either case.

The notion that physics was close to being all figured out was tempting. Albert Michelson, at the dedication of a new physics laboratory at the University of Chicago in 1894, proclaimed, “It seems probable that most of the grand underlying principles [of physics] have been firmly established.”

He was quite wrong.

But he was also in the minority. Other physicists, starting with Maxwell himself, recognized that the known behavior of collections of particles and waves didn’t always accord with our classical expectations. William Thomson, Lord Kelvin, is often the victim of a misattributed quote: “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” His real view was the opposite. In a lecture in 1900, Thomson highlighted the presence of two “clouds” looming over physics, one of which was eventually to be dispersed by the formulation of the theory of relativity, the other by the theory of quantum mechanics.

BLACKBODY RADIATION

The history of science is subtle and complicated, and progress rarely takes the straight path we remember in retrospect. Quantum mechanics in particular had a painful and messy development. We’re going to skip over many of the historical twists and turns to focus on two puzzling phenomena that kicked off the quantum revolution: waves exhibiting particle-like properties, and particles exhibiting wavelike properties.

The particle-like properties of light came first. The idea arose from studying blackbody (or “thermal”) radiation, which is the radiation emitted by an object that absorbs any incident light but nevertheless radiates just because it has a nonzero temperature. To physicists, the temperature of an object characterizes the random jiggling of its constituent particles, and randomly jiggling particles are going to emit radiation depending on how fast they are moving. When you look at a painting, you see an intricate configuration of shape and color that reflects the light that is shining on it. A blackbody, by contrast, is what you get when you turn off all the ambient light and just let objects glow because of their temperature; the glow from a heating element on an electric stove is a good example. Everything with a nonzero temperature gives off some thermal radiation, but pure blackbody radiation depends only on the temperature, unspoiled by color or reflectivity or other properties of the object. A low-temperature blackbody will primarily radiate at infrared or even radio wavelengths, and as we increase the temperature we see more visible light, ultraviolet, and ultimately x-rays.

So blackbody radiation represents a seemingly simple physics problem (a spherical cow, one might say). It has a temperature, and none of its other properties matter. Temperature measures the kinetic energy of atoms in the body jiggling back and forth, and those atoms contain charged particles, so this jiggling leads to the emission of electromagnetic radiation. Our physics problem is, how much radiation is given off at each wavelength?

Physicists in the nineteenth century set about both measuring the radiation as a function of wavelength—the spectrum of the blackbody—and calculating it theoretically. The measured curve is a thing of beauty, climbing up from zero at short wavelengths to a peak that depends on the temperature, then decaying back down to zero at long wavelengths.

The theoretical situation, however, was a mess. One proposed theory, by Wilhelm Wien in 1896, seemed to fit well at short wavelengths but diverged from experimental data at longer wavelengths. Another, by John Strutt (Lord Rayleigh) in 1900, worked the other way around: his fit well at long wavelengths but not at short ones. Indeed, it predicted an infinite amount of radiation at short wavelengths.

Rayleigh’s calculation, later improved upon by James Jeans, is generally considered to more accurately reflect what we would expect to observe if the world had actually been classical. Its failure at short wavelengths has been dubbed an ultraviolet catastrophe, as physicists puckishly refer to anything that happens at short distances as ultraviolet or just “UV,” and anything that happens at long distances as infrared or “IR.” (And any mismatch between theory and experiment as a catastrophe.) The relative ease of understanding IR phenomena, and the relative difficulty of getting the UV right, will come back with a vengeance when we reach quantum field theory.

[image: image]

German physicist Max Planck—who, as the story goes, was told by one of his professors not to go into physics, because “almost everything is already discovered”—decided to tackle the problem. In 1900 he was able to write down a formula that was a compromise between Wien and Rayleigh-Jeans, fitting the observations at both long wavelengths and short ones (as well as in between). His result, the famous Planck blackbody radiation law, gives us the brightness B of an object at temperature T at each wavelength λ:

B(λ)=2hc2λ51exp(hcλkBT)-1.(1.1)

Here “exp” stands for the exponential function, exp(x) = ex. In addition to the temperature T and wavelength λ, this expression depends on three fixed parameters: the speed of light c, Boltzmann’s constant kऔ from thermodynamics, and a new constant h that Planck had to invent to complete the formula. Now known as Planck’s constant, this number shows up everywhere quantum mechanics is relevant:

h=6.626×10-34 Joules×second.(1.2)

A joule is a unit of energy, equivalent to the amount a one-watt lightbulb uses in one second. For various reasons it turns out that h appears frequently divided by 2π, so that we define the reduced Planck constant as

ℏ=h2π,(1.3)

and pronounce it as “h-bar.” Soon enough we’ll realize that this constant is so ubiquitous that we tend to choose units where ħ = 1, just as it is convenient to set the speed of light to c = 1 when we work with relativity. But for now let’s keep it around.

