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Introduction
      

      
      Thank you for purchasing Classic Computer Science Problems in Python. Python is one of the most popular programming languages in the world, and people become Python programmers from a variety
         of backgrounds. Some have a formal computer science education. Others learn Python as a hobby. Still others use Python in
         a professional setting, but their primary job is not to be a software developer. The problems in this intermediate book will
         help seasoned programmers refresh themselves on ideas from their CS education while learning some advanced features of the
         language. Self-taught programmers will accelerate their CS education by learning classic problems in the language of their
         choice: Python. This book covers such a diversity of problem-solving techniques that there is truly something for everyone.
      

      
      This book is not an introduction to Python. There are numerous excellent books from Manning and other publishers in that vein.[1] Instead, this book assumes that you are already an intermediate or advanced Python programmer. Although this book requires
         Python 3.7, mastery of every facet of the latest version of Python is not assumed. In fact, the book’s content was created
         with the assumption that it would serve as learning material to help readers achieve such mastery. On the other hand, this
         book is not appropriate for readers completely new to Python.
      

      
         1 
            

If you are just starting your Python journey, you may want to first check out The Quick Python Book, 3rd edition, by Naomi Ceder (Manning, 2018) before beginning this book.
            

         

      

      
      
      
Why Python?
      

      
      Python is used in pursuits as diverse as data science, film-making, computer science education, IT management, and much more.
         There really is no computing field that Python has not touched (except maybe kernel development). Python is loved for its flexibility, beautiful and succinct syntax,
         object-oriented purity, and bustling community. The strong community is important because it means Python is welcoming to
         newcomers and has a large ecosystem of available libraries for developers to build upon.
      

      
      For the preceding reasons, Python is sometimes thought of as a beginner-friendly language, and that characterization is probably
         true. Most people would agree that Python is easier to learn than C++, for example, and its community is almost certainly
         friendlier to newcomers. As a result, many people learn Python because it is approachable, and they start writing the programs
         they want to write fairly quickly. But they may never have received an education in computer science that teaches them all
         of the powerful problem-solving techniques available to them. If you are one of those programmers who knows Python but does
         not know CS, this book is for you.
      

      
      Other people learn Python as a second, third, fourth, or fifth language after a long time working in software development.
         For them, seeing old problems they’ve already seen in another language will help them accelerate their learning of Python.
         For them, this book may be a good refresher before a job interview, or it might expose them to some problem-solving techniques
         they had not previously thought of exploiting in their work. I would encourage them to skim the table of contents to see if
         there are topics in this book that excite them.
      

      
      
      
      
What is a classic computer science problem?
      

      
      Some say that computers are to computer science as telescopes are to astronomy. If that’s the case, then perhaps a programming
         language is like a telescope lens. In any event, the term “classic computer science problems” is used here to mean “programming
         problems typically taught in an undergraduate computer science curriculum.”
      

      
      There are certain programming problems that are given to new programmers to solve and that have become commonplace enough
         to be deemed classic, whether in a classroom setting during the pursuit of a bachelor’s degree (in computer science, software
         engineering, and the like) or within the confines of an intermediate programming textbook (for example, a first book on artificial
         intelligence or algorithms). A selection of such problems is what you will find in this book.
      

      
      The problems range from the trivial, which can be solved in a few lines of code, to the complex, which require the buildup
         of systems over multiple chapters. Some problems touch on artificial intelligence, and others simply require common sense.
         Some problems are practical, and other problems are fanciful.
      

      
      
      
      
What kinds of problems are in this book?
      

      
      Chapter 1 introduces problem-solving techniques that will likely look familiar to most readers. Things like recursion, memoization,
         and bit manipulation are essential building blocks of other techniques explored in later chapters.
      

      
      This gentle introduction is followed by chapter 2, which focuses on search problems. Search is such a large topic that you could arguably place most problems in the book under
         its banner. Chapter 2 introduces the most essential search algorithms, including binary search, depth-first search, breadth-first search, and A*.
         These algorithms are reused throughout the rest of the book.
      

      
      In chapter 3, you will build a framework for solving a broad range of problems that can be abstractly defined by variables of limited
         domains that have constraints between them. This includes such classics as the eight queens problem, the Australian map-coloring
         problem, and the cryptarithmetic SEND+MORE=MONEY.
      

      
      Chapter 4 explores the world of graph algorithms, which to the uninitiated are surprisingly broad in their applicability. In this chapter,
         you will build a graph data structure and then use it to solve several classic optimization problems.
      

