
        
            [image: cover]
        

    
Classic Computer Science Problems in Python

      David Kopec 

      [image: ]

      

Copyright
      

      
      
      For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
      

          Special Sales Department
    Manning Publications Co.
    20 Baldwin Road
    PO Box 761
    Shelter Island, NY 11964
    Email: orders@manning.com

      
      © 2019 by Manning Publications Co. All rights reserved.

      
      
      No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
         mechanical, photocopying, or otherwise, without prior written permission of the publisher.
      

      
      Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
         those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
         printed in initial caps or all caps.
      

      
      
      [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
         on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
         of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
         chlorine.
      

      
      
         
            
            
         
         
            
               	[image: ]
               	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

            

         
      

      
      
      Development editor: Jennifer Stout
Technical development editor: Frances Buontemp
Review editor: Aleksandar Dragosavljević
Production editor: Deirdre Hiam
Copy editor: Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: Juan Rufes
Typesetter: Dottie Marsico
Cover designer: Marija Tudor


      
      
      ISBN 9781617295980

      
      Printed in the United States of America

      1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

      
      
      



Dedication
      

      
      
         
         Dedicated to my grandmother, Erminia Antos, a lifelong teacher and learner.

         
      

      
      
      
Brief Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Acknowledgments


         About this book


         About the author


         About the cover illustration


      

      
         Chapter Introduction


         Chapter 1. Small problems


         Chapter 2. Search problems


         Chapter 3. Constraint-satisfaction problems


         Chapter 4. Graph problems


         Chapter 5. Genetic algorithms


         Chapter 6. K-means clustering


         Chapter 7. Fairly simple neural networks


         Chapter 8. Adversarial search


         Chapter 9. Miscellaneous problems


         A. Glossary


         B. More resources


         C. A brief introduction to type hints


      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      
Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Acknowledgments


         About this book


         About the author


         About the cover illustration


      

      
         Chapter Introduction


         
            Why Python?


            What is a classic computer science problem?


            What kinds of problems are in this book?


            Who is this book for?


            Python versioning, source code repository, and type hints


            No graphics, no UI code, just the standard library


            Part of a series


         

         Chapter 1. Small problems


         
            1.1. The Fibonacci sequence


            
               1.1.1. A first recursive attempt


               1.1.2. Utilizing base cases


               1.1.3. Memoization to the rescue


               1.1.4. Automatic memoization


               1.1.5. Keep it simple, Fibonacci


               1.1.6. Generating Fibonacci numbers with a generator


            

            1.2. Trivial compression


            1.3. Unbreakable encryption


            
               1.3.1. Getting the data in order


               1.3.2. Encrypting and decrypting


            

            1.4. Calculating pi


            1.5. The Towers of Hanoi


            
               1.5.1. Modeling the towers


               1.5.2. Solving The Towers of Hanoi


            

            1.6. Real-world applications


            1.7. Exercises


         

         Chapter 2. Search problems


         
            2.1. DNA search


            
               2.1.1. Storing DNA


               2.1.2. Linear search


               2.1.3. Binary search


               2.1.4. A generic example


            

            2.2. Maze solving


            
               2.2.1. Generating a random maze


               2.2.2. Miscellaneous maze minutiae


               2.2.3. Depth-first search


               2.2.4. Breadth-first search


               2.2.5. A* search


               Euclidean distance


            

            2.3. Missionaries and cannibals


            
               2.3.1. Representing the problem


               2.3.2. Solving


            

            2.4. Real-world applications


            2.5. Exercises


         

         Chapter 3. Constraint-satisfaction problems


         
            3.1. Building a constraint-satisfaction problem framework


            3.2. The Australian map-coloring problem


            3.3. The eight queens problem


            3.4. Word search


            3.5. SEND+MORE=MONEY


            3.6. Circuit board layout


            3.7. Real-world applications


            3.8. Exercises


         

         Chapter 4. Graph problems


         
            4.1. A map as a graph


            4.2. Building a graph framework


            
               4.2.1. Working with Edge and Graph


            

            4.3. Finding the shortest path


            
               4.3.1. Revisiting breadth-first search (BFS)


            

            4.4. Minimizing the cost of building the network


            
               4.4.1. Workings with weights


               4.4.2. Finding the minimum spanning tree


            

            4.5. Finding shortest paths in a weighted graph


            
               4.5.1. Dijkstra’s algorithm


            

            4.6. Real-world applications


            4.7. Exercises


         

         Chapter 5. Genetic algorithms


         
            5.1. Biological background


            5.2. A generic genetic algorithm


            5.3. A naive test


            5.4. SEND+MORE=MONEY revisited


            5.5. Optimizing list compression


            5.6. Challenges for genetic algorithms


            5.7. Real-world applications


            5.8. Exercises


         

