

 [image: cover]

C++ Concurrency in Action, Second Edition

 Anthony Williams

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Cynthia Kane, Jennifer Stout
Technical development editor: Alain Couniot
Review editor: Aleksandar Dragosavljević
Production editor: Janet Vail
Copy editors: Safis Editing, Heidi Ward
Proofreader: Melody Dolab
Technical proofreader: Frédéric Flayol
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617294693

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

Dedication

 To Kim, Hugh, and Erin

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the first edition

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 Chapter 1. Hello, world of concurrency in C++!

 Chapter 2. Managing threads

 Chapter 3. Sharing data between threads

 Chapter 4. Synchronizing concurrent operations

 Chapter 5. The C++ memory model and operations on atomic types

 Chapter 6. Designing lock-based concurrent data structures

 Chapter 7. Designing lock-free concurrent data structures

 Chapter 8. Designing concurrent code

 Chapter 9. Advanced thread management

 Chapter 10. Parallel algorithms

 Chapter 11. Testing and debugging multithreaded applications

 A. Brief reference for some C++11 language features

 B. Brief comparison of concurrency libraries

 C. A message-passing framework and complete ATM example

 D. C++ Thread Library reference

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the first edition

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 Chapter 1. Hello, world of concurrency in C++!

 1.1. What is concurrency?

 1.1.1. Concurrency in computer systems

 1.1.2. Approaches to concurrency

 1.1.3. Concurrency vs. parallelism

 1.2. Why use concurrency?

 1.2.1. Using concurrency for separation of concerns

 1.2.2. Using concurrency for performance: task and data parallelism

 1.2.3. When not to use concurrency

 1.3. Concurrency and multithreading in C++

 1.3.1. History of multithreading in C++

 1.3.2. Concurrency support in the C++11 standard

 1.3.3. More support for concurrency and parallelism in C++14 and C++17

 1.3.4. Efficiency in the C++ Thread Library

 1.3.5. Platform-specific facilities

 1.4. Getting started

 1.4.1. Hello, Concurrent World

 Summary

 Chapter 2. Managing threads

 2.1. Basic thread management

 2.1.1. Launching a thread

 2.1.2. Waiting for a thread to complete

 2.1.3. Waiting in exceptional circumstances

 2.1.4. Running threads in the background

 2.2. Passing arguments to a thread function

 2.3. Transferring ownership of a thread

 2.4. Choosing the number of threads at runtime

 2.5. Identifying threads

 Summary

 Chapter 3. Sharing data between threads

 3.1. Problems with sharing data between threads

 3.1.1. Race conditions

 3.1.2. Avoiding problematic race conditions

 3.2. Protecting shared data with mutexes

 3.2.1. Using mutexes in C++

 3.2.2. Structuring code for protecting shared data

 3.2.3. Spotting race conditions inherent in interfaces

 3.2.4. Deadlock: the problem and a solution

 3.2.5. Further guidelines for avoiding deadlock

 3.2.6. Flexible locking with std::unique_lock

 3.2.7. Transferring mutex ownership between scopes

 3.2.8. Locking at an appropriate granularity

 3.3. Alternative facilities for protecting shared data

 3.3.1. Protecting shared data during initialization

 3.3.2. Protecting rarely updated data structures

 3.3.3. Recursive locking

 Summary

 Chapter 4. Synchronizing concurrent operations

 4.1. Waiting for an event or other condition

 4.1.1. Waiting for a condition with condition variables

 4.1.2. Building a thread-safe queue with condition variables

 4.2. Waiting for one-off events with futures

 4.2.1. Returning values from background tasks

 4.2.2. Associating a task with a future

 4.2.3. Making (std::)promises

 4.2.4. Saving an exception for the future

 4.2.5. Waiting from multiple threads

 4.3. Waiting with a time limit

 4.3.1. Clocks

 4.3.2. Durations

 4.3.3. Time points

 4.3.4. Functions that accept timeouts

 4.4. Using synchronization of operations to simplify code

 4.4.1. Functional programming with futures

 4.4.2. Synchronizing operations with message passing

 4.4.3. Continuation-style concurrency with the Concurrency TS

 4.4.4. Chaining continuations

 4.4.5. Waiting for more than one future

 4.4.6. Waiting for the first future in a set with when_any

 4.4.7. Latches and barriers in the Concurrency TS

 4.4.8. A basic latch type: std::experimental::latch

 4.4.9. std::experimental::barrier: a basic barrier

 4.4.10. std::experimental::flex_barrier—std::experimental::barrier’s flexible friend

 Summary

 Chapter 5. The C++ memory model and operations on atomic types

 5.1. Memory model basics

 5.1.1. Objects and memory locations

 5.1.2. Objects, memory locations, and concurrency

 5.1.3. Modification orders

 5.2. Atomic operations and types in C++

 5.2.1. The standard atomic types

 5.2.2. Operations on std::atomic_flag

 5.2.3. Operations on std::atomic<bool>

 5.2.4. Operations on std::atomic<T*>: pointer arithmetic

 5.2.5. Operations on standard atomic integral types

 5.2.6. The std::atomic<> primary class template

 5.2.7. Free functions for atomic operations

 5.3. Synchronizing operations and enforcing ordering

 5.3.1. The synchronizes-with relationship

 5.3.2. The happens-before relationship

 5.3.3. Memory ordering for atomic operations

 5.3.4. Release sequences and synchronizes-with

 5.3.5. Fences

 5.3.6. Ordering non-atomic operations with atomics

 5.3.7. Ordering non-atomic operations

 Summary

 Chapter 6. Designing lock-based concurrent data structures

 6.1. What does it mean to design for concurrency?

 6.1.1. Guidelines for designing data structures for concurrency

 6.2. Lock-based concurrent data structures

 6.2.1. A thread-safe stack using locks

 6.2.2. A thread-safe queue using locks and condition variables

 6.2.3. A thread-safe queue using fine-grained locks and condition variables

 6.3. Designing more complex lock-based data structures

 6.3.1. Writing a thread-safe lookup table using locks

 6.3.2. Writing a thread-safe list using locks

 Summary

 Chapter 7. Designing lock-free concurrent data structures

 7.1. Definitions and consequences

 7.1.1. Types of nonblocking data structures

 7.1.2. Lock-free data structures

 7.1.3. Wait-free data structures

 7.1.4. The pros and cons of lock-free data structures

 7.2. Examples of lock-free data structures

 7.2.1. Writing a thread-safe stack without locks

 7.2.2. Stopping those pesky leaks: managing memory in lock-free data structures

 7.2.3. Detecting nodes that can’t be reclaimed using hazard pointers

 7.2.4. Detecting nodes in use with reference counting

 7.2.5. Applying the memory model to the lock-free stack

 7.2.6. Writing a thread-safe queue without locks

 7.3. Guidelines for writing lock-free data structures

 7.3.1. Guideline: use std::memory_order_seq_cst for prototyping

 7.3.2. Guideline: use a lock-free memory reclamation scheme

 7.3.3. Guideline: watch out for the ABA problem

 7.3.4. Guideline: identify busy-wait loops and help the other thread

 Summary

 Chapter 8. Designing concurrent code

 8.1. Techniques for dividing work between threads

 8.1.1. Dividing data between threads before processing begins

 8.1.2. Dividing data recursively

 8.1.3. Dividing work by task type

 8.2. Factors affecting the performance of concurrent code

 8.2.1. How many processors?

 8.2.2. Data contention and cache ping-pong

 8.2.3. False sharing

 8.2.4. How close is your data?

 8.2.5. Oversubscription and excessive task switching

 8.3. Designing data structures for multithreaded performance

 8.3.1. Dividing array elements for complex operations

 8.3.2. Data access patterns in other data structures

 8.4. Additional considerations when designing for concurrency

 8.4.1. Exception safety in parallel algorithms

 8.4.2. Scalability and Amdahl’s law

 8.4.3. Hiding latency with multiple threads

 8.4.4. Improving responsiveness with concurrency

 8.5. Designing concurrent code in practice

 8.5.1. A parallel implementation of std::for_each

 8.5.2. A parallel implementation of std::find

 8.5.3. A parallel implementation of std::partial_sum

 Summary

 Chapter 9. Advanced thread management

 9.1. Thread pools

 9.1.1. The simplest possible thread pool

 9.1.2. Waiting for tasks submitted to a thread pool

 9.1.3. Tasks that wait for other tasks

 9.1.4. Avoiding contention on the work queue

 9.1.5. Work stealing

 9.2. Interrupting threads

 9.2.1. Launching and interrupting another thread

 9.2.2. Detecting that a thread has been interrupted

 9.2.3. Interrupting a condition variable wait

 9.2.4. Interrupting a wait on std::condition_variable_any

 9.2.5. Interrupting other blocking calls

 9.2.6. Handling interruptions

 9.2.7. Interrupting background tasks on application exit

 Summary

 Chapter 10. Parallel algorithms

 10.1. Parallelizing the standard library algorithms

 10.2. Execution policies

 10.2.1. General effects of specifying an execution policy

 10.2.2. std::execution::sequenced_policy

 10.2.3. std::execution::parallel_policy

 10.2.4. std::execution::parallel_unsequenced_policy

 10.3. The parallel algorithms from the C++ Standard Library

 10.3.1. Examples of using parallel algorithms

 10.3.2. Counting visits

 Summary

 Chapter 11. Testing and debugging multithreaded applications

 11.1. Types of concurrency-related bugs

 11.1.1. Unwanted blocking

 11.1.2. Race conditions

 11.2. Techniques for locating concurrency-related bugs

 11.2.1. Reviewing code to locate potential bugs

 11.2.2. Locating concurrency-related bugs by testing

 11.2.3. Designing for testability

 11.2.4. Multithreaded testing techniques

 11.2.5. Structuring multithreaded test code

 11.2.6. Testing the performance of multithreaded code

 Summary

 A. Brief reference for some C++11 language features

 A.1. Rvalue references

 A.1.1. Move semantics

 A.1.2. Rvalue references and function templates

 A.2. Deleted functions

 A.3. Defaulted functions

 A.4. constexpr functions

 A.4.1. constexpr and user-defined types

 A.4.2. constexpr objects

 A.4.3. constexpr function requirements

 A.4.4. constexpr and templates

 A.5. Lambda functions

 A.5.1. Lambda functions that reference local variables

 A.6. Variadic templates

 A.6.1. Expanding the parameter pack

 A.7. Automatically deducing the type of a variable

 A.8. Thread-local variables

 A.9. Class Template Argument Deduction

 Summary

 B. Brief comparison of concurrency libraries

 C. A message-passing framework and complete ATM example

 D. C++ Thread Library reference

 D.1. The <chrono> header

 D.1.1. std::chrono::duration class template

 D.1.2. std::chrono::time_point class template

 D.1.3. std::chrono::system_clock class

 D.1.4. std::chrono::steady_clock class

 D.1.5. std::chrono::high_resolution_clock typedef

 D.2. <condition_variable> header

 D.2.1. std::condition_variable class

 D.2.2. std::condition_variable_any class

 D.3. <atomic> header

 D.3.1. std::atomic_xxx typedefs

 D.3.2. ATOMIC_xxx_LOCK_FREE macros

 D.3.3. ATOMIC_VAR_INIT macro

 D.3.4. std::memory_order enumeration

 D.3.5. std::atomic_thread_fence function

 D.3.6. std::atomic_signal_fence function

 D.3.7. std::atomic_flag class

 D.3.8. std::atomic class template

 D.3.9. Specializations of the std::atomic template

 D.3.10. std::atomic<integral-type> specializations

 D.4. <future> header

 D.4.1. std::future class template

 D.4.2. std::shared_future class template

 D.4.3. std::packaged_task class template

 D.4.4. std::promise class template

 D.4.5. std::async function template

 D.5. <mutex> header

 D.5.1. std::mutex class

 D.5.2. std::recursive_mutex class

 D.5.3. std::timed_mutex class

 D.5.4. std::recursive_timed_mutex class

 D.5.5. std::shared_mutex class

 D.5.6. std::shared_timed_mutex class

 D.5.7. std::lock_guard class template

 D.5.8. std::scoped_lock class template

 D.5.9. std::unique_lock class template

 D.5.10. std::shared_lock class template

 D.5.11. std::lock function template

 D.5.12. std::try_lock function template

 D.5.13. std::once_flag class

 D.5.14. std::call_once function template

 D.6. <ratio> header

 D.6.1. std::ratio class template

 D.6.2. std::ratio_add template alias

 D.6.3. std::ratio_subtract template alias

 D.6.4. std::ratio_multiply template alias

 D.6.5. std::ratio_divide template alias

 D.6.6. std::ratio_equal class template

 D.6.7. std::ratio_not_equal class template

 D.6.8. std::ratio_less class template

 D.6.9. std::ratio_greater class template

 D.6.10. std::ratio_less_equal class template

 D.6.11. std::ratio_greater_equal class template

 D.7. <thread> header

 D.7.1. std::thread class

 D.7.2. Namespace this_thread

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the first edition

 “It’s not just the best current treatment of C++11’s threading facilities ... it’s likely to remain the best for some time
 to come.”

