

 [image:]

 Kafka in Action

 Dylan Scott, Viktor Gamov, and Dave Klein

 Foreword by Jun Rao

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editors:

 	
 Raphael Villela, Nickie Buckner

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreaders:

 	
 Felipe Esteban Vildoso Castillo, Mayur Patil, Sumant Tambe, Valentin Crettaz, and William Rudenmalm

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617295232

 Dedication

 Dylan: I dedicate this work to Harper, who makes me so proud every day, and to Noelle, who brings even more joy to our family every day. I would also like to dedicate this book to my parents, sister, and wife, who are always my biggest supporters.

 Viktor: I dedicate this work to my wife, Maria, for her support during the process of writing this book. It’s a time-consuming task, time that I needed to carve out here and there. Without your encouragement, nothing would have ever happened. I love you. Also, I would like to dedicate this book to (and thank) my children, Andrew and Michael, for being so naïve and straightforward. When people asked where daddy is working, they would say, “Daddy is working in Kafka.”

 Dave: I dedicate this work to my wife, Debbie, and our children, Zachary, Abigail, Benjamin, Sarah, Solomon, Hannah, Joanna, Rebekah, Susanna, Noah, Samuel, Gideon, Joshua, and Daniel. Ultimately, everything I do, I do for the honor of my Creator and Savior, Jesus Christ.

Brief contents

 Part 1. Getting started

 1 Introduction to Kafka

 2 Getting to know Kafka

 Part 2. Applying Kafka

 3 Designing a Kafka project

 4 Producers: Sourcing data

 5 Consumers: Unlocking data

 6 Brokers

 7 Topics and partitions

 8 Kafka storage

 9 Management: Tools and logging

 Part 3. Going further

 10 Protecting Kafka

 11 Schema registry

 12 Stream processing with Kafka Streams and ksqlDB

 Appendix A. Installation

 Appendix B. Client example

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Getting started

 1 Introduction to Kafka

 1.1 What is Kafka?

 1.2 Kafka usage

 Kafka for the developer

 Explaining Kafka to your manager

 1.3 Kafka myths

 Kafka only works with Hadoop®

 Kafka is the same as other message brokers

 1.4 Kafka in the real world

 Early examples

 Later examples

 When Kafka might not be the right fit

 1.5 Online resources to get started

 References

 2 Getting to know Kafka

 2.1 Producing and consuming a message

 2.2 What are brokers?

 2.3 Tour of Kafka

 Producers and consumers

 Topics overview

 ZooKeeper usage

 Kafka’s high-level architecture

 The commit log

 2.4 Various source code packages and what they do

 Kafka Streams

 Kafka Connect

 AdminClient package

 ksqlDB

 2.5 Confluent clients

 2.6 Stream processing and terminology

 Stream processing

 What exactly-once means

 References

 Part 2. Applying Kafka

 3 Designing a Kafka project

 3.1 Designing a Kafka project

 Taking over an existing data architecture

 A first change

 Built-in features

 Data for our invoices

 3.2 Sensor event design

 Existing issues

 Why Kafka is the right fit

 Thought starters on our design

 User data requirements

 High-level plan for applying our questions

 Reviewing our blueprint

 3.3 Format of your data

 Plan for data

 Dependency setup

 References

 4 Producers: Sourcing data

 4.1 An example

 Producer notes

 4.2 Producer options

 Configuring the broker list

 How to go fast (or go safer)

 Timestamps

 4.3 Generating code for our requirements

 Client and broker versions

 References

 5 Consumers: Unlocking data

 5.1 An example

 Consumer options

 Understanding our coordinates

 5.2 How consumers interact

 5.3 Tracking

 Group coordinator

 Partition assignment strategy

 5.4 Marking our place

 5.5 Reading from a compacted topic

 5.6 Retrieving code for our factory requirements

 Reading options

 Requirements

 References

 6 Brokers

 6.1 Introducing the broker

 6.2 Role of ZooKeeper

 6.3 Options at the broker level

 Kafka’s other logs: Application logs

 Server log

 Managing state

 6.4 Partition replica leaders and their role

 Losing data

 6.5 Peeking into Kafka

 Cluster maintenance

 Adding a broker

 Upgrading your cluster

 Upgrading your clients

 Backups

 6.6 A note on stateful systems

 6.7 Exercise

 References

 7 Topics and partitions

 7.1 Topics

 Topic-creation options

 Replication factors

 7.2 Partitions

 Partition location

 Viewing our logs

 7.3 Testing with EmbeddedKafkaCluster

 Using Kafka Testcontainers

 7.4 Topic compaction

 References

 8 Kafka storage

 8.1 How long to store data

 8.2 Data movement

 Keeping the original event

 Moving away from a batch mindset

 8.3 Tools

 Apache Flume

 Red Hat® Debezium™

 Secor

 Example use case for data storage

 8.4 Bringing data back into Kafka

 Tiered storage

 8.5 Architectures with Kafka

 Lambda architecture

 Kappa architecture

 8.6 Multiple cluster setups

 Scaling by adding clusters

 8.7 Cloud- and container-based storage options

 Kubernetes clusters

 References

 9 Management: Tools and logging

 9.1 Administration clients

 Administration in code with AdminClient

 kcat

 Confluent REST Proxy API

 9.2 Running Kafka as a systemd service

 9.3 Logging

 Kafka application logs

 ZooKeeper logs

 9.4 Firewalls

 Advertised listeners

 9.5 Metrics

 JMX console

 9.6 Tracing option

 Producer logic

 Consumer logic

 Overriding clients

 9.7 General monitoring tools

 References

 Part 3. Going further

 10 Protecting Kafka

 10.1 Security basics

 Encryption with SSL

 SSL between brokers and clients

 SSL between brokers

 10.2 Kerberos and the Simple Authentication and Security Layer (SASL)

 10.3 Authorization in Kafka

 Access control lists (ACLs)