         Chapter 6. K-means clustering


         
            6.1. Preliminaries


            6.2. The k-means clustering algorithm


            6.3. Clustering governors by age and longitude


            6.4. Clustering Michael Jackson albums by length


            6.5. K-means clustering problems and extensions


            6.6. Real-world applications


            6.7. Exercises


         

         Chapter 7. Fairly simple neural networks


         
            7.1. Biological basis?


            7.2. Artificial neural networks


            
               7.2.1. Neurons


               7.2.2. Layers


               7.2.3. Backpropagation


               7.2.4. The big picture


            

            7.3. Preliminaries


            
               7.3.1. Dot product


               7.3.2. The activation function


            

            7.4. Building the network


            
               7.4.1. Implementing neurons


               7.4.2. Implementing layers


               7.4.3. Implementing the network


            

            7.5. Classification problems


            
               7.5.1. Normalizing data


               7.5.2. The classic iris data set


               7.5.3. Classifying wine


            

            7.6. Speeding up neural networks


            7.7. Neural network problems and extensions


            7.8. Real-world applications


            7.9. Exercises


         

         Chapter 8. Adversarial search


         
            8.1. Basic board game components


            8.2. Tic-tac-toe


            
               8.2.1. Managing tic-tac-toe state


               8.2.2. Minimax


               8.2.3. Testing minimax with tic-tac-toe


               8.2.4. Developing a tic-tac-toe AI


            

            8.3. Connect Four


            
               8.3.1. Connect Four game machinery


               8.3.2. A Connect Four AI


               8.3.3. Improving minimax with alpha-beta pruning


            

            8.4. Minimax improvements beyond alpha-beta pruning


            8.5. Real-world applications


            8.6. Exercises


         

         Chapter 9. Miscellaneous problems


         
            9.1. The knapsack problem


            9.2. The Traveling Salesman Problem


            
               9.2.1. The naive approach


               9.2.2. Taking it to the next level


            

            9.3. Phone number mnemonics


            9.4. Real-world applications


            9.5. Exercises


         

         A. Glossary


         B. More resources


         
            B.1 Python


            B.2 Algorithms and data structures


            B.3 Artificial intelligence


            B.4 Functional programming


            B.5 Open source projects useful for machine learning


         

         C. A brief introduction to type hints


         
            C.1 What are type hints?


            C.2 What do type hints look like?


            C.3 Why are type hints useful?


            C.4 What are the downsides of type hints?


            C.5 Getting more information


         

      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      

Acknowledgments
      

      
      
      
      Thank you, everyone at Manning who helped in the production of this book: Cheryl Weisman, Deirdre Hiam, Katie Tennant, Dottie
         Marsico, Janet Vail, Barbara Mirecki, Aleksandar Dragosavljević, Mary Piergies, and Marija Tudor.
      

      
      I thank acquisitions editor Brian Sawyer, who wisely steered us toward attacking Python after I finished Swift. Thank you,
         development editor Jennifer Stout, for always having a positive attitude. Thanks go to technical editor Frances Buontempo,
         who provided careful consideration of each chapter and gave detailed, useful feedback at every turn. I thank copyeditor Andy
         Carroll, whose superb attention to detail on both the Swift book and this one caught several of my mistakes, and also my technical
         proofreader, Juan Rufes.
      

      
      The following people also reviewed the book: Al Krinker, Al Pezewski, Alan Bogusiewicz, Brian Canada, Craig Henderson, Daniel
         Kenney-Jung, Edmond Sesay, Ewa Baranowska, Gary Barnhart, Geoff Clark, James Watson, Jeffrey Lim, Jens Christian, Bredahl
         Madsen, Juan Jimenez, Juan Rufes, Matt Lemke, Mayur Patil, Michael Bright, Roberto Casadei, Sam Zaydel, Thorsten Weber, Tom
         Jeffries, and Will Lopez. Thanks go to all who provided constructive and specific criticism during the book’s development.
         Your feedback was incorporated.
      

      
      I thank my family, friends, and colleagues who encouraged me to take on this book project immediately following the publication
         of Classic Computer Science Problems in Swift. I thank my online friends on Twitter and elsewhere who have provided encouraging words and helped promote the book in ways
         small and large. And I thank my wife, Rebecca Kopec, and my mom, Sylvia Kopec, who are always supportive of my projects.
      

      
      We developed this book in a fairly short period of time. The vast majority of the manuscript was written over the summer of
         2018, based on the earlier Swift version. I appreciate that Manning was willing to compress its (usually much longer) process
         to enable me to work during a schedule that was convenient to me. I know this put pressure on the entire team as we went through
         three rounds of reviews at multiple different levels amongst many different people in just a few months. Most readers would
         be amazed at how many different kinds of reviews a technical book by a traditional publisher goes through and how many people
         have their part in critiquing and revising it. From the technical proofer to the copy editor, the review editor, all of the
         official reviewers, and everyone in between, I thank you!
      