 Scott Meyers, author of Effective C++ and More Effective C++

 “Simplifies the dark art of C++ multithreading.”

 Rick Wagner, Red Hat

 “Reading this made my brain hurt. But it’s a good hurt.”

 Joshua Heyer, Ingersoll Rand

 “Anthony shows how to put concurrency into practice.”

 Roger Orr, OR/2 Limited

 “A thoughtful, in-depth guide to the new concurrency standard for C++ straight from the mouth of one the horses.”

 Neil Horlock, Director, Credit Suisse

 “Any serious C++ developers should understand the contents of this important book.”

 Dr. Jamie Allsop, Development Director

Preface

 I encountered the concept of multithreaded code while working at my first job after I left college. We were writing a data
 processing application that had to populate a database with incoming data records. There was a lot of data, but each record
 was independent and required a reasonable amount of processing before it could be inserted into the database. To take full
 advantage of the power of our 10-CPU UltraSPARC, we ran the code in multiple threads, each thread processing its own set of
 incoming records. We wrote the code in C++, using POSIX threads, and made a fair number of mistakes—multithreading was new
 to all of us—but we got there in the end. It was also while working on this project that I first became aware of the C++ Standards
 Committee and the freshly published C++ Standard.

 I have had a keen interest in multithreading and concurrency ever since. Where others saw it as difficult, complex, and a
 source of problems, I saw it as a powerful tool that could enable your code to take advantage of the available hardware to
 run faster. Later on, I would learn how it could be used to improve the responsiveness and performance of applications even
 on single-core hardware, by using multiple threads to hide the latency of time-consuming operations such as I/O. I also learned
 how it worked at the OS level and how Intel CPUs handled task switching.

 Meanwhile, my interest in C++ brought me in contact with the ACCU and then the C++ Standards panel at BSI, as well as Boost.
 I followed the initial development of the Boost Thread Library with interest, and when it was abandoned by the original developer,
 I jumped at the chance to get involved. I was the primary developer and maintainer of the Boost Thread Library for a number
 of years, though I have since handed that responsibility on.

 As the work of the C++ Standards Committee shifted from fixing defects in the existing standard to writing proposals for the
 C++11 standard (named C++0x in the hope that it would be finished by 2009, and then officially C++11, because it was finally
 published in 2011), I got more involved with BSI and started drafting proposals of my own. Once it became clear that multithreading
 was on the agenda, I jumped in with both feet and authored or co-authored many of the multithreading and concurrency-related
 proposals that shaped this part of the standard. I have continued to be involved with the concurrency group as we worked on
 the changes for C++17, the Concurrency TS, and proposals for the future. I feel privileged to have had the opportunity to
 combine two of my major computer-related interests—C++ and multithreading—in this way.

 This book draws on all my experience with both C++ and multithreading and aims to teach other C++ developers how to use the
 C++17 Thread Library and Concurrency TS safely and efficiently. I also hope to impart some of my enthusiasm for the subject
 along the way.

Acknowledgments

 I will start by saying a big “Thank you” to my wife, Kim, for all the love and support she has given me while writing this
 book. The first edition occupied a significant part of my spare time for the four years before publication, and the second
 edition has again required a significant investment of time, and without her patience, support, and understanding, I couldn’t
 have managed it.

 Second, I would like to thank the team at Manning who have made this book possible: Marjan Bace, publisher; Michael Stephens,
 associate publisher; Cynthia Kane, my development editor; Aleksandar Dragosavljević, review editor; Safis Editing and Heidi
 Ward, my copyeditors; and Melody Dolab, my proofreader. Without their efforts you would not be reading this book right now.

 I would also like to thank the other members of the C++ Standards Committee who wrote committee papers on the multithreading
 facilities: Andrei Alexandrescu, Pete Becker, Bob Blainer, Hans Boehm, Beman Dawes, Lawrence Crowl, Peter Dimov, Jeff Garland,
 Kevlin Henney, Howard Hinnant, Ben Hutchings, Jan Kristofferson, Doug Lea, Paul McKenney, Nick McLaren, Clark Nelson, Bill
 Pugh, Raul Silvera, Herb Sutter, Detlef Vollmann, and Michael Wong, plus all those who commented on the papers, discussed
 them at the committee meetings, and otherwise helped shaped the multithreading and concurrency support in C++11, C++14, C++17,
 and the Concurrency TS.

 Finally, I would like to thank the following people, whose suggestions have greatly improved this book: Dr. Jamie Allsop,
 Peter Dimov, Howard Hinnant, Rick Molloy, Jonathan Wakely, and Dr. Russel Winder, with special thanks to Russel for his detailed
 reviews and to Frédéric Flayol, who, as technical proofreader, painstakingly checked all the content for outright errors in
 the final manuscript during production. (Any remaining mistakes are, of course, all mine.) In addition, I’d like to thank
 my panel of reviewers for the second edition: Al Norman, Andrei de Araújo Formiga, Chad Brewbaker, Dwight Wilkins, Hugo Filipe
 Lopes, Vieira Durana, Jura Shikin, Kent R. Spillner, Maria Gemini, Mateusz Malenta, Maurizio Tomasi, Nat Luengnaruemitchai,
 Robert C. Green II, Robert Trausmuth, Sanchir Kartiev, and Steven Parr. Also, thanks to the readers of the MEAP edition who
 took the time to point out errors or highlight areas that needed clarifying.

About this book

 This book is an in-depth guide to the concurrency and multithreading facilities from the new C++ Standard, from the basic
 usage of std::thread, std::mutex, and std:: async, to the complexities of atomic operations and the memory model.

Roadmap

 The first four chapters introduce the various library facilities provided by the library and show how they can be used.

 Chapter 5 covers the low-level nitty-gritty of the memory model and atomic operations, including how atomic operations can be used
 to impose ordering constraints on other code, and marks the end of the introductory chapters.

 Chapters 6 and 7 start the coverage of higher-level topics, with some examples of how to use the basic facilities to build more complex data
 structures—lock-based data structures in chapter 6, and lock-free data structures in chapter 7.

 Chapter 8 continues the higher-level topics, with guidelines for designing multithreaded code, coverage of the issues that affect performance,
 and example implementations of various parallel algorithms.

 Chapter 9 covers thread management—thread pools, work queues, and interrupting operations.

 Chapter 10 covers the new parallelism support from C++17, which comes in the form of additional overloads for many of the Standard Library
 algorithms.

 Chapter 11 covers testing and debugging—types of bugs, techniques for locating them, how to test for them, and so forth.

 The appendixes include a brief description of some of the new language facilities introduced with the new standard that are
 relevant to multithreading, the implementation details of the message-passing library mentioned in chapter 4, and a complete reference to the C++17 Thread Library.

Who should read this book

 If you’re writing multithreaded code in C++, you should read this book. If you’re using the new multithreading facilities
 from the C++ Standard Library, this book is an essential guide. If you’re using alternative thread libraries, the guidelines
 and techniques from the later chapters should still prove useful.

 A good working knowledge of C++ is assumed, though familiarity with the new language features is not—these are covered in
 appendix A. Prior knowledge or experience of multithreaded programming is not assumed, though it may be useful.

How to use this book

 If you’ve never written multithreaded code before, I suggest reading this book sequentially from beginning to end, though
 possibly skipping the more detailed parts of chapter 5. Chapter 7 relies heavily on the material in chapter 5, so if you skipped chapter 5, you should save chapter 7 until you’ve read it.

 If you haven’t used the new C++11 language facilities before, it might be worth skimming appendix A before you start to ensure that you’re up to speed with the examples in the book. The uses of the new language facilities
 are highlighted in the text, though, and you can always flip to the appendix if you encounter something you haven’t seen before.

 If you have extensive experience with writing multithreaded code in other environments, the beginning chapters are probably
 still worth skimming so you can see how the facilities you know map onto the new standard C++ ones. If you’re going to be
 doing any low-level work with atomic variables, chapter 5 is a must. Chapter 8 is worth reviewing to ensure that you’re familiar with things like exception safety in multithreaded C++. If you have a particular
 task in mind, the index and table of contents should help you find a relevant section quickly.

 Once you’re up to speed on the use of the C++ Thread Library, appendix D should continue to be useful, such as for looking up the exact details of each class and function call. You may also like
 to dip back into the main chapters from time to time to refresh your memory on a particular construct or to look at the sample
 code.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition. You may also download the source code from github at https://github.com/anthonywilliams/ccia_code_samples.

Software requirements

 To use the code from this book unchanged, you’ll need a recent C++ compiler that supports the C++17 language features used
 in the examples (see appendix A), and you’ll need a copy of the C++ Standard Thread Library.

 At the time of writing, the latest versions of g++, clang++, and Microsoft Visual Studio all ship with implementations of
 the C++17 Standard Thread Library. They also support most of the language features from the appendix, and those features that
 aren’t supported are coming soon.

 My company, Just Software Solutions Ltd, sells a complete implementation of the C++11 Standard Thread Library for several
 older compilers, along with an implementation of the Concurrency TS for newer versions of clang, gcc, and Microsoft Visual
 Studio.[1] This implementation has been used for testing the examples in this book.

 1

The just::thread implementation of the C++ Standard Thread Library, http://www.stdthread.co.uk.

 The Boost Thread Library[2] provides an API that’s based on the C++11 Standard Thread Library proposals and is portable to many platforms. Most of the
 examples from the book can be modified to work with the Boost Thread Library by judicious replacement of std:: with boost:: and use of the appropriate #include directives. There are a few facilities that are either not supported (such as std::async) or have different names (such as boost::unique_future) in the Boost Thread Library.

 2

The Boost C++ library collection, http://www.boost.org.

Book forum

 Purchase of C++ Concurrency in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about
 the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is
 in print.

About the author

 [image:]

 Anthony Williams is a UK-based developer, consultant, and trainer with over 20 years of experience in C++. He has been an
 active member of the BSI C++ Standards Panel since 2001, and is the author or coauthor of many of the C++ Standards Committee
 papers that led up to the inclusion of the thread library in the C++11 Standard. He continues to work on new facilities to
 enhance the C++ concurrency toolkit, both with standards proposals, and implementations of those facilities for the just::thread
 Pro extensions to the C++ thread library from Just Software Solutions Ltd. Anthony lives in the far west of Cornwall, England.

