

 inside front cover

 [image:]

 [image:]

 Rust in Action

 Systems programming concepts and techniques

 Tim McNamara

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Elesha Hyde

 	

 Technical development editor:

 	

 René van den Berg

 	

 Review editor:

 	

 Mihaela Batinić

 	

 Production editor:

 	

 Deirdre S. Hiam

 	

 Copy editor:

 	

 Frances Buran

 	

 Proofreader:

 	

 Melody Dolab

 	

 Technical proofreader:

 	

 Jerry Kuch

 	

 Typesetter:

 	

 Dennis Dalinnik

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617294556

 dedication

 To everyone aspiring to write safer software.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introducing Rust

 1.1 Where is Rust used?

 1.2 Advocating for Rust at work

 1.3 A taste of the language

 Cheating your way to “Hello, world!”

 Your first Rust program

 1.4 Downloading the book’s source code

 1.5 What does Rust look and feel like?

 1.6 What is Rust?

 Goal of Rust: Safety

 Goal of Rust: Productivity

 Goal of Rust: Control

 1.7 Rust’s big features

 Performance

 Concurrency

 Memory efficiency

 1.8 Downsides of Rust

 Cyclic data structures

 Compile times

 Strictness

 Size of the language

 Hype

 1.9 TLS security case studies

 Heartbleed

 Goto fail;

 1.10 Where does Rust fit best?

 Command-line utilities

 Data processing

 Extending applications

 Resource-constrained environments

 Server-side applications

 Desktop applications

 Desktop

 Mobile

 Web

 Systems programming

 1.11 Rust’s hidden feature: Its community

 1.12 Rust phrase book

 Part 1 Rust language distinctives

 2 Language foundations

 2.1 Creating a running program

 Compiling single files with rustc

 Compiling Rust projects with cargo

 2.2 A glance at Rust’s syntax

 Defining variables and calling functions

 2.3 Numbers

 Integers and decimal (floating-point) numbers

 Integers with base 2, base 8, and base 16 notation

 Comparing numbers

 Rational, complex numbers, and other numeric types

 2.4 Flow control

 For: The central pillar of iteration

 Continue: Skipping the rest of the current iteration

 While: Looping until a condition changes its state

 Loop: The basis for Rust’s looping constructs

 Break: Aborting a loop

 If, if else, and else: Conditional branching

 Match: Type-aware pattern matching

 2.5 Defining functions

 2.6 Using references

 2.7 Project: Rendering the Mandelbrot set

 2.8 Advanced function definitions

 Explicit lifetime annotations

 Generic functions

 2.9 Creating grep-lite

 2.10 Making lists of things with arrays, slices, and vectors

 Arrays

 Slices

 Vectors

 2.11 Including third-party code

 Adding support for regular expressions

 Generating the third-party crate documentation locally

 Managing Rust toolchains with rustup

 2.12 Supporting command-line arguments

 2.13 Reading from files

 2.14 Reading from stdin

 3 Compound data types

 3.1 Using plain functions to experiment with an API

 3.2 Modeling files with struct

 3.3 Adding methods to a struct with impl

 Simplifying object creation by implementing new()

 3.4 Returning errors

 Modifying a known global variable

 Making use of the Result return type

 3.5 Defining and making use of an enum

 Using an enum to manage internal state

 3.6 Defining common behavior with traits

 Creating a Read trait

 Implementing std::fmt::Display for your own types

 3.7 Exposing your types to the world

 Protecting private data

 3.8 Creating inline documentation for your projects

 Using rustdoc to render docs for a single source file

 Using cargo to render docs for a crate and its dependencies

 4 Lifetimes, ownership, and borrowing

 4.1 Implementing a mock CubeSat ground station

 Encountering our first lifetime issue

 Special behavior of primitive types

 4.2 Guide to the figures in this chapter

 4.3 What is an owner? Does it have any responsibilities?

 4.4 How ownership moves

 4.5 Resolving ownership issues

 Use references where full ownership is not required

 Use fewer long-lived values

 Duplicate the value

 Wrap data within specialty types

 Part 2 Demystifying systems programming

 5 Data in depth

 5.1 Bit patterns and types

 5.2 Life of an integer

 Understanding endianness

 5.3 Representing decimal numbers

 5.4 Floating-point numbers

 Looking inside an f32

 Isolating the sign bit

 Isolating the exponent

 Isolate the mantissa

 Dissecting a floating-point number

 5.5 Fixed-point number formats

 5.6 Generating random probabilities from random bytes

 5.7 Implementing a CPU to establish that functions are also data

 CPU RIA/1: The Adder

 Full code listing for CPU RIA/1: The Adder

 CPU RIA/2: The Multiplier

 CPU RIA/3: The Caller

 CPU 4: Adding the rest

 6 Memory

 6.1 Pointers

 6.2 Exploring Rust’s reference and pointer types

 Raw pointers in Rust

 Rust’s pointer ecosystem

 Smart pointer building blocks

 6.3 Providing programs with memory for their data

 The stack

 The heap

 What is dynamic memory allocation?

 Analyzing the impact of dynamic memory allocation

 6.4 Virtual memory

 Background

 Step 1: Having a process scan its own memory

 Translating virtual addresses to physical addresses

 Step 2: Working with the OS to scan an address space

 Step 3: Reading from and writing to process memory

 7 Files and storage

 7.1 What is a file format?

 7.2 Creating your own file formats for data storage

 Writing data to disk with serde and the bincode format

 7.3 Implementing a hexdump clone

 7.4 File operations in Rust

 Opening a file in Rust and controlling its file mode

 Interacting with the filesystem in a type-safe manner with std::fs::Path

 7.5 Implementing a key-value store with a log-structured, append-only storage architecture

 The key-value model

 Introducing actionkv v1: An in-memory key-value store with a command-line interface

 7.6 Actionkv v1: The front-end code

 Tailoring what is compiled with conditional compilation

 7.7 Understanding the core of actionkv: The libactionkv crate

 Initializing the ActionKV struct

 Processing an individual record

 Writing multi-byte binary data to disk in a guaranteed byte order

 Validating I/O errors with checksums

 Inserting a new key-value pair into an existing database

 The full code listing for actionkv

 Working with keys and values with HashMap and BTreeMap

 Creating a HashMap and populating it with values

 Retrieving values from HashMap and BTreeMap

 How to decide between HashMap and BTreeMap

 Adding a database index to actionkv v2.0

 8 Networking

 8.1 All of networking in seven paragraphs

 8.2 Generating an HTTP GET request with reqwest

 8.3 Trait objects

 What do trait objects enable?

 What is a trait object?

 Creating a tiny role-playing game: The rpg project

 8.4 TCP

 What is a port number?

 Converting a hostname to an IP address

 8.5 Ergonomic error handling for libraries

 Issue: Unable to return multiple error types

 Wrapping downstream errors by defining our own error type

 Cheating with unwrap() and expect()

 8.6 MAC addresses

 Generating MAC addresses

 8.7 Implementing state machines with Rust’s enums

 8.8 Raw TCP

 8.9 Creating a virtual networking device

 8.10 “Raw” HTTP

 9 Time and timekeeping

 9.1 Background

 9.2 Sources of time

 9.3 Definitions

 9.4 Encoding time

 Representing time zones

 9.5 clock v0.1.0: Teaching an application how to tell the time

 9.6 clock v0.1.1: Formatting timestamps to comply with ISO 8601 and email standards

 Refactoring the clock v0.1.0 code to support a wider architecture

 Formatting the time

 Providing a full command-line interface

 clock v0.1.1: Full project

 9.7 clock v0.1.2: Setting the time

 Common behavior

 Setting the time for operating systems that use libc

 Setting the time on MS Windows

 clock v0.1.2: The full code listing

 9.8 Improving error handling

 9.9 clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)

 Sending NTP requests and interpreting responses

 Adjusting the local time as a result of the server’s response

 Converting between time representations that use different precisions and epochs

 clock v0.1.3: The full code listing

 10 Processes, threads, and containers

 10.1 Anonymous functions

 10.2 Spawning threads

 Introduction to closures

 Spawning a thread

 Effect of spawning a few threads

 Effect of spawning many threads

 Reproducing the results

 Shared variables

 10.3 Differences between closures and functions

 10.4 Procedurally generated avatars from a multithreaded parser and code generator

 How to run render-hex and its intended output

 Single-threaded render-hex overview

 Spawning a thread per logical task

 Using a thread pool and task queue

 10.5 Concurrency and task virtualization

 Threads

 What is a context switch?

 Processes

 WebAssembly

 Containers

 Why use an operating system (OS) at all?

 11 Kernel

 11.1 A fledgling operating system (FledgeOS)

 Setting up a development environment for developing an OS kernel

 Verifying the development environment

 11.2 Fledgeos-0: Getting something working

 First boot

 Compilation instructions

 Source code listings

 Panic handling

 Writing to the screen with VGA-compatible text mode

 _start(): The main() function for FledgeOS

 11.3 fledgeos-1: Avoiding a busy loop

 Being power conscious by interacting with the CPU directly

 fledgeos-1 source code

 11.4 fledgeos-2: Custom exception handling

 Handling exceptions properly, almost

 fledgeos-2 source code

 11.5 fledgeos-3: Text output

 Writing colored text to the screen

 Controlling the in-memory representation of enums

 Why use enums?