 Role-based access control (RBAC)

 10.4 ZooKeeper

 Kerberos setup

 10.5 Quotas

 Network bandwidth quota

 Request rate quotas

 10.6 Data at rest

 Managed options

 References

 11 Schema registry

 11.1 A proposed Kafka maturity model

 Level 0

 Level 1

 Level 2

 Level 3

 11.2 The Schema Registry

 Installing the Confluent Schema Registry

 Registry configuration

 11.3 Schema features

 REST API

 Client library

 11.4 Compatibility rules

 Validating schema modifications

 11.5 Alternative to a schema registry

 References

 12 Stream processing with Kafka Streams and ksqlDB

 12.1 Kafka Streams

 KStreams API DSL

 KTable API

 GlobalKTable API

 Processor API

 Kafka Streams setup

 12.2 ksqlDB: An event-streaming database

 Queries

 Local development

 ksqlDB architecture

 12.3 Going further

 Kafka Improvement Proposals (KIPs)

 Kafka projects you can explore

 Community Slack channel

 References

 Appendix A. Installation

 Appendix B. Client example

 index

 Front matter

foreword

 Beginning with its first release in 2011, Apache Kafka® has helped create a new category of data-in-motion systems, and it’s now the foundation of countless modern event-driven applications. This book, Kafka in Action, written by Dylan Scott, Viktor Gamov, and Dave Klein, equips you with the skills to design and implement event-based applications built on Apache Kafka. The authors have had many years of real-world experience using Kafka, and this book’s on-the-ground feel really sets it apart.

 Let’s take a moment to ask the question, “Why do we need Kafka in the first place?” Historically, most applications were built on data-at-rest systems. When some interesting events happened in the world, they were stored in these systems immediately, but the utilization of those events happened later, either when the user explicitly asked for the information, or from some batch-processing jobs that would eventually kick in.

 With data-in-motion systems, applications are built by predefining what they want to do when new events occur. When new events happen, they are reflected in the application automatically in near-real time. Such event-driven applications are appealing because they allow enterprises to derive new insights from their data much quicker. Switching to event-driven applications requires a change of mindset, however, which may not always be easy. This book offers a comprehensive resource for understanding event-driven thinking, along with realistic hands-on examples for you to try out.

 Kafka in Action explains how Kafka works, with a focus on how a developer can build end-to-end event-driven applications with Kafka. You’ll learn the components needed to build a basic Kafka application and also how to create more advanced applications using libraries such as Kafka Streams and ksqlDB. And once your application is built, this book also covers how to run it in production, including key topics such as monitoring and security.

 I hope that you enjoy this book as much as I have. Happy event streaming!

 —Jun Rao, Confluent Cofounder

preface

 One of the questions we often get when talking about working on a technical book is, why the written format? For Dylan, at least, reading has always been part of his preferred learning style. Another factor is the nostalgia in remembering the first practical programming book he ever really read, Elements of Programming with Perl by Andrew L. Johnson (Manning, 2000). The content was something that registered with him, and it was a joy to work through each page with the other authors. We hope to capture some of that practical content regarding working with and reading about Apache Kafka.

 The excitement of learning something new touched each of us when we started to work with Kafka for the first time. In our opinion, Kafka was unlike any other message broker or enterprise service bus (ESB) that we had used before. The speed to get started developing producers and consumers, the ability to reprocess data, and the pace of independent consumers moving quickly without removing the data from other consumer applications were options that solved pain points we had seen in past development and impressed us most as we started looking at Kafka.

 We see Kafka as changing the standard for data platforms; it can help move batch and ETL workflows near real-time data feeds. Because this foundation is likely a shift from past data architectures that many enterprise users are familiar with, we wanted to take a user with no prior knowledge of Kafka and develop their ability to work with Kafka producers and consumers, and perform basic Kafka developer and administrative tasks. By the end of this book, we hope you will feel comfortable digging into more advanced Kafka topics such as cluster monitoring, metrics, and multi-site data replication with your new core Kafka knowledge.

 Always remember, this book captures a moment in time of how Kafka looks today. It will likely change and, hopefully, get even better by the time you read this work. We hope this book sets you up for an enjoyable path of learning about the foundations of Apache Kafka.

acknowledgments

 Dylan: I would like to acknowledge first, my family: thank you. The support and love shown every day is something that I can never be thankful enough for—I love you all. Dan and Debbie, I appreciate that you have always been my biggest supporters and number one fans. Sarah, Harper, and Noelle, I can’t do justice in these few words to the amount of love and pride I have for you all and the support you have given me. To the DG family, thanks for always being there for me. Thank you, as well, JC.

 Also, a special thanks to Viktor Gamov and Dave Klein for being coauthors of this work! I also had a team of work colleagues and technical friends that I need to mention that helped motivate me to move this project forward: Team Serenity (Becky Campbell, Adam Doman, Jason Fehr, and Dan Russell), Robert Abeyta, and Jeremy Castle. And thank you, Jabulani Simplisio Chibaya, for not only reviewing, but for your kind words.