      
      Chapter 5 explores genetic algorithms, a technique that is less deterministic than most covered in the book but that sometimes can
         solve problems traditional algorithms cannot solve in a reasonable amount of time.
      

      
      Chapter 6 covers k-means clustering and is perhaps the most algorithmically specific chapter in the book. This clustering technique
         is simple to implement, easy to understand, and broadly applicable.
      

      
      Chapter 7 aims to explain what a neural network is and to give the reader a taste of what a very simple neural network looks like.
         It does not aim to provide comprehensive coverage of this exciting and evolving field. In this chapter, you will build a neural
         network from first principles, using no external libraries, so you can really see how a neural network works.
      

      
      Chapter 8 is on adversarial search in two-player perfect information games. You will learn a search algorithm known as minimax, which
         can be used to develop an artificial opponent that can play games like chess, checkers, and Connect Four well.
      

      
      Finally, chapter 9 covers interesting (and fun) problems that did not quite fit anywhere else in the book.
      

      
      
      
      
Who is this book for?
      

      
      This book is for both intermediate and experienced programmers. Experienced programmers who want to deepen their knowledge
         of Python will find comfortably familiar problems from their computer science or programming education. Intermediate programmers
         will be introduced to these classic problems in the language of their choice: Python. Developers getting ready for coding
         interviews will likely find this book to be valuable preparation material.
      

      
      In addition to professional programmers, students enrolled in undergraduate computer science programs who have an interest
         in Python will likely find this book helpful. It makes no attempt to be a rigorous introduction to data structures and algorithms.
         This is not a data structures and algorithms textbook. You will not find proofs or extensive use of big-O notation within its pages. Instead, it is positioned as an approachable,
         hands-on tutorial to the problem-solving techniques that should be the end product of taking data structure, algorithm, and
         artificial intelligence classes.
      

      
      Once again, knowledge of Python’s syntax and semantics is assumed. A reader with zero programming experience will get little
         out of this book, and a programmer with zero Python experience will almost certainly struggle. In other words, Classic Computer Science Problems in Python is a book for working Python programmers and computer science students.
      

      
      
      
      
Python versioning, source code repository, and type hints
      

      
      The source code in this book was written to adhere to version 3.7 of the Python language. It utilizes features of Python that
         only became available in Python 3.7, so some of the code will not run on earlier versions of Python. Instead of struggling
         and trying to make the examples run in an earlier version, please just download the latest version of Python before starting
         the book.
      

      
      This book only makes use of the Python standard library (with a slight exception in chapter 2, where the typing_extensions module is installed), so all of the code in this book should run on any platform where Python is supported (macOS, Windows,
         GNU/Linux, and so on). The code in this book was only tested against CPython (the main Python interpreter available from python.org), although it is likely that most of it will run in a Python 3.7–compatible version of another Python interpreter.
      

      
      This book does not explain how to use Python tools like editors, IDEs, debuggers, and the Python REPL. The book’s source code
         is available online from the GitHub repository: https://github.com/davecom/ClassicComputerScienceProblemsInPython. The source code is organized into folders by chapter. As you read each chapter, you will see the name of a source file in
         the header of each code listing. You can find that source file in its respective folder in the repository. You should be able
         to run the problem by just entering python3 filename.py or python filename.py depending on your computer’s setup with regards to the name of the Python 3 interpreter.
      

      
      Every code listing in this book makes use of Python type hints, also known as type annotations. These annotations are a relatively
         new feature for the Python language, and they may look intimidating to Python programmers who have never seen them before.
         They are used for three reasons:
      

      
      

      
         
         	They provide clarity about the types of variables, function parameters, and function returns.

         
         	They self-document the code in a sense, as a result of reason 1. Instead of having to search through a comment or docstring
            to find the return type of a function, you can just look at its signature.
         

         
         	They allow the code to be type-checked for correctness. One popular Python type checker is mypy.

         
      

      
      Not everyone is a fan of type hints, and choosing to use them throughout the book was frankly a gamble. I hope they will be
         a help instead of a hindrance. It takes a little more time to write Python with type hints, but it provides more clarity when
         read back. An interesting note is that type hints have no effect on the actual running of the code in the Python interpreter. You
         can remove the type hints from any of the code in this book, and it should still run. If you have never seen type hints before
         and feel you need a more comprehensive introduction to them before diving into the book, please see appendix C, which provides
         a crash course in type hints.
      