 Creating a type that can print to the VGA frame buffer

 Printing to the screen

 fledgeos-3 source code

 11.6 fledgeos-4: Custom panic handling

 Implementing a panic handler that reports the error to the user

 Reimplementing panic() by making use of core::fmt::Write

 Implementing core::fmt::Write

 fledge-4 source code

 12 Signals, interrupts, and exceptions

 12.1 Glossary

 Signals vs. interrupts

 12.2 How interrupts affect applications

 12.3 Software interrupts

 12.4 Hardware interrupts

 12.5 Signal handling

 Default behavior

 Suspend and resume a program’s operation

 Listing all signals supported by the OS

 12.6 Handling signals with custom actions

 Global variables in Rust

 Using a global variable to indicate that shutdown has been initiated

 12.7 Sending application-defined signals

 Understanding function pointers and their syntax

 12.8 Ignoring signals

 12.9 Shutting down from deeply nested call stacks

 Introducing the sjlj project

 Setting up intrinsics in a program

 Casting a pointer to another type

 Compiling the sjlj project

 sjlj project source code

 12.10 A note on applying these techniques to platforms without signals

 12.11 Revising exceptions

 index

 front matter

preface

 No one knows whether reading a technical book is going to be worth the effort. These books can be expensive, dull, and poorly written. Even worse, there’s a good chance that you won’t learn anything. Luckily, this book is written by someone who understands that.

 This book’s first aim is to teach you Rust. Rust in Action presents large, working projects to promote your learning. Over the course of the book, you’ll write a database, a CPU emulator, an operating system kernel, and several other interesting projects. You’ll even dabble with generative art. Each project is designed to enable you to explore the Rust programming language at your own pace. For those readers who know little Rust, there are many opportunities to expand the projects in whatever direction you choose.

 There is more to learning a programming language than studying its syntax and semantics, however. You are also joining a community. Unfortunately, established communities can create invisible barriers for new entrants because of their shared knowledge, jargon, and practices.

 One such barrier for many new Rust programmers is the concept of systems programming. Lots of programmers come to Rust without a background in that area. To compensate for this, Rust in Action has a second aim—to teach you systems programming. And, among other topics, you’ll learn about how memory, digital timekeeping, and device drivers work in the book’s 12 chapters. I hope this enables you to feel more comfortable when becoming a member of the Rust community. And we need you!

 Our societies depend on software, yet critical security holes are accepted as normal and, perhaps, inevitable. Rust demonstrates that these are neither. Moreover, our computers are filled with bloated, energy-intensive applications. Rust provides a viable alternative for developing software that is less demanding on these finite resources.

 Rust in Action is about empowerment. This book’s ultimate objective is to convince you of that. Rust is not reserved for a select group of experts. It is a tool that’s available for everyone. Well done for making it this far through your learning journey; it’s my pleasure to take you a few more steps.

acknowledgments

 Thank you to Katie for preventing me from collapsing and for picking me up when I fell down anyway. Thanks also to Florence and Octavia for your hugs and smiles, even when Dad was unable to play because he was writing.

 I’m indebted to so many that it feels unfair to list only a select few. There are many members of the Rust community who have supported the book’s development. Thousands of readers submitted corrections, questions, and suggestions via the liveBook during the book’s development. Every contribution has helped me refine the text. Thank you.

 I’m especially grateful to a small number of readers, many of whom have become friends. To Aï Maiga, Ana Hobden, Andrew Meredith, Andréy Lesnikóv, Andy Grove, Arturo J. Pérez, Bruce Mitchener, Cecile Tonglet, Daniel Carosone, Eric Ridge, Esteban Kuber, Florian Gilcher, Ian Battersby, Jane Lusby, Javier Viola, Jonathan Turner, Lachezar Lechev, Luciano Mammino, Luke Jones, Natalie Bloomfield, Oleksandr Kaleniuk, Olivia Ifrim, Paul Faria, Paul J. Symonds, Philipp Gniewosz, Rod Elias, Stephen Oates, Steve Klabnik, Tannr Allard, Thomas Lockney, and William Brown; interacting with you over the last four years has been a special privilege.

 To the book’s reviewers, I extend my warm thanks to Afshin Mehrabani, Alastair Smith, Bryce Darling, Christoffer Fink, Christopher Haupt, Damian Esteban, Federico Hernandez, Geert Van Laethem, Jeff Lim, Johan Liseborn, Josh Cohen, Konark Modi, Marc Cooper, Morgan Nelson, Ramnivas Laddad, Riccardo Moschetti, Sanket Naik, Sumant Tambe, Tim van Deurzen, Tom Barber, Wade Johnson, William Brown, William Wheeler, and Yves Dorfsman. All of your comments were read. Many of the improvements in the latter stages of the book’s development are owed to your thoughtful feedback.

 Two team members at Manning deserve special credit for their patience, professionalism, and positivity: Elesha Hyde and Frances Buran have skillfully guided the book through many, many drafts.

 Thank you also to the rest of the development editors, including Bert Bates, Jerry Kuch, Mihaela Batinić, Rebecca Rinehart, René van den Berg, and Tim van Deurzen. My thanks also extends to the production editors, including Benjamin Berg, Deirdre Hiam, Jennifer Houle, and Paul Wells.

 Rust in Action had 16 releases during its MEAP process, and these would have been impossible without the support of many. Thank you to Aleksandar Dragosavljević, Ana Romac, Eleonor Gardner, Ivan Martinović, Lori Weidert, Marko Rajković, Matko Hrvatin, Mehmed Pašić, Melissa Ice, Mihaela Batinić, Owen Roberts, Radmila Ercegovac, and Rejhana Markanović.

 Thanks also to the members of the marketing team, including Branko Latincic, Candace Gillhoolley, Cody Tankersley, Lucas Weber, and Stjepan Jureković. You’ve been a tremendous source of encouragement for me.

 The wider Manning team has also been very responsive and helpful. To Aira Dučić, Andrew Waldron, Barbara Mirecki, Branko Latinčić, Breckyn Ely, Christopher Kaufmann, Dennis Dalinnik, Erin Twohey, Ian Hough, Josip Maras, Julia Quinn, Lana Klasić, Linda Kotlyarsky, Lori Kehrwald, and Melody Dolab, thank you for your assistance during the book’s development. And to Mike Stephens, thanks for kicking this whole life-changing process off. You warned me that it would be hard. You were right.

about this book

 Rust in Action is primarily intended for people who may have explored Rust’s free material online, but who then have asked themselves, “What’s next?” This book contains dozens of examples that are interesting and can be extended as creativity and time allow. Those examples allow the book’s 12 chapters to cover a productive subset of Rust and many of the ecosystem’s most important third-party libraries.

 The code examples emphasize accessiblity to beginners over elegant, idiomatic Rust. If you are already a knowledgeable Rust programmer, you may find yourself disagreeing with some style decisions in the examples. I hope that you will tolerate this for the sake of learners.

 Rust in Action is not intended as a comprehensive reference text book. There are parts of the languages and standard library that have been omitted. Typically, these are highly specialized and deserve specific treatment. Instead, this book aims to provide readers with enough basic knowledge and confidence to learn specialized topics when necessary. Rust in Action is also unique from the point of view of systems programming books as almost every example works on Microsoft Windows.

Who should read this book

 Anyone who is interested in Rust, who learns by applying practical examples, or who is intimidated by the fact that Rust is a systems programming language will enjoy Rust in Action. Readers with prior programming experience will benefit most as some computer programming concepts are assumed.

How this book is organized: A roadmap

 Rust in Action has two parts. The first introduces Rust’s syntax and some of its distinctive characteristics. The second part applies the knowledge gained in part one to several projects. In each chapter, one or two new Rust concepts are introduced. That said, part 1 provides a quick-fire introduction to Rust:

 	

 Chapter 1, “Introducing Rust,” explains why Rust exists and how to get started programming with it.

 	

 Chapter 2, “Language foundations,” provides a solid base of Rust syntax. Examples include a Mandelbrot set renderer and a grep clone.

 	

 Chapter 3, “Compound data types,” explains how to compose Rust data types and its error-handling facilities.

 	

 Chapter 4, “Lifetimes, ownership, and borrowing,” discusses the mechanisms for ensuring that accessing data is always valid.

 Part 2 applies Rust to introductory systems programming areas:

 	

 Chapter 5, “Data in Depth,” covers how information is represented in digital computers with a special emphasis on how numbers are approximated. Examples include a bespoke number format and a CPU emulator.

 	

 Chapter 6, “Memory,” explains the terms references, pointers, virtual memory, stack, and heap. Examples include a memory scanner and a generative art project.

 	

 Chapter 7, “Files and storage,” explains the process for storing data structures into storage devices. Examples include a hex dump clone and a working database.

 	

 Chapter 8, “Networking,” provides an explanation of how computers communicate by reimplementing HTTP multiple times, stripping away a layer of abstraction each time.