 Viktor: I would like to acknowledge my wife and thank her for all her support. Thanks also go to the Developer Relations and Community Team at Confluent: Ale Murray, Yeva Byzek, Robin Moffatt, and Tim Berglund. You are all doing incredible work for the greater Apache Kafka community!

 Dave: I would like to acknowledge and thank Dylan and Viktor for allowing me to tag along on this exciting journey.

 The group would like to acknowledge our editor at Manning, Toni Arritola, whose experience and coaching helped make this book a reality. Thanks also go to Kristen Watterson, who was the first editor before Toni took over, and to our technical editors, Raphael Villela, Nickie Buckner, Felipe Esteban Vildoso Castillo, Mayur Patil, Valentin Crettaz, and William Rudenmalm. We also express our gratitude to Chuck Larson for the immense help with the graphics, and to Sumant Tambe for the technical proofread of the code.

 The Manning team helped in so many ways, from production to promotion—a helpful team. With all the edits, revisions, and deadlines involved, typos and issues can still make their way into the content and source code (at least we haven’t ever seen a book without errata!), but this team certainly helped to minimize those errors.

 Thanks go also to Nathan Marz, Michael Noll, Janakiram MSV, Bill Bejeck, Gunnar Morling, Robin Moffatt, Henry Cai, Martin Fowler, Alexander Dean, Valentin Crettaz and Anyi Li. This group was so helpful in allowing us to talk about their work, and providing such great suggestions and feedback.

 Jun Rao, we are honored that you were willing to take the time to write the foreword to this book. Thank you so much!

 We owe a big thank you to the entire Apache Kafka community (including, of course, Jay Kreps, Neha Narkhede, and Jun Rao) and the team at Confluent that pushes Kafka forward and allowed permission for the material that helped inform this book. At the very least, we can only hope that this work encourages developers to take a look at Kafka.

 Finally, to all the reviewers: Bryce Darling, Christopher Bailey, Cicero Zandona, Conor Redmond, Dan Russell, David Krief, Felipe Esteban Vildoso Castillo, Finn Newick, Florin-Gabriel Barbuceanu, Gregor Rayman, Jason Fehr, Javier Collado Cabeza, Jon Moore, Jorge Esteban Quilcate Otoya, Joshua Horwitz, Madhanmohan Savadamuthu, Michele Mauro, Peter Perlepes, Roman Levchenko, Sanket Naik, Shobha Iyer, Sumant Tambe, Viton Vitanis, and William Rudenmalm—your suggestions helped make this a better book.

 It is likely we are leaving some names out and, if so, we can only ask you to forgive us for our error. We do appreciate you.

about this book

 We wrote Kafka in Action to be a guide to getting started practically with Apache Kafka. This material walks readers through small examples that explain some knobs and configurations that you can use to alter Kafka’s behavior to fulfill your specific use cases. The core of Kafka is focused on that foundation and is how it is built upon to create other products like Kafka Streams and ksqlDB. Our hope is to show you how to use Kafka to fulfill various business requirements, to be comfortable with it by the end of this book, and to know where to begin tackling your own requirements.

Who should read this book?

 Kafka in Action is for any developer wanting to learn about stream processing. While no prior knowledge of Kafka is required, basic command line/terminal knowledge is helpful. Kafka has some powerful command line tools that we will use, and the user should be able to at least navigate at the command line prompt.

 It might be helpful to also have some Java language skills or the ability to recognize programming concepts in any language for the reader to get the most out of this book. This will help in understanding the code examples presented, which are mainly in a Java 11 (as well as Java 8) style of coding. Also, although not required, a general knowledge of a distributed application architecture would be helpful. The more a user knows about replications and failure, the easier the on-ramp for learning about how Kafka uses replicas, for example.

How this book is organized: A roadmap

 This book has three parts spread over twelve chapters. Part 1 introduces a mental model of Kafka and a discussion of why you would use Kafka in the real world:

 	
 Chapter 1 provides an introduction to Kafka, rejects some myths, and provides some real-world use cases.

 	
 Chapter 2 examines the high-level architecture of Kafka, as well as important terminology.

 Part 2 moves to the core pieces of Kafka. This includes the clients as well as the cluster itself:

 	
 Chapter 3 looks at when Kafka might be a good fit for your project and how to approach designing a new project. We also discuss the need for schemas as something that should be looked at when starting a Kafka project instead of later.

 	
 Chapter 4 looks at the details of creating a producer client and the options you can use to impact the way your data enters the Kafka cluster.

 	
 Chapter 5 flips the focus from chapter 4 and looks at how to get data from Kafka with a consumer client. We introduce the idea of offsets and reprocessing data because we can utilize the storage aspect of retained messages.

 	
 Chapter 6 looks at the brokers’ role for your cluster and how they interact with your clients. Various components are explored, such as a controller and a replica.

 	
 Chapter 7 explores the concepts of topics and the partitions. This includes how topics can be compacted and how partitions are stored.

 	
 Chapter 8 discusses tools and architectures that are options for handling data that you need to retain or reprocess. The need to retain data for months or years might cause you to evaluate storage options outside your cluster.

 	
 Chapter 9 finishes part 2 by reviewing the necessary logs, metrics, and administrative duties to help keep your cluster healthy.

 Part 3 moves us past looking at the core pieces of Kafka and on to options for improving a running cluster:

 	
 Chapter 10 introduces options for strengthening a Kafka cluster by using SSL, ACLs, and features like quotas.

 	
 Chapter 11 digs into the Schema Registry and how it is used to help data evolve, preserving compatibility with previous and future versions of datasets. Although this is seen as a feature most used with enterprise-level applications, it can be helpful with any data that evolves over time.