      
      
      
      
No graphics, no UI code, just the standard library
      

      
      There are no examples in this book that produce graphical output or that make use of a graphical user interface (GUI). Why?
         The goal is to solve the posed problems with solutions that are as concise and readable as possible. Often, doing graphics
         gets in the way or makes solutions significantly more complex than they need to be to illustrate the technique or algorithm
         in question.
      

      
      Further, by not making use of any GUI framework, all of the code in the book is eminently portable. It can as easily run on
         an embedded distribution of Python running on Linux as it can on a desktop running Windows. Also, a conscious decision was
         made to only use packages from the Python standard library instead of any external libraries, as most advanced Python books
         do. Why? The goal is to teach problem-solving techniques from first principles, not to “pip install a solution.” By having
         to work through every problem from scratch, you will hopefully gain an understanding about how popular libraries work behind
         the scenes. At a minimum, only using the standard library makes the code in this book more portable and easier to run.
      

      
      This is not to say that graphical solutions are not sometimes more illustrative of an algorithm than text-based solutions.
         It simply was not the focus of this book. It would add another layer of unnecessary complexity.
      

      
      
      
      
Part of a series
      

      
      This is the second book in a series titled Classic Computer Science Problems published by Manning. The first book was Classic Computer Science Problems in Swift, published in 2018. In each book in the series, we aim to provide language-specific insight while teaching through the lens
         of the same (mostly) computer science problems.
      

      
      If you enjoy this book and plan to learn another language covered by the series, you may find going from one book to another
         an easy way to improve your mastery of that language. For now, the series covers just Swift and Python. I wrote the first
         two books myself, because I have significant experience in both of those languages, but we are already discussing plans for
         future books in the series co-authored by people who are experts in other languages. I encourage you to look out for them
         if you enjoy this book. For more information about the series, visit https://classicproblems.com/.
      

      
      
      
      
      


Chapter 1. Small problems
      

      
      To get started, we will explore some simple problems that can be solved with no more than a few relatively short functions.
         Although these problems are small, they will still allow us to explore some interesting problem-solving techniques. Think
         of them as a good warm-up.
      

      
      
      
1.1. The Fibonacci sequence
      

      
      The Fibonacci sequence is a sequence of numbers such that any number, except for the first and second, is the sum of the previous
         two:
      

      
      0, 1, 1, 2, 3, 5, 8, 13, 21...

      
      The value of the first Fibonacci number in the sequence is 0. The value of the fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in the sequence, one can use the formula
      

      
      fib(n) = fib(n - 1) + fib(n - 2)

      
      
      1.1.1. A first recursive attempt
      

      
      The preceding formula for computing a number in the Fibonacci sequence (illustrated in figure 1.1) is a form of pseudocode that can be trivially translated into a recursive Python function. (A recursive function is a function that calls itself.) This mechanical translation will serve as our first
         attempt at writing a function to return a given value of the Fibonacci sequence.
      

      
      
      Listing 1.1. fib1.py
      

      def fib1(n: int) -> int:
    return fib1(n - 1) + fib1(n - 2)

      
      
      

      
      
      Figure 1.1. The height of each stickman is the previous two stickmen’s heights added together.
      

      
      [image: ]

      
      
      Let’s try to run this function by calling it with a value.
      

      
      
      Listing 1.2. fib1.py continued
      

      if __name__ == "__main__":
    print(fib1(5))

      
      Uh-oh! If we try to run fib1.py, we generate an error:

      
      RecursionError: maximum recursion depth exceeded

      
      The issue is that fib1() will run forever without returning a final result. Every call to fib1() results in another two calls of fib1() with no end in sight. We call such a circumstance infinite recursion (see figure 1.2), and it is analogous to an infinite loop.
      

      
      
      
      Figure 1.2. The recursive function fib(n) calls itself with the arguments n-2 and n-1.
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      1.1.2. Utilizing base cases
      

      
      Notice that until you run fib1(), there is no indication from your Python environment that there is anything wrong with it. It is the duty of the programmer
         to avoid infinite recursion, not the compiler or the interpreter. The reason for the infinite recursion is that we never specified
         a base case. In a recursive function, a base case serves as a stopping point.
      

      
      In the case of the Fibonacci function, we have natural base cases in the form of the special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous two numbers in the sequence. Instead, they are the special first two values. Let’s try specifying
         them as base cases.
      