About the cover illustration

 The illustration on the cover of C++ Concurrency in Action is captioned “Habit of a Lady of Japan.” The image is taken from the four-volume Collection of the Dress of Different Nations by Thomas Jefferys, published in London between 1757 and 1772. The collection includes beautiful hand-colored copperplate
 engravings of costumes from around the world and has influenced theatrical costume design since its publication. The diversity
 of the drawings in the compendium speaks vividly of the richness of the costumes presented on the London stage over 200 years
 ago. The costumes, both historical and contemporaneous, offered a glimpse into the dress customs of people living in different
 times and in different countries, making them come alive for London theater audiences.

 Dress codes have changed in the last century, and the diversity by region, so rich in the past, has faded away. It’s now often
 hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural
 and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of the regional and theatrical life of two centuries ago, brought back to life by the pictures from this
 collection.

Chapter 1. Hello, world of concurrency in C++!

 This chapter covers

 	What is meant by concurrency and multithreading

 	Why you might want to use concurrency and multithreading in your applications

 	Some of the history of the support for concurrency in C++

 	What a simple multithreaded C++ program looks like

 These are exciting times for C++ users. Thirteen years after the original C++ Standard was published in 1998, the C++ Standards
 Committee gave the language and its supporting library a major overhaul. The new C++ Standard (referred to as C++11 or C++0x)
 was published in 2011 and brought with it a swath of changes that made working with C++ easier and more productive. The Committee
 also committed to a new “train model” of releases, with a new C++ Standard to be published every three years. So far, we’ve
 had two of these publications: the C++14 Standard in 2014, and the C++17 Standard in 2017, as well as several Technical Specifications
 describing extensions to the C++ Standard.

 One of the most significant new features in the C++11 Standard was the support of multithreaded programs. For the first time,
 the C++ Standard acknowledged the existence of multithreaded applications in the language and provided components in the library
 for writing multithreaded applications. This made it possible to write multithreaded C++ programs without relying on platform-specific
 extensions and enabled you to write portable multithreaded code with guaranteed behavior. It also came at a time when programmers
 were increasingly looking to concurrency in general, and multithreaded programming in particular, to improve application performance.
 The C++14 and C++17 Standards have built upon this baseline to provide further support for writing multithreaded programs
 in C++, as have the Technical Specifications. There’s a Technical Specification for concurrency extensions, and another for
 parallelism, though the latter has been incorporated into C++17.

 This book is about writing programs in C++ using multiple threads for concurrency and the C++ language features and library
 facilities that make it possible. I’ll start by explaining what I mean by concurrency and multithreading and why you would
 want to use concurrency in your applications. After a quick detour into why you might not want to use it in your applications, we’ll go through an overview of the concurrency support in C++, and we’ll round off
 this chapter with a simple example of C++ concurrency in action. Readers experienced with developing multithreaded applications
 may wish to skip the early sections. In subsequent chapters, we’ll cover more extensive examples and look at the library facilities
 in more depth. The book will finish with an in-depth reference to all the C++ Standard Library facilities for multithreading
 and concurrency.

 So, what do I mean by concurrency and multithreading?

1.1. What is concurrency?

 At the simplest and most basic level, concurrency is about two or more separate activities happening at the same time. We
 encounter concurrency as a natural part of life; we can walk and talk at the same time or perform different actions with each
 hand, and we each go about our lives independently of each other—you can watch football while I go swimming, and so on.

 1.1.1. Concurrency in computer systems

 When we talk about concurrency in terms of computers, we mean a single system performing multiple independent activities in
 parallel, rather than sequentially, or one after the other. This isn’t a new phenomenon. Multitasking operating systems that
 allow a single desktop computer to run multiple applications at the same time through task switching have been commonplace
 for many years, as have high-end server machines with multiple processors that enable genuine concurrency. What’s new is the
 increased prevalence of computers that can genuinely run multiple tasks in parallel rather than giving the illusion of doing
 so.

 Historically, most desktop computers have had one processor, with a single processing unit or core, and this remains true
 for many desktop machines today. Such a machine can only perform one task at a time, but it can switch between tasks many
 times per second. By doing a bit of one task and then a bit of another and so on, it appears that the tasks are happening
 concurrently. This is called task switching. We still talk about concurrency with such systems; because the task switches are so fast, you can’t tell at which point
 a task may be suspended as the processor switches to another one. The task switching provides the illusion of concurrency
 to both the user and the applications themselves. Because there is only the illusion of concurrency, the behavior of applications
 may be subtly different when executing in a single-processor task-switching environment compared to when executing in an environment
 with true concurrency. In particular, incorrect assumptions about the memory model (covered in chapter 5) may not show up in such an environment. This is discussed in more depth in chapter 10.

 Computers containing multiple processors have been used for servers and high-performance computing tasks for years, and computers
 based on processors with more than one core on a single chip (multicore processors) are becoming increasingly common as desktop
 machines. Whether they have multiple processors or multiple cores within a processor (or both), these computers are capable
 of genuinely running more than one task in parallel. We call this hardware concurrency.

 Figure 1.1 shows an idealized scenario of a computer with precisely two tasks to do, each divided into 10 equally sized chunks. On a
 dual-core machine (which has two processing cores), each task can execute on its own core. On a single-core machine doing
 task switching, the chunks from each task are interleaved. But they are also spaced out a bit (in figure 1.1, this is shown by the gray bars separating the chunks being thicker than the separator bars shown for the dual-core machine);
 in order to do the interleaving, the system has to perform a context switch every time it changes from one task to another, and this takes time. In order to perform a context switch, the OS has to
 save the CPU state and instruction pointer for the currently running task, work out which task to switch to, and reload the
 CPU state for the task being switched to. The CPU will then potentially have to load the memory for the instructions and data
 for the new task into the cache, which can prevent the CPU from executing any instructions, causing further delay.

 Figure 1.1. Two approaches to concurrency: parallel execution on a dual-core machine versus task switching on a single-core machine

 [image:]

 Though the availability of concurrency in the hardware is most obvious with multiprocessor or multicore systems, some processors
 can execute multiple threads on a single core. The important factor to consider is the number of hardware threads, which is the measure of how many independent tasks the hardware can genuinely run concurrently. Even with a system that
 has genuine hardware concurrency, it’s easy to have more tasks than the hardware can run in parallel, so task switching is
 still used in these cases. For example, on a typical desktop computer there may be hundreds of tasks running, performing background
 operations, even when the computer is nominally idle. It’s the task switching that allows these background tasks to run and
 you to run your word processor, compiler, editor, and web browser (or any combination of applications) all at once. Figure 1.2 shows task switching among four tasks on a dual-core machine, again for an idealized scenario with the tasks divided neatly
 into equally sized chunks. In practice, many issues will make the divisions uneven and the scheduling irregular. Some of these
 issues are covered in chapter 8 when we look at factors affecting the performance of concurrent code.

 Figure 1.2. Task switching of four tasks on two cores

 [image:]

 All the techniques, functions, and classes covered in this book can be used whether your application is running on a machine
 with one single-core processor or with many multicore processors, and are not affected by whether the concurrency is achieved
 through task switching or by genuine hardware concurrency. But as you may imagine, how you make use of concurrency in your
 application may well depend on the amount of hardware concurrency available. This is covered in chapter 8, where I discuss the issues involved in designing concurrent code in C++.

 1.1.2. Approaches to concurrency

 Imagine, for a moment, a pair of programmers working together on a software project. If your developers are in separate offices,
 they can go about their work peacefully, without being disturbed by each other, and they each have their own set of reference
 manuals. But communication isn’t straightforward; rather than turning around and talking to each other, they have to use the
 phone or email, or get up and walk to the other’s office. Also, you have the overhead of two offices to manage and multiple
 copies of reference manuals to purchase.

 Now imagine that you move your developers into the same office. They can now talk to each other freely to discuss the design
 of the application, and they can easily draw diagrams on paper or on a whiteboard to help with design ideas or explanations. You have only one office to manage, and
 one set of resources will often suffice. On the negative side, they might find it harder to concentrate, and there may be
 issues with sharing resources (“Where’s the reference manual gone now?”).

 These two ways of organizing your developers illustrate the two basic approaches to concurrency. Each developer represents
 a thread, and each office represents a process. The first approach is to have multiple single-threaded processes, which is
 similar to having each developer in their own office, and the second approach is to have multiple threads in a single process,
 which is like having two developers in the same office. You can combine these in an arbitrary fashion and have multiple processes,
 some of which are multithreaded and some of which are single-threaded, but the principles are the same. Let’s now have a brief
 look at these two approaches to concurrency in an application.

Concurrency with multiple processes

 The first way to make use of concurrency within an application is to divide the application into multiple, separate, single-threaded
 processes that are run at the same time, much as you can run your web browser and word processor at the same time. These separate
 processes can then pass messages to each other through all the normal interprocess communication channels (signals, sockets,
 files, pipes, and so on), as shown in figure 1.3. One downside is that such communication between processes is often either complicated to set up or slow, or both, because
 operating systems typically provide a lot of protection between processes to avoid one process accidentally modifying data
 belonging to another process. Another downside is that there’s an inherent overhead in running multiple processes: it takes
 time to start a process, the operating system must devote internal resources to managing the process, and so forth.

 Figure 1.3. Communication between a pair of processes running concurrently

 [image:]

 It’s not all negative: the added protection operating systems typically provide between processes and the higher-level communication
 mechanisms mean that it can be easier to write safe concurrent code with processes rather than threads. Indeed, environments
 such as that provided for the Erlang (www.erlang.org/) programming language use processes as the fundamental building block of concurrency to great effect.

 Using separate processes for concurrency also has an additional advantage—you can run the separate processes on distinct machines
 connected over a network. Though this increases the communication cost, on a carefully designed system it can be a cost-effective
 way of increasing the available parallelism and improving performance.

Concurrency with multiple threads

 The alternative approach to concurrency is to run multiple threads in a single process. Threads are much like lightweight
 processes: each thread runs independently of the others, and each may run a different sequence of instructions. But all threads
 in a process share the same address space, and most of the data can be accessed directly from all threads—global variables
 remain global, and pointers or references to objects or data can be passed around among threads. Although it’s often possible
 to share memory among processes, this is complicated to set up and often hard to manage, because memory addresses of the same
 data aren’t necessarily the same in different processes. Figure 1.4 shows two threads within a process communicating through shared memory.

 Figure 1.4. Communication between a pair of threads running concurrently in a single process

 [image:]

 The shared address space and lack of protection of data between threads makes the overhead associated with using multiple
 threads much smaller than that from using multiple processes, because the operating system has less bookkeeping to do. But
 the flexibility of shared memory also comes with a price: if data is accessed by multiple threads, the application programmer
 must ensure that the view of data seen by each thread is consistent whenever it’s accessed. The issues surrounding sharing
 data between threads, and the tools to use and guidelines to follow to avoid problems, are covered throughout this book, notably
 in chapters 3, 4, 5, and 8. The problems aren’t insurmountable, provided suitable care is taken when writing the code, but they do mean that a great
 deal of thought must go into the communication between threads.

 The low overhead associated with launching and communicating between multiple threads within a process compared to launching
 and communicating between multiple single-threaded processes means that this is the favored approach to concurrency in mainstream
 languages, including C++, despite the potential problems arising from the shared memory. In addition, the C++ Standard doesn’t
 provide any intrinsic support for communication between processes, so applications that use multiple processes will have to
 rely on platform-specific APIs to do so. This book therefore focuses exclusively on using multithreading for concurrency,
 and future references to concurrency assume that this is achieved by using multiple threads.

 There’s another word that gets used a lot around multithreaded code: parallelism. Let’s clarify the differences.