      
      Finally, most importantly, I thank my readers for purchasing this book. In a world full of halfhearted online tutorials, I
         think it is important to support the development of books that provide the same author’s voice throughout an extended volume.
         Online tutorials can be superb resources, but your purchase enables full-length, vetted, and carefully developed books to
         still have a place in computer science education.
      

      
      



About this book
      

      
      
      
      
      
Trademarks
      

      
      Trademarked names appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, the
         names are only used in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
         the trademark. “Python” is a registered trademark of the Python Software Foundation. “Connect Four” is a trademark of Hasbro,
         Inc.
      

      
      
      
      
Book forum
      

      
      Purchase of Classic Computer Science Problems in Python includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and from other users. To access the forum, go to https://www.manning.com/books/classic-computer-science-problems-in-python. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest
         his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as
         long as the book is in print.
      

      
      
      

About the author
      

      
      
      
      
      
      [image: ]

      
      
      David Kopec is an assistant professor of Computer Science & Innovation at Champlain College in Burlington, Vermont. He is
         an experienced software developer and the author of Classic Computer Science Problems in Swift (Manning, 2018), and Dart for Absolute Beginners (Apress, 2014). David holds a bachelor’s degree in economics and a master’s in computer science, both from Dartmouth College.
         You can reach David on Twitter @davekopec.
      

      
      

About the cover illustration
      

      
      
      
      The figure on the cover of Classic Computer Science Problems in Python is captioned “Habit of a Bonza or Priest in China.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
         heightened with gum arabic.
      

      
      Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading
         map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of
         commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs
         of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and
         travel for pleasure were relatively new phenomena in the late eighteenth century, and collections such as this one were popular,
         introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
      

      
      The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
         some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
         faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
         we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
         and technical life.
      

      
      At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
         of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
         to life by Jefferys’ pictures.
      

      
      
      
      

Introduction
      

      
      Thank you for purchasing Classic Computer Science Problems in Python. Python is one of the most popular programming languages in the world, and people become Python programmers from a variety
         of backgrounds. Some have a formal computer science education. Others learn Python as a hobby. Still others use Python in
         a professional setting, but their primary job is not to be a software developer. The problems in this intermediate book will
         help seasoned programmers refresh themselves on ideas from their CS education while learning some advanced features of the
         language. Self-taught programmers will accelerate their CS education by learning classic problems in the language of their
         choice: Python. This book covers such a diversity of problem-solving techniques that there is truly something for everyone.
      

      
      This book is not an introduction to Python. There are numerous excellent books from Manning and other publishers in that vein.[1] Instead, this book assumes that you are already an intermediate or advanced Python programmer. Although this book requires
         Python 3.7, mastery of every facet of the latest version of Python is not assumed. In fact, the book’s content was created
         with the assumption that it would serve as learning material to help readers achieve such mastery. On the other hand, this
         book is not appropriate for readers completely new to Python.
      

      
         1 
            

If you are just starting your Python journey, you may want to first check out The Quick Python Book, 3rd edition, by Naomi Ceder (Manning, 2018) before beginning this book.
            

         

      

      
      
      
Why Python?
      

      
      Python is used in pursuits as diverse as data science, film-making, computer science education, IT management, and much more.
         There really is no computing field that Python has not touched (except maybe kernel development). Python is loved for its flexibility, beautiful and succinct syntax,
         object-oriented purity, and bustling community. The strong community is important because it means Python is welcoming to
         newcomers and has a large ecosystem of available libraries for developers to build upon.
      

      
      For the preceding reasons, Python is sometimes thought of as a beginner-friendly language, and that characterization is probably
         true. Most people would agree that Python is easier to learn than C++, for example, and its community is almost certainly
         friendlier to newcomers. As a result, many people learn Python because it is approachable, and they start writing the programs
         they want to write fairly quickly. But they may never have received an education in computer science that teaches them all
         of the powerful problem-solving techniques available to them. If you are one of those programmers who knows Python but does
         not know CS, this book is for you.
      

      
      Other people learn Python as a second, third, fourth, or fifth language after a long time working in software development.
         For them, seeing old problems they’ve already seen in another language will help them accelerate their learning of Python.
         For them, this book may be a good refresher before a job interview, or it might expose them to some problem-solving techniques
         they had not previously thought of exploiting in their work. I would encourage them to skim the table of contents to see if
         there are topics in this book that excite them.
      

      
      
      
      
What is a classic computer science problem?
      

      
      Some say that computers are to computer science as telescopes are to astronomy. If that’s the case, then perhaps a programming
         language is like a telescope lens. In any event, the term “classic computer science problems” is used here to mean “programming
         problems typically taught in an undergraduate computer science curriculum.”
      