      
      
      Listing 1.3. fib2.py
      

      def fib2(n: int) -> int:
    if n < 2:  # base case
        return n
    return fib2(n - 2) + fib2(n - 1)  # recursive case

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      The fib2() version of the Fibonacci function returns 0 as the zeroth number (fib2(0)), rather than the first number, as in our original proposition. In a programming context, this kind of makes sense because
         we are used to sequences starting with a zeroth element.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      fib2() can be called successfully and will return correct results. Try calling it with some small values.
      

      
      
      Listing 1.4. fib2.py continued
      

      if __name__ == "__main__":
    print(fib2(5))
    print(fib2(10))

      
      Do not try calling fib2(50). It will never finish executing! Why? Every call to fib2() results in two more calls to fib2() by way of the recursive calls fib2(n - 1) and fib2(n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For example, a call of fib2(4) results in this entire set of calls:
      

      
      fib2(4) -> fib2(3), fib2(2)
fib2(3) -> fib2(2), fib2(1)
fib2(2) -> fib2(1), fib2(0)
fib2(2) -> fib2(1), fib2(0)
fib2(1) -> 1
fib2(1) -> 1
fib2(1) -> 1
fib2(0) -> 0
fib2(0) -> 0

      
      
      
      Figure 1.3. Every non-base-case call of fib2() results in two more calls of fib2().
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      If you count them (and as you will see if you add some print calls), there are 9 calls to fib2() just to compute the 4th element! It gets worse. There are 15 calls required to compute element 5, 177 calls to compute element 10, and 21,891 calls to compute element 20. We can do better.
      

      
      
      
      1.1.3. Memoization to the rescue
      

      
      Memoization is a technique in which you store the results of computational tasks when they are completed so that when you need them again,
         you can look them up instead of needing to compute them a second (or millionth) time (see figure 1.4).[1]

      
         1 
            

Donald Michie, a famous British computer scientist, coined the term memoization. Donald Michie, Memo functions: a language feature with “rote-learning” properties (Edinburgh University, Department of Machine Intelligence and Perception, 1967).
            

         

      

      
      
      
      Figure 1.4. The human memoization machine
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      Let’s create a new version of the Fibonacci function that utilizes a Python dictionary for memoization purposes.

      
      
      

      
      Listing 1.5. fib3.py
      

      from typing import Dict
memo: Dict[int, int] = {0: 0, 1: 1}  # our base cases

def fib3(n: int) -> int:
    if n not in memo:
        memo[n] = fib3(n - 1) + fib3(n - 2)  # memoization
    return memo[n]

      
      You can now safely call fib3(50).
      

      
      
      Listing 1.6. fib3.py continued
      

      if __name__ == "__main__":
    print(fib3(5))
    print(fib3(50))

      
      A call to fib3(20) will result in just 39 calls of fib3() as opposed to the 21,891 of fib2() resulting from the call fib2(20). memo is prefilled with the earlier base cases of 0 and 1, saving fib3() from the complexity of another if statement.
      

      
      
      
      1.1.4. Automatic memoization
      

      
      fib3() can be further simplified. Python has a built-in decorator for memoizing any function automagically. In fib4(), the decorator @functools.lru_cache() is used with the same exact code as we used in fib2(). Each time fib4() is executed with a novel argument, the decorator causes the return value to be cached. Upon future calls of fib4() with the same argument, the previous return value of fib4() for that argument is retrieved from the cache and returned.
      

      
      
      Listing 1.7. fib4.py
      

      from functools import lru_cache

@lru_cache(maxsize=None)
def fib4(n: int) -> int:  # same definition as fib2()
    if n < 2:  # base case
        return n
    return fib4(n - 2) + fib4(n - 1)  # recursive case

if __name__ == "__main__":
    print(fib4(5))
    print(fib4(50))

      
      Note that we are able to calculate fib4(50) instantly, even though the body of the Fibonacci function is the same as that in fib2(). @lru_cache’s maxsize property indicates how many of the most recent calls of the function it is decorating should be cached. Setting it to None indicates that there is no limit.
      

      
      
      
      
      1.1.5. Keep it simple, Fibonacci
      

      
      There is an even more performant option. We can solve Fibonacci with an old-fashioned iterative approach.
      