 	
 Chapter 12, the final chapter, looks at introducing Kafka Streams and ksqlDB. These products are at higher levels of abstraction, built on the core you studied in part 2. Kafka Streams and ksqlDB are large enough topics that our introduction only provides enough detail to help you get started on learning more about these Kafka options on your own.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page width in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts.

 Finally, it’s important to note that many of the code examples aren’t meant to stand on their own; they’re excerpts containing only the most relevant parts of what is currently under discussion. You’ll find all the examples from the book and the accompanying source code in their complete form in GitHub at https://github.com/Kafka -In-Action-Book/Kafka-In-Action-Source-Code and the publisher’s website at https://www.manning.com/books/kafka-in-action. You can also get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/ book/kafka-in-action.

liveBook discussion forum

 Purchase of Kafka in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. To access the forum, go to https://livebook.manning.com/#!/book/kafka-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook .manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 The following online resources will evolve as Kafka changes over time. These sites can also be used for past version documentation in most cases:

 	
 Apache Kafka documentation—http://kafka.apache.org/documentation.html

 	
 Confluent documentation—https://docs.confluent.io/current

 	
 Confluent Developer portal—https://developer.confluent.io

about the authors

 Dylan Scott is a software developer with over ten years of experience in Java and Perl. After starting to use Kafka like a messaging system for a large data migration, Dylan started to dig further into the world of Kafka and stream processing. He has used various techniques and queues including Mule, RabbitMQ, MQSeries, and Kafka.

 Dylan has various certificates that show experience in the industry: PMP, ITIL, CSM, Sun Java SE 1.6, Oracle Web EE 6, Neo4j, and Jenkins Engineer.

 Viktor Gamov is a Developer Advocate at Confluent, the company that makes an event-streaming platform based on Apache Kafka. Throughout his career, Viktor developed comprehensive expertise in building enterprise application architectures using open source technologies. He enjoys helping architects and developers design and develop low-latency, scalable, and highly available distributed systems.

 Viktor is a professional conference speaker on distributed systems, streaming data, JVM, and DevOps topics, and is a regular at events including JavaOne, Devoxx, OSCON, QCon, and others. He is the coauthor of Enterprise Web Development (O’Reilly Media, Inc.).

 Follow Viktor on Twitter @gamussa, where he posts there about gym life, food, open source, and, of course, Kafka!

 Dave Klein spent 28 years as a developer, architect, project manager (recovered), author, trainer, conference organizer, and homeschooling dad, until he recently landed his dream job as a Developer Advocate at Confluent. Dave is marveling in, and eager to help others explore, the amazing world of event streaming with Apache Kafka.

about the cover illustration

 The figure on the cover of Kafka in Action is captioned “Femme du Madagascar” or “Madagascar Woman.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compendium of regional dress customs, published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. Whether on city streets, in small towns, or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region and class, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Maréchal’s pictures.

Part 1. Getting started

 In part 1 of this book, we’ll look at introducing you to Apache Kafka and start to look at real use cases where Kafka might be a good fit to try out:

 	
 In chapter 1, we give a detailed description of why you would want to use Kafka, and we dispel some myths you might have heard about Kafka in relation to Hadoop.

 	
 In chapter 2, we focus on learning about the high-level architecture of Kafka as well as the various other parts that make up the Kafka ecosystem: Kafka Streams, Connect, and ksqlDB.

 When you’re finished with this part, you’ll be ready to get started reading and writing messages to and from Kafka. Hopefully, you’ll have picked up some key terminology as well.

1 Introduction to Kafka

 This chapter covers

 	
Why you might want to use Kafka

 	
Common myths of big data and message systems

 	
Real-world use cases to help power messaging, streaming, and IoT data processing

 As many developers are facing a world full of data produced from every angle, they are often presented with the fact that legacy systems might not be the best option moving forward. One of the foundational pieces of new data infrastructures that has taken over the IT landscape is Apache Kafka®.1 Kafka is changing the standards for data platforms. It is leading the way to move from extract, transform, load (ETL) and batch workflows (in which work was often held and processed in bulk at one predefined time) to near-real-time data feeds [1]. Batch processing, which was once the standard workhorse of enterprise data processing, might not be something to turn back to after seeing the powerful feature set that Kafka provides. In fact, you might not be able to handle the growing snowball of data rolling toward enterprises of all sizes unless something new is approached.

 With so much data, systems can get easily overloaded. Legacy systems might be faced with nightly processing windows that run into the next day. To keep up with this ever constant stream of data or evolving data, processing this information as it happens is a way to stay up to date and current on the system’s state.

 Kafka touches many of the newest and the most practical trends in today’s IT fields and makes its easier for daily work. For example, Kafka has already made its way into microservice designs and the Internet of Things (IoT). As a de facto technology for more and more companies, Kafka is not only for super geeks or alpha-chasers. Let’s start by looking at Kafka’s features, introducing Kafka itself, and understanding more about the face of modern-day streaming platforms.

1.1 What is Kafka?

 The Apache Kafka site (http://kafka.apache.org/intro) defines Kafka as a distributed streaming platform. It has three main capabilities:

 	
 Reading and writing records like a message queue

 	
 Storing records with fault tolerance

 	
 Processing streams as they occur [2]

 Readers who are not as familiar with queues or message brokers in their daily work might need help when discussing the general purpose and flow of such a system. As a generalization, a core piece of Kafka can be thought of as providing the IT equivalent of a receiver that sits in a home entertainment system. Figure 1.1 shows the data flow between receivers and end users.