 1.1.3. Concurrency vs. parallelism

 Concurrency and parallelism have largely overlapping meanings with respect to multithreaded code. Indeed, to many they mean
 the same thing. The difference is primarily a matter of nuance, focus, and intent. Both terms are about running multiple tasks
 simultaneously, using the available hardware, but parallelism is much more performance-oriented. People talk about parallelism when their primary concern is taking advantage of the available hardware to increase the performance of bulk data processing,
 whereas people talk about concurrency when their primary concern is separation of concerns, or responsiveness. This dichotomy is not cut and dried, and there is
 still considerable overlap in meaning, but it can help clarify discussions to know of this distinction. Throughout this book,
 there will be examples of both.

 Having clarified what we mean by concurrency and parallelism, let’s look at why you would use concurrency in your applications.

1.2. Why use concurrency?

 There are two main reasons to use concurrency in an application: separation of concerns and performance. In fact, I’d go so
 far as to say that they’re almost the only reasons to use concurrency; anything else boils down to one or the other (or maybe even both) when you look hard enough (well,
 except for reasons like “because I want to”).

 1.2.1. Using concurrency for separation of concerns

 Separation of concerns is almost always a good idea when writing software; by grouping related bits of code together and keeping
 unrelated bits of code apart, you can make your programs easier to understand and test, and less likely to contain bugs. You
 can use concurrency to separate distinct areas of functionality, even when the operations in these distinct areas need to
 happen at the same time; without the explicit use of concurrency, you either have to write a task-switching framework or actively
 make calls to unrelated areas of code during an operation.

 Consider a processing-intensive application with a user interface, such as a DVD player application for a desktop computer.
 This application fundamentally has two sets of responsibilities. Not only does it have to read the data from the disk, decode
 the images and sound, and send them to the graphics and sound hardware in a timely fashion so the DVD plays without glitches,
 but it must also take input from the user, such as when the user clicks Pause or Return To Menu, or even Quit. In a single
 thread, the application has to check for user input at regular intervals during the playback, conflating the DVD playback
 code with the user interface code. By using multithreading to separate these concerns, the user interface code and DVD playback
 code no longer have to be so closely intertwined; one thread can handle the user interface and another the DVD playback. There
 will have to be interaction between them, such as when the user clicks Pause, but now these interactions are directly related
 to the task at hand.

 This gives the illusion of responsiveness, because the user interface thread can typically respond immediately to a user request,
 even if the response is to display a busy cursor or a Please Wait message while the request is conveyed to the thread doing
 the work. Similarly, separate threads are often used to run tasks that must run continuously in the background, such as monitoring
 the filesystem for changes in a desktop search application. Using threads in this way generally makes the logic in each thread
 much simpler, because the interactions between them can be limited to clearly identifiable points, rather than having to intersperse
 the logic of the different tasks.

 In this case, the number of threads is independent of the number of CPU cores available, because the division into threads
 is based on the conceptual design rather than an attempt to increase throughput.

 1.2.2. Using concurrency for performance: task and data parallelism

 Multiprocessor systems have existed for decades, but until recently they were mostly found only in supercomputers, mainframes,
 and large server systems. But chip manufacturers have increasingly been favoring multicore designs with 2, 4, 16, or more
 processors on a single chip over better performance with a single core. Consequently, multicore desktop computers, and even
 multicore embedded devices, are now increasingly prevalent. The increased computing power of these machines comes not from
 running a single task faster but from running multiple tasks in parallel. In the past, programmers have been able to sit back
 and watch their programs get faster with each new generation of processors, without any effort on their part. But now, as
 Herb Sutter put it, “The free lunch is over.”[1] If software is to take advantage of this increased computing power, it must be designed to run multiple tasks concurrently.
 Programmers must therefore take heed, and those who have hitherto ignored concurrency must now look to add it to their toolbox.

 1

“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Herb Sutter, Dr. Dobb’s Journal, 30(3), March
 2005. http://www.gotw.ca/publications/concurrency-ddj.htm.

 There are two ways to use concurrency for performance. The first, and most obvious, is to divide a single task into parts
 and run each in parallel, reducing the total runtime. This is task parallelism. Although this sounds straightforward, it can be quite a complex process, because there may be many dependencies between
 the various parts. The divisions may be either in terms of processing—one thread performs one part of the algorithm while
 another thread performs a different part—or in terms of data—each thread performs the same operation on different parts of
 the data. This latter approach is called data parallelism.

 Algorithms that are readily susceptible to such parallelism are frequently called embarrassingly parallel. Despite the implication that you might be embarrassed to have code so easy to parallelize, this is a good thing; other terms
 I’ve encountered for such algorithms are naturally parallel and conveniently concurrent. Embarrassingly parallel algorithms have good scalability properties—as the number of available hardware threads goes up,
 the parallelism in the algorithm can be increased to match. Such an algorithm is the perfect embodiment of the adage, “Many
 hands make light work.” For those parts of the algorithm that aren’t embarrassingly parallel, you might be able to divide
 the algorithm into a fixed (and therefore not scalable) number of parallel tasks. Techniques for dividing tasks between threads
 are covered in chapters 8 and 10.

 The second way to use concurrency for performance is to use the available parallelism to solve bigger problems; rather than
 processing one file at a time, process 2, or 10, or 20, as appropriate. Although this is an application of data parallelism, by performing the same operation on multiple sets of data concurrently, there’s a different focus. It still takes the same
 amount of time to process one chunk of data, but now more data can be processed in the same amount of time. Obviously, there
 are limits to this approach, and this won’t be beneficial in all cases, but the increase in throughput that comes from this
 approach can make new things possible—increased resolution in video processing, for example, if different areas of the picture
 can be processed in parallel.

 1.2.3. When not to use concurrency

 It’s just as important to know when not to use concurrency as it is to know when to use it. Fundamentally, the only reason
 not to use concurrency is when the benefit isn’t worth the cost. Code using concurrency is harder to understand in many cases,
 so there’s a direct intellectual cost to writing and maintaining multithreaded code, and the additional complexity can also
 lead to more bugs. Unless the potential performance gain is large enough or the separation of concerns is clear enough to
 justify the additional development time required to get it right and the additional costs associated with maintaining multithreaded
 code, don’t use concurrency.

 Also, the performance gain might not be as large as expected; there’s an inherent overhead associated with launching a thread,
 because the OS has to allocate the associated kernel resources and stack space and then add the new thread to the scheduler,
 all of which takes time. If the task being run on the thread is completed quickly, the time taken by the task may be dwarfed
 by the overhead of launching the thread, possibly making the overall performance of the application worse than if the task
 had been executed directly by the spawning thread.

 Furthermore, threads are a limited resource. If you have too many threads running at once, this consumes OS resources and
 may make the system as a whole run slower. Not only that, but using too many threads can exhaust the available memory or address
 space for a process, because each thread requires a separate stack space. This is particularly a problem for 32-bit processes
 with a flat architecture where there’s a 4 GB limit to the available address space: if each thread has a 1 MB stack (as is
 typical on many systems), then the address space would be used up with 4,096 threads, without allowing any space for code,
 static data, or heap data. Although 64-bit (or larger) systems don’t have this direct address-space limit, they still have
 finite resources: if you run too many threads, this will eventually cause problems. Though thread pools (see chapter 9) can be used to limit the number of threads, they aren’t a silver bullet, and they do have their own issues.

 If the server side of a client/server application launches a separate thread for each connection, this will work fine for
 a small number of connections, but can quickly exhaust system resources by launching too many threads if the same technique
 is used for a high-demand server that has to handle many connections. In this scenario, careful use of thread pools can provide
 optimal performance (see chapter 9).

 Finally, the more threads you have running, the more context switching the operating system has to do. Each context switch
 takes time that could be spent doing useful work, so at some point, adding an extra thread will reduce the overall application
 performance rather than increase it. For this reason, if you’re trying to achieve the best possible performance of the system,
 it’s necessary to adjust the number of threads running to take into account the available hardware concurrency (or lack of
 it).

 The use of concurrency for performance is like any other optimization strategy: it has the potential to greatly improve the
 performance of your application, but it can also complicate the code, making it harder to understand and more prone to bugs.
 Therefore, it’s only worth doing for those performance-critical parts of the application where there’s the potential for measurable
 gain. Of course, if the potential for performance gains is only secondary to clarity of design or separation of concerns,
 it may still be worth using a multithreaded design.

 Assuming that you’ve decided you do want to use concurrency in your application, whether for performance, separation of concerns,
 or because it’s “multithreading Monday,” what does that mean for C++ programmers?

1.3. Concurrency and multithreading in C++

 Standardized support for concurrency through multithreading is a relatively new thing for C++. It’s only since the C++11 Standard
 that you’ve been able to write multithreaded code without resorting to platform-specific extensions. In order to understand
 the rationale behind lots of the decisions in the Standard C++ Thread Library, it’s important to understand the history.

 1.3.1. History of multithreading in C++

 The 1998 C++ Standard doesn’t acknowledge the existence of threads, and the operational effects of the various language elements
 are written in terms of a sequential abstract machine. Not only that, but the memory model isn’t formally defined, so you
 can’t write multithreaded applications without compiler-specific extensions to the 1998 C++ Standard.

 Compiler vendors are free to add extensions to the language, and the prevalence of C APIs for multithreading—such as those
 in the POSIX C standard and the Microsoft Windows API—has led many C++ compiler vendors to support multithreading with various
 platform-specific extensions. This compiler support is generally limited to allowing the use of the corresponding C API for
 the platform and ensuring that the C++ Runtime Library (such as the code for the exception-handling mechanism) works in the
 presence of multiple threads. Although few compiler vendors have provided a formal multithreading-aware memory model, the
 behavior of the compilers and processors has been sufficiently good that a large number of multithreaded C++ programs have
 been written.

 Not content with using the platform-specific C APIs for handling multithreading, C++ programmers have looked to their class
 libraries to provide object-oriented multithreading facilities. Application frameworks, such as MFC, and general-purpose C++ libraries, such as Boost and ACE,
 have accumulated sets of C++ classes that wrap the underlying platform-specific APIs and provide higher-level facilities for
 multithreading that simplify tasks. Although the precise details of the class libraries vary considerably, particularly in
 the area of launching new threads, the overall shape of the classes has a lot in common. One particularly important design
 that’s common to many C++ class libraries, and that provides considerable benefit to the programmer, is the use of the Resource
 Acquisition Is Initialization (RAII) idiom with locks to ensure that mutexes are unlocked when the relevant scope is exited.

 For many cases, the multithreading support of existing C++ compilers combined with the availability of platform-specific APIs
 and platform-independent class libraries, such as Boost and ACE, provide a solid foundation on which to write multithreaded
 C++ code, and as a result, there are probably millions of lines of C++ code written as part of multithreaded applications.
 But the lack of standard support means that there are occasions where the lack of a thread-aware memory model causes problems,
 particularly for those who try to gain higher performance by using knowledge of the processor hardware or for those writing
 cross-platform code where the behavior of the compilers varies between platforms.

 1.3.2. Concurrency support in the C++11 standard

 All this changed with the release of the C++11 Standard. Not only is there a thread-aware memory model, but the C++ Standard
 Library was extended to include classes for managing threads (see chapter 2), protecting shared data (see chapter 3), synchronizing operations between threads (see chapter 4), and low-level atomic operations (see chapter 5).

 The C++11 Thread Library is heavily based on the prior experience accumulated through the use of the C++ class libraries mentioned
 previously. In particular, the Boost Thread Library was used as the primary model on which the new library is based, with
 many of the classes sharing their names and structure with the corresponding ones from Boost. As the standard has evolved,
 this has been a two-way flow, and the Boost Thread Library has itself changed to match the C++ Standard in many respects,
 so users transitioning from Boost should find themselves at home.

 Concurrency support is one of the changes with the C++11 Standard—as mentioned at the beginning of this chapter, there are
 many enhancements to the language to make programmers’ lives easier. Although these are generally outside the scope of this
 book, some of those changes have had a direct impact on the Thread Library and the ways in which it can be used. Appendix A provides a brief introduction to these language features.