      
      
      Listing 1.8. fib5.py
      

      def fib5(n: int) -> int:
    if n == 0: return n  # special case
    last: int = 0  # initially set to fib(0)
    next: int = 1  # initially set to fib(1)
    for _ in range(1, n):
        last, next = next, last + next
    return next

if __name__ == "__main__":
    print(fib5(5))
    print(fib5(50))

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      
      The body of the for loop in fib5() uses tuple unpacking in perhaps a bit of an overly clever way. Some may feel that it sacrifices readability for conciseness.
         Others may find the conciseness in and of itself more readable. The gist is, last is being set to the previous value of next, and next is being set to the previous value of last plus the previous value of next. This avoids the creation of a temporary variable to hold the old value of next after last is updated but before next is updated. Using tuple unpacking in this fashion for some kind of variable swap is common in Python.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      With this approach, the body of the for loop will run a maximum of n - 1 times. In other words, this is the most efficient version yet. Compare 19 runs of the for loop body to 21,891 recursive calls of fib2() for the 20th Fibonacci number. That could make a serious difference in a real-world application!
      

      
      In the recursive solutions, we worked backward. In this iterative solution, we work forward. Sometimes recursion is the most
         intuitive way to solve a problem. For example, the meat of fib1() and fib2() is pretty much a mechanical translation of the original Fibonacci formula. However, naive recursive solutions can also come
         with significant performance costs. Remember, any problem that can be solved recursively can also be solved iteratively.
      

      
      
      
      1.1.6. Generating Fibonacci numbers with a generator
      

      
      So far, we have written functions that output a single value in the Fibonacci sequence. What if we want to output the entire
         sequence up to some value instead? It is easy to convert fib5() into a Python generator using the yield statement. When the generator is iterated, each iteration will spew a value from the Fibonacci sequence using a yield statement.
      

      
      
      

      
      Listing 1.9. fib6.py
      

      from typing import Generator

def fib6(n: int) -> Generator[int, None, None]:
    yield 0  # special case
    if n > 0: yield 1  # special case
    last: int = 0  # initially set to fib(0)
    next: int = 1  # initially set to fib(1)
    for _ in range(1, n):
        last, next = next, last + next
        yield next  # main generation step

if __name__ == "__main__":
    for i in fib6(50):
        print(i)

      
      If you run fib6.py, you will see 51 numbers in the Fibonacci sequence printed. For each iteration of the for loop for i in fib6(50):, fib6() runs through to a yield statement. If the end of the function is reached and there are no more yield statements, the loop finishes iterating.
      

      
      
      
      
      
1.2. Trivial compression
      

      
      Saving space (virtual or real) is often important. It is more efficient to use less space, and it can save money. If you are
         renting an apartment that is bigger than you need for your things and family, you could “downsize” to a smaller place that
         is less expensive. If you are paying by the byte to store your data on a server, you may want to compress it so that its storage
         costs you less. Compression is the act of taking data and encoding it (changing its form) in such a way that it takes up less space. Decompression is reversing the process, returning the data to its original form.
      

      
      If it is more storage-efficient to compress data, then why is all data not compressed? There is a tradeoff between time and
         space. It takes time to compress a piece of data and to decompress it back into its original form. Therefore, data compression
         only makes sense in situations where small size is prioritized over fast execution. Think of large files being transmitted
         over the internet. Compressing them makes sense because it will take longer to transfer the files than it will to decompress
         them once received. Further, the time taken to compress the files for their storage on the original server only needs to be
         accounted for once.
      

      
      The easiest data compression wins come about when you realize that data storage types use more bits than are strictly required
         for their contents. For instance, thinking low-level, if an unsigned integer that will never exceed 65,535 is being stored
         as a 64-bit unsigned integer in memory, it is being stored inefficiently. It could instead be stored as a 16-bit unsigned
         integer. This would reduce the space consumption for the actual number by 75% (16 bits instead of 64 bits). If millions of
         such numbers are being stored inefficiently, it can add up to megabytes of wasted space.
      