At first, Planck didn’t so much derive his formula as guess it. He worked out the right mathematical manipulations that would combine the Wien and Rayleigh-Jeans results into a single compact expression. But he worked hard to come up with a reason why such a formula should work so well. Part of why the task was challenging was that Planck was, at heart, a conservative physicist. He wasn’t fond of statistical mechanics à la Maxwell and Ludwig Boltzmann, which purported to explain the laws of thermodynamics in terms of the collective behavior of large numbers of atoms, and was even skeptical about the very existence of atoms themselves. Later in life he remained dubious of the main ideas of quantum mechanics. But that didn’t stop him from hitting on an ingenious assumption that solved the puzzle of blackbody radiation.

The crucial conjecture was this: when a charged particle in a body jiggles back and forth and emits electromagnetic radiation, the amount of energy contained in that radiation cannot be any old number. Instead, it is emitted in discrete amounts depending on the frequency of the wave, which is related to its wavelength and the speed of light by f = c/λ. Higher-frequency light waves correspond to higher-energy bundles, according to a now-famous formula,

E=hf,(1.4)

where we once again see the appearance of Planck’s constant. As it is often more convenient to use the angular frequency ω = 2πf rather than the frequency itself, this equation is often written as E = ħω.

WAVES ACTING LIKE PARTICLES

Why would the energy of emitted radiation come in discrete chunks, rather than being allowed to have any value at all? Perhaps because the particles in the blackbody jiggle only in discrete amounts. But an alternative explanation springs to mind: not that the jiggling is discrete but that the emitted light is. In other words, that light actually is a stream of discrete entities—particles.

But Planck didn’t go so far as to say that; his statement was only about the amount of energy emitted, not about what form it took. Whether light is a particle or a wave is an old question, going back to at least Isaac Newton (who advocated for particles) versus Christiaan Huygens (who defended waves). Once Maxwell’s equations came on the scene, physicists were pretty convinced that light was a wave. In particular, experiments had demonstrated that light interferes with itself, as we expect when the positive part of a wave cancels against the negative part. Not to mention that Maxwell had explained the nature of light in terms of his theory of electromagnetism, which was successful for numerous other reasons. So the idea that there was something particle-like about light seemed to be an unlikely suggestion; physicists assumed they had moved on from that concept.

The person with the gumption to make the leap was a twenty-sixyear-old Albert Einstein; 1905 has come to be known as Einstein’s annus mirabilis, or “miraculous year.” In a series of papers, he formulated special relativity, articulated the relationship between mass and energy, and explained Brownian motion (the random motion of microscopic particles in liquid) in terms of atomic collisions, which helped convince scientists of the existence of atoms once and for all. Any one of these achievements would have made the career of an ordinary scientist, but Einstein didn’t even win the Nobel Prize for any of them.

The one for which he did win the Nobel proposed the idea of energy quanta of light. “Quanta” is the plural of “quantum,” meaning “a smallest portion into which something can be subdivided.” The word photon wasn’t coined until later, but that’s precisely what Einstein suggested: that light consists of particles, now known as photons.

He did this in order to explain a somewhat-obscure phenomenon known as the photoelectric effect. When you shine light at a metal, it will sometimes kick out an energetic electron. The effect doesn’t depend on the brightness or intensity of the light, as we might expect if light is a continuous wave of energy, but only on its frequency. That makes sense if instead light comes in quantum packets (photons) with individual energies given by equation (1.4). When the energy of a photon is enough to knock an electron loose, it does; when it isn’t, it doesn’t matter how many photons you send, the electrons will remain safely in place. This picture also suffices, as Einstein noted, to explain Planck’s formula for blackbody radiation.