 	

 Chapter 9, “Time and timekeeping,” explores the process for keeping track of time within a digital computer. Examples include a working NTP client.

 	

 Chapter 10, “Processes, threads, and containers,” explains processes, threads, and related abstractions. Examples include a turtle graphics application and a parallel parser.

 	

 Chapter 11, “Kernel,” describes the role of the operating system and how computers boot up. Examples include compiling your own bootloader and an operating system kernel.

 	

 Chapter 12, “Signals, interrupts, and exceptions,” explains how the external world communicates with the CPU and operating systems.

 The book is intended to be read linearly. Latter chapters assume knowledge taught in earlier ones. However, projects from each chapter are standalone. Therefore, you are welcome to jump backward and forward if there are topics that you would like to cover.

About the code

 The code examples in Rust in Action are written with the 2018 edition of Rust and have been tested with Windows and Ubuntu Linux. No special software is required outside of a working Rust installation. Installation instructions are provided in chapter 2.

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font, like this, to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from the previous steps in the chapter, such as when a new feature is added to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Rust in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users:

 	

 To access the forum, go to https://livebook.manning.com/book/rust-in-action/ welcome/v-16/.

 	

 You can also learn more about Manning’s forums and the rules of conduct at this location: https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Tim can be found on social media as @timClicks. His primary channels are Twitter (https://twitter.com/timclicks), YouTube (https://youtube.com/c/timclicks), and Twitch (https://twitch.tv/timclicks). You are also welcome to join his Discord server at https://discord.gg/vZBX2bDa7W.

about the author

 Tim McNamara learned programming to assist with humanitarian relief projects around the world from his home in New Zealand. Over the last 15 years, Tim has become an expert in text mining, natural language processing, and data engineering. He is the organizer of Rust Wellington and hosts regular Rust programming tutorials in person and online via Twitch and YouTube.

about the cover illustration

 The figure on the cover of Rust in Action is captioned “Le maitre de chausson” or “The boxer.” The illustration is taken from a collection of works by many artists, edited by Louis Curmer and published in Paris in 1841. The title of the collection is LesFrançais peints par eux-mêmes, which translates as The French People Painted by Themselves. Each illustration is finely drawn and colored by hand, and the rich variety of drawing in the collection reminds us vividly of how culturally apart the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by pictures from collections such as this one.

1 Introducing Rust

 This chapter covers

 	
Introducing Rust’s features and goals

 	
Exposing Rust’s syntax

 	
Discussing where to use Rust and when to avoid it

 	
Building your first Rust program

 	
Explaining how Rust compares to object-oriented and wider languages

 Welcome to Rust—the empowering programming language. Once you scratch its surface, you will not only find a programming language with unparalleled speed and safety, but one that is enjoyable enough to use every day.

 When you begin to program in Rust, it’s likely that you will want to continue to do so. And this book, Rust in Action, will build your confidence as a Rust programmer. But it will not teach you how to program from the beginning. This book is intended to be read by people who are considering Rust as their next language and for those who enjoy implementing practical working examples. Here is a list of some of the larger examples this book includes:

 	

 Mandelbrot set renderer

 	

 A grep clone

 	

 CPU emulator

 	

 Generative art

 	

 A database

 	

 HTTP, NTP, and hexdump clients

 	

 LOGO language interpreter

 	

 Operating system kernel

 As you may gather from scanning through that list, reading this book will teach you more than just Rust. It also introduces you to systems programming and low-level programming. As you work through Rust in Action, you’ll learn about the role of an operating system (OS), how a CPU works, how computers keep time, what pointers are, and what a data type is. You will gain an understanding of how the computer’s internal systems interoperate. Learning more than syntax, you will also see why Rust was created and the challenges that it addresses.

1.1 Where is Rust used?

 Rust has won the “most loved programming language” award in Stack Overflow’s annual developer survey every year in 2016-2020. Perhaps that’s why large technology leaders such as the following have adopted Rust:

 	

 Amazon Web Services (AWS) has used Rust since 2017 for its serverless computing offerings, AWS Lambda and AWS Fargate. With that, Rust has gained further inroads. The company has written the Bottlerocket OS and the AWS Nitro System to deliver its Elastic Compute Cloud (EC2) service.1

 	

 Cloudflare develops many of its services, including its public DNS, serverless computing, and packet inspection offerings with Rust.2

 	

 Dropbox rebuilt its backend warehouse, which manages exabytes of storage, with Rust.3

 	

 Google develops parts of Android, such as its Bluetooth module, with Rust. Rust is also used for the crosvm component of Chrome OS and plays an important role in Google’s new operating system, Fuchsia.4

 	

 Facebook uses Rust to power Facebook’s web, mobile, and API services, as well as parts of HHVM, the HipHop virtual machine used by the Hack programming language.5

 	

 Microsoft writes components of its Azure platform including a security daemon for its Internet of Things (IoT) service in Rust.6

 	

 Mozilla uses Rust to enhance the Firefox web browser, which contains 15 million lines of code. Mozilla’s first two Rust-in-Firefox projects, its MP4 metadata parser and text encoder/decoder, led to overall performance and stability improvements.

 	

 GitHub’s npm, Inc., uses Rust to deliver “upwards of 1.3 billion package downloads per day.”7

 	

 Oracle developed a container runtime with Rust to overcome problems with the Go reference implementation.8

 	

 Samsung, via its subsidiary SmartThings, uses Rust in its Hub, which is the firmware backend for its Internet of Things (IoT) service.

 Rust is also productive enough for fast-moving startups to deploy it. Here are a few examples:

 	

 Sourcegraph uses Rust to serve syntax highlighting across all of its languages.9

 	

 Figma employs Rust in the performance-critical components of its multi-player server.10

 	

 Parity develops its client to the Ethereum blockchain with Rust.11

1.2 Advocating for Rust at work

 What is it like to advocate for Rust at work? After overcoming the initial hurdle, it tends to go well. A 2017 discussion, reprinted below, provides a nice anecdote. One member of Google’s Chrome OS team discusses what it was like to introduce the language to the project:12

 indy on Sept 27, 2017

Is Rust an officially sanctioned language at Google?

 zaxcellent on Sept 27, 2017

 Author here: Rust is not officially sanctioned at Google, but there are

 pockets of folks using it here. The trick with using Rust in this

 component was convincing my coworkers that no other language was right

 for job, which I believe to be the case in this instance.

 That being said, there was a ton of work getting Rust to play nice

 within the Chrome OS build environment. The Rust folks have been super

 helpful in answering my questions though.

 ekidd on Sept 27, 2017

 > The trick with using Rust in this component was convincing my

 > coworkers that no other language was right for job, which I believe

 > to be the case in this instance.

 I ran into a similar use case in one of my own projects—a vobsub

 subtitle decoder, which parses complicated binary data, and which I

 someday want to run as web service. So obviously, I want to ensure

 that there are no vulnerabilities in my code.

 I wrote the code in Rust, and then I used 'cargo fuzz' to try and

 find vulnerabilities. After running a billion(!) fuzz iterations, I

 found 5 bugs (see the 'vobsub' section of the trophy case for a list

 https:/ /github.com/rust-fuzz/trophy-case).

 Happily, not _one_ of those bugs could actually be escalated into an

 actual exploit. In each case, Rust's various runtime checks

 successfully caught the problem and turned it into a controlled panic.

 (In practice, this would restart the web server cleanly.)

 So my takeaway from this was that whenever I want a language (1) with

 no GC, but (2) which I can trust in a security-critical context, Rust

 is an excellent choice. The fact that I can statically link Linux

 binaries (like with Go) is a nice plus.

 Manishearth on Sept 27, 2017

 > Happily, not one of those bugs could actually be escalated into

 > an actual exploit. In each case, Rust's various runtime checks

 > successfully caught the problem and turned it into a controlled

 > panic.

 This has been more or less our experience with fuzzing rust code in

 firefox too, fwiw. Fuzzing found a lot of panics (and debug

 assertions / "safe" overflow assertions). In one case it actually

 found a bug that had been under the radar in the analogous Gecko

 code for around a decade.

 From this excerpt, we can see that language adoption has been “bottom up” by engineers looking to overcome technical challenges in relatively small projects. Experience gained from these successes is then used as evidence to justify undertaking more ambitious work.

 In the time since late 2017, Rust has continued to mature and strengthen. It has become an accepted part of Google’s technology landscape, and is now an officially sanctioned language within the Android and Fuchsia operating systems.

1.3 A taste of the language

 This section gives you a chance to experience Rust firsthand. It demonstrates how to use the compiler and then moves on to writing a quick program. We tackle full projects in later chapters.

 Note To install Rust, use the official installers provided at https://rustup.rs/.

1.3.1 Cheating your way to “Hello, world!”

 The first thing that most programmers do when they reach for a new programming language is to learn how to print “Hello, world!” to the console. You’ll do that too, but with flair. You’ll verify that everything is in working order before you encounter annoying syntax errors.

