

 [image: cover]

CORS in Action: Creating and consuming cross-origin APIs

 Monsur Hossain

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editors: Cynthia Kane, Monique Bos
Technical development editor Deepak Vohra
Copyeditor: Jodie Allen
Proofreader: Elizabeth Martin
Technical proofreader: Konstantin Yakushev
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291821

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Dedication

 For Haroun and Annisa

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Author

 About the Cover Illustration

 1. Introducing CORS

 Chapter 1. The Core of CORS

 Chapter 2. Making CORS requests

 2. CORS on the server

 Chapter 3. Handling CORS requests

 Chapter 4. Handling preflight requests

 Chapter 5. Cookies and response headers

 Chapter 6. Best practices

 3. Debugging CORS requests

 Chapter 7. Debugging CORS requests

 Appendix A. CORS reference

 Appendix B. Configuring your environment

 Appendix C. What is CSRF?

 Appendix D. Other cross-origin techniques

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 Author Online

 About the Author

 About the Cover Illustration

 1. Introducing CORS

 Chapter 1. The Core of CORS

 1.1. What is CORS?

 1.2. CORS by example

 1.2.1. Setting up the request

 1.2.2. Sending the request

 1.2.3. Processing the response

 1.3. Benefits of CORS

 1.3.1. Wider audience

 1.3.2. Servers stay in charge

 1.3.3. Flexibility

 1.3.4. Easy for developers

 1.3.5. Reduced maintenance overhead

 1.4. Summary

 Chapter 2. Making CORS requests

 2.1. What is a cross-origin request?

 2.2. Browser support for CORS

 2.3. Using the XMLHttpRequest object

 2.3.1. Sending an HTTP request

 2.3.2. Handling the HTTP response

 2.3.3. Including cookies on cross-origin requests

 2.4. XDomainRequest object in Internet Explorer 8 and 9

 2.4.1. Differences between XDomainRequest and XMLHttpRequest

 2.5. Canvas and cross-origin images

 2.6. CORS requests from jQuery

 2.7. Summary

 2. CORS on the server

 Chapter 3. Handling CORS requests

 3.1. Setting up the sample code

 3.1.1. Setting up the sample API

 3.1.2. Setting up the sample client

 3.1.3. Running the sample app

 3.2. Making a CORS request

 3.3. Anatomy of a CORS request

 3.3.1. The players in a CORS request

 3.3.2. Lifecycle of a CORS request

 3.4. Making a request with the Origin header

 3.4.1. Viewing the Origin header

 3.4.2. What is an origin?

 3.4.3. Setting the Origin header

 3.5. Responding to a CORS request

 3.5.1. The Access-Control-Allow-Origin header

 3.5.2. Access-Control-Allow-Origin with a wildcard (*) value

 3.5.3. Access-Control-Allow-Origin with an origin value

 3.5.4. Rejecting CORS requests

 3.6. Summary

 Chapter 4. Handling preflight requests

 4.1. What is a preflight request?

 4.1.1. Lifecycle of a preflight request

 4.1.2. Why does the preflight request exist?

 4.2. Triggering a preflight request

 4.2.1. When is a preflight request sent?

 4.3. Identifying a preflight request

 4.3.1. Origin header

 4.3.2. HTTP OPTIONS method

 4.3.3. Access-Control-Request-Method header

 4.3.4. Putting it all together

 4.4. Responding to a preflight request

 4.4.1. Supporting HTTP methods with Access-Control-Allow-Methods

 4.4.2. Supporting request headers with Access-Control-Allow-Headers

 4.4.3. Sending the actual request

 4.4.4. Rejecting a preflight request

 4.5. Recapping preflights

 Successful preflight != successful request

 JavaScript code and preflights

 Preflights are stateless

 Preflight requests and upload events

 4.6. Preflight result cache

 Setting the cache time with Access-Control-Max-Age

 4.7. Summary

 Chapter 5. Cookies and response headers

 5.1. Supporting cookies in CORS requests

 5.1.1. Setting cookies with a login page

 5.1.2. Reading the cookie on the server

 5.1.3. Including cookies in CORS requests

 5.1.4. How withCredentials and Access-Control-Allow-Credentials interact

 5.1.5. Caveats to cookie support

 5.2. Exposing response headers to the client

 5.2.1. Reading a response header

 5.2.2. Adding response header support

 5.3. Summary

 Chapter 6. Best practices