      
      There are certain programming problems that are given to new programmers to solve and that have become commonplace enough
         to be deemed classic, whether in a classroom setting during the pursuit of a bachelor’s degree (in computer science, software
         engineering, and the like) or within the confines of an intermediate programming textbook (for example, a first book on artificial
         intelligence or algorithms). A selection of such problems is what you will find in this book.
      

      
      The problems range from the trivial, which can be solved in a few lines of code, to the complex, which require the buildup
         of systems over multiple chapters. Some problems touch on artificial intelligence, and others simply require common sense.
         Some problems are practical, and other problems are fanciful.
      

      
      
      
      
What kinds of problems are in this book?
      

      
      Chapter 1 introduces problem-solving techniques that will likely look familiar to most readers. Things like recursion, memoization,
         and bit manipulation are essential building blocks of other techniques explored in later chapters.
      

      
      This gentle introduction is followed by chapter 2, which focuses on search problems. Search is such a large topic that you could arguably place most problems in the book under
         its banner. Chapter 2 introduces the most essential search algorithms, including binary search, depth-first search, breadth-first search, and A*.
         These algorithms are reused throughout the rest of the book.
      

      
      In chapter 3, you will build a framework for solving a broad range of problems that can be abstractly defined by variables of limited
         domains that have constraints between them. This includes such classics as the eight queens problem, the Australian map-coloring
         problem, and the cryptarithmetic SEND+MORE=MONEY.
      

      
      Chapter 4 explores the world of graph algorithms, which to the uninitiated are surprisingly broad in their applicability. In this chapter,
         you will build a graph data structure and then use it to solve several classic optimization problems.
      

      
      Chapter 5 explores genetic algorithms, a technique that is less deterministic than most covered in the book but that sometimes can
         solve problems traditional algorithms cannot solve in a reasonable amount of time.
      

      
      Chapter 6 covers k-means clustering and is perhaps the most algorithmically specific chapter in the book. This clustering technique
         is simple to implement, easy to understand, and broadly applicable.
      

      
      Chapter 7 aims to explain what a neural network is and to give the reader a taste of what a very simple neural network looks like.
         It does not aim to provide comprehensive coverage of this exciting and evolving field. In this chapter, you will build a neural
         network from first principles, using no external libraries, so you can really see how a neural network works.
      

      
      Chapter 8 is on adversarial search in two-player perfect information games. You will learn a search algorithm known as minimax, which
         can be used to develop an artificial opponent that can play games like chess, checkers, and Connect Four well.
      

      
      Finally, chapter 9 covers interesting (and fun) problems that did not quite fit anywhere else in the book.
      

      
      
      
      
Who is this book for?
      

      
      This book is for both intermediate and experienced programmers. Experienced programmers who want to deepen their knowledge
         of Python will find comfortably familiar problems from their computer science or programming education. Intermediate programmers
         will be introduced to these classic problems in the language of their choice: Python. Developers getting ready for coding
         interviews will likely find this book to be valuable preparation material.
      

      
      In addition to professional programmers, students enrolled in undergraduate computer science programs who have an interest
         in Python will likely find this book helpful. It makes no attempt to be a rigorous introduction to data structures and algorithms.
         This is not a data structures and algorithms textbook. You will not find proofs or extensive use of big-O notation within its pages. Instead, it is positioned as an approachable,
         hands-on tutorial to the problem-solving techniques that should be the end product of taking data structure, algorithm, and
         artificial intelligence classes.
      

      
      Once again, knowledge of Python’s syntax and semantics is assumed. A reader with zero programming experience will get little
         out of this book, and a programmer with zero Python experience will almost certainly struggle. In other words, Classic Computer Science Problems in Python is a book for working Python programmers and computer science students.
      

      
      
      
      
Python versioning, source code repository, and type hints
      

      
      The source code in this book was written to adhere to version 3.7 of the Python language. It utilizes features of Python that
         only became available in Python 3.7, so some of the code will not run on earlier versions of Python. Instead of struggling
         and trying to make the examples run in an earlier version, please just download the latest version of Python before starting
         the book.
      

      
      This book only makes use of the Python standard library (with a slight exception in chapter 2, where the typing_extensions module is installed), so all of the code in this book should run on any platform where Python is supported (macOS, Windows,
         GNU/Linux, and so on). The code in this book was only tested against CPython (the main Python interpreter available from python.org), although it is likely that most of it will run in a Python 3.7–compatible version of another Python interpreter.
      

      
      This book does not explain how to use Python tools like editors, IDEs, debuggers, and the Python REPL. The book’s source code
         is available online from the GitHub repository: https://github.com/davecom/ClassicComputerScienceProblemsInPython. The source code is organized into folders by chapter. As you read each chapter, you will see the name of a source file in
         the header of each code listing. You can find that source file in its respective folder in the repository. You should be able
         to run the problem by just entering python3 filename.py or python filename.py depending on your computer’s setup with regards to the name of the Python 3 interpreter.
      