 If you use Windows, open the Rust command prompt that is available in the Start menu after installing Rust. Then execute this command:

 C:\> cd %TMP%

 If you are running Linux or macOS, open a Terminal window. Once open, enter the following:

 $ cd $TMP

 From this point forward, the commands for all operating systems should be the same. If you installed Rust correctly, the following three commands will display “Hello, world!” on the screen (as well as a bunch of other output):

 $ cargo new hello

$ cd hello

$ cargo run

 Here is an example of what the entire session looks like when running cmd.exe on MS Windows:

 C:\> cd %TMP%

C:\Users\Tim\AppData\Local\Temp\> cargo new hello

 Created binary (application) `hello` project

C:\Users\Tim\AppData\Local\Temp\> cd hello

C:\Users\Tim\AppData\Local\Temp\hello\> cargo run

 Compiling hello v0.1.0 (file:/ / /C:/Users/Tim/AppData/Local/Temp/hello)

 Finished dev [unoptimized + debuginfo] target(s) in 0.32s

 Running `target\debug\hello.exe`

Hello, world!

 And on Linux or macOS, your console would look like this:

 $ cd $TMP

$ cargo new hello

 Created binary (application) `hello` package

$ cd hello

$ cargo run

 Compiling hello v0.1.0 (/tmp/hello)

 Finished dev [unoptimized + debuginfo] target(s) in 0.26s

 Running `target/debug/hello`

Hello, world!

 If you have made it this far, fantastic! You have run your first Rust code without needing to write any Rust. Let’s take a look at what just happened.

 Rust’s cargo tool provides both a build system and a package manager. That means cargo knows how to convert your Rust code into executable binaries and also can manage the process of downloading and compiling the project’s dependencies.

 cargo new creates a project for you that follows a standard template. The tree command can reveal the default project structure and the files that are created after issuing cargo new:

 $ tree hello

hello

├── Cargo.toml

└── src

 └── main.rs

1 directory, 2 files

 All Rust projects created with cargo have the same structure. In the base directory, a file called Cargo.toml describes the project’s metadata, such as the project’s name, its version, and its dependencies. Source code appears in the src directory. Rust source code files use the .rs filename extension. To view the files that cargo new creates, use the tree command.

 The next command that you executed was cargo run. This line is much simpler to grasp, but cargo actually did much more work than you realized. You asked cargo to run the project. As there was nothing to actually run when you invoked the command, it decided to compile the code in debug mode on your behalf to provide maximal error information. As it happens, the src/main.rs file always includes a “Hello, world!” stub. The result of that compilation was a file called hello (or hello.exe). The hello file was executed, and the result printed to your screen.

 Executing cargo run has also added new files to the project. We now have a Cargo.lock file in the base of our project and a target/ directory. Both that file and the directory are managed by cargo. Because these are artifacts of the compilation process, we won’t need to touch these. Cargo.lock is a file that specifies the exact version numbers of all the dependencies so that future builds are reliably built the same way until Cargo.toml is modified.

 Running tree again reveals the new structure created by invoking cargo run to compile the hello project:

 $ tree --dirsfirst hello

hello

├── src

│ └── main.rs

├── target

│ └── debug

│ ├── build

│ ├── deps

│ ├── examples

│ ├── native

│ └── hello

├── Cargo.lock

└── Cargo.toml

 For getting things up and running, well done! Now that we’ve cheated our way to “Hello, World!”, let’s get there via the long way.

1.3.2 Your first Rust program

 For our first program, we want to write something that outputs the following text in multiple languages:

 Hello, world!

Grüß Gott!

ハロー・ワールド

 You have probably seen the first line in your travels. The other two are there to highlight a few of Rust’s features: easy iteration and built-in support for Unicode. For this program, we’ll use cargo to create it as before. Here are the steps to follow:

 	

 Open a console prompt.

 	

 Run cd %TMP% on MS Windows; otherwise cd $TMP.

 	

 Run cargo new hello2 to create a new project.

 	

 Run cd hello2 to move into the project’s root directory.

 	

 Open the file src/main.rs in a text editor.

 	

 Replace the text in that file with the text in listing 1.1.

 The code for the following listing is in the source code repository. Open ch1/ch1-hello2/src/hello2.rs.

 Listing 1.1 “Hello World!” in three languages

 1 fn greet_world() {

 2 println!("Hello, world!"); ①

 3 let southern_germany = "Grüß Gott!"; ②

 4 let japan = "ハロー・ワールド"; ③

 5 let regions = [southern_germany, japan]; ④

 6 for region in regions.iter() { ⑤

 7 println!("{}", ®ion); ⑥

 8 }

 9 }

10

11 fn main() {

12 greet_world(); ⑦

13 }

 ① The exclamation mark indicates the use of a macro, which we’ll discuss shortly.

 ② Assignment in Rust, more properly called variable binding, uses the let keyword.

 ③ Unicode support is provided out of the box.

 ④ Array literals use square brackets.

 ⑤ Many types can have an iter() method to return an iterator.

 ⑥ The ampersand “borrows” region for read-only access.

 ⑦ Calls a function. Note that parentheses follow the function name.

 Now that src/main.rs is updated, execute cargo run from the hello2/ directory. You should see three greetings appear after some output generated from cargo itself:

 $ cargo run

 Compiling hello2 v0.1.0 (/path/to/ch1/ch1-hello2)

 Finished dev [unoptimized + debuginfo] target(s) in 0.95s

 Running `target/debug/hello2`

Hello, world!

Grüß Gott!

ハロー・ワールド

 Let’s take a few moments to touch on some of the interesting elements of Rust from listing 1.1.

 One of the first things that you are likely to notice is that strings in Rust are able to include a wide range of characters. Strings are guaranteed to be encoded as UTF-8. This means that you can use non-English languages with relative ease.

 The one character that might look out of place is the exclamation mark after println. If you have programmed in Ruby, you may be used to thinking that it is used to signal a destructive operation. In Rust, it signals the use of a macro. Macros can be thought of as fancy functions for now. These offer the ability to avoid boilerplate code. In the case of println!, there is a lot of type detection going on under the hood so that arbitrary data types can be printed to the screen.

1.4 Downloading the book’s source code

 In order to follow along with the examples in this book, you might want to access the source code for the listings. For your convenience, source code for every example is available from two sources:

 	

 https://manning.com/books/rust-in-action

 	

 https://github.com/rust-in-action/code

1.5 What does Rust look and feel like?

 Rust is the programming language that allows Haskell and Java programmers to get along. Rust comes close to the high-level, expressive feel of dynamic languages like Haskell and Java while achieving low-level, bare-metal performance.

 We looked at a few “Hello, world!” examples in section 1.3, so let’s try something slightly more complex to get a better feel for Rust’s features. Listing 1.2 provides a quick look at what Rust can do for basic text processing. The source code for this listing is in the ch1/ch1-penguins/src/main.rs file. Some features to notice include

 	

 Common control flow mechanisms—This includes for loops and the continue keyword.

 	

 Method syntax—Although Rust is not object-oriented as it does not support inheritance, it carries over this feature of object-oriented languages.

 	

 Higher-order programming—Functions can both accept and return functions. For example, line 19 (.map(|field| field.trim())) includes a closure, also known as an anonymous function or lambda function.

 	

 Type annotations—Although relatively rare, these are occasionally required as a hint to the compiler (for example, see line 27 beginning with if let Ok(length)).

 	

 Conditional compilation—In the listing, lines 21–24 (if cfg!(...);) are not included in release builds of the program.

 	

 Implicit return—Rust provides a return keyword, but it’s usually omitted. Rust is an expression-based language.

 Listing 1.2 Example of Rust code showing some basic processing of CSV data

 1 fn main() { ①

 2 let penguin_data = "\ ②

 3 common name,length (cm)

 4 Little penguin,33

 5 Yellow-eyed penguin,65

 6 Fiordland penguin,60

 7 Invalid,data

 8 ";

 9

10 let records = penguin_data.lines();

11

12 for (i, record) in records.enumerate() {

13 if i == 0 || record.trim().len() == 0 { ③

14 continue;

15 }

16

17 let fields: Vec<_> = record ④

18 .split(',') ⑤

19 .map(|field| field.trim()) ⑥

20 .collect(); ⑦

21 if cfg!(debug_assertions) { ⑧

22 eprintln!("debug: {:?} -> {:?}",

23 record, fields); ⑨

24 }

25

26 let name = fields[0];

27 if let Ok(length) = fields[1].parse::<f32>() { ⑩

28 println!("{}, {}cm", name, length); ⑪

29 }

30 }

31 }

 ① Executable projects require a main() function.

 ② Escapes the trailing newline character

 ③ Skips header row and lines with only whitespace

 ④ Starts with a line of text

 ⑤ Splits record into fields

 ⑥ Trims whitespace of each field

 ⑦ Builds a collection of fields

 ⑧ cfg! checks configuration at compile time.

 ⑨ eprintln! prints to standard error (stderr).

 ⑩ Attempts to parse field as a floating-point number

 ⑪ println! prints to standard out (stdout).

 Listing 1.2 might be confusing to some readers, especially those who have never seen Rust before. Here are some brief notes before moving on:

 	

 On line 17, the fields variable is annotated with the type Vec<_>. Vec is shorthand for _vector_, a collection type that can expand dynamically. The underscore (_) instructs Rust to infer the type of the elements.