 [image:]

 Figure 1.1 Producers, receivers, and data flow overview

 As figure 1.1 shows, digital satellite, cable, and Blu-ray™ players can connect to a central receiver. You can think of those individual pieces as regularly sending data in a format that they know about. That flow of data can be thought of as nearly constant while a movie or CD is playing. The receiver deals with this constant stream of data and converts it into a usable format for the external devices attached to the other end (the receiver sends the video to your television and the audio to a decoder as well as to the speakers). So what does this have to do with Kafka exactly? Let’s look at the same relationship from Kafka’s perspective in figure 1.2.

 [image:]

 Figure 1.2 Kafka’s flow from producers to consumers

 Kafka includes clients to interface with other systems. One such client type is called a producer, which sends multiple data streams to the Kafka brokers. The brokers serve a similar function as the receiver in figure 1.1. Kafka also includes consumers, clients that can read data from the brokers and process it. Data does not have to be limited to only a single destination. The producers and consumers are completely decoupled, allowing each client to work independently. We’ll dig into the details of how this is done in later chapters.

 As do other messaging platforms, Kafka acts (in reductionist terms) like a middleman for data coming into the system (from producers) and out of the system (for consumers or end users). The loose coupling can be achieved by allowing this separation between the producer and the end user of the message. The producer can send whatever message it wants and still have no clue about if anyone is subscribed. Further, Kafka has various ways that it can deliver messages to fit your business case. Kafka’s message delivery can take at least the following three delivery methods [3]:

 	
 At-least-once semantics—A message is sent as needed until it is acknowledged.

 	
 At-most-once semantics—A message is only sent once and not resent on failure.

 	
 Exactly-once semantics—A message is only seen once by the consumer of the message.

 Let’s dig into what those messaging options mean. Let’s look at at-least-once semantics (figure 1.3). In this case, Kafka can be configured to allow a producer of messages to send the same message more than once and have it written to the brokers. If a message does not receive a guarantee that it was written to the broker, the producer can resend the message [3]. For those cases where you can’t miss a message, say that someone has paid an invoice, this guarantee might take some filtering on the consumer end, but it is one of the safest delivery methods.

 [image:]

 Figure 1.3 At-least-once message flow

 At-most-once semantics (figure 1.4) is when a producer of messages might send a message once and never retry. In the event of a failure, the producer moves on and doesn’t attempt to send it again [3]. Why would someone be okay with losing a message? If a popular website is tracking page views for visitors, it might be okay with missing a few page view events out of the millions it processes each day. Keeping the system performing and not waiting on acknowledgments might outweigh any cost of lost data.

 [image:]

 Figure 1.4 At-most-once message flow

 Kafka added the exactly-once semantics, also known as EOS, to its feature set in version 0.11.0. EOS generated a lot of mixed discussion with its release [3]. On the one hand, exactly-once semantics (figure 1.5) are ideal for a lot of use cases. This seemed like a logical guarantee for removing duplicate messages, making them a thing of the past. But most developers appreciate sending one message and receiving that same message on the consuming side as well.

 [image:]

 Figure 1.5 Exactly-once message flow

 Another discussion that followed the release of EOS was a debate on if exactly once was even possible. Although this goes into deeper computer science theory, it is helpful to be aware of how Kafka defines their EOS feature [4]. If a producer sends a message more than once, it will still be delivered only once to the end consumer. EOS has touchpoints at all Kafka layers—producers, topics, brokers, and consumers—and will be briefly tackled later in this book as we move along in our discussion for now.

 Besides various delivery options, another common message broker benefit is that if the consuming application is down due to errors or maintenance, the producer does not need to wait on the consumer to handle the message. When consumers start to come back online and process data, they should be able to pick up where they left off and not drop any messages.

1.2 Kafka usage

 With many traditional companies facing the challenges of becoming more and more technical and software driven, one question is foremost: how will they be prepared for the future? One possible answer is Kafka. Kafka is noted for being a high-performance, message-delivery workhorse that features replication and fault tolerance as a default.

 With Kafka, enormous data processing needs are handled with Kafka in production [5]. All this with a tool that was not at its 1.0 version release until 2017! However, besides these headline-grabbing facts, why would users want to start looking at Kafka? Let’s look at that answer next.

1.2.1 Kafka for the developer

 Why would a software developer be interested in Kafka? Kafka usage is exploding, and the developer demand isn’t being met [6]. A shift in our traditional data processing way of thinking is needed. Various shared experiences or past pain points can help developers see why Kafka could be an appealing step forward in their data architectures.

 One of the various on-ramps for newer developers to Kafka is to apply things they know to help them with the unknown. For example, Java® developers can use Spring® concepts, and Dependency Injection (DI) Spring for Kafka (https://projects.spring.io/spring-kafka) has already been through a couple of major release versions. Supporting projects, as well as Kafka itself, have a growing tool ecosystem all their own.

 As a common developer, most programmers have likely confronted the challenges of coupling. For example, you want to make a change to one application, but you might have many other applications directly tied to it. Or, you start to unit test and see a large number of mocks you have to create. Kafka, when applied thoughtfully, can help in these situations.

 Take, for example, an HR system that employees would use to submit paid vacation leaves. If you are used to a create, read, update, and delete (CRUD) system, the submission of time off would likely be processed by not only payroll but also project burndown charts for forecasting work. Do you tie the two applications together? What if the payroll system goes down? Should that impact the availability of the forecasting tooling?