 1.3.3. More support for concurrency and parallelism in C++14 and C++17

 The only specific support for concurrency and parallelism added in C++14 was a new mutex type for protecting shared data (see
 chapter 3). But C++17 adds considerably more: a full suite of parallel algorithms (see chapter 10) for starters. Both of these Standards enhance the core language and the rest of the Standard Library, and these enhancements
 can simplify the writing of multithreaded code.

 As mentioned previously, there’s also a Technical Specification for concurrency, which describes extensions to the functions
 and classes provided by the C++ Standard, especially around synchronizing operations between threads (see chapter 4).

 The support for atomic operations directly in C++ enables programmers to write efficient code with defined semantics without
 the need for platform-specific assembly language. This is a real boon for those trying to write efficient, portable code;
 not only does the compiler take care of the platform specifics, but the optimizer can be written to take into account the
 semantics of the operations, enabling better optimization of the program as a whole.

 1.3.4. Efficiency in the C++ Thread Library

 One of the concerns that developers involved in high-performance computing often raise regarding C++ in general, and C++ classes
 that wrap low-level facilities—such as those in the new Standard C++ Thread Library specifically—is that of efficiency. If
 you’re after the utmost in performance, it’s important to understand the implementation costs associated with using any high-level
 facilities, compared to using the underlying low-level facilities directly. This cost is the abstraction penalty.

 The C++ Standards Committee was aware of this when designing the C++ Standard Library in general and the Standard C++ Thread
 Library in particular; one of the design goals has been that there should be little or no benefit to be gained from using
 the lower-level APIs directly, where the same facility is to be provided. The library has therefore been designed to allow
 for efficient implementation (with a low abstraction penalty) on most major platforms.

 Another goal of the C++ Standards Committee has been to ensure that C++ provides sufficient low-level facilities for those
 wishing to work close to the metal for the ultimate performance. To this end, along with the new memory model comes a comprehensive
 atomic operations library for direct control over individual bits and bytes and the inter-thread synchronization and visibility
 of any changes. These atomic types and the corresponding operations can now be used in many places where developers would
 previously have chosen to drop down to platform-specific assembly language. Code using the new standard types and operations
 is more portable and easier to maintain.

 The C++ Standard Library also provides higher-level abstractions and facilities that make writing multithreaded code easier
 and less error-prone. Sometimes the use of these facilities comes with a performance cost because of the additional code that
 must be executed. But this performance cost doesn’t necessarily imply a higher abstraction penalty; in general, the cost is
 no higher than would be incurred by writing equivalent functionality by hand, and the compiler may inline much of the additional
 code anyway.

 In some cases, the high-level facilities provide additional functionality beyond what may be required for a specific use.
 Most of the time this isn’t an issue: you don’t pay for what you don’t use. On rare occasions, this unused functionality will
 impact the performance of other code. If you’re aiming for performance and the cost is too high, you may be better off handcrafting
 the desired functionality from lower-level facilities. In the vast majority of cases, the additional complexity and chance
 of errors far outweigh the potential benefits from a small performance gain. Even if profiling does demonstrate that the bottleneck
 is in the C++ Standard Library facilities, it may be due to poor application design rather than a poor library implementation.
 For example, if too many threads are competing for a mutex, it will impact the performance significantly. Rather than trying
 to shave a small fraction of time off the mutex operations, it would probably be more beneficial to restructure the application
 so that there’s less contention on the mutex. Designing applications to reduce contention is covered in chapter 8.

 In those rare cases where the C++ Standard Library doesn’t provide the performance or behavior required, it might be necessary
 to use platform-specific facilities.

 1.3.5. Platform-specific facilities

 Although the C++ Thread Library provides reasonably comprehensive facilities for multithreading and concurrency, on any given
 platform there will be platform-specific facilities that go beyond what’s offered. In order to gain easy access to those facilities
 without giving up the benefits of using the Standard C++ Thread Library, the types in the C++ Thread Library may offer a native_handle() member function that allows the underlying implementation to be directly manipulated using a platform-specific API. By its
 nature, any operations performed using native_handle() are entirely platform dependent and beyond of the scope of this book (and the Standard C++ Library itself).

 Before even considering using platform-specific facilities, it’s important to understand what the Standard Library provides,
 so let’s get started with an example.

1.4. Getting started

 OK, so you have a nice, shiny C++11/C++14/C++17 compiler. What’s next? What does a multithreaded C++ program look like? It
 looks much like any other C++ program, with the usual mix of variables, classes, and functions. The only real distinction
 is that some functions might be running concurrently, so you need to ensure that shared data is safe for concurrent access,
 as described in chapter 3. In order to run functions concurrently, specific functions and objects must be used to manage the different threads.

 1.4.1. Hello, Concurrent World

 Let’s start with a classic example: a program to print “Hello World.” A simple Hello World program that runs in a single thread
 is shown here, to serve as a baseline when we move to multiple threads:

 #include <iostream>
int main()
{
 std::cout<<"Hello World\n";
}

 All this program does is write “Hello World” to the standard output stream. Let’s compare it to the simple Hello Concurrent
 World program shown in the following listing, which starts a separate thread to display the message.

 Listing 1.1. A simple Hello Concurrent World program

 #include <iostream>
#include <thread>
void hello()
{
 std::cout<<"Hello Concurrent World\n";
}
int main()
{
 std::thread t(hello); 3
 t.join();
}

 The first difference is the extra #include <thread>. The declarations for the multithreading support in the Standard C++ Library are in new headers: the functions and classes
 for managing threads are declared in <thread>, whereas those for protecting shared data are declared in other headers.

 Second, the code for writing the message has been moved to a separate function. This is because every thread has to have an
 initial function, where the new thread of execution begins. For the initial thread in an application, this is main(), but for every other thread it’s specified in the constructor of a std::thread object—in this case, the std::thread object named t has the new hello() function as its initial function.

 This is the next difference: rather than writing directly to standard output or calling hello() from main(), this program launches a new thread to do it, bringing the thread count to two—the initial thread that starts at main() and the new thread that starts at hello().

 After the new thread has been launched, the initial thread continues execution. If it didn’t wait for the new thread to finish,
 it would merrily continue to the end of main() and end the program—possibly before the new thread had a chance to run. This is why the call to join() is there—as described in chapter 2, this causes the calling thread (in main()) to wait for the thread associated with the std::thread object, in this case, t.

 If this seems like a lot of effort to write a message to standard output, it is—as described in section 1.2.3, it’s generally not worth the effort to use multiple threads for such a simple task, especially if the initial thread has
 nothing to do in the meantime. Later in the book, you’ll work through examples of scenarios where there’s a clear gain to
 using multiple threads.

Summary

 In this chapter, I covered what’s meant by concurrency and multithreading and why you’d choose to use it (or not) in your
 applications. I also covered the history of multithreading in C++, from the complete lack of support in the 1998 standard,
 through various platform-specific extensions, to proper multithreading support in the C++11 Standard, and on to the C++14
 and C++17 standards and the Technical Specification for concurrency. This support has come in time to allow programmers to
 take advantage of the greater hardware concurrency becoming available with newer CPUs, as chip manufacturers choose to add
 more processing power in the form of multiple cores that allow more tasks to be executed concurrently, rather than increasing
 the execution speed of a single core.

 I also showed how simple using the classes and functions from the C++ Standard Library can be in the examples in section 1.4. In C++, using multiple threads isn’t complicated in and of itself; the complexity lies in designing the code so that it
 behaves as intended.

 After the examples of section 1.4, it’s time for something with a bit more substance. In chapter 2, we’ll look at the classes and functions available for managing threads.

Chapter 2. Managing threads

 This chapter covers

 	Starting threads, and various ways of specifying code to run on a new thread

 	Waiting for a thread to finish versus leaving it to run

 	Uniquely identifying threads

 OK, so you’ve decided to use concurrency for your application. In particular, you’ve decided to use multiple threads. What
 now? How do you launch these threads, check that they’ve finished, and keep tabs on them? The C++ Standard Library makes most
 thread-management tasks relatively easy, with almost everything managed through the std::thread object associated with a given thread, as you’ll see. For those tasks that aren’t so straightforward, the library provides
 the flexibility to build what you need from the basic building blocks.

 In this chapter, I’ll start by covering the basics: launching a thread, waiting for it to finish, or running it in the background.
 We’ll then look at passing additional parameters to the thread function when it’s launched and how to transfer ownership of
 a thread from one std::thread object to another. Finally, we’ll look at choosing the number of threads to use and identifying particular threads.

2.1. Basic thread management

 Every C++ program has at least one thread, which is started by the C++ runtime: the thread running main(). Your program can then launch additional threads that have another function as the entry point. These threads then run concurrently
 with each other and with the initial thread. In the same way that the program exits when it returns from main(), when the specified entry point function returns, the thread exits. As you’ll see, if you have a std::thread object for a thread, you can wait for it to finish; but first you have to start it, so let’s look at launching threads.

 2.1.1. Launching a thread

 As you saw in chapter 1, threads are started by constructing a std::thread object that specifies the task to run on that thread. In the simplest case, that task is a plain, ordinary void-returning function that takes no parameters. This function runs on its own thread until it returns, and then the thread stops.
 At the other extreme, the task could be a function object that takes additional parameters and performs a series of independent
 operations that are specified through some kind of messaging system while it’s running, and the thread stops only when it’s
 signaled to do so, again via some kind of messaging system. It doesn’t matter what the thread is going to do or where it’s
 launched from, but starting a thread using the C++ Standard Library always boils down to constructing a std::thread object:

 void do_some_work();
std::thread my_thread(do_some_work);

 This is about as simple as it gets. Of course, you have to make sure that the <thread> header is included so the compiler can see the definition of the std::thread class. As with much of the C++ Standard Library, std::thread works with any callable type, so you can pass an instance of a class with a function call operator to the std::thread constructor instead:

 class background_task
{
public:
 void operator()() const
 {
 do_something();
 do_something_else();
 }
};
background_task f;
std::thread my_thread(f);

 In this case, the supplied function object is copied into the storage belonging to the newly created thread of execution and
 invoked from there. It’s therefore essential that the copy behaves equivalently to the original, or the result may not be
 what’s expected.

 One thing to consider when passing a function object to the thread constructor is to avoid what’s dubbed “C++’s most vexing
 parse.” If you pass a temporary rather than a named variable, the syntax can be the same as that of a function declaration,
 in which case the compiler interprets it as such, rather than an object definition. For example,

 std::thread my_thread(background_task());

 declares a my_thread function that takes a single parameter (of type pointer-to-a-function-taking-no-parameters-and-returning-a-background_task-object) and returns a std::thread object, rather than launching a new thread. You can avoid this by naming your function object as shown previously, by using
 an extra set of parentheses, or by using the new uniform initialization syntax; for example:

 std::thread my_thread((background_task()));
std::thread my_thread{background_task()};

 In the first example, the extra parentheses prevent interpretation as a function declaration, allowing my_thread to be declared as a variable of type std::thread. The second example uses the new uniform initialization syntax with braces rather than parentheses, and thus would also declare
 a variable.

 One type of callable object that avoids this problem is a lambda expression. This is a new feature from C++11 which allows you to write a local function, possibly capturing some local variables and
 avoiding the need to pass additional arguments (see section 2.2). For full details on lambda expressions, see appendix A, section A.5. The previous example can be written using a lambda expression as follows:

 std::thread my_thread([]{
 do_something();
 do_something_else();
});

 Once you’ve started your thread, you need to explicitly decide whether to wait for it to finish (by joining with it—see section 2.1.2) or leave it to run on its own (by detaching it—see section 2.1.3). If you don’t decide before the std::thread object is destroyed, then your program is terminated (the std::thread destructor calls std::terminate()). It’s therefore imperative that you ensure that the thread is correctly joined or detached, even in the presence of exceptions.
 See section 2.1.3 for a technique to handle this scenario. Note that you only have to make this decision before the std::thread object is destroyed—the thread itself may well have finished long before you join with it or detach it, and if you detach
 it, then if the thread is still running, it will continue to do so, and may continue running long after the std::thread object is destroyed; it will only stop running when it finally returns from the thread function.