 	

 On lines 22 and 28, we instruct Rust to print information to the console. The println! macro prints its arguments to standard out (stdout), whereas eprintln! prints to standard error (stderr).

 Macros are similar to functions except that instead of returning data, these return code. Macros are often used to simplify common patterns.

 eprintln! and println! both use a string literal with an embedded mini-language in their first argument to control their output. The {} placeholder tells Rust to use a programmer-defined method to represent the value as a string rather than the default representation available with {:?}.

 	

 Line 27 contains some novel features. if let Ok(length) = fields[1].parse ::<f32>() reads as “attempt to parse fields[1] as a 32-bit floating-point number and, if that is successful, then assign the number to the length variable.”

 The if let construct is a concise method of conditionally processing data that also provides a local variable assigned to that data. The parse() method returns Ok(T) (where T stands for any type) when it can successfully parse the string; otherwise, it returns Err(E) (where E stands for an error type). The effect of if let Ok(T) is to skip any error cases like the one that’s encountered while processing the line Invalid,data.

 When Rust is unable to infer the types from the surrounding context, it will ask for you to specify those. The call to parse() includes an inline type annotation as parse::<f32>().

 Converting source code into an executable file is called compiling. To compile Rust code, we need to install the Rust compiler and run it against the source code. To compile listing 1.2, follow these steps:

 	

 Open a console prompt (such as cmd.exe, PowerShell, Terminal, or Alacritty).

 	

 Move to the ch1/ch1-penguins directory (not ch1/ch1-penguins/src) of the source code you downloaded in section 1.4.

 	

 Execute cargo run. Its output is shown in the following code snippet:

 $ cargo run

 Compiling ch1-penguins v0.1.0 (../code/ch1/ch1-penguins)

 Finished dev [unoptimized + debuginfo] target(s) in 0.40s

 Running `target/debug/ch1-penguins`

dbg: " Little penguin,33" -> ["Little penguin", "33"]

Little penguin, 33cm

dbg: " Yellow-eyed penguin,65" -> ["Yellow-eyed penguin", "65"]

Yellow-eyed penguin, 65cm

dbg: " Fiordland penguin,60" -> ["Fiordland penguin", "60"]

Fiordland penguin, 60cm

dbg: " Invalid,data" -> ["Invalid", "data"]

 You probably noticed the distracting lines starting with dbg:. We can eliminate these by compiling a release build using cargo’s --release flag. This conditional compilation functionality is provided by the cfg!(debug_assertions) { ... } block within lines 22–24 of listing 1.2. Release builds are much faster at runtime, but incur longer compilation times:

 $ cargo run --release

 Compiling ch1-penguins v0.1.0 (.../code/ch1/ch1-penguins)

 Finished release [optimized] target(s) in 0.34s

 Running `target/release/ch1-penguins`

Little penguin, 33cm

Yellow-eyed penguin, 65cm

Fiordland penguin, 60cm

 It’s possible to further reduce the output by adding the -q flag to cargo commands. -q is shorthand for quiet. The following snippet shows what that looks like:

 $ cargo run -q --release

Little penguin, 33cm

Yellow-eyed penguin, 65cm

Fiordland penguin, 60cm

 Listing 1.1 and listing 1.2 were chosen to pack as many representative features of Rust into examples that are easy to understand. Hopefully these demonstrated that Rust programs have a high-level feel, paired with low-level performance. Let’s take a step back from specific language features now and consider some of the thinking behind the language and where it fits within the programming language ecosystem.

1.6 What is Rust?

 Rust’s distinguishing feature as a programming language is its ability to prevent invalid data access at compile time. Research projects by Microsoft’s Security Response Center and the Chromium browser project both suggest that issues relating to invalid data access account for approximately 70% of serious security bugs.13 Rust eliminates that class of bugs. It guarantees that your program is memory-safe without imposing any runtime costs.

 Other languages can provide this level of safety, but these require adding checks that execute while your program is running, thus slowing it down. Rust manages to break out of this continuum, creating its own space as illustrated by figure 1.1.

 [image:]

 Figure 1.1 Rust provides both safety and control. Other languages have tended to trade one against the other.

 Rust’s distinguishing feature as a professional community is its willingness to explicitly include values into its decision-making process. This ethos of inclusion is pervasive. Public messaging is welcoming. All interactions within the Rust community are governed by its code of conduct. Even the Rust compiler’s error messages are ridiculously helpful.

 Until late 2018, visitors to the Rust home page were greeted with the (technically heavy) message, “Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.” At that point, the community implemented a change to its wording to put its users (and its potential users) at the center (table 1.1).

 Table 1.1 Rust slogans over time. As Rust has developed its confidence, it has increasingly embraced the idea of acting as a facilitator and supporter of everyone wanting to achieve their programming aspirations.

 	

 Until late 2018

 	

 From that point onward

 	

 “Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.”

 	

 “Empowering everyone to build reliable and efficient software.”

 Rust is labelled as a systems programming language, which tends to be seen as quite a specialized, almost esoteric branch of programming. However, many Rust programmers have discovered that the language is applicable to many other domains. Safety, productivity, and control are useful in all software engineering projects. Moreover, the Rust community’s inclusiveness means that the language benefits from a steady stream of new voices with diverse interests.

 Let’s flesh out those three goals: safety, productivity, and control. What are these and why do these matter?

1.6.1 Goal of Rust: Safety

 Rust programs are free from

 	

 Dangling pointers—Live references to data that has become invalid over the course of the program (see listing 1.3)

 	

 Data races—The inability to determine how a program will behave from run to run because external factors change (see listing 1.4)

 	

 Buffer overflow—An attempt to access the 12th element of an array with only 6 elements (see listing 1.5)

 	

 Iterator invalidation—An issue caused by something that is iterated over after being altered midway through (see listing 1.6)

 When programs are compiled in debug mode, Rust also protects against integer overflow. What is integer overflow? Well, integers can only represent a finite set of numbers; these have a fixed-width in memory. Integer overflow is what happens when the integers hit their limit and flow over to the beginning again.

 The following listing shows a dangling pointer. Note that you’ll find this source code in the ch1/ch1-cereals/src/main.rs file.

 Listing 1.3 Attempting to create a dangling pointer

 1 #[derive(Debug)] ①

 2 enum Cereal { ②

 3 Barley, Millet, Rice,

 4 Rye, Spelt, Wheat,

 5 }

 6

 7 fn main() {

 8 let mut grains: Vec<Cereal> = vec![]; ③

 9 grains.push(Cereal::Rye); ④

10 drop(grains); ⑤

11 println!("{:?}", grains); ⑥

12 }

 ① Allows the println! macro to print the Cereal enum

 ② An enum (enumeration) is a type with a fixed number of legal variants.

 ③ Initializes an empty vector of Cereal

 ④ Adds one item to the grains vector

 ⑤ Deletes grains and its contents

 ⑥ Attempts to access the deleted value

 Listing 1.3 contains a pointer within grains, which is created on line 8. Vec<Cereal> is implemented with an internal pointer to an underlying array. But the listing does not compile. An attempt to do so triggers an error message that complains about attempting to “borrow” a “moved” value. Learning how to interpret that error message and to fix the underlying error are topics for the pages to come. Here’s the output from attempting to compile the code for listing 1.3:

 $ cargo run

 Compiling ch1-cereals v0.1.0 (/rust-in-action/code/ch1/ch1-cereals)

error[E0382]: borrow of moved value: `grains`

 --> src/main.rs:12:22

 |

8 | let mut grains: Vec<Cereal> = vec![];

 | ------- move occurs because `grains` has type

 `std::vec::Vec<Cereal>`, which does not implement

 the `Copy` trait

9 | grains.push(Cereal::Rye);

10 | drop(grains);

 | ------ value moved here

11 |

12 | println!("{:?}", grains);

 | ^^^^^^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

error: could not compile `ch1-cereals`.

 Listing 1.4 shows an example of a data race condition. If you remember, this condition results from the inability to determine how a program behaves from run to run due to changing external factors. You’ll find this code in the ch1/ch1-race/src/ main.rs file.

 Listing 1.4 Example of Rust preventing a race condition

 1 use std::thread; ①

 2 fn main() {

 3 let mut data = 100;

 4

 5 thread::spawn(|| { data = 500; }); ②

 6 thread::spawn(|| { data = 1000; }); ②

 7 println!("{}", data);

 8 }

 ① Brings multi-threading into local scope

 ② thread::spawn() takes a closure as an argument.

 If you are unfamiliar with the term thread, the upshot is that this code is not deterministic. It’s impossible to know what value data will hold when main() exits. On lines 6 and 7 of the listing, two threads are created by calls to thread::spawn(). Each call takes a closure as an argument, denoted by vertical bars and curly braces (e.g., || {...}). The thread spawned on line 5 is attempting to set the data variable to 500, whereas the thread spawned on line 6 is attempting to set it to 1,000. Because the scheduling of threads is determined by the OS rather than the program, it’s impossible to know if the thread defined first will be the one that runs first.