      
      Every code listing in this book makes use of Python type hints, also known as type annotations. These annotations are a relatively
         new feature for the Python language, and they may look intimidating to Python programmers who have never seen them before.
         They are used for three reasons:
      

      
      

      
         
         	They provide clarity about the types of variables, function parameters, and function returns.

         
         	They self-document the code in a sense, as a result of reason 1. Instead of having to search through a comment or docstring
            to find the return type of a function, you can just look at its signature.
         

         
         	They allow the code to be type-checked for correctness. One popular Python type checker is mypy.

         
      

      
      Not everyone is a fan of type hints, and choosing to use them throughout the book was frankly a gamble. I hope they will be
         a help instead of a hindrance. It takes a little more time to write Python with type hints, but it provides more clarity when
         read back. An interesting note is that type hints have no effect on the actual running of the code in the Python interpreter. You
         can remove the type hints from any of the code in this book, and it should still run. If you have never seen type hints before
         and feel you need a more comprehensive introduction to them before diving into the book, please see appendix C, which provides
         a crash course in type hints.
      

      
      
      
      
No graphics, no UI code, just the standard library
      

      
      There are no examples in this book that produce graphical output or that make use of a graphical user interface (GUI). Why?
         The goal is to solve the posed problems with solutions that are as concise and readable as possible. Often, doing graphics
         gets in the way or makes solutions significantly more complex than they need to be to illustrate the technique or algorithm
         in question.
      

      
      Further, by not making use of any GUI framework, all of the code in the book is eminently portable. It can as easily run on
         an embedded distribution of Python running on Linux as it can on a desktop running Windows. Also, a conscious decision was
         made to only use packages from the Python standard library instead of any external libraries, as most advanced Python books
         do. Why? The goal is to teach problem-solving techniques from first principles, not to “pip install a solution.” By having
         to work through every problem from scratch, you will hopefully gain an understanding about how popular libraries work behind
         the scenes. At a minimum, only using the standard library makes the code in this book more portable and easier to run.
      

      
      This is not to say that graphical solutions are not sometimes more illustrative of an algorithm than text-based solutions.
         It simply was not the focus of this book. It would add another layer of unnecessary complexity.
      

      
      
      
      
Part of a series
      

      
      This is the second book in a series titled Classic Computer Science Problems published by Manning. The first book was Classic Computer Science Problems in Swift, published in 2018. In each book in the series, we aim to provide language-specific insight while teaching through the lens
         of the same (mostly) computer science problems.
      

      
      If you enjoy this book and plan to learn another language covered by the series, you may find going from one book to another
         an easy way to improve your mastery of that language. For now, the series covers just Swift and Python. I wrote the first
         two books myself, because I have significant experience in both of those languages, but we are already discussing plans for
         future books in the series co-authored by people who are experts in other languages. I encourage you to look out for them
         if you enjoy this book. For more information about the series, visit https://classicproblems.com/.
      

      
      
      
      
      


Chapter 1. Small problems
      

      
      To get started, we will explore some simple problems that can be solved with no more than a few relatively short functions.
         Although these problems are small, they will still allow us to explore some interesting problem-solving techniques. Think
         of them as a good warm-up.
      

      
      
      
1.1. The Fibonacci sequence
      

      
      The Fibonacci sequence is a sequence of numbers such that any number, except for the first and second, is the sum of the previous
         two:
      

      
      0, 1, 1, 2, 3, 5, 8, 13, 21...

      
      The value of the first Fibonacci number in the sequence is 0. The value of the fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in the sequence, one can use the formula
      

      
      fib(n) = fib(n - 1) + fib(n - 2)

      
      
      1.1.1. A first recursive attempt
      

      
      The preceding formula for computing a number in the Fibonacci sequence (illustrated in figure 1.1) is a form of pseudocode that can be trivially translated into a recursive Python function. (A recursive function is a function that calls itself.) This mechanical translation will serve as our first
         attempt at writing a function to return a given value of the Fibonacci sequence.
      

      
      
      Listing 1.1. fib1.py
      

      def fib1(n: int) -> int:
    return fib1(n - 1) + fib1(n - 2)

      
      
      

      
      
      Figure 1.1. The height of each stickman is the previous two stickmen’s heights added together.
      

      
      [image: ]

      
      
      Let’s try to run this function by calling it with a value.
      

      
      
      Listing 1.2. fib1.py continued
      

      if __name__ == "__main__":
    print(fib1(5))

      
      Uh-oh! If we try to run fib1.py, we generate an error:

      
      RecursionError: maximum recursion depth exceeded

      
      The issue is that fib1() will run forever without returning a final result. Every call to fib1() results in another two calls of fib1() with no end in sight. We call such a circumstance infinite recursion (see figure 1.2), and it is analogous to an infinite loop.
      