However, it flew in the face of everything physicists thought they had learned about light. The picture of light as a wave hadn’t been settled on casually; it was backed by strong experimental evidence and theoretical reasoning. You couldn’t just say “light is particles, after all” and be done with it. It seemed, rather, that light behaved in wave-like ways much of the time but had particle-like properties in certain special situations. If that seems messy and vague, that’s because it is. It would take another two decades of flailing around before something like a coherent explanation would begin to emerge. (And even now, a century after that, there is no consensus on what is truly going on.)

PARTICLES ACTING LIKE WAVES

Meanwhile, Ernest Rutherford and his associates, most prominently Danish physicist Niels Bohr, were working to understand the atomic structure of matter. It was Rutherford’s experiments in 1911 that had established that most of the mass in an atom was concentrated in a dense, positively charged nucleus at the center. The question was what happened with the much lighter electrons.

An obvious idea would be that the electrons orbited the nucleus, much like planets orbit the sun. Something along these lines had previously been suggested by Irish physicist Joseph Larmor, and an alternative framework in which electrons moved in rings (like those of the planet Saturn) was put forward by Japanese physicist Hantaro Nagaoka. Rutherford himself was vague about what the electrons were doing, but he knew they had to be moving around the nucleus somehow. And he knew roughly the size of the atoms as a whole, and therefore the orbits of the electrons.

And this, people soon recognized, created an enormous problem. As we just discussed, charged particles in motion give off electromagnetic radiation. That includes the motion of electrons orbiting an atomic nucleus, at least according to the rules of classical mechanics. So our electrons should give off light and in doing so lose energy. As a result, they shouldn’t peacefully stay in orbit around the nucleus. An orbiting electron would quickly plunge right into the nucleus itself, shedding the energy it loses in a stream of electromagnetic waves. You can even calculate how long this should take, with an answer of about 10-11 seconds. But if all the atoms in the universe lasted only that long, someone would have noticed by now.

According to the rules of classical mechanics, in other words, all matter made from atoms should be dramatically unstable. Tables and chairs and planets and people should collapse into specks within a tiny fraction of a second. But that doesn’t seem to happen. Why?

An initial answer was proposed by Bohr in 1913. People knew about the ideas of Planck and Einstein concerning radiation, so the notion of “quantum” was already in the air. Bohr suggested that there was something vaguely quantum about electrons and their motion, just as there was for photons. Of course, electrons were already thought of as particles, but Bohr’s proposal was that they could be attached to atoms in only certain discrete orbits, rather than at any old distance. Electrons are already “quanta,” just because they are particles, but Bohr was saying that their allowed orbits are quantized as well.

The idea worked pretty well, at least for hydrogen, the simplest atom. Best of all, in order to fit the data, the quantization condition that Bohr had in mind amounted to an insistence that the angular momentum L of an orbiting electron would have to have the value

L=nℏ,(1.5)

where n is any integer greater than 0. This was a seemingly miraculous appearance of Planck’s constant, initially proposed to understand blackbody radiation, in a formula for the orbits of electrons around atomic nuclei. And the insistence on a fixed set of orbits solved the stability problem: electrons could at best decay to the lowest-energy orbit, not all the way to the nucleus. There is no allowed lower-energy state for them to go to, which suggested that atoms should be stable once all of their electrons are in their lowest-energy orbits.

The Bohr model was an important advance, but it lacked any explanation for why the electrons should be so picky about their orbits. An explanation was finally put forward in 1924 by French physicist Louis de Broglie as part of his doctoral thesis. In retrospect it’s a simple idea: if light has particle-like properties, shouldn’t we imagine that particles have wave-like properties as well?

The question remained what it might mean for something so manifestly particle-like as an electron to “have wave-like properties.” It seems de Broglie had the sense that electrons consisted of both particles and waves, with the particles following the waves around. But the important idea was to imagine that the waves have a corresponding wavelength, which could be related to the momentum of the particle, p = mv. Thus the de Broglie wavelength is

λ=h/p,(1.6)

where h is once again Planck’s constant. This wavelength could be used, in de Broglie’s picture, to anticipate wave-like phenomena, such as constructive or destructive interference when two “matter waves” came together.

Most important, de Broglie’s model suggested a natural explanation for Bohr’s quantized electron orbits. To wit: the orbits have to be exactly the right size to fit an integer number of wavelengths on them. In other words, the wave has to come back to the same value it started when it goes once around the orbit. That condition turns out to be just right to reproduce the orbits described by the Bohr model, strongly suggesting that this idea was on the right track.