 If you don’t wait for your thread to finish, you need to ensure that the data accessed by the thread is valid until the thread
 has finished with it. This isn’t a new problem—even in single-threaded code it’s undefined behavior to access an object after
 it’s been destroyed—but the use of threads provides an additional opportunity to encounter such lifetime issues.

 One situation in which you can encounter such problems is when the thread function holds pointers or references to local variables
 and the thread hasn’t finished when the function exits. The following listing shows an example of such a scenario.

 Listing 2.1. A function that returns while a thread still has access to local variables

 struct func
{
 int& i;
 func(int& i_):i(i_){}
 void operator()()
 {
 for(unsigned j=0;j<1000000;++j)
 {
 do_something(i); 1
 }
 }
};
void oops()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread my_thread(my_func);
 my_thread.detach(); 2
} 3

 	1 Potential access to dangling reference

 	2 Don’t wait for thread to finish

 	3 New thread might still be running

 In this case, the new thread associated with my_thread will probably still be running when oops exits, because you’ve explicitly decided not to wait for it by calling detach(). If the thread is still running, you have the scenario shown in table 2.1: the next call to do_something(i) will access an already destroyed variable. This is like normal single-threaded code—allowing a pointer or reference to a
 local variable to persist beyond the function exit is never a good idea—but it’s easier to make the mistake with multithreaded
 code, because it isn’t necessarily immediately apparent that this has happened.

 Table 2.1. Accessing a local variable with a detached thread after it has been destroyed

 	
 Main thread

 	
 New thread

 	Constructs my_func with reference to some_local_state
 	

 	Starts new thread my_thread
 	

 	
 	Started

 	
 	
Calls func::operator()

 	Detaches my_thread
 	Running func::operator(); may call do_something with reference to some_local_state

 	Destroys some_local_state
 	Still running

 	Exits oops
 	Still running func::operator(); may call do_something with reference to some_local_state => undefined behavior

 One common way to handle this scenario is to make the thread function self-contained and copy the data into the thread rather
 than sharing the data. If you use a callable object for your thread function, that object is copied into the thread, so the
 original object can be destroyed immediately. But you still need to be wary of objects containing pointers or references,
 such as in listing 2.1. In particular, it’s a bad idea to create a thread within a function that has access to the local variables in that function,
 unless the thread is guaranteed to finish before the function exits.

 Alternatively, you can ensure that the thread has completed execution before the function exits by joining with the thread.

 2.1.2. Waiting for a thread to complete

 If you need to wait for a thread to complete, you can do this by calling join() on the associated std::thread instance. In the case of listing 2.1, replacing the call to my_thread.detach() before the closing brace of the function body with a call to my_thread.join() would therefore be sufficient to ensure that the thread was finished before the function was exited and thus before the local
 variables were destroyed. In this case, it would mean there was little point in running the function on a separate thread,
 because the first thread wouldn’t be doing anything useful in the meantime, but in real code the original thread would either
 have work to do or would have launched several threads to do useful work before waiting for all of them to complete.

 join() is a simple and brute-force technique—either you wait for a thread to finish or you don’t. If you need more fine-grained
 control over waiting for a thread, such as to check whether a thread is finished, or to wait only a certain period of time,
 then you have to use alternative mechanisms such as condition variables and futures, which we’ll look at in chapter 4. The act of calling join() also cleans up any storage associated with the thread, so the std::thread object is no longer associated with the now-finished thread; it isn’t associated with any thread. This means that you can
 call join() only once for a given thread; once you’ve called join(), the std::thread object is no longer joinable, and joinable() will return false.

 2.1.3. Waiting in exceptional circumstances

 As mentioned earlier, you need to ensure that you’ve called either join() or detach() before a std::thread object is destroyed. If you’re detaching a thread, you can usually call detach() immediately after the thread has been started, so this isn’t a problem. But if you’re intending to wait for the thread, you
 need to carefully pick the place in the code where you call join(). This means that the call to join() is liable to be skipped if an exception is thrown after the thread has been started but before the call to join().

 To avoid your application being terminated when an exception is thrown, you therefore need to make a decision about what to
 do in this case. In general, if you were intending to call join() in a non-exceptional case, you also need to call join() in the presence of an exception to avoid accidental lifetime problems. The next listing shows some simple code that does
 just that.

 Listing 2.2. Waiting for a thread to finish

 struct func; 1
void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 try
 {
 do_something_in_current_thread();
 }
 catch(...)
 {
 t.join();
 throw;
 }
 t.join();
}

 	1 See definition in listing 2.1

 The code in listing 2.2 uses a try/catch block to ensure that a thread with access to local state is finished before the function exits, whether the function exits
 normally, or by an exception. The use of try/catch blocks is verbose, and it’s easy to get the scope slightly wrong, so this isn’t an ideal scenario. If it’s important to ensure
 that the thread completes before the function exits—whether because it has a reference to other local variables or for any
 other reason—then it’s important to ensure this is the case for all possible exit paths, whether normal or exceptional, and
 it’s desirable to provide a simple, concise mechanism for doing so.

 One way of doing this is to use the standard Resource Acquisition Is Initialization (RAII) idiom and provide a class that
 does the join() in its destructor, as in the following listing. See how it simplifies the f() function.

 Listing 2.3. Using RAII to wait for a thread to complete

 class thread_guard
{
 std::thread& t;
public:
 explicit thread_guard(std::thread& t_):
 t(t_)
 {}
 ~thread_guard()
 {
 if(t.joinable())
 {
 t.join();
 }
 }
 thread_guard(thread_guard const&)=delete;
 thread_guard& operator=(thread_guard const&)=delete;
};
struct func; 1
void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 thread_guard g(t);
 do_something_in_current_thread();
}

 	
1 See definition in listing 2.1

 When the execution of the current thread reaches the end of f, the local objects are destroyed in reverse order of construction. Consequently, the thread_guard object, g, is destroyed first, and the thread is joined with, in the destructor. This even happens if the function exits because do_something_in_current_thread throws an exception.

 The destructor of thread_guard in listing 2.3 first tests to see if the std::thread object is joinable() before calling join(). This is important, because join() can be called only once for a given thread of execution, so it would be a mistake to do so if the thread had already been
 joined.

 The copy constructor and copy-assignment operators are marked =delete to ensure that they’re not automatically provided by the compiler. Copying or assigning such an object would be dangerous,
 because it might then outlive the scope of the thread it was joining. By declaring them as deleted, any attempt to copy a
 thread_guard object will generate a compilation error. See appendix A, section A.2, for more about deleted functions.

 If you don’t need to wait for a thread to finish, you can avoid this exception-safety issue by detaching it. This breaks the association of the thread with the std::thread object and ensures that std::terminate() won’t be called when the std::thread object is destroyed, even though the thread is still running in the background.

 2.1.4. Running threads in the background

 Calling detach() on a std::thread object leaves the thread to run in the background, with no direct means of communicating with it. It’s no longer possible
 to wait for that thread to complete; if a thread becomes detached, it isn’t possible to obtain a std::thread object that references it, so it can no longer be joined. Detached threads truly run in the background; ownership and control
 are passed over to the C++ Runtime Library, which ensures that the resources associated with the thread are correctly reclaimed
 when the thread exits.

 Detached threads are often called daemon threads after the UNIX concept of a daemon process that runs in the background without any explicit user interface. Such threads are typically long-running; they run for almost
 the entire lifetime of the application, performing a background task such as monitoring the filesystem, clearing unused entries
 out of object caches, or optimizing data structures. At the other extreme, it may make sense to use a detached thread where
 there’s another mechanism for identifying when the thread has completed or where the thread is used for a fire-and-forget
 task.

 As you’ve saw in section 2.1.2, you detach a thread by calling the detach() member function of the std::thread object. After the call completes, the std::thread object is no longer associated with the actual thread of execution and is therefore no longer joinable:

 std::thread t(do_background_work);
t.detach();
assert(!t.joinable());

 In order to detach the thread from a std::thread object, there must be a thread to detach: you can’t call detach() on a std::thread object with no associated thread of execution. This is exactly the same requirement as for join(), and you can check it in exactly the same way—you can only call t.detach() for a std::thread object t when t.joinable() returns true.

 Consider an application such as a word processor that can edit multiple documents at once. There are many ways to handle this,
 both at the UI level and internally. One way that’s increasingly common at the moment is to have multiple, independent, top-level
 windows, one for each document being edited. Although these windows appear to be completely independent, each with its own
 menus, they’re running within the same instance of the application. One way to handle this internally is to run each document-editing
 window in its own thread; each thread runs the same code but with different data relating to the document being edited and
 the corresponding window properties. Opening a new document therefore requires starting a new thread. The thread handling
 the request isn’t going to care about waiting for that other thread to finish, because it’s working on an unrelated document,
 so this makes it a prime candidate for running a detached thread.

 The following listing shows a simple code outline for this approach.

 Listing 2.4. Detaching a thread to handle other documents

 void edit_document(std::string const& filename)
{
 open_document_and_display_gui(filename);
 while(!done_editing())
 {
 user_command cmd=get_user_input();
 if(cmd.type==open_new_document)
 {
 std::string const new_name=get_filename_from_user();
 std::thread t(edit_document,new_name);
 t.detach();
 }
 else
 {
 process_user_input(cmd);
 }
 }
}

 If the user chooses to open a new document, you prompt them for the document to open, start a new thread to open that document,
 and then detach it. Because the new thread is doing the same operation as the current thread but on a different file, you
 can reuse the same function (edit_document) with the newly chosen filename as the supplied argument.

 This example also shows a case where it’s helpful to pass arguments to the function used to start a thread: rather than just
 passing the name of the function to the std::thread constructor, you also pass in the filename parameter. Although other mechanisms could be used to do this, such as using a
 function object with member data instead of an ordinary function with parameters, the C++ Standard Library provides you with
 an easy way of doing it.

2.2. Passing arguments to a thread function

 As shown in listing 2.4, passing arguments to the callable object or function is fundamentally as simple as passing additional arguments to the std::thread constructor. But it’s important to bear in mind that by default, the arguments are copied into internal storage, where they
 can be accessed by the newly created thread of execution, and then passed to the callable object or function as rvalues as
 if they were temporaries. This is done even if the corresponding parameter in the function is expecting a reference. Here’s
 an example:

 void f(int i,std::string const& s);
std::thread t(f,3,"hello");

 This creates a new thread of execution associated with t, which calls f(3,"hello"). Note that even though f takes a std::string as the second parameter, the string literal is passed as a char const* and converted to a std::string only in the context of the new thread. This is particularly important when the argument supplied is a pointer to an automatic variable, as follows:

 void f(int i,std::string const& s);
void oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer, "%i",some_param);
 std::thread t(f,3,buffer);
 t.detach();
}

 In this case, it’s the pointer to the local variable buffer that’s passed through to the new thread and there’s a significant chance that the oops function will exit before the buffer has been converted to a std::string on the new thread, thus leading to undefined behavior. The solution is to cast to std::string before passing the buffer to the std::thread constructor:

 void f(int i,std::string const& s);
void not_oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer,"%i",some_param);
 std::thread t(f,3,std::string(buffer)); 1
 t.detach();
}

 	1 Using std::string avoids dangling pointer

 In this case, the problem is that you were relying on the implicit conversion of the pointer to the buffer into the std::string object expected as a function parameter, but this conversion happens too late because the std::thread constructor copies the supplied values as is, without converting to the expected argument type.