      
      
      
      Figure 1.2. The recursive function fib(n) calls itself with the arguments n-2 and n-1.
      

      
      
      
      [image: ]

      
      
      
      
      
      
      1.1.2. Utilizing base cases
      

      
      Notice that until you run fib1(), there is no indication from your Python environment that there is anything wrong with it. It is the duty of the programmer
         to avoid infinite recursion, not the compiler or the interpreter. The reason for the infinite recursion is that we never specified
         a base case. In a recursive function, a base case serves as a stopping point.
      

      
      In the case of the Fibonacci function, we have natural base cases in the form of the special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous two numbers in the sequence. Instead, they are the special first two values. Let’s try specifying
         them as base cases.
      

      
      
      Listing 1.3. fib2.py
      

      def fib2(n: int) -> int:
    if n < 2:  # base case
        return n
    return fib2(n - 2) + fib2(n - 1)  # recursive case

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      The fib2() version of the Fibonacci function returns 0 as the zeroth number (fib2(0)), rather than the first number, as in our original proposition. In a programming context, this kind of makes sense because
         we are used to sequences starting with a zeroth element.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      fib2() can be called successfully and will return correct results. Try calling it with some small values.
      

      
      
      Listing 1.4. fib2.py continued
      

      if __name__ == "__main__":
    print(fib2(5))
    print(fib2(10))

      
      Do not try calling fib2(50). It will never finish executing! Why? Every call to fib2() results in two more calls to fib2() by way of the recursive calls fib2(n - 1) and fib2(n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For example, a call of fib2(4) results in this entire set of calls:
      

      
      fib2(4) -> fib2(3), fib2(2)
fib2(3) -> fib2(2), fib2(1)
fib2(2) -> fib2(1), fib2(0)
fib2(2) -> fib2(1), fib2(0)
fib2(1) -> 1
fib2(1) -> 1
fib2(1) -> 1
fib2(0) -> 0
fib2(0) -> 0

      
      
      
      Figure 1.3. Every non-base-case call of fib2() results in two more calls of fib2().
      

      
      
      
      [image: ]

      
      
      
      If you count them (and as you will see if you add some print calls), there are 9 calls to fib2() just to compute the 4th element! It gets worse. There are 15 calls required to compute element 5, 177 calls to compute element 10, and 21,891 calls to compute element 20. We can do better.
      

      
      
      
      1.1.3. Memoization to the rescue
      

      
      Memoization is a technique in which you store the results of computational tasks when they are completed so that when you need them again,
         you can look them up instead of needing to compute them a second (or millionth) time (see figure 1.4).[1]

      
         1 
            

Donald Michie, a famous British computer scientist, coined the term memoization. Donald Michie, Memo functions: a language feature with “rote-learning” properties (Edinburgh University, Department of Machine Intelligence and Perception, 1967).
            

         

      

      
      
      
      Figure 1.4. The human memoization machine
      

      
      [image: ]

      
      
      Let’s create a new version of the Fibonacci function that utilizes a Python dictionary for memoization purposes.

      
      
      

      
      Listing 1.5. fib3.py
      

      from typing import Dict
memo: Dict[int, int] = {0: 0, 1: 1}  # our base cases

def fib3(n: int) -> int:
    if n not in memo:
        memo[n] = fib3(n - 1) + fib3(n - 2)  # memoization
    return memo[n]

      
      You can now safely call fib3(50).
      

      
      
      Listing 1.6. fib3.py continued
      

      if __name__ == "__main__":
    print(fib3(5))
    print(fib3(50))

      
      A call to fib3(20) will result in just 39 calls of fib3() as opposed to the 21,891 of fib2() resulting from the call fib2(20). memo is prefilled with the earlier base cases of 0 and 1, saving fib3() from the complexity of another if statement.
      

      
      
      
      1.1.4. Automatic memoization
      

      
      fib3() can be further simplified. Python has a built-in decorator for memoizing any function automagically. In fib4(), the decorator @functools.lru_cache() is used with the same exact code as we used in fib2(). Each time fib4() is executed with a novel argument, the decorator causes the return value to be cached. Upon future calls of fib4() with the same argument, the previous return value of fib4() for that argument is retrieved from the cache and returned.
      

      
      
      Listing 1.7. fib4.py
      

      from functools import lru_cache

@lru_cache(maxsize=None)
def fib4(n: int) -> int:  # same definition as fib2()
    if n < 2:  # base case
        return n
    return fib4(n - 2) + fib4(n - 1)  # recursive case

if __name__ == "__main__":
    print(fib4(5))
    print(fib4(50))

      
      Note that we are able to calculate fib4(50) instantly, even though the body of the Fibonacci function is the same as that in fib2(). @lru_cache’s maxsize property indicates how many of the most recent calls of the function it is decorating should be cached. Setting it to None indicates that there is no limit.
      