 With Kafka, we will see the benefits of being able to decouple some of the applications that we have tied together in older designs. (We will look more in-depth at maturing our data model in chapter 11.) Kafka, however, can be put into the middle of the workflow [7]. Your interface to data becomes Kafka instead of numerous APIs and databases.

 Some say that there are better and simpler solutions. What about using ETL to at least load the data into databases for each application? That would only be one interface per application and easy, right? But what if the initial source of data is corrupted or outdated? How often do you look for updates and allow for lag or consistency? And do those copies ever get out of date or diverge so far from the source that it would be hard to run that flow again and get the same results? What is the source of truth? Kafka can help avoid these issues.

 Another interesting topic that might add credibility to the use of Kafka is how much it “dogfoods” itself. For example, when we dig into consumers in chapter 5, we will see how Kafka uses topics internally to manage consumers’ offsets. After the release of v0.11, exactly-once semantics for Kafka also uses internal topics. The ability to have many data consumers using the same message allows many possible outcomes.

 Another developer question might be, why not learn Kafka Streams, ksqlDB, Apache Spark™ Streaming, or other platforms and skip learning about core Kafka? The number of applications that use Kafka internally is indeed impressive. Although abstraction layers are often nice to have (and sometimes close to being required with so many moving parts), we believe that Kafka itself is worth learning.

 There is a difference in knowing that Kafka is a channel option for Apache Flume™ and understanding what all of the config options mean. Although Kafka Streams can simplify examples you might see in this book, it is interesting to note how successful Kafka was before Kafka Streams was even introduced. Kafka’s base is fundamental and will, hopefully, help you see why it is used in some applications and what happens internally. If you want to become an expert in streaming, it is important to know the underlying distributed parts of your applications and all the knobs you can turn to fine-tune your applications. From a purely technical viewpoint, there are exciting computer science topics applied in practical ways. Perhaps the most talked about is the notion of distributed commit logs, which we will discuss in depth in chapter 2, and a personal favorite, hierarchical timing wheels [8]. These examples show you how Kafka handles an issue of scale by applying an interesting data structure to solve a practical problem.

 We would also note that the fact that it’s open source is a positive for digging into the source code and having documentation and examples just by searching the internet. Resources are not just limited to internal knowledge based solely on a specific workplace.

1.2.2 Explaining Kafka to your manager

 As is often the case, sometimes members of the C-suite will hear the word Kafka and be more confused by the name than care about what it does. It might be nice to explain the value found in this product. Also, it is good to step back and look at the larger picture of what the real added value is for this tool.

 One of Kafka’s most important features is the ability to take volumes of data and make it available for use by various business units. Such a data backbone that makes information coming into the enterprise available to all the multiple business areas allows for flexibility and openness on a company-wide scale. Nothing is prescribed, but increased access to data is a potential outcome. Most executives also know that with more data than ever flooding in, the company wants insights as fast as possible. Rather than pay for data to get old on disk, its value can be derived as it arrives. Kafka is one way to move away from a daily batch job that limits how quickly that data can be turned into value. Fast data seems to be the newer term, hinting that real value focuses on something different from the promises of big data alone.

 Running on a Java virtual machine JVM® should be a familiar and comfortable place for many enterprise development shops. The ability to run on premises is a crucial driver for some whose data requires on-site oversight. And the cloud and managed platforms are options as well. Kafka can scale horizontally, and not depend on vertical scaling alone, which might eventually reach an expensive peak.

 Maybe one of the most important reasons to learn about Kafka is to see how startups and others in their industry can overcome the once prohibitive cost of computing power. Instead of relying on a bigger and beefier server or a mainframe that can cost millions of dollars, distributed applications and architectures put competitors quickly within reach with, hopefully, less financial outlay.

1.3 Kafka myths

 When you start to learn any new technology, it is often natural to try to map existing knowledge to new concepts. Although that technique can be used in learning Kafka, we wanted to note some of the most common misconceptions that we have run into in our work so far. We’ll cover those in the next sections.

1.3.1 Kafka only works with Hadoop®

 As mentioned, Kafka is a powerful tool that is often used in various situations. However, it seemed to appear on radars when used in the Hadoop ecosystem and might have first appeared for users as a tool as part of a Cloudera™ or Hortonworks™ suite. It isn’t uncommon to hear the myth that Kafka only works with Hadoop. What could cause this confusion? One of the causes is likely the various tools that use Kafka as part of their products. Spark Streaming and Flume are examples of tools that use Kafka (or did at one point) and could be used with Hadoop as well. The dependency (depending on the version of Kafka) on Apache ZooKeeper™ is also a tool that is often found in Hadoop clusters and might tie Kafka further to this myth.

 One other fundamental myth that often appears is that Kafka requires the Hadoop Distributed Filesystem (HDFS). That is not the case. Once we start to dig into how Kafka works, we will see that Kafka’s speed and techniques used to process events would likely be much slower with a NodeManager in the middle of the process. Also, the block replication, usually a part of HDFS, is not done in the same way. One such example is that in Kafka, replicas are not recovered by default. Whereas both products use replication in different ways, the durability that is marketed for Kafka might be easy to group under the Hadoop theme of expecting failure as a default (and thus planning for overcoming it) and is a similar overall goal between Hadoop and Kafka.