QUANTUM MECHANICS

But Einstein’s light quanta, Bohr’s discrete orbits, and de Broglie’s matter waves still felt more like a grab bag of ideas than a fully fleshedout theory. The first complete and rigorous formulation of what we now call quantum mechanics was put forward in 1925 by a trio of German physicists: Werner Heisenberg, Max Born, and Pascual Jordan. The basic idea, now known as matrix mechanics, came first to Heisenberg while he was trying to recover from hay fever by convalescing on the island of Helgoland. The idea was both simple and revolutionary: if electron orbits are so troublesome, let’s deny that there are any such things as “electron orbits.” Forget about what’s “really happening” and focus only on what we can observe.

Heisenberg proposed that momentum and position should be thought of as observables—not quantities with definite values but questions we can ask by doing measurements. The question “What is the position of the electron?” doesn’t have an answer before you ask it. You can “measure the position or momentum,” but by doing so you are bringing the measurement’s outcome into existence, not revealing a preexisting truth. With this insight Heisenberg was able to correctly derive the way that light was emitted from atoms.

Heisenberg was still young at the time (twenty-three years old), and he fretted that his model was a little too audacious. He wrote up an article articulating his idea, but before submitting it he sent it to his senior colleague Max Born, warning that he “had written a crazy paper.” Born had the right mathematical training to recognize that Heisenberg’s model was best expressed in the language of matrices—replacing single numerical quantities with square arrays of numbers. Born and his former student Pascual Jordan wrote a follow-up paper of their own. Then all three of them collaborated on yet another paper, fleshing out the details.

The problem was that, just as Heisenberg wasn’t familiar with the idea of matrices before Born connected the dots, most other physicists weren’t either. The mathematical formalism seemed solid enough, but the underlying physical meaning was obscure, and there was some reluctance in the physics community to declare victory just yet.

Soon thereafter, however, Austrian physicist Erwin Schrödinger came up with a seemingly different approach. Schrödinger, following de Broglie, put waves once again at the center of the story, and his theory was dubbed wave mechanics. Eventually it was shown that matrix mechanics and wave mechanics are two equivalent ways of representing the same physical theory, so nowadays we simply say quantum mechanics.

To extend the idea of de Broglie’s matter waves, Schrödinger proposed what we now call the wave function, often written Ψ(x), where Ψ is the capital Greek letter psi—such an unromantic name for something that would come to hold central importance to the fundamental nature of reality. Just as giving the position and momentum of every constituent specifies the classical state of a system, giving the wave function specifies the quantum state of a system. If we’re considering just a single particle, its wave function assigns a number to every spatial location, just as for any other kind of wave. When we have more than one particle, things aren’t so simple, because the wave function is not just any old wave. This is because of entanglement, which we’ll discuss to death in later chapters.

What does the wave function physically represent? Well, that’s a good question. Schrödinger originally thought of it as something fairly tangible, like the density of matter. But it was ultimately reinterpreted as a way of calculating probabilities of measurement outcomes, as we’ll see. Let’s put this crucial question aside for the moment.

A big difference between de Broglie’s matter wave and Schrödinger’s wave function is that the wave function at any one point is a complex number, formed from combining a real number and an imaginary number:

Ψ(x)=ΨR(x)+iΨ1(x).(1.7)

Here, i=-1 is the “imaginary unit.” The functions ΨR(x) and ΨI(x) are the real and imaginary parts, respectively, of Ψ(x). Note that both ΨR(x) and ΨI(x) are themselves real numbers; you multiply a real number by i to get an imaginary number, which is what’s happening in the second term on the right-hand side of (1.7). You can think of the real part and the imaginary part as two axes in a complex plane, illustrated in the figure below.

[image: image]

Why is the wave function complex instead of real? Ultimately it’s because that’s how nature works, rather than some other way. But the complex nature of Ψ(x) does allow for a nice feature: the overall shape of the wave function (of, for example, an electron in an atom) can remain fixed, while the function nevertheless evolves, just by trading off its real part for its imaginary part and vice versa. In the figure (where we’re just illustrating the value of Ψ at some particular x, rather than the whole function), this corresponds to rotating Ψ around in a circle while keeping its length fixed.