 Attempting to compile listing 1.5 results in a stampede of error messages. Rust does not allow multiple places in an application to have write access to data. The code attempts to allow this in three places: once within the main thread running main() and once in each child thread created by thread::spawn(). Here’s the compiler message:

 $ cargo run

 Compiling ch1-race v0.1.0 (rust-in-action/code/ch1/ch1-race)

error[E0373]: closure may outlive the current function, but it

 borrows `data`, which is owned by the current function

 --> src/main.rs:6:19

 |

6 | thread::spawn(|| { data = 500; });

 | ^^ ---- `data` is borrowed here

 | |

 | may outlive borrowed value `data`

 |

note: function requires argument type to outlive `'static`

 --> src/main.rs:6:5

 |

6 | thread::spawn(|| { data = 500; });

 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

help: to force the closure to take ownership of `data`

 (and any other referenced variables), use the `move` keyword

 |

6 | thread::spawn(move || { data = 500; });

 | ^^^^^^^

... ①

error: aborting due to 4 previous errors

Some errors have detailed explanations: E0373, E0499, E0502.

For more information about an error, try `rustc --explain E0373`.

error: could not compile `ch1-race`.

 ① Three other errors omitted.

 Listing 1.5 provides an example of a buffer overflow. A buffer overflow describes situations where an attempt is made to access items in memory that do not exist or that are illegal. In our case, an attempt to access fruit[4] results in the program crashing, as the fruit variable only contains three fruit. The source code for this listing is in the file ch1/ch1-fruit/src/main.rs.

 Listing 1.5 Example of invoking a panic via a buffer overflow

 1 fn main() {

 2 let fruit = vec!['[image:]', '[image:]', '[image:]'];

 3

 4 let buffer_overflow = fruit[4]; ①

 5 assert_eq!(buffer_overflow, '[image:]') ②

 6 }

 ① Rust will cause a crash rather than assign an invalid memory location to a variable.

 ② assert_eq!() tests that arguments are equal.

 When listing 1.5 is compiled and executed, you’ll encounter this error message:

 $ cargo run

 Compiling ch1-fruit v0.1.0 (/rust-in-action/code/ch1/ch1-fruit)

 Finished dev [unoptimized + debuginfo] target(s) in 0.31s

 Running `target/debug/ch1-fruit`

thread 'main' panicked at 'index out of bounds:

 the len is 3 but the index is 4', src/main.rs:3:25

note: run with `RUST_BACKTRACE=1` environment variable

 to display a backtrace

 The next listing shows an example of iterator invalidation, where an issue is caused by something that’s iterated over after being altered midway through. The source code for this listing is in ch1/ch1-letters/src/main.rs.

 Listing 1.6 Attempting to modify an iterator while iterating over it

 1 fn main() {

 2 let mut letters = vec![①

 3 "a", "b", "c"

 4];

 5

 6 for letter in letters {

 7 println!("{}", letter);

 8 letters.push(letter.clone()); ②

 9 }

10 }

 ① Creates a mutable vector letters

 ② Copies each letter and appends it to the end of letters

 Listing 1.6 fails to compile because Rust does not allow the letters variable to be modified within the iteration block. Here’s the error message:

 $ cargo run

 Compiling ch1-letters v0.1.0 (/rust-in-action/code/ch1/ch1-letters)

error[E0382]: borrow of moved value: `letters`

 --> src/main.rs:8:7

 |

2 | let mut letters = vec![

 | ----------- move occurs because `letters` has type

 | `std::vec::Vec<&str>`, which does not

 | implement the `Copy` trait

...

6 | for letter in letters {

 | -------

 | |

 | `letters` moved due to this implicit call

 | to `.into_iter()`

 | help: consider borrowing to avoid moving

 | into the for loop: `&letters`

7 | println!("{}", letter);

8 | letters.push(letter.clone());

 | ^^^^^^^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

error: could not compile `ch1-letters`.

To learn more, run the command again with --verbose.

 While the language of the error message is filled with jargon (borrow, move, trait, and so on), Rust has protected the programmer from stepping into a trap that many others fall into. And fear not—that jargon will become easier to understand as you work through the first few chapters of this book.

 Knowing that a language is safe provides programmers with a degree of liberty. Because they know their program won’t implode, they become much more willing to experiment. Within the Rust community, this liberty has spawned the expression fearless concurrency.

1.6.2 Goal of Rust: Productivity

 When given a choice, Rust prefers the option that is easiest for the developer. Many of its more subtle features are productivity boosts. But programmer productivity is a difficult concept to demonstrate through an example in a book. Let’s start with something that can snag beginners—using assignment (=) within an expression that should use an equality (==) test:

 1 fn main() {

2 let a = 10;

3

4 if a = 10 {

5 println!("a equals ten");

6 }

7 }

 In Rust, the preceding code fails to compile. The Rust compiler generates the following message:

 error[E0308]: mismatched types

 --> src/main.rs:4:8

 |

4 | if a = 10 {

 | ^^^^^^

 | |

 | expected `bool`, found `()`

 | help: try comparing for equality: `a == 10`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.

error: could not compile `playground`.

To learn more, run the command again with --verbose.

 At first, “mismatched types” might feel like a strange error message to encounter. Surely we can test variables for equality against integers.

 After some thought, it becomes apparent why the if test receives the wrong type. The if is not receiving an integer. It’s receiving the result of an assignment. In Rust, this is the blank type: (). () is pronounced unit.14

 When there is no other meaningful return value, expressions return (). As the following shows, adding a second equals sign on line 4 results in a working program that prints a equals ten:

 1 fn main() {

2 let a = 10;

3

4 if a == 10 { ①

5 println!("a equals ten");

6 }

7 }

 ① Using a valid assignment operator (==) allows the program to compile.

 Rust has many ergonomic features. It offers generics, sophisticated data types, pattern matching, and closures.15 Those who have worked with other ahead-of-time compilation languages are likely to appreciate Rust’s build system and its comprehensive package manager: cargo.

 At first glance, we see that cargo is a front end for rustc, the Rust compiler, but cargo provides several additional utilities including the following:

 	

 cargo new creates a skeleton Rust project in a new directory (cargo init uses the current directory).

 	

 cargo build downloads dependencies and compiles the code.

 	

 cargo run executes cargo build and then also runs the resulting executable file.

 	

 cargo doc builds HTML documentation for every dependency in the current project.

1.6.3 Goal of Rust: Control

 Rust offers programmers fine-grained control over how data structures are laid out in memory and their access patterns. While Rust uses sensible defaults that align with its “zero cost abstractions” philosophy, those defaults do not suit all situations.

 At times, it is imperative to manage your application’s performance. It might matter to you that data is stored in the stack rather than on the heap. Perhaps, it might make sense to add reference counting to create a shared reference to a value. Occasionally, it might be useful to create one’s own type of pointer for a particular access pattern. The design space is large and Rust provides the tools to allow you to implement your preferred solution.

 Note If terms such as stack, heap, and reference counting are new, don’t put the book down! We’ll spend lots of time explaining these and how they work together throughout the rest of the book.

 Listing 1.7 prints the line a: 10, b: 20, c: 30, d: Mutex { data: 40 }. Each representation is another way to store an integer. As we progress through the next few chapters, the trade-offs related to each level become apparent. For the moment, the important thing to remember is that the menu of types is comprehensive. You are welcome to choose exactly what’s right for your specific use case.

 Listing 1.7 also demonstrates multiple ways to create integers. Each form provides differing semantics and runtime characteristics. But programmers retain full control of the trade-offs that they want to make.

 Listing 1.7 Multiple ways to create integer values

 1 use std::rc::Rc;

 2 use std::sync::{Arc, Mutex};

 3

 4 fn main() {

 5 let a = 10; ①

 6 let b = Box::new(20); ②

 7 let c = Rc::new(Box::new(30)); ③

 8 let d = Arc::new(Mutex::new(40)); ④

 9 println!("a: {:?}, b: {:?}, c: {:?}, d: {:?}", a, b, c, d);

10 }

 ① Integer on the stack

 ② Integer on the heap, also known as a boxed integer

 ③ Boxed integer wrapped within a reference counter

 ④ Integer wrapped in an atomic reference counter and protected by a mutual exclusion lock

 To understand why Rust is doing something the way it is, it can be helpful to refer back to these three principles:

 	

 The language’s first priority is safety.

 	

 Data within Rust is immutable by default.

 	

 Compile-time checks are strongly preferred. Safety should be a “zero-cost abstraction.”

1.7 Rust’s big features

 Our tools shape what we believe we can create. Rust enables you to build the software that you want to make, but were too scared to try. What kind of tool is Rust? Flowing from the three principles discussed in the last section are three overarching features of the language:

 	

 Performance

 	

 Concurrency

 	

 Memory efficiency

1.7.1 Performance

 Rust offers all of your computer’s available performance. Famously, Rust does not rely on a garbage collector to provide its memory safety.

 There is, unfortunately, a problem with promising you faster programs: the speed of your CPU is fixed. Thus, for software to run faster, it needs to do less. Yet, the language is large. To resolve this conflict, Rust pushes the burden onto the compiler.