      
      In Python, sometimes for the sake of simplicity (which is a legitimate goal, of course), the developer is shielded from thinking
         in bits. There is no 64-bit unsigned integer type, and there is no 16-bit unsigned integer type. There is just a single int type that can store numbers of arbitrary precision. The function sys.getsizeof() can help you find out how many bytes of memory your Python objects are consuming. But due to the inherent overhead of the
         Python object system, there is no way to create an int that takes up less than 28 bytes (224 bits) in Python 3.7. A single int can be extended one bit at a time (as we will do in this example), but it consumes a minimum of 28 bytes.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      If you are a little rusty regarding binary, recall that a bit is a single value that is either a 1 or a 0. A sequence of 1s
         and 0s is read in base 2 to represent a number. For the purposes of this section, you do not need to do any math in base 2,
         but you do need to understand that the number of bits that a type stores determines how many different values it can represent.
         For example, 1 bit can represent 2 values (0 or 1), 2 bits can represent 4 values (00, 01, 10, 11), 3 bits can represent 8
         values, and so on.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If the number of possible different values that a type is meant to represent is less than the number of values that the bits
         being used to store it can represent, it can likely be more efficiently stored. Consider the nucleotides that form a gene
         in DNA.[2] Each nucleotide can only be one of four values: A, C, G, or T. (There will be more about this in chapter 2.) Yet if the gene is stored as a str, which can be thought of as a collection of Unicode characters, each nucleotide will be represented by a character, which
         generally requires 8 bits of storage. In binary, just 2 bits are needed to store a type with four possible values: 00, 01,
         10, and 11 are the four different values that can be represented by 2 bits. If A is assigned 00, C is assigned 01, G is assigned
         10, and T is assigned 11, the storage required for a string of nucleotides can be reduced by 75% (from 8 bits to 2 bits per
         nucleotide).
      

      
         2 
            

This example is inspired by Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne (Addison-Wesley Professional, 2011), page 819.
            

         

      

      
      Instead of storing our nucleotides as a str, they can be stored as a bit string (see figure 1.5). A bit string is exactly what it sounds like: an arbitrary-length sequence of 1s and 0s. Unfortunately, the Python standard library contains no off-the-shelf construct for working with bit strings of arbitrary length. The following
         code converts a str composed of As, Cs, Gs, and Ts into a string of bits and back again. The string of bits is stored within an int. Because the int type in Python can be of any length, it can be used as a bit string of any length. To convert back into a str, we will implement the Python __str__() special method.
      

      
      
      
      Figure 1.5. Compressing a str representing a gene into a 2-bit-per-nucleotide bit string
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      Listing 1.10. trivial_compression.py
      

      class CompressedGene:
    def __init__(self, gene: str) -> None:
        self._compress(gene)

      
      A CompressedGene is provided a str of characters representing the nucleotides in a gene, and it internally stores the sequence of nucleotides as a bit string.
         The __init__() method’s main responsibility is to initialize the bit-string construct with the appropriate data. __init__() calls _compress() to do the dirty work of actually converting the provided str of nucleotides into a bit string.
      

      
      Note that _compress() starts with an underscore. Python has no concept of truly private methods or variables. (All variables and methods can be
         accessed through reflection; there’s no strict enforcement of privacy.) A leading underscore is used as a convention to indicate
         that the implementation of a method should not be relied on by actors outside of the class. (It is subject to change and should
         be treated as private.)
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      
      If you start a method or instance variable name in a class with two leading underscores, Python will “name mangle” it, changing
         its implementation name with a salt and not making it easily discoverable by other classes. We use one underscore in this
         book to indicate a “private” variable or method, but you may wish to use two if you really want to emphasize that something
         is private. For more on naming in Python, check out the section “Descriptive Naming Styles” from PEP 8: http://mng.bz/NA52.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Next, let’s look at how we can actually perform the compression.

      
      
      Listing 1.11. trivial_compression.py continued
      

      def _compress(self, gene: str) -> None:
    self.bit_string: int = 1  # start with sentinel
    for nucleotide in gene.upper():
        self.bit_string <<= 2  # shift left two bits
        if nucleotide == "A":  # change last two bits to 00
            self.bit_string |= 0b00
        elif nucleotide == "C":  # change last two bits to 01
            self.bit_string |= 0b01
        elif nucleotide == "G":  # change last two bits to 10
            self.bit_string |= 0b10
        elif nucleotide == "T":  # change last two bits to 11
            self.bit_string |= 0b11
        else:
            raise ValueError("Invalid Nucleotide:{}".format(nucleotide))

      
      The _compress()method looks at each character in the str of nucleotides sequentially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds 01, and so on. Remember
         that two bits are needed for each nucleotide. As a result, before we add each new nucleotide, we shift the bit string two
         bits to the left (self.bit_string <<= 2).
      

      
      Every nucleotide is added using an “or” operation (|). After the left shift, two 0s are added to the right side of the bit string. In bitwise operations, “ORing” (for example,
         self.bit_string |= 0b10
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