 6.1. Refactoring the sample code

 6.2. Before you begin

 6.3. Setting the Access-Control-Allow-Origin header

 6.3.1. Allowing cross-origin access for everyone

 6.3.2. Limiting CORS requests to a set of origins

 6.3.3. CORS and proxy servers

 6.3.4. Null origin

 6.3.5. Origin header on same-origin requests

 6.4. Security

 6.4.1. Including cookies on requests

 6.4.2. Authorizing requests using OAuth2

 6.5. Handling preflight requests

 6.5.1. Whitelisting request methods and headers

 6.6. Reducing preflight requests

 6.6.1. Maximizing the preflight cache

 6.6.2. Changing your site to reduce preflight requests

 6.7. Exposing response headers

 6.8. CORS and redirects

 6.9. Summary

 3. Debugging CORS requests

 Chapter 7. Debugging CORS requests

 7.1. Solving CORS errors

 7.2. Using the browser’s developer tools

 7.2.1. Using the console

 7.2.2. Using the Network tab

 7.3. Monitoring network traffic

 7.3.1. Using Wireshark

 7.3.2. Using Fiddler

 7.4. Using curl to simulate CORS requests

 7.4.1. Making CORS requests using curl

 7.4.2. Making preflight requests using curl

 7.4.3. Why use curl?

 7.5. Sending requests using test-cors.org

 7.5.1. Sending requests to a remote server

 7.5.2. Sending requests to the local server

 7.5.3. Understanding how the client works

 7.6. Tips for mobile debugging

 7.6.1. Log requests on the server

 7.6.2. Use test-cors.org

 7.6.3. Use remote debugging tools

 7.6.4. Use a mobile simulator

 7.7. Getting help

 7.8. Summary

 Appendix A. CORS reference

 A.1. HTTP headers

 Request headers

 Response headers

 A.2. Other terms used in CORS

 Simple method

 Simple header

 Simple response header

 Appendix B. Configuring your environment

 B.1. Setting up for the sample application

 B.1.1. Node.js and NPM

 B.1.2. Express

 B.2. Debugging tools

 B.2.1. Wireshark

 B.2.2. Fiddler

 B.2.3. Curl

 B.3. Resources

 Appendix C. What is CSRF?

 C.1. What is CSRF?

 C.2. Implementing CSRF protection for same-origin requests

 Appendix D. Other cross-origin techniques

 D.1. JSONP

 D.2. Flash

 D.3. postMessage and easyXDM

 D.4. Server-side request

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 No one can argue that AJAX was an important advancement in the evolution of the web. In a few short years, a single technology
 (XMLHttpRequest) revolutionized how users interacted with our content. Instead of loading entire pages, portions of the page could refresh
 with minimal distraction to the user. In a time when broadband wasn’t the norm, this change was amazingly powerful.

 The web grew up during that time. The birth of AJAX catalyzed the transformation of “web pages” into “web apps,” but it also
 paved the way for modern client-side development. Today’s JavaScript frameworks, which launched single page apps (SPAs), were
 a result of this early paradigm shift. But as more code moved off the server and into the client, it was clear XMLHttpRequest wasn’t keeping up. JavaScript’s single-origin policy suffocated our creative potential. Web developers like you and I developed
 clever techniques (JSONP and proxy servers) to wiggle around the restrictions, but ultimately, all our cleverness was just
 a bandage. Gone were the days of the mashup. Web services were becoming a ubiquitous “back end” for web applications. True
 dependencies in our applications are critical to making web services tick. However, for services to be accessible from JavaScript
 meant a better tool was needed for dealing with remote resources. Enter cross-origin resource sharing, better known as CORs.

 CORs is a powerful addition in the evolution of XMLHttpRequest and the advancement of web apps. By definition, CORs creates a standard way for JavaScript to securely communicate with cross-domain
 resources. Practically speaking, it opens up a whole new world for front-end developers. CORs brings back flexibility to JavaScript
 developers and allows them to access APIs and services from anywhere on web. For example, organizations can publish read/write
 JSON APIs or make their entire data sets accessible to the world of JavaScript.