 The Rust community prefers a bigger language with a compiler that does more, rather than a simpler language where the compiler does less. The Rust compiler aggressively optimizes both the size and speed of your program. Rust also has some less obvious tricks:

 	

 Cache-friendly data structures are provided by default. Arrays usually hold data within Rust programs rather than deeply nested tree structures that are created by pointers. This is referred to as data-oriented programming.

 	

 The availability of a modern package manager (cargo) makes it trivial to benefit from tens of thousands of open source packages. C and C++ have much less consistency here, and building large projects with many dependencies is typically difficult.

 	

 Methods are always dispatched statically unless you explicitly request dynamic dispatch. This enables the compiler to heavily optimize code, sometimes to the point of eliminating the cost of a function call entirely.

1.7.2 Concurrency

 Asking a computer to do more than one thing at the same time has proven difficult for software engineers. As far as an OS is concerned, two independent threads of execution are at liberty to destroy each other if a programmer makes a serious mistake. Yet Rust has spawned the expression fearless concurrency. Its emphasis on safety crosses the bounds of independent threads. There is no global interpreter lock (GIL) to constrain a thread’s speed. We explore some of the implications of this in part 2.

1.7.3 Memory efficiency

 Rust enables you to create programs that require minimal memory. When needed, you can use fixed-size structures and know exactly how every byte is managed. High-level constructs, such as iteration and generic types, incur minimal runtime overhead.

1.8 Downsides of Rust

 It’s easy to talk about this language as if it is the panacea for all software engineering. For example

 	

 “A high-level syntax with low-level performance!”

 	

 “Concurrency without crashes!”

 	

 “C with perfect safety!”

 These slogans (sometimes overstated) are great. But for all of its merits, Rust does have some disadvantages.

1.8.1 Cyclic data structures

 In Rust, it is difficult to model cyclic data like an arbitrary graph structure. Implementing a doubly-linked list is an undergraduate-level computer science problem. Yet Rust’s safety checks do hamper progress here. If you’re new to the language, avoid implementing these sorts of data structures until you’re more familiar with Rust.

1.8.2 Compile times

 Rust is slower at compiling code than its peer languages. It has a complex compiler toolchain that receives multiple intermediate representations and sends lots of code to the LLVM compiler. The unit of compilation for a Rust program is not an individual file but a whole package (known affectionately as a crate). As crates can include multiple modules, these can be exceedingly large units to compile. Although this enables whole-of-crate optimization, it requires whole-of-crate compilation as well.

1.8.3 Strictness

 It’s impossible—well, difficult—to be lazy when programming with Rust. Programs won’t compile until everything is just right. The compiler is strict, but helpful.

 Over time, it’s likely that you’ll come to appreciate this feature. If you’ve ever programmed in a dynamic language, then you may have encountered the frustration of your program crashing because of a misnamed variable. Rust brings that frustration forward so that your users don’t have to experience the frustration of things crashing.

1.8.4 Size of the language

 Rust is large! It has a rich type system, several dozen keywords, and includes some features that are unavailable in other languages. These factors all combine to create a steep learning curve. To make this manageable, I encourage learning Rust gradually. Start with a minimal subset of the language and give yourself time to learn the details when you need these. That is the approach taken in this book. Advanced concepts are deferred until much later.

1.8.5 Hype

 The Rust community is wary of growing too quickly and being consumed by hype. Yet, a number of software projects have encountered this question in their Inbox: “Have you considered rewriting this in Rust?” Unfortunately, software written in Rust is still software. It not immune to security problems and does not offer a panacea to all of software engineering’s ills.

1.9 TLS security case studies

 To demonstrate that Rust will not alleviate all errors, let’s examine two serious exploits that threatened almost all internet-facing devices and consider whether Rust would have prevented those.

 By 2015, as Rust gained prominence, implementations of SSL/TLS (namely, OpenSSL and Apple’s own fork) were found to have serious security holes. Known informally as Heartbleed and goto fail;, both exploits provide opportunities to test Rust’s claims of memory safety. Rust is likely to have helped in both cases, but it is still possible to write Rust code that suffers from similar issues.

1.9.1 Heartbleed

 Heartbleed, officially designated as CVE-2014-0160,16 was caused by re-using a buffer incorrectly. A buffer is a space set aside in memory for receiving input. Data can leak from one read to the next if the buffer’s contents are not cleared between writes.

 Why does this situation occur? Programmers hunt for performance. Buffers are reused to minimize how often memory applications ask for memory from the OS.

 Imagine that we want to process some secret information from multiple users. We decide, for whatever reason, to reuse a single buffer through the course of the program. If we don’t reset this buffer once we use it, information from earlier calls will leak to the latter ones. Here is a précis of a program that would encounter this error:

 let buffer = &mut[0u8; 1024]; ①

read_secrets(&user1, buffer); ②

store_secrets(buffer);

read_secrets(&user2, buffer); ③

store_secrets(buffer);

 ① Binds a reference (&) to a mutable (mut) array ([...]) that contains 1,024 unsigned 8-bit integers (u8) initialized to 0 to the variable buffer

 ② Fills buffer with bytes from the data from user1

 ③ The buffer still contains data from user1 that may or may not be overwritten by user2.

 Rust does not protect you from logical errors. It ensures that your data is never able to be written in two places at the same time. It does not ensure that your program is free from all security issues.

1.9.2 Goto fail;

 The goto fail; bug, officially designated as CVE-2014-1266,17 was caused by programmer error coupled with C design issues (and potentially by its compiler not pointing out the flaw). A function that was designed to verify a cryptographic key pair ended up skipping all checks. Here is a selected extract from the original SSLVerifySignedServerKeyExchange function with a fair amount of obfuscatory syntax retained:18

 1 static OSStatus

 2 SSLVerifySignedServerKeyExchange(SSLContext *ctx,

 3 bool isRsa,

 4 SSLBuffer signedParams,

 5 uint8_t *signature,

 6 UInt16 signatureLen)

 7{

 8 OSStatus err; ①

 9 ...

10

11 if ((err = SSLHashSHA1.update(

12 &hashCtx, &serverRandom)) != 0) ②

13 goto fail;

14

15 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

16 goto fail;

17 goto fail; ③

18 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

19 goto fail;

20

21 err = sslRawVerify(ctx,

22 ctx->peerPubKey,

23 dataToSign, /* plaintext */

24 dataToSignLen, /* plaintext length */

25 signature,

26 signatureLen);

27 if(err) {

28 sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "

29 "returned %d\n", (int)err);

30 goto fail;

31 }

32

33 fail:

34 SSLFreeBuffer(&signedHashes);

35 SSLFreeBuffer(&hashCtx);

36 return err; ④

37 }

 ① Initializes OSStatus with a pass value (e.g., 0)

 ② A series of defensive programming checks

 ③ Unconditional goto skips SSLHashSHA1.final() and the (significant) call to sslRawVerify().

 ④ Returns the pass value of 0, even for inputs that should have failed the verification test

 In the example code, the issue lies between lines 15 and 17. In C, logical tests do not require curly braces. C compilers interpret those three lines like this:

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) {

 goto fail;

 }

 goto fail;

 Would Rust have helped? Probably. In this specific case, Rust’s grammar would have caught the bug. It does not allow logical tests without curly braces. Rust also issues a warning when code is unreachable. But that doesn’t mean the error is made impossible in Rust. Stressed programmers under tight deadlines make mistakes. In general, similar code would compile and run.

 Tip Code with caution.

1.10 Where does Rust fit best?

 Although it was designed as a systems programming language, Rust is a general-purpose language. It has been successfully deployed in many areas, which we discuss next.

1.10.1 Command-line utilities

 Rust offers three main advantages for programmers creating command-line utilities: minimal startup time, low memory use, and easy deployment. Programs start their work quickly because Rust does not need to initialize an interpreter (Python, Ruby, etc.) or virtual machine (Java, C#, etc.).

 As a bare metal language, Rust produces memory-efficient programs.19 As you’ll see throughout the book, many types are zero-sized. That is, these only exist as hints to the compiler and take up no memory at all in the running program.

 Utilities written in Rust are compiled as static binaries by default. This compilation method avoids depending on shared libraries that you must install before the program can run. Creating programs that can run without installation steps makes these easy to distribute.

1.10.2 Data processing

 Rust excels at text processing and other forms of data wrangling. Programmers benefit from control over memory use and fast startup times. As of mid-2017, Rust touts the world’s fastest regular expression engine. In 2019, the Apache Arrow data-processing project—foundational to the Python and R data science ecosystems—accepted the Rust-based DataFusion project.

 Rust also underlies the implementation of multiple search engines, data-processing engines, and log-parsing systems. Its type system and memory control provide you with the ability to create high throughput data pipelines with a low and stable memory footprint. Small filter programs can be easily embedded into the larger framework via Apache Storm, Apache Kafka, or Apache Hadoop streaming.

1.10.3 Extending applications

 Rust is well suited for extending programs written in a dynamic language. This enables JNI (Java Native Interface) extensions, C extensions, or Erlang/Elixir NIFs (native implemented functions) in Rust. C extensions are typically a scary proposition. These tend to be quite tightly integrated with the runtime. Make a mistake and you could be looking at runaway memory consumption due to a memory leak or a complete crash. Rust takes away a lot of this anxiety.