 It’s not possible to get the reverse scenario: the object is copied, and you wanted a non-const reference, because this won’t compile. You might try this if the thread is updating a data structure that’s passed in by
 reference; for example:

 void update_data_for_widget(widget_id w,widget_data& data);
void oops_again(widget_id w)
{
 widget_data data;
 std::thread t(update_data_for_widget,w,data);
 display_status();
 t.join();
 process_widget_data(data);
}

 Although update_data_for_widget expects the second parameter to be passed by reference, the std::thread constructor doesn’t know that; it’s oblivious to the types of the arguments expected by the function and blindly copies the
 supplied values. But the internal code passes copied arguments as rvalues in order to work with move-only types, and will thus try to call update_data_for_widget with an rvalue. This will fail to compile because you can’t pass an rvalue to a function that expects a non-const reference. For those of you familiar with std::bind, the solution will be readily apparent: you need to wrap the arguments that need to be references in std::ref. In this case, if you change the thread invocation to

 std::thread t(update_data_for_widget,w,std::ref(data));

 then update_data_for_widget will be correctly passed a reference to data rather than a temporary copy of data, and the code will now compile successfully.

 If you’re familiar with std::bind, the parameter-passing semantics will be unsurprising, because both the operation of the std::thread constructor and the operation of std::bind are defined in terms of the same mechanism. This means that, for example, you can pass a member function pointer as the function,
 provided you supply a suitable object pointer as the first argument:

 class X
{
public:
 void do_lengthy_work();
};
X my_x;
std::thread t(&X::do_lengthy_work,&my_x);

 This code will invoke my_x.do_lengthy_work() on the new thread, because the address of my_x is supplied as the object pointer. You can also supply arguments to such a member function call: the third argument to the
 std::thread constructor will be the first argument to the member function, and so forth.

 Another interesting scenario for supplying arguments is where the arguments can’t be copied but can only be moved: the data held within one object is transferred over to another, leaving the original object empty. An example of such a
 type is std::unique_ptr, which provides automatic memory management for dynamically allocated objects. Only one std::unique_ptr instance can point to a given object at a time, and when that instance is destroyed, the pointed-to object is deleted. The
 move constructor and move assignment operator allow the ownership of an object to be transferred around between std::unique_ptr instances (see appendix A, section A.1.1, for more on move semantics). Such a transfer leaves the source object with a NULL pointer. This moving of values allows objects of this type to be accepted as function parameters or returned from functions.
 Where the source object is temporary, the move is automatic, but where the source is a named value, the transfer must be requested
 directly by invoking std::move(). The following example shows the use of std::move to transfer ownership of a dynamic object into a thread:

 void process_big_object(std::unique_ptr<big_object>);
std::unique_ptr<big_object> p(new big_object);
p->prepare_data(42);
std::thread t(process_big_object,std::move(p));

 By specifying std::move(p) in the std::thread constructor, the ownership of big_object is transferred first into internal storage for the newly created thread and then into process_big_object.

 Several of the classes in the C++ Standard Library exhibit the same ownership semantics as std::unique_ptr, and std::thread is one of them. Though std::thread instances don’t own a dynamic object in the same way as std::unique_ptr does, they do own a resource: each instance is responsible for managing a thread of execution. This ownership can be transferred
 between instances, because instances of std::thread are movable, even though they aren’t copyable. This ensures that only one object is associated with a particular thread of
 execution at any one time while allowing programmers the option of transferring that ownership between objects.

2.3. Transferring ownership of a thread

 Suppose you want to write a function that creates a thread to run in the background, but passes ownership of the new thread
 back to the calling function rather than waiting for it to complete; or maybe you want to do the reverse: create a thread
 and pass ownership in to some function that should wait for it to complete. In either case, you need to transfer ownership
 from one place to another.

 This is where the move support of std::thread comes in. As described in the previous section, many resource-owning types in the C++ Standard Library, such as std::ifstream and std::unique_ptr, are movable but not copyable, and std::thread is one of them. This means that the ownership of a particular thread of execution can be moved between std::thread instances, as in the following example. The example shows the creation of two threads of execution and the transfer of ownership
 of those threads among three std::thread instances, t1, t2, and t3:

 void some_function();
void some_other_function();
std::thread t1(some_function);
std::thread t2=std::move(t1);
t1=std::thread(some_other_function);
std::thread t3;
t3=std::move(t2);
t1=std::move(t3); 1

 	1 This assignment will terminate the program!

 First, a new thread is started and associated with t1. Ownership is then transferred over to t2 when t2 is constructed, by invoking std::move() to explicitly move ownership. At this point, t1 no longer has an associated thread of execution; the thread running some_function is now associated with t2.

 Then, a new thread is started and associated with a temporary std::thread object. The subsequent transfer of ownership into t1 doesn’t require a call to std::move() to explicitly move ownership, because the owner is a temporary object—moving from temporaries is automatic and implicit.

 t3 is default-constructed, which means that it’s created without any associated thread of execution. Ownership of the thread
 currently associated with t2 is transferred into t3, again with an explicit call to std::move(), because t2 is a named object. After all these moves, t1 is associated with the thread running some_other_function, t2 has no associated thread, and t3 is associated with the thread running some_function.

 The final move transfers ownership of the thread running some_function back to t1 where it started. But in this case t1 already had an associated thread (which was running some_other_function), so std::terminate() is called to terminate the program. This is done for consistency with the std::thread destructor. You saw in section 2.1.1 that you must explicitly wait for a thread to complete or detach it before destruction, and the same applies to assignment:
 you can’t just drop a thread by assigning a new value to the std::thread object that manages it.

 The move support in std::thread means that ownership can readily be transferred out of a function, as shown in the following listing.

 Listing 2.5. Returning a std::thread from a function

 std::thread f()
{
 void some_function();
 return std::thread(some_function);
}
std::thread g()
{
 void some_other_function(int);
 std::thread t(some_other_function,42);
 return t;
}

 Likewise, if ownership should be transferred into a function, it can accept an instance of std::thread by value as one of the parameters, as shown here:

 void f(std::thread t);
void g()
{
 void some_function();
 f(std::thread(some_function));
 std::thread t(some_function);
 f(std::move(t));
}

 One benefit of the move support of std::thread is that you can build on the thread_guard class from listing 2.3 and have it take ownership of the thread. This avoids any unpleasant consequences should the thread_guard object outlive the thread it was referencing, and it also means that no one else can join or detach the thread once ownership
 has been transferred into the object. Because this would primarily be aimed at ensuring that threads are completed before a scope is exited, I named this class scoped_thread. The implementation is shown in the following listing, along with a simple example.

 Listing 2.6. scoped_thread and example usage

 class scoped_thread
{
 std::thread t;
public:
 explicit scoped_thread(std::thread t_):
 t(std::move(t_))
 {
 if(!t.joinable())
 throw std::logic_error("No thread");
 }
 ~scoped_thread()
 {
 t.join();
 }
 scoped_thread(scoped_thread const&)=delete;
 scoped_thread& operator=(scoped_thread const&)=delete;
};
struct func; 1
void f()
{
 int some_local_state;
 scoped_thread t{std::thread(func(some_local_state))};
 do_something_in_current_thread();
}

 	1 See listing 2.1

 The example is similar to listing 2.3, but the new thread is passed in directly to scoped_thread rather than having to create a separate named variable for it. When the initial thread reaches the end of f, the scoped_thread object is destroyed and then joins with the thread supplied to the constructor. Whereas with the thread_guard class from listing 2.3 the destructor had to check that the thread was still joinable, you can do that in the constructor and throw an exception
 if it’s not.

 One of the proposals for C++17 was for a joining_thread class that would be similar to std::thread, except that it would automatically join in the destructor much like scoped_thread does. This didn’t get consensus in the committee, so it wasn’t accepted into the standard (though it’s still on track for
 C++20 as std::jthread), but it’s relatively easy to write. One possible implementation is shown in the next listing.

 Listing 2.7. A joining_thread class

 class joining_thread
{
 std::thread t;
public:
 joining_thread() noexcept=default;
 template<typename Callable,typename ... Args>
 explicit joining_thread(Callable&& func,Args&& ... args):
 t(std::forward<Callable>(func),std::forward<Args>(args)...)
 {}
 explicit joining_thread(std::thread t_) noexcept:
 t(std::move(t_))
 {}
 joining_thread(joining_thread&& other) noexcept:
 t(std::move(other.t))
 {}
 joining_thread& operator=(joining_thread&& other) noexcept
 {
 if(joinable())
 join();
 t=std::move(other.t);
 return *this;
 }
 joining_thread& operator=(std::thread other) noexcept
 {
 if(joinable())
 join();
 t=std::move(other);
 return *this;
 }
 ~joining_thread() noexcept
 {
 if(joinable())
 join();
 }
 void swap(joining_thread& other) noexcept
 {
 t.swap(other.t);
 }
 std::thread::id get_id() const noexcept{
 return t.get_id();
 }
 bool joinable() const noexcept
 {
 return t.joinable();
 }
 void join()
 {
 t.join();
 }
 void detach()
 {
 t.detach();
 }
 std::thread& as_thread() noexcept
 {
 return t;
 }
 const std::thread& as_thread() const noexcept
 {
 return t;
 }
};

 The move support in std::thread also allows for containers of std::thread objects, if those containers are move-aware (like the updated std::vector<>). This means that you can write code like that in the following listing, which spawns a number of threads and then waits
 for them to finish.

 Listing 2.8. Spawns some threads and waits for them to finish

 void do_work(unsigned id);
void f()
{
 std::vector<std::thread> threads;
 for(unsigned i=0;i<20;++i)
 {
 threads.emplace_back(do_work,i); 1
 }
 for(auto& entry: threads) 2
 entry.join();
}

 	1 Spawns threads

 	2 Calls join() on each thread in turn

 If the threads are being used to subdivide the work of an algorithm, this is often what’s required; before returning to the
 caller, all threads must have finished. The simple structure of listing 2.8 implies that the work done by the threads is self-contained, and the result of their operations is purely the side effects
 on shared data. If f() were to return a value to the caller that depended on the results of the operations performed by these threads, then as written,
 this return value would have to be determined by examining the shared data after the threads had terminated. Alternative schemes
 for transferring the results of operations between threads are discussed in chapter 4.

 Putting std::thread objects in a std::vector is a step toward automating the management of those threads: rather than creating separate variables for those threads and
 joining with them directly, they can be treated as a group. You can take this a step further by creating a dynamic number
 of threads determined at runtime, rather than creating a fixed number, as in listing 2.8.

2.4. Choosing the number of threads at runtime

 One feature of the C++ Standard Library that helps here is std::thread::hardware_concurrency(). This function returns an indication of the number of threads that can truly run concurrently for a given execution of a
 program. On a multicore system it might be the number of CPU cores, for example. This is only a hint, and the function might return 0 if this information isn’t available, but it can be a useful guide for splitting a task among threads.

 Listing 2.9 shows a simple implementation of a parallel version of std::accumulate. In real code you’ll probably want to use the parallel version of std::reduce described in chapter 10, rather than implementing it yourself, but this illustrates the basic idea. It divides the work among the threads, with a
 minimum number of elements per thread in order to avoid the overhead of too many threads. Note that this implementation assumes
 that none of the operations will throw an exception, even though exceptions are possible; the std::thread constructor will throw if it can’t start a new thread of execution, for example. Handling exceptions in such an algorithm
 is beyond the scope of this simple example and will be covered in chapter 8.