 Monsur Hossain is fellow Googler and expert in cross-domain JavaScript communication. He and I first crossed paths working
 on Google’s XML-based Data APIs and later as engineers on Google’s JavaScript client library. Over the years, Monsur lead
 many facets of the client library, including its OAuth authentication flow and adding CORS support for APIs like YouTube and
 Google Drive.

 CORs in Action is a well-rounded resource for developers wanting to learn the entire spectrum of CORs. Monsur does an excellent job of covering
 the basics. He highlights important sections with figures and provides excellent code snippets to teach by example.

 I particularly like how often Monsur references the browser DevTools. It’s a critical tool for gaining insight into the browser’s
 network stack. His use of real-world APIs like Google Calendar and Flickr also give readers practical hands-on experience.
 I have no doubt you’ll walk away learning a great deal from CORs in Action.

 ERIC BIDELMAN STAFF DEVELOPER RELATIONS ENGINEER GOOGLE

Preface

 I first encountered cross-origin requests around 2006, when I joined Google and became the owner of the GData JavaScript Client.
 The GData JavaScript Client was a library that gave developers access to various Google APIs from JavaScript. The library
 itself was written in JavaScript, and the code was pretty straightforward...except for this little corner of code that made
 cross-origin requests to Google’s servers. This was before CORS existed, so this little corner jumped though crazy hoops to
 load data from Google’s APIs. From the developer’s perspective, the code simply worked. But between the request and the response
 was a dark and convoluted maze of code that was difficult to understand and debug.

 So you can imagine my happiness when I discovered CORS. Here was a clean, simple, and standard way for making cross-origin
 requests. Instead of code that’s difficult to understand, I could have simple HTTP response headers. Instead of code that’s
 difficult to debug, I could have a single standard that worked across all browsers. I quickly set out to add support for CORS
 to Google’s APIs.

 And that’s when the real fun started. While CORS uses HTTP headers to enable cross-origin requests, there are many subtle
 ways in which these headers can interact. It’s not as simple as adding an HTTP header to your server and calling it a day.
 And because CORS was such a new feature, there weren’t a lot of resources to guide me. Armed with the CORS spec, Wireshark,
 and a lot of patience, I spent the next few weeks building a flexible and configurable CORS library that could work for various
 types of requests. Based on that experience, I started contributing CORS knowledge to the community by participating in Stack
 Overflow and writing an article about CORS for HTML5Rocks.com.

 That was almost three years ago, and in the years since, CORS has grown from a specification to a feature supported by most
 major APIs. You can find CORS support in APIs from Amazon, Dropbox, Facebook, Flickr, Google, and GitHub (to name just a few).
 This book distills those three years of experience into an easy and illuminating resource for learning CORS. My hope is that
 this book helps make CORS a little less daunting, and encourages you to add CORS support to your own systems. Open access
 to information is a cornerstone of the web, and CORS is one of the ways to enable this. The more developers become comfortable
 with CORS, the more it will become a part of the everyday vocabulary of the web.

Acknowledgments

 This book would have never come together were it not for the generous support from many individuals. I’d like to take a moment
 to acknowledge them here.

 Thank you to all the Googlers who helped guide my own understanding of CORS, including Eric Bidelman, Jad Boutros, Antonio
 Fuentes, Joe Gregorio, Jason Hall (whose prompting led me to investigate CORS in the first place), Yaniv Inbar, Sven Mawson,
 Eduardo Vela Nava, Jeffrey Posnick, Louis Ryan, Benjamin Carl Wiley Sittler, and Mark Stahl. And special thanks to Eric for
 contributing the foreword to the book.

 Thank you to Anne van Kesteren for authoring the CORS spec that made this book possible, to Evan Hahn and Will Stranathan
 for their insights on particularly thorny areas of this book, and to Nicholas Zakas, whose blog post was my first introduction
 to CORS. Michael Hausenblas, thank you for starting enable-cors.org, and passing the torch to me.