 	

 Sentry, a company that processes application errors, finds that Rust is an excellent candidate for rewriting CPU-intensive components of their Python system.20

 	

 Dropbox used Rust to rewrite the file synchronization engine of its client-side application: “More than performance, [Rust’s] ergonomics and focus on correctness have helped us tame sync’s complexity.”21

1.10.4 Resource-constrained environments

 C has occupied the domain of microcontrollers for decades. Yet, the Internet of Things (IoT) is coming. That could mean many billions of insecure devices exposed to the network. Any input parsing code will be routinely probed for weaknesses. Given how infrequently firmware updates for these devices occur, it’s critical that these are as secure as possible from the outset. Rust can play an important role here by adding a layer of safety without imposing runtime costs.

1.10.5 Server-side applications

 Most applications written in Rust live on the server. These could be serving web traffic or supporting businesses running their operations. There is also a tier of services that sit between the OS and your application. Rust is used to write databases, monitoring systems, search appliances, and messaging systems. For example

 	

 The npm package registry for the JavaScript and node.js communities is written in Rust.22

 	

 sled (https://github.com/spacejam/sled), an embedded database, can process a workload of 1 billion operations that includes 5% writes in less than a minute on a 16-core machine.

 	

 Tantivy, a full text search engine, can index 8 GB of English Wikipedia in approximately 100 s on a 4-core desktop machine.23

1.10.6 Desktop applications

 There is nothing inherent in Rust’s design that prevents it from being deployed to develop user-facing software. Servo, the web browser engine that acted as an incubator for Rust’s early development, is a user-facing application. Naturally, so are games.

1.10.7 Desktop

 There is still a significant need to write applications that live on people’s computers. Desktop applications are often complex, difficult to engineer, and hard to support. With Rust’s ergonomic approach to deployment and its rigor, it is likely to become the secret sauce for many applications. To start, these will be built by small, independent developers. As Rust matures, so will the ecosystem.

1.10.8 Mobile

 Android, iOS, and other smartphone operating systems generally provide a blessed path for developers. In the case of Android, that path is Java. In the case of macOS, developers generally program in Swift. There is, however, another way.

 Both platforms provide the ability for native applications to run on them. This is generally intended for applications written in C++, such as games, to be able to be deployed to people’s phones. Rust is able to talk to the phone via the same interface with no additional runtime cost.

1.10.9 Web

 As you are probably aware, JavaScript is the language of the web. Over time though, this will change. Browser vendors are developing a standard called WebAssembly (Wasm) that promises to be a compiler target for many languages. Rust is one of the first. Porting a Rust project to the browser requires only two additional command-line commands. Several companies are exploring the use of Rust in the browser via Wasm, notably CloudFlare and Fastly.

1.10.10 Systems programming

 In some sense, systems programming is Rust’s raison d’être. Many large programs have been implemented in Rust, including compilers (Rust itself), video game engines, and operating systems. The Rust community includes writers of parser generators, databases, and file formats.

 Rust has proven to be a productive environment for programmers who share Rust’s goals. Three standout projects in this area include the following:

 	

 Google is sponsoring the development of Fuchsia OS, an operating system for devices.24

 	

 Microsoft is actively exploring writing low-level components in Rust for Windows.25

 	

 Amazon Web Services (AWS) is building Bottlerocket, a bespoke OS for hosting containers in the cloud.26

1.11 Rust’s hidden feature: Its community

 It takes more than software to grow a programming language. One of the things that the Rust team has done extraordinarily well is to foster a positive and welcoming community around the language. Everywhere you go within the Rust world, you’ll find that you’ll be treated with courtesy and respect.

1.12 Rust phrase book

 When you interact with members of the Rust community, you’ll soon encounter a few terms that have special meaning. Understanding the following terms makes it easier to understand why Rust has evolved the way that it has and the problems that it attempts to solve:

 	

 Empowering everyone—All programmers regardless of ability or background are welcome to participate. Programming, and particularly systems programming, should not be restricted to a blessed few.

 	

 Blazingly fast—Rust is a fast programming language. You’ll be able to write programs that match or exceed the performance of its peer languages, but you will have more safety guarantees.

 	

 Fearless concurrency—Concurrent and parallel programming have always been seen as difficult. Rust frees you from whole classes of errors that have plagued its peer languages.

 	

 No Rust 2.0—Rust code written today will always compile with a future Rust compiler. Rust is intended to be a reliable programming language that can be depended upon for decades to come. In accordance with semantic versioning, Rust is never backward-incompatible, so it will never release a new major version.

 	

 Zero-cost abstractions—The features you gain from Rust impose no runtime cost. When you program in Rust, safety does not sacrifice speed.

Summary

 	

 Many companies have successfully built large software projects in Rust.

 	

 Software written in Rust can be compiled for the PC, the browser, and the server, as well as mobile and IoT devices.

 	

 The Rust language is well loved by software developers. It has repeatedly won Stack Overflow’s “most loved programming language” title.

 	

 Rust allows you to experiment without fear. It provides correctness guarantees that other tools are unable to provide without imposing runtime costs.

 	

 With Rust, there are three main command_line tools to learn:

 	

 cargo, which manages a whole crate

 	

 rustup, which manages Rust installations

 	

 rustc, which manages compilation of Rust source code

 	

 Rust projects are not immune from all bugs.

 	

 Rust code is stable, fast, and light on resources.

 1.See “How our AWS Rust team will contribute to Rust’s future successes,” http://mng.bz/BR4J.

 2.See “Rust at Cloudflare,” https://news.ycombinator.com/item?id=17077358.

OEBPS/Images/IFC.png
~N

Raw Pointer

Box<T>

Arc<T>

The cousins *mut T and
*const T are the free radicals
of the pointer world. Lightning

fast, but wildly unsafe.

Weaknesses
- Unsafe

Powers

- Speed

« Can interact with
the outside world

(. J

Store anything in a box. Accepts
almost any type for long-term
storage. The workhorse of a
new, safe programming era

Powers

+ Store a value in
central storage
ina location
called ‘the heap"

Weaknesses
 Size increase

The reference counted pointer, Ro<T>
is Rust's competent, yet miserly
bookkeeper. It knows who has

borrowed what and when.
Powers. Weaknesses
« Shared access + Size increase

to values. + Runtime cost

+ Not threadsafe

Arc<T> is Rust's ambassador.
It can share values across threads,
guaranteeing that these will
not interfere with each other.

Powers Weaknesses
+Sharedaccess + Size increase

[aaiies) + Runtime cost
+ Threadsafe

(N
(Cell<T> N (

AN

RefCell<T>

An expert in metamorphos
Cell<T> confers the abiity to
mutate immutable values.

Weaknesses
+ Size increase

Powers
* Interior mutabilty
« Performance

Performs mutation on immutable
references with RefCel<T>.
Its mind-bending powers
come with some costs.

Weaknesses
- Size increase

« Runtime cost

Powers

* Interior mutabilty

+ Can be nested
within Re and Arc,
which only accept
immutable refs

+ Lack of compile-
time guarantees

J

Why write something down when
you only need to read it? Perhaps
you only want to make modifications.

This is the role of Cow (copy on wite).
Powers. Weaknesses
« Avoids wites + Possible size
when only read increase

access is used

Acting as a guide on how to
deal with the uncertainties of
user input, String shows us how
to build safe abstractions.

Powers
+ Grows dynamically
as required
+ Guarantees correct
encoding at runtime.

Weaknesses
« Can over
allocate size

Vs

N

RawVec<T>

H

(Shared<T>

‘Your program’s main storage system.
Vec<T> keeps your data orderly
as values are created and destroyed.

Powers Weaknesses
+ Grows dynamically + Can over
as required allocate size

The bedrock of Vec<T> and
other dynamically sized types.
Understands how to provide a
home for your data as needed.

Powers Weaknesses
 Grows dynamically + Not directly

as required applicable from
+ Works with the your code

memory allocator

o find space

J

Sole owner of a value,
a unique pointer is guaranteed
to possess full control.

Powers.
+Base for types
such as Strings,
requiring exclusive
possession of values.

Weaknesses
+ Not appropriate
for application

code directly

_ J

Sharing ownership is hard.
‘Shared<T> makes life
alittle bit easier.

1o T's width, even
‘when empty

_

Powers Weaknesses
- Shared ownership + Not approprite
for application
+ Can align mem
i aven, codo diroctly

J

OEBPS/Images/emoji_03.png

OEBPS/Images/cover.jpeg
IN ACTI(

Systems programming concepts
and techniques

Tim McNamara

/'l MANNING

OEBPS/Images/emoji_04.png

OEBPS/Images/emoji_01.png

OEBPS/Images/Manning_copyright.png

OEBPS/Images/emoji_02.png

OEBPS/Images/Manning_M_small.png

OEBPS/Images/01_01.png
Safety

Rust

Python

7
/
/
/

/
/
/
/
7
i
i
i
!
1
i
i
i

Most programming languages

operate within this band.
Rust provides both safety and control

Control