1.3.2 Kafka is the same as other message brokers

 Another big myth is that Kafka is just another message broker. Direct comparisons of the features of various tools (such as Pivotal’s RabbitMQ™ or IBM’s MQSeries®) to Kafka often have asterisks (or fine print) attached and are not always fair to the best use cases of each. Some tools over time have gained or will gain new features just as Kafka has added the exactly-once semantics. And default configurations can be changed to mirror features closer to other tools in the same space. In general, the following lists some of the most exciting and standout features that we will dig into in a bit:

 	
 The ability to replay messages by default

 	
 Parallel processing of data

 Kafka was designed to have multiple consumers. What that means is that one application reading a message from the message broker doesn’t remove it from other applications that might want to consume it as well. One effect of this is that a consumer who has already seen the message can again choose to read it (and other messages as well). With some architecture models like lambda (discussed in chapter 8), programmer mistakes are expected just as much as hardware failures. Imagine consuming millions of messages, and you forget to use a specific field from the original message. In some queues, that message is removed or sent to a duplicate or replay location. However, Kafka provides a way for consumers to seek specific points and read messages again (with a few constraints) by just seeking an earlier position on the topic.

 As touched on briefly, Kafka allows for parallel processing of data and can have multiple consumers on the same topic. Kafka also has the concept of consumers being part of a consumer group, which will be covered in depth in chapter 5. Membership in a group determines which consumers get which messages and what work has been done across that group of consumers. Consumer groups act independently of any other group and allow for multiple applications to consume messages at their own pace with as many consumers as they require working together. Processing can happen in various ways: consumption by many consumers working on one application or consumption by many applications. No matter what other message brokers support, let’s now focus on the robust use cases that have made Kafka one of the options developers turn to for getting work done.

1.4 Kafka in the real world

 Applying Kafka to practical use is the core aim of this book. One of the things to note about Kafka is that it’s hard to say it does one specific function well; it excels in many specific uses. Although we have some basic ideas to grasp first, it might be helpful to discuss at a high level some of the cases that Kafka has already been noted for in real-world use cases. The Apache Kafka site lists general areas where Kafka is used in the real world that we explore in the book. [9].

1.4.1 Early examples

 Some users’ first experience with Kafka (as was mine) was using it as a messaging tool. Personally, after years of using other tools like IBM® WebSphere® MQ (formerly MQ Series), Kafka (which was around version 0.8.3 at the time) seemed simple to use to get messages from point A to point B. Kafka forgoes using popular protocols and standards—like the Extensible Messaging and Presence Protocol (XMPP), Java Message Service (JMS) API (now part of Jakarta EE), or the OASIS® Advanced Message Queuing Protocol (AMQP)—in favor of a custom TCP binary protocol. We will dig in and see some complex uses later.

 For an end user developing with a Kafka client, most of the details are in the configuration, and the logic becomes relatively straightforward (for example, “I want to place a message on this topic”). Having a durable channel for sending messages is also why Kafka is used.

 Oftentimes, memory storage of data in RAM will not be enough to protect your data; if that server dies, the messages are not persisted across a reboot. High availability and persistent storage are built into Kafka from the start. Apache Flume provides a Kafka channel option because the replication and availability allow Flume events to be made immediately available to other sinks if a Flume agent (or the server it is running on) crashes [10]. Kafka enables robust applications to be built and helps handle the expected failures that distributed applications are bound to run into at some point.

 Log aggregation (figure 1.6) is useful in many situations, including when trying to gather application events that were written in distributed applications. In the figure, the log files are sent as messages into Kafka, and then different applications have a single logical topic to consume that information. With Kafka’s ability to handle large amounts of data, collecting events from various servers or sources is a key feature. Depending on the contents of the log event itself, some organizations use it for auditing and failure-detection trending. Kafka is also used in various logging tools (or as an input option).

 [image:]

 Figure 1.6 Kafka log aggregation

 How do all of these log file entries allow Kafka to maintain performance without causing a server to run out of resources? The throughput of small messages can sometimes overwhelm a system because the processing of each method takes time and overhead. Kafka uses batching of messages for sending data as well as for writing data. Writing to the end of a log helps too, rather than random access to the filesystem. We will discuss more on the log format of messages in chapters 7.

1.4.2 Later examples

 Microservices used to talk to each other with APIs like REST, but they can now leverage Kafka to communicate between asynchronous services with events [11]. Microservices can use Kafka as the interface for their interactions rather than specific API calls. Kafka has placed itself as a fundamental piece for allowing developers to get data quickly. Although Kafka Streams is now a likely default for many when starting work, Kafka had already established itself as a successful solution by the time the Streams API was released in 2016. The Streams API can be thought of as a layer that sits on top of producers and consumers. This abstraction layer is a client library that provides a higher-level view of working with your data as an unbounded stream.

 In the Kafka 0.11 release, exactly-once semantics was introduced. We will cover what that means in practice later, once we get a more solid foundation. However, users running end-to-end workloads on top of Kafka with the Streams API may benefit from hardened delivery guarantees. Streams make this use case easier than it has ever been to complete a flow without the overhead of any custom application logic, ensuring that a message was only processed once from the beginning to the end of the transaction.

 The number of devices for the Internet of Things (figure 1.7) will only increase with time. With all of those devices sending messages, sometimes in bursts when they get a Wi-Fi or cellular connection, something needs to be able to handle that data effectively. As you may have gathered, massive quantities of data are one of the critical areas where Kafka shines. As we discussed previously, small messages are not a problem for Kafka. Beacons, cars, phones, homes, etc.—all will be sending data, and something needs to handle the fire hose of data and make it available for action [12].