 Thank you to everyone at Manning for their support and guidance during the crafting of this book. To my editors Cynthia Kane
 and Monique Bos, thank you for the readings and rereadings that elevated the chapters to the next level. To Konstantin Yakushev,
 thank you for your in-depth technical review across multiple platforms. Thank you also to Michael Stephens, Kevin Sullivan,
 Jodie Allen, Deepak Vohra, Elizabeth Martin, and Chuck Larson.

 Thank you to the reviewers who took time to read the manuscript at various stages of its development and who provided invaluable
 feedback: Christopher Haupt, Cristian Antonioli, Jeroen Benckhuijsen, Joshua Frederic, Margriet Bruggeman, Nickie Buckner,
 Nikander Bruggeman, Roger Keizer, Roger Le, and Tom Rutka.

 Thank you to Amma, Abba, Mom, Dad, Irene, Marvin, Seema Apa, and Jav Bhai for your enthusiasm and support. And finally, thank
 you to my wife, Suraiya, whose patience, advice, understanding, and love were necessary ingredients for writing this book.

About this Book

 The idea behind CORS is simple: allow one site to make a request to another. It’s a fairly trivial thing to do from most programming
 languages. So why does there need to be a book about it?

 Hidden behind this simple idea are a lot of complex concepts. While other programming languages have no restrictions on HTTP
 requests, things are different in a browser, where the browser’s same-origin policy prevents requests from different sites.
 CORS must balance the need to enable cross-origin requests while preserving the same-origin policy for sites that don’t use
 CORS.

 Also, CORS has both a client- and a server-side component. For a cross-origin request to succeed, the client and the server
 must be in agreement. This is different from other web technologies. For example, CSS lives solely in the client-side code;
 there is no server-side component.

 This book serves as an introduction to CORS and attempts to demystify the issues that make CORS complicated.

What this book will give you

 Here is an overview of the topics this book will cover:

 	
CORS from the client— This book starts by looking at how to make CORS requests from JavaScript code. It introduces the XMLHttpRequest object, which can be used to make CORS requests. While the XMLHttpRequest object may be familiar to JavaScript developers, the book focuses on what is unique about CORS. The book also covers alternative
 mechanisms for making CORS requests, such as images in canvas elements, media uploads, and using JQuery.

 	
CORS from the server— The server uses HTTP headers to control CORS behavior. HTTP headers can be used to indicate things like which HTTP methods
 are allowed, whether cookies can be included on requests, and whether cross-origin requests are allowed at all. This book
 takes an in-depth look at what these headers are and how they’re used.

 	
Debugging CORS requests— Because CORS has client and server components, it can sometimes be difficult to debug CORS issues when things go wrong. This
 book ends with a look at how to debug issues with CORS requests. It introduces such tools as the browser’s debugging tools,
 Wireshark, and Fiddler.

What this book won’t give you

 This book isn’t an introduction to JavaScript or the web. This doesn’t mean you need to be a JavaScript expert. It assumes
 that you have a basic understanding of how the web, HTTP requests, and JavaScript work.

 Although this book uses Node.js and Express for the sample code, you won’t find fully programmed CORS solutions for your specific
 language or platform (unless, of course, you happen to be using Node.js and Express). The core concepts of CORS are the same
 regardless of what web platform or programming language you use. The goal of this book is to give you the foundation for understanding
 CORS, so that you can then go off and implement it on your own platform.

How to read this book

 Because this book is an overview of CORS, you can approach it from different perspectives:

 	
API owners— Whether you maintain an existing API or are building a new API from scratch, CORS is a great way to extend your API’s reach.

 	
API consumers— Building dynamic sites on top of APIs can sometimes be difficult. CORS can make this easier by giving developers a pure JavaScript
 mechanism for making API requests.

 	
JavaScript developers— Even if you aren’t making CORS requests, JavaScript developers can benefit from understanding the basics of how XMLHttpRequest and CORS work. Most modern web pages are built on top of asynchronous HTTP requests (AJAX), and it’s useful to have CORS
 as another tool in your toolbox.

Roadmap

 This book is divided into three parts. The first part looks at how to make CORS requests from the browser. The second part
 looks at how to add CORS support to a server. The third part looks at how to debug CORS requests.