It does, however, make the wave function seem a bit abstract. Something like an electric field seems relatively concrete. The electric field has a value, which is a little vector, at every point in space. We can even measure that value by placing a charged particle there and watching the electric field push it around. Schrödinger’s wave function doesn’t seem quite as real, literally as well as mathematically. How did complex numbers sneak into our best description of reality? You may wonder, what kind of thing can you measure to get an imaginary-number result? But physicists are more than willing to brush aside such nagging issues if it means they can have a simple theory that makes testable predictions, which quantum mechanics surely does.

THE SCHRÖDINGER EQUATION

What really made the wave function an instant hit among physicists, however, was the presence of a dynamical equation governing how it changes over time. Now known as the Schrödinger equation, it takes different specific forms depending on what system is being described. (Just like we can plug different forces into Newton’s second law, F→=ma→.) In its most general, abstract form, the Schrödinger equation looks like this:

HˆΨ=iℏ∂Ψ∂t.(1.8)

This might look a bit scary, but that’s only because the symbols are unfamiliar. The equation is actually extremely simple. We’ll walk through some of the details, but at the end of the day all you have to remember is that the Schrödinger equation tells us how the wave function evolves over time.

We see once again the appearance of the imaginary unit i and the reduced Planck constant ħ. The right-hand side is just the partial derivative of the wave function Ψ with respect to time t. Remember that a partial derivative is a way of saying “keep everything else fixed, and calculate the rate of change with respect to t.” This is what makes Schrödinger’s equation, unlike de Broglie’s relation (1.6), a dynamical relation: you specify the wave function at one moment in time, and the equation determines what it will be at the next moment, as well as all subsequent moments. The Schrödinger equation fits in perfectly with the Laplacian paradigm of classical mechanics, in which the information that specifies the state is conserved as the system evolves. (As we’ll see, the wave function seems to evolve in an entirely different way when the system is measured rather than being left alone—that’s the source of all the mystery of quantum mechanics.)

The tricky part is the left-hand side, HˆΨ. The letter H stands for the Hamiltonian, familiar from our investigation of classical mechanics in Space, Time, and Motion. There, we had position x and momentum p as coordinates on phase space, and the Hamiltonian H (x, p) was simply the energy of the system written as a function of those coordinates.

The quantum situation is trickier, but in a fun way. The Hamiltonian is no longer a function of phase space but rather an operator. We put a hat on it and write it as Hˆ to remind ourselves of that. By an “operator” we mean a mathematical procedure that takes in a function and spits out another function. To be pedantic about it, the Hamiltonian operator is a map from the original function Ψ to a new function, denoted HˆΨ:

Hˆ:Ψ(x)→Hˆ:Ψ(x).(1.9)

In classical mechanics, the Hamiltonian is just the energy; in quantum mechanics, it’s an operator that breaks the wave function into pieces, asks “how much energy is there in this piece?,” then adds the results together to get a new function. It’s good that the Hamiltonian acting on the wave function gives us another function rather than simply a number, since we want to set it proportional to ∂Ψ/∂t, which is certainly a function of x itself. (The wave function, and the function we get by acting the Hamiltonian on it, also depend on time, but to keep things simple we need not write that out explicitly right now.)

So this is how we are to think about quantum states and their evolution, in Schrödinger’s picture. We have a system, like a single particle moving in a one-dimensional potential, and it has some coordinates, like the single number x. We start at some initial time with a complexvalued wave function that depends on the coordinates, Ψ(x). We then invoke a Hamiltonian operator, Hˆ, which acts on the wave function to give a new function. What Hamiltonian we actually use just depends on what kind of system we’re considering, and in particular what kind of energy it has. And that new function tells us iħ times the derivative of Ψ with respect to time. The rate at which the wave function evolves depends on the energy of the quantum state; energetic states evolve more rapidly, and lower-energy states more slowly.

ONE PARTICLE

Enough with the abstract nonsense. Let’s bring it down to Earth by thinking about what the Hamiltonian operator actually does.

That turns out to be a heavy lift. Every system is described by some Hamiltonian, whether it’s a single particle, the Standard Model of particle physics, or the universe as a whole. But the Hamiltonian will be different in each case. Much of the work of a theoretical physicist is deciding what the right Hamiltonian should be for a system, since that choice governs the dynamics of the system. From the Schrödinger perspective, “choosing a Hamiltonian” is equivalent to “choosing the laws of physics.” It’s analogous to “choosing what forces act on a system” in classical mechanics.