      
      
      
      
      1.1.5. Keep it simple, Fibonacci
      

      
      There is an even more performant option. We can solve Fibonacci with an old-fashioned iterative approach.
      

      
      
      Listing 1.8. fib5.py
      

      def fib5(n: int) -> int:
    if n == 0: return n  # special case
    last: int = 0  # initially set to fib(0)
    next: int = 1  # initially set to fib(1)
    for _ in range(1, n):
        last, next = next, last + next
    return next

if __name__ == "__main__":
    print(fib5(5))
    print(fib5(50))

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      
      The body of the for loop in fib5() uses tuple unpacking in perhaps a bit of an overly clever way. Some may feel that it sacrifices readability for conciseness.
         Others may find the conciseness in and of itself more readable. The gist is, last is being set to the previous value of next, and next is being set to the previous value of last plus the previous value of next. This avoids the creation of a temporary variable to hold the old value of next after last is updated but before next is updated. Using tuple unpacking in this fashion for some kind of variable swap is common in Python.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      With this approach, the body of the for loop will run a maximum of n - 1 times. In other words, this is the most efficient version yet. Compare 19 runs of the for loop body to 21,891 recursive calls of fib2() for the 20th Fibonacci number. That could make a serious difference in a real-world application!
      

      
      In the recursive solutions, we worked backward. In this iterative solution, we work forward. Sometimes recursion is the most
         intuitive way to solve a problem. For example, the meat of fib1() and fib2() is pretty much a mechanical translation of the original Fibonacci formula. However, naive recursive solutions can also come
         with significant performance costs. Remember, any problem that can be solved recursively can also be solved iteratively.
      

      
      
      
      1.1.6. Generating Fibonacci numbers with a generator
      

      
      So far, we have written functions that output a single value in the Fibonacci sequence. What if we want to output the entire
         sequence up to some value instead? It is easy to convert fib5() into a Python generator using the yield statement. When the generator is iterated, each iteration will spew a value from the Fibonacci sequence using a yield statement.
      

      
      
      

      
      Listing 1.9. fib6.py
      

      from typing import Generator

def fib6(n: int) -> Generator[int, None, None]:
    yield 0  # special case
    if n > 0: yield 1  # special case
    last: int = 0  # initially set to fib(0)
    next: int = 1  # initially set to fib(1)
    for _ in range(1, n):
        last, next = next, last + next
        yield next  # main generation step

if __name__ == "__main__":
    for i in fib6(50):
        print(i)

      
      If you run fib6.py, you will see 51 numbers in the Fibonacci sequence printed. For each iteration of the for loop for i in fib6(50):, fib6() runs through to a yield statement. If the end of the function is reached and there are no more yield statements, the loop finishes iterating.
      

      
      
      
      
      
1.2. Trivial compression
      

      
      Saving space (virtual or real) is often important. It is more efficient to use less space, and it can save money. If you are
         renting an apartment that is bigger than you need for your things and family, you could “downsize” to a smaller place that
         is less expensive. If you are paying by the byte to store your data on a server, you may want to compress it so that its storage
         costs you less. Compression is the act of taking data and encoding it (changing its form) in such a way that it takes up less space. Decompression is reversing the process, returning the data to its original form.
      

      
      If it is more storage-efficient to compress data, then why is all data not compressed? There is a tradeoff between time and
         space. It takes time to compress a piece of data and to decompress it back into its original form. Therefore, data compression
         only makes sense in situations where small size is prioritized over fast execution. Think of large files being transmitted
         over the internet. Compressing them makes sense because it will take longer to transfer the files than it will to decompress
         them once received. Further, the time taken to compress the files for their storage on the original server only needs to be
         accounted for once.
      

      
      The easiest data compression wins come about when you realize that data storage types use more bits than are strictly required
         for their contents. For instance, thinking low-level, if an unsigned integer that will never exceed 65,535 is being stored
         as a 64-bit unsigned integer in memory, it is being stored inefficiently. It could instead be stored as a 16-bit unsigned
         integer. This would reduce the space consumption for the actual number by 75% (16 bits instead of 64 bits). If millions of
         such numbers are being stored inefficiently, it can add up to megabytes of wasted space.
      