Part 1: Introduction to CORS

 Chapter 1 begins by giving an overview of what CORS requests are and how they work. It then dives into CORS with an example that makes
 cross-origin requests to the Flickr API.

 Chapter 2 introduces the XMLHttpRequest object, which can be used to make cross-origin requests. Next, it covers the XDomainRequest object, which is used to make CORS requests from Internet Explorer 8 and 9. Then it covers other places where CORS shows
 up, such as canvas images. Finally, it looks at how to make CORS requests using JQuery.

Part 2: Implementing CORS

 Chapter 3 switches gears to see how a server can be configured to support CORS. It takes a closer look at the role that the client
 code, the browser, and the server play in the lifecycle of a cross-origin request. It introduces the Access-Control-Allow-Origin
 header, which is how a server indicates that it allows cross-origin requests.

 Chapter 4 introduces the concept of a preflight request, which is a small request that asks the server for permission to make the actual CORS request. It covers how the preflight
 request fits into the CORS lifecycle, and introduces a new set of HTTP headers for controlling the response.

 Chapter 5 looks at how to include user credentials such as cookies on the request. It also shows how the server can grant permission
 to the client to read certain response headers.

 The preceding chapters set the foundation for using CORS from the server. Chapter 6 expands on these ideas by providing a set of best practices for implementing CORS on your own server.

Part 3: CORS in practice

 Chapter 7 looks at how to debug CORS requests when something goes wrong. It introduces tools like the browser’s debugging tools, Wireshark,
 and Fiddler, which can be used to monitor and diagnose CORS issues.

Appendixes

 Appendix A provides a reference for all the CORS-related headers. Appendix B looks at how to set up Node.js and Express, which are used throughout the book for the sample code. Appendix C takes a closer look at CSRF issues, and how they relate to CORS. Appendix D looks at other cross-origin request techniques.

Online resources

 This book provides a general introduction to CORS. If you’d like more information, here are a few resources you can turn to:

 	The sample code for this book is hosted at GitHub (https://github.com/monsur/CORSinAction). You can either follow along with the book and type the code out, or download and run the code from here.

 	enable-cors.org is a site I maintain that has pointers to various server-side CORS implementations. If you’re looking to add
 CORS support to a particular programming framework (for example, Java Tomcat), here’s where you should turn.

 	The CORS spec (www.w3.org/TR/cors/) defines exactly how CORS works.

 	Stack Overflow (http://stackoverflow.com/) is a great resource for getting help on CORS-related questions. I hang out there as well, and often answer questions tagged
 with #cors.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format
 the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.

 Code examples appear throughout this book. Longer listings appear under clear listing headers, whereas shorter listings appear
 between lines of text.

 Source code for all the working examples is available from www.manning.com/CORS in Action or www.manning.com/hossain. Sample code is also available at https://github.com/monsur/CORSinAction.

Author Online

 Purchase of CORS in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/CORSinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the author challenging
 questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 Monsur Hossain is a software engineer at Google, where he has worked on various API related projects, including the Google
 APIs JavaScript Client and the Google APIs Discovery Service. He is also responsible for adding CORS support to Google APIs.
 He maintains the site enable-cors.org. Monsur lives in Chicago with his wife and two children.

About the Cover Illustration

 The figure on the cover of CORS in Action is captioned “A Rabbit-skin Seller.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
 compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich
 variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just a little
 over 200 years ago. Isolated from each other, people spoke different dialects and languages; in the streets or in the countryside,
 it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Introducing CORS

 Cross-Origin Resource Sharing (CORS) enables web clients to make HTTP requests to servers hosted on different origins. CORS
 is a unique web technology in that it has both a server-side and a client-side component. The server-side component configures
 which types of cross-origin requests are allowed, while the client-side component controls how cross-origin requests are made.

 Part 1 focuses on the client-side component of CORS. Chapter 1 is an introduction to CORS, how it works, and its benefits. It also gives a taste of what CORS looks like by introducing
 a sample application that makes CORS requests to the Flickr API.