Schrödinger himself wasn’t thinking so abstractly—at least, not at first. He was, quite reasonably, starting with a simple system: a single particle of mass m moving along one dimension in a potential V(x). Literally a ball rolling on a hilly landscape, although conceived of quantum-mechanically. But let’s stick to non-relativistic particles (moving slowly compared to the speed of light), since the combination of relativity with quantum mechanics turns out to require quantum field theory to do it right.

The nice thing is that we can generally—most of the time anyway—work out what the quantum Hamiltonian operator for a system should be if we start with the good old classical Hamiltonian. For a non-relativistic particle, we know what the classical Hamiltonian would be. It’s the kinetic energy (written in terms of the momentum) plus the potential energy, so

H(x,p)=p22m+V(x).(1.10)

To convert this into a quantum Hamiltonian operator, we can go piece by piece, treating both x and p as operators themselves, which we now denote xˆ and pˆ. The operation of xˆ is just “multiply by x,” which isn’t so hard. The tricky part is the momentum pˆ. In classical mechanics, that was an independent variable that helped to define the state. For any x, we were welcome to consider states with any p.

This is no longer true in quantum mechanics. The wave function Ψ(x) defines the entire quantum state; there is no extra dependence on p. Instead, momentum is now an operator, which is proportional to the partial derivative of Ψ with respect to x:

pˆ=-iℏ∂∂x.(1.11)

You don’t have to fret too much about where this comes from or why it’s true. For the moment just appreciate that momentum is related to the spatial derivative of the wave function, which is just the slope of the curve. A gently meandering Ψ is characterized by low momentum, while a sharply oscillating Ψ will have high momentum.

Now all we have to do is plug (1.11) into the classical expression for the Hamiltonian (1.10) to get a formula for the quantum Hamiltonian. And that gives us the Schrödinger equation in the form in which Schrödinger originally wrote it down:

(-ℏ2m∂2∂x2+V(x))Ψ(x,t)=iℏ∂∂tΨ(x,t).(1.12)

The abstract form of Schrödinger’s equation, (1.8), has the kind of austere beauty we would want from a fundamental law of physics. The explicit form (1.12) is a bit clunkier, but we have to be detailed if we want to make experimental predictions. Each year, in universities around the world, countless young physics students stay up all night solving this equation for various physical situations.

THE SIMPLE HARMONIC OSCILLATOR

Happily we won’t have to spend time explicitly solving anything. We’re less interested in specific solutions to the Schrödinger equation and more interested in the general principle: there is a wave function, and it obeys a definite dynamical equation, which sets its rate of change proportional to the energy of (really, the Hamiltonian operator acting on) the wave function.

Still, a look at a specific kind of solution might be good for the soul. And what better example to consider than our old friend the simple harmonic oscillator, which we encountered in Space, Time, and Motion? This example isn’t chosen solely for the sake of simplicity; it will turn out to be crucially important once we get to quantum field theory. We will start with smooth functions and see the emergence of “quanta,” which will relate directly to why quantized fields look like particles.

Remember that the simple harmonic oscillator is defined by a potential energy that is quadratic in the coordinate. We can write it as

V(x)=12mω2x2,(1.13)

where m is still the mass of the particle, ω is the angular frequency of the oscillator, and x is the coordinate. We are tempted to say “x is the position,” but that would be your classical intuition talking. Position is an observable, and we might get any particular answer x were we to measure it, but before we make the measurement there’s no such thing as “the position of the particle.”

Of course, there are an infinite number of solutions to Schrödinger’s equation in the harmonic-oscillator potential, since we can just start with whatever Ψ(x) we fancy and then use the equation to determine how it evolves over time. (The Laplacian paradigm, familiar from classical physics.) But there are certain solutions that are especially interesting: ones that keep their shape fixed as time passes. These are also solutions for which the energy has a definite value rather than something uncertain. They are therefore called energy eigenstates. There is a lowest-energy state, called the ground state, and then excited states with the next-highest energy, and the nexthighest after that, and so on. If we label them by n = {0, 1, 2, ...}, the energies of these states take the form
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