 [image:]

 Figure 1.7 The Internet of Things (IoT)

 This are just a small selection of examples that are well-known uses for Kafka. As we will see in future chapters, Kafka has many practical application domains. Learning the upcoming foundational concepts is essential to see how even more practical applications are possible.

1.4.3 When Kafka might not be the right fit

 It is important to note that although Kafka has been used in some interesting use cases, it is not always the best tool for the job at hand. Let’s investigate some of the uses where other tools or code might shine.

 What if you only need a once-monthly or even once-yearly summary of aggregate data? Suppose you don’t need an on-demand view, quick answer, or even the ability to reprocess data. In these cases, you might not need Kafka running throughout the entire year for those tasks alone (notably, if that amount of data is manageable to process at once as a batch). As always, your mileage may vary: different users have different thresholds on what is a large batch.

 If your main access pattern for data is a mostly random lookup of data, Kafka might not be your best option. Linear read and writes are where Kafka shines and will keep your data moving as quickly as possible. Even if you have heard of Kafka having index files, they are not really what you would compare to a relational database having fields and primary keys from which indexes are built.

 Similarly, if you need the exact ordering of messages in Kafka for the entire topic, you will have to look at how practical your workload is in that situation. To avoid any unordered messages, care should be taken to ensure that only one producer request thread is the maximum and, simultaneously, that there is only one partition in the topic. There are various workarounds, but if you have vast amounts of data that depend on strict ordering, there are potential gotchas that might come into play once you notice that your consumption is limited to one consumer per group at a time.

 One of the other practical items that come to mind is that large messages are an exciting challenge. The default message size is about 1 MB [13]. With larger messages, you start to see memory pressure increase. In other words, the lower number of messages you can store in page cache could become a concern. If you are planning on sending huge archives around, you might want to see if there is a better way to manage those messages. Keep in mind that although you can probably achieve your end goal with Kafka in the previous situations (it’s always possible), it might not be the first choice to reach for in your toolbox.

1.5 Online resources to get started

 The community around Kafka has been one of the best (in our opinion) for making documentation available. Kafka has been a part of Apache (graduating from the Incubator in 2012) and keeps the current documentation at the project website at https://kafka.apache.org.

 Another great resource for information is Confluent® (https://www.confluent.io/resources). Confluent was founded by the original Kafka’s creators and is actively influencing the future direction of the work. They also build enterprise-specific features and support for companies to help develop their streaming platform. Their work helps support the Kafka open source nature and has extended to presentations and lectures that have discussed production challenges and successes.

 As we start to dig into more APIs and configuration options in later chapters, these resources will be a useful reference if further details are needed, rather than listing them all in each chapter. In chapter 2, we will discover more details in which we can use specific terms and start to get to know Apache Kafka in a more tangible and hands-on way.

Summary

 	
 Apache Kafka is a streaming platform that you can leverage to process large numbers of events quickly.

 	
 Although Kafka can be used as a message bus, using it only as that ignores the capabilities that provide real-time data processing.

 	
 Kafka may have been associated with other big data solutions in the past, but Kafka stands on its own to provide a scalable and durable system. Because it uses the same fault tolerant and distributed system techniques, Kafka fills the needs of a modern data infrastructure’s core with its own clustering capabilities.

OEBPS/OEBPS/Images/CH01_F04_Scott4.png
&

If a message from a producer

has a failure or is not acknowledged,
the producer does not resend

the message.

The broker sees one
message at most (or

zero if there is a failure).
)

/

!
»!»

Consumers see the messages
that the broker receives. If there
is a failure, the consumer never
sees that message.

OEBPS/OEBPS/Images/CH01_F06_Scott4.png
al central point

for all of the server logs and stores
that information on the brokers.

/

v

Kafka in Action
Kafka cluster

=

Various server logs are
gathered into Kafka.

/

Kafka serves the aggregate view

to each application (assuming each
application is part of its own group).

OEBPS/OEBPS/Images/CH01_F01_Scott4.png
Producers and sources of data

Satellite

Flow of data Flow of data

Receiver

Controls and
handles data

Flnw of data F\ow of data

< . 2

End consumers of the data

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F07_Scott4.png
Internet of Things
Water meter events

(((T))) S

own IOT example
in chapter 3!

=

Door alarm sensor

() /,

Temperature When sensors or

gauge reading beacons get a Wi-Fi or
cellular signal, they’ll
report their events,

which might be a lot!

Kafka brokers

|
Your Kafka cluster is
designed to work well
with lots of data and
small messages.

OEBPS/cover.jpeg
Dylan Scott
Viktor Gamov
Dave Klein

Foreword by Jun Rao

/'l MANNING

OEBPS/OEBPS/Images/CH01_F05_Scott4.png
If a message from a producer
fails or is not acknowledged,
the producer resends the
message.

The broker only
allows one message.
|

|
v
=

X

\

Consumers only
see the message
once.

There's a lot more to exactly-once.
semantics that we'll discuss later.

OEBPS/OEBPS/Images/CH01_F03_Scott4.png
If a message from a producer has a
failure or is not acknowledged, the
producer resends the message.

The broker sees two messages

at least once (or only one if
there is a failure).

\
|

Consumers get as many messages
as the broker receives. Consumers
might see duplicate messages.

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F02_Scott4.png
«—— The source of data like the satellite,
DVD, or Blu-ray player are called
producers in Kafla.

- The receiver is where Kafka
manages the message data and
allows producers and consumers

Our Kafka In Action Kafka cluster —

to act in a decoupled manner.
I ———
use the data are called

consumers in Kafka.