      
      In Python, sometimes for the sake of simplicity (which is a legitimate goal, of course), the developer is shielded from thinking
         in bits. There is no 64-bit unsigned integer type, and there is no 16-bit unsigned integer type. There is just a single int type that can store numbers of arbitrary precision. The function sys.getsizeof() can help you find out how many bytes of memory your Python objects are consuming. But due to the inherent overhead of the
         Python object system, there is no way to create an int that takes up less than 28 bytes (224 bits) in Python 3.7. A single int can be extended one bit at a time (as we will do in this example), but it consumes a minimum of 28 bytes.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      If you are a little rusty regarding binary, recall that a bit is a single value that is either a 1 or a 0. A sequence of 1s
         and 0s is read in base 2 to represent a number. For the purposes of this section, you do not need to do any math in base 2,
         but you do need to understand that the number of bits that a type stores determines how many different values it can represent.
         For example, 1 bit can represent 2 values (0 or 1), 2 bits can represent 4 values (00, 01, 10, 11), 3 bits can represent 8
         values, and so on.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If the number of possible different values that a type is meant to represent is less than the number of values that the bits
         being used to store it can represent, it can likely be more efficiently stored. Consider the nucleotides that form a gene
         in DNA.[2] Each nucleotide can only be one of four values: A, C, G, or T. (There will be more about this in chapter 2.) Yet if the gene is stored as a str, which can be thought of as a collection of Unicode characters, each nucleotide will be represented by a character, which
         generally requires 8 bits of storage. In binary, just 2 bits are needed to store a type with four possible values: 00, 01,
         10, and 11 are the four different values that can be represented by 2 bits. If A is assigned 00, C is assigned 01, G is assigned
         10, and T is assigned 11, the storage required for a string of nucleotides can be reduced by 75% (from 8 bits to 2 bits per
         nucleotide).
      

      
         2 
            

This example is inspired by Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne (Addison-Wesley Professional, 2011), page 819.
            

         

      

      
      Instead of storing our nucleotides as a str, they can be stored as a bit string (see figure 1.5). A bit string is exactly what it sounds like: an arbitrary-length sequence of 1s and 0s. Unfortunately, the Python standard library contains no off-the-shelf construct for working with bit strings of arbitrary length. The following
         code converts a str composed of As, Cs, Gs, and Ts into a string of bits and back again. The string of bits is stored within an int. Because the int type in Python can be of any length, it can be used as a bit string of any length. To convert back into a str, we will implement the Python __str__() special method.
      

      
      
      
      Figure 1.5. Compressing a str representing a gene into a 2-bit-per-nucleotide bit string
      

      
      
      
      [image: ]

      
      
      
      
      Listing 1.10. trivial_compression.py
      

      class CompressedGene:
    def __init__(self, gene: str) -> None:
        self._compress(gene)

      
      A CompressedGene is provided a str of characters representing the nucleotides in a gene, and it internally stores the sequence of nucleotides as a bit string.
         The __init__() method’s main responsibility is to initialize the bit-string construct with the appropriate data. __init__() calls _compress() to do the dirty work of actually converting the provided str of nucleotides into a bit string.
      

      
      Note that _compress() starts with an underscore. Python has no concept of truly private methods or variables. (All variables and methods can be
         accessed through reflection; there’s no strict enforcement of privacy.) A leading underscore is used as a convention to indicate
         that the implementation of a method should not be relied on by actors outside of the class. (It is subject to change and should
         be treated as private.)
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      
      If you start a method or instance variable name in a class with two leading underscores, Python will “name mangle” it, changing
         its implementation name with a salt and not making it easily discoverable by other classes. We use one underscore in this
         book to indicate a “private” variable or method, but you may wish to use two if you really want to emphasize that something
         is private. For more on naming in Python, check out the section “Descriptive Naming Styles” from PEP 8: http://mng.bz/NA52.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Next, let’s look at how we can actually perform the compression.

      
      
      Listing 1.11. trivial_compression.py continued
      

      def _compress(self, gene: str) -> None:
    self.bit_string: int = 1  # start with sentinel
    for nucleotide in gene.upper():
        self.bit_string <<= 2  # shift left two bits
        if nucleotide == "A":  # change last two bits to 00
            self.bit_string |= 0b00
        elif nucleotide == "C":  # change last two bits to 01
            self.bit_string |= 0b01
        elif nucleotide == "G":  # change last two bits to 10
            self.bit_string |= 0b10
        elif nucleotide == "T":  # change last two bits to 11
            self.bit_string |= 0b11
        else:
            raise ValueError("Invalid Nucleotide:{}".format(nucleotide))

      
      The _compress()method looks at each character in the str of nucleotides sequentially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds 01, and so on. Remember
         that two bits are needed for each nucleotide. As a result, before we add each new nucleotide, we shift the bit string two
         bits to the left (self.bit_string <<= 2).
      

      
      Every nucleotide is added using an “or” operation (|). After the left shift, two 0s are added to the right side of the bit string. In bitwise operations, “ORing” (for example,
         self.bit_string |= 0b10

OEBPS/01fig03.jpg


OEBPS/01fig04_alt.jpg


OEBPS/01fig01_alt.jpg


OEBPS/01fig02.jpg


OEBPS/pub.jpg


OEBPS/figxiv-01.jpg


OEBPS/logo.jpg


OEBPS/common1.jpg


OEBPS/01fig05.jpg


OEBPS/cover.jpg