 Chapter 2 dives deeper into this sample application to show how the client-side component of CORS works. It starts by looking at how
 the browser’s XMLHttpRequest object (which is already familiar to any developer making same-origin requests) can be used to make cross-origin requests.
 Then, it turns to Internet Explorer 8 and Internet Explorer 9, which support a subset of CORS via the XDomainRequest object. Next, it looks at other places where CORS requests turn up, such as the canvas element. The chapter concludes by looking at how CORS requests can be made from jQuery.

Chapter 1. The Core of CORS

 This chapter covers

 	Which issues CORS solves

 	How a CORS request works

 	The benefits of CORS

 Suppose you’re building a web mashup to load photos from the New York Public Library’s (NYPL) Flickr page and display them
 on your own page. What would the code look like? You could start with an HTML page to display the photos, add JavaScript code
 to load the photos from the Flickr page, and display them on the page. Pretty straightforward, right?

 But if you were to run this code in the browser, it wouldn’t work because the browser’s same-origin policy limits client code
 from making HTTP requests to different origins. This means that a web page running from your desktop or web server can’t make
 an HTTP request to Flickr.com.

 Cross-Origin Resource Sharing, or CORS, was built to help solve this issue. Before CORS, developers would need to go to great lengths to access APIs from
 JavaScript clients in the browser. CORS enables cross-origin requests in a safe, standard manner. From a client’s perspective, CORS is awesome because it opens up
 a new world of APIs that previously wasn’t available to browser JavaScript. From a server’s perspective, CORS is awesome because it allows the server to open up its APIs to a new world of users.

 This chapter gives an overview of what CORS is and how it’s used. It begins by reviewing CORS’s features and benefits. It
 then walks through the code to make a CORS request.

1.1. What is CORS?

 CORS is simply a way of making HTTP requests from one place to another. This is a trivial thing in other programming languages.
 But it’s difficult to do in client-side JavaScript, because for years the browser’s same-origin policy has explicitly prevented
 these types of requests.

 This may make CORS sound like a contradiction. How can CORS allow cross-origin requests if the same-origin policy explicitly
 forbids them? The key is that CORS puts servers firmly in charge of who can make requests, and what type of requests are allowed.
 A server has the choice to open up its API to all clients, open it up to a small number of clients, or prevent access to all
 clients.

 So if browsers enforce a same-origin policy, how does CORS work? The secret lies in the request and response headers. The
 browser and the server use HTTP headers to communicate how cross-origin requests behave. Using the response headers, the server
 can indicate which clients can access the API, which HTTP methods or HTTP headers are allowed, and whether cookies are allowed
 in the request.

 Figure 1.1 shows what an end-to-end CORS request to the Flickr API looks like.

 Figure 1.1. End-to-end CORS request flow

 [image:]

 Here is a simplified look at the steps to making a CORS request (there are a few more nuances to some CORS requests, which
 we’ll cover in later chapters):

 1. The CORS request is initiated by the JavaScript client code.

 2. The browser includes additional HTTP headers on the request before sending the request to the server.

 3. The server includes HTTP headers in the response that indicate whether the request is allowed.

 4. If the request is allowed, the browser sends the response to the client code.

 If the headers returned by the server don’t exist, or aren’t what the browser expects, the response is rejected and the client
 can’t view the response. In this way, browsers can still enforce the same-origin policy on servers that don’t allow cross-origin
 requests. Now that you have a sense of what CORS is, let’s turn our attention to making a CORS request.

1.2. CORS by example

 Let’s demonstrate how CORS works by building a Flickr sample app. Figure 1.2 shows the app, which loads photos from the NYPL’s Flickr site and displays them on the page.

OEBPS/iiifig01.jpg

OEBPS/01fig01_alt.jpg
Browser inspecis headers; i they're
vald, t gives response to clet.

Browser

Giientcode
iniates

roquestto
Flcks.

-

var xhr
new XWLHTTPRequest ();

xhz.open (method, url)

xhs.onload = function()

(

1

b send();

JavaScript code.

Browser adds
headers and sends
roquest to Flcks.

Fickrrosponds
with special

CORS-specific
HITP headers.

Flickr server

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/cover.jpg
IN AC

(reating and consuming|

Monsur Hossain

Foreworo sy ric Bidelnan