 Listing 2.9. A naïve parallel version of std::accumulate

 template<typename Iterator,typename T>
struct accumulate_block
{
 void operator()(Iterator first,Iterator last,T& result)
 {
 result=std::accumulate(first,last,result);
 }
};
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 if(!length)
 return init;
 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;
 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();
 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);
 unsigned long const block_size=length/num_threads;
 std::vector<T> results(num_threads);
 std::vector<std::thread> threads(num_threads-1);
 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(
 accumulate_block<Iterator,T>(),
 block_start,block_end,std::ref(results[i]));
 block_start=block_end;
 }
 accumulate_block<Iterator,T>()(
 block_start,last,results[num_threads-1]);

 for(auto& entry: threads)
 entry.join();
 return std::accumulate(results.begin(),results.end(),init);
}

 Although this is a long function, it’s straightforward. If the input range is empty, you return the initial value supplied
 as the init parameter value. Otherwise, there’s at least one element in the range, so you can divide the number of elements to process
 by the minimum block size in order to give the maximum number of threads. This is to avoid creating 32 threads on a 32-core
 machine when you have only five values in the range.

 The number of threads to run is the minimum of your calculated maximum and the number of hardware threads. You don’t want
 to run more threads than the hardware can support (which is called oversubscription), because the context switching will mean that more threads will decrease the performance. If the call to std::thread:: hardware_concurrency() returned 0, you’d substitute a number of your choice; in this case I’ve chosen 2. You don’t want to run too many threads because that would slow things down on a single-core machine, but likewise you don’t
 want to run too few because you’d be passing up the available concurrency.

 The number of entries for each thread to process is the length of the range divided by the number of threads. If you’re worrying
 about cases where the number doesn’t divide evenly, don’t—you’ll handle that later.

 Now that you know how many threads you have, you can create a std::vector<T> for the intermediate results and a std::vector<std::thread> for the threads. Note that you need to launch one fewer thread than num_threads, because you already have one.

 Launching the threads is a simple loop: advance the block_end iterator to the end of the current block and launch a new thread to accumulate the results for this block. The start of the
 next block is the end of this one.

 After you’ve launched all the threads, this thread can then process the final block. This is where you take account of any
 uneven division: you know the end of the final block must be last, and it doesn’t matter how many elements are in that block.

 Once you’ve accumulated the results for the last block, you can wait for all the threads you spawned with std::for_each, as in listing 2.8, and then add up the results with a final call to std::accumulate.

 Before you leave this example, it’s worth pointing out that where the addition operator for the type T isn’t associative (such as for float or double), the results of this parallel_accumulate may vary from those of std::accumulate because of the grouping of the range into blocks. Also, the requirements on the iterators are slightly more stringent: they
 must be at least forward iterators, whereas std::accumulate can work with single-pass input iterators, and T must be default-constructible so that you can create the results vector. These sorts of requirement changes are common with parallel algorithms; by their nature they’re different in order
 to make them parallel, and this has consequences for the results and requirements. Implementing parallel algorithms is covered in more depth in chapter 8, and chapter 10 covers the standard supplied ones from C++17 (the equivalent to the parallel_accumulate described here being the parallel form of std::reduce). It’s also worth noting that because you can’t return a value directly from a thread, you must pass in a reference to the
 relevant entry in the results vector. Alternative ways of returning results from threads are addressed through the use of futures in chapter 4.

 In this case, all the information required by each thread was passed in when the thread was started, including the location
 in which to store the result of its calculation. This isn’t always the case; sometimes it’s necessary to be able to identify
 the threads in some way for part of the processing. You could pass in an identifying number, such as the value of i in listing 2.8, but if the function that needs the identifier is several levels deep in the call stack and could be called from any thread,
 it’s inconvenient to have to do it that way. When we were designing the C++ Standard Library we foresaw this need, so each
 thread has a unique identifier.

2.5. Identifying threads

 Thread identifiers are of type std::thread::id and can be retrieved in two ways. First, the identifier for a thread can be obtained from its associated std::thread object by calling the get_id() member function. If the std::thread object doesn’t have an associated thread of execution, the call to get_id() returns a default-constructed std::thread::id object, which indicates “not any thread.” Alternatively, the identifier for the current thread can be obtained by calling
 std::this_thread:: get_id(), which is also defined in the <thread> header.

 Objects of type std::thread::id can be freely copied and compared; they wouldn’t be of much use as identifiers otherwise. If two objects of type std::thread::id are equal, they represent the same thread, or both are holding the “not any thread” value. If two objects aren’t equal, they
 represent different threads, or one represents a thread and the other is holding the “not any thread” value.

 The C++ Standard Library doesn’t limit you to checking whether thread identifiers are the same or not; objects of type std::thread::id offer the complete set of comparison operators, which provide a total ordering for all distinct values. This allows them
 to be used as keys in associative containers, or sorted, or compared in any other way that you as a programmer may see fit.
 The comparison operators provide a total order for all non-equal values of std::thread::id, so they behave as you’d intuitively expect: if a<b and b<c, then a<c, and so forth. The Standard Library also provides std::hash<std::thread::id> so that values of type std::thread::id can be used as keys in the new unordered associative containers too.

 Instances of std::thread::id are often used to check whether a thread needs to perform some operation. For example, if threads are used to divide work,
 as in listing 2.9, the initial thread that launched the others might need to perform its work slightly differently in the middle of the algorithm.
 In this case it could store the result of std::this_thread::get_id() before launching the other threads, and then the core part of the algorithm (which is common to all threads) could check
 its own thread ID against the stored value:

 std::thread::id master_thread;
void some_core_part_of_algorithm()
{
 if(std::this_thread::get_id()==master_thread)
 {
 do_master_thread_work();
 }
 do_common_work();
}

 Alternatively, the std::thread::id of the current thread could be stored in a data structure as part of an operation. Later operations on that same data structure
 could then check the stored ID against the ID of the thread performing the operation to determine what operations are permitted/required.

 Similarly, thread IDs could be used as keys into associative containers where specific data needs to be associated with a
 thread and alternative mechanisms such as thread-local storage aren’t appropriate. Such a container could, for example, be
 used by a controlling thread to store information about each of the threads under its control or for passing information between
 threads.

 The idea is that std::thread::id will suffice as a generic identifier for a thread in most circumstances; it’s only if the identifier has semantic meaning
 associated with it (such as being an index into an array) that alternatives should be necessary. You can even write out an
 instance of std::thread::id to an output stream such as std::cout:

 std::cout<<std::this_thread::get_id();

 The exact output you get is strictly implementation-dependent; the only guarantee given by the standard is that thread IDs
 that compare as equal should produce the same output, and those that aren’t equal should give different output. This is therefore
 primarily useful for debugging and logging, but the values have no semantic meaning, so there’s not much more that could be
 said anyway.

Summary

 In this chapter, I covered the basics of thread management with the C++ Standard Library: starting threads, waiting for them
 to finish, and not waiting for them to finish because you want them to run in the background. We also saw how to pass arguments into the thread
 function when a thread is started, how to transfer the responsibility for managing a thread from one part of the code to another,
 and how groups of threads can be used to divide work. Finally, we discussed identifying threads in order to associate data
 or behavior with specific threads that’s inconvenient to associate through alternative means. Although you can do quite a
 lot with purely independent threads that each operate on separate data, sometimes it’s desirable to share data among threads
 while they’re running. Chapter 3 discusses the issues surrounding sharing data directly among threads, and chapter 4 covers more general issues surrounding synchronizing operations with and without shared data.

Chapter 3. Sharing data between threads

 This chapter covers

 	Problems with sharing data between threads

 	Protecting data with mutexes

 	Alternative facilities for protecting shared data

 One of the key benefits of using threads for concurrency is the potential to easily and directly share data between them,
 so now that we’ve covered starting and managing threads, let’s look at the issues surrounding shared data.

 Imagine for a moment that you’re sharing an apartment with a friend. There’s only one kitchen and one bathroom. Unless you’re
 particularly friendly, you can’t both use the bathroom at the same time, and if your roommate occupies the bathroom for a
 long time, it can be frustrating if you need to use it. Likewise, though it might be possible to both cook meals at the same
 time, if you have a combined oven and grill, it’s not going to end well if one of you tries to grill some sausages at the
 same time as the other is baking a cake. Furthermore, we all know the frustration of sharing a space and getting halfway through
 a task only to find that someone has borrowed something we need or changed something from the way we left it.

 It’s the same with threads. If you’re sharing data between threads, you need to have rules for which thread can access which
 bit of data when, and how any updates are communicated to the other threads that care about that data. The ease with which data can be shared between multiple threads
 in a single process is not only a benefit—it can also be a big drawback. Incorrect use of shared data is one of the biggest
 causes of concurrency-related bugs, and the consequences can be far worse than sausage-flavored cakes.

 This chapter is about sharing data safely between threads in C++, avoiding the potential problems that can arise, and maximizing
 the benefits.

3.1. Problems with sharing data between threads

 When it comes down to it, the problems with sharing data between threads are all due to the consequences of modifying data.
 If all shared data is read-only, there’s no problem, because the data read by one thread is unaffected by whether or not another
 thread is reading the same data. But if data is shared between threads, and one or more threads start modifying the data, there’s a lot of potential for trouble.
 In this case, you must take care to ensure that everything works out OK.

 One concept that’s widely used to help programmers reason about their code is invariants—statements that are always true about a particular data structure, such as “this variable contains the number of items in
 the list.” These invariants are often broken during an update, especially if the data structure is of any complexity or the
 update requires modification of more than one value.

 Consider a doubly linked list, where each node holds a pointer to both the next node in the list and the previous one. One
 of the invariants is that if you follow a “next” pointer from one node (A) to another (B), the “previous” pointer from that
 node (B) points back to the first node (A). In order to remove a node from the list, the nodes on either side have to be updated
 to point to each other. Once one has been updated, the invariant is broken until the node on the other side has been updated
 too; after the update has completed, the invariant holds again.

 The steps in deleting an entry from such a list are shown in figure 3.1:

 	Identify the node to delete: N.

 	Update the link from the node prior to N to point to the node after N.

 	Update the link from the node after N to point to the node prior to N.

 	Delete node N.

 Figure 3.1. Deleting a node from a doubly linked list

 [image:]

 As you can see in figure 3.1, between steps b and c, the links going in one direction are inconsistent with the links going in the opposite direction,
 and the invariant is broken.

 The simplest potential problem with modifying data that’s shared between threads is that of broken invariants. If you don’t
 do anything special to ensure otherwise, if one thread is reading the doubly linked list while another is removing a node,
 it’s quite possible for the reading thread to see the list with a node only partially removed (because only one of the links
 has been changed, as in step b of figure 3.1), so the invariant is broken. The consequences of this broken invariant can vary; if the other thread is reading the list items from left to right in the diagram, it will skip the node being deleted. On the other hand,
 if the second thread is trying to delete the rightmost node in the diagram, it might end up permanently corrupting the data
 structure and eventually crashing the program. Whatever the outcome, this is an example of one of the most common causes of
 bugs in concurrent code: a race condition.

 3.1.1. Race conditions

 Suppose you’re buying tickets to see a movie at the movie theater. If it’s a big theater, multiple cashiers will be taking
 money so more than one person can buy tickets at the same time. If someone at another cashier’s desk is also buying tickets
 for the same movie as you are, which seats are available for you to choose from depends on whether the other person books first or you
 do. If there are only a few seats left, this difference can be quite crucial: it might literally be a race to see who gets
 the last tickets. This is an example of a race condition: which seats you get (or even whether you get tickets) depends on the relative ordering of the two purchases.

 In concurrency, a race condition is anything where the outcome depends on the relative ordering of execution of operations
 on two or more threads; the threads race to perform their respective operations. Most of the time, this is quite benign because
 all possible outcomes are acceptable, even though they may change with different relative orderings. For example, if two threads
 are adding items to a queue for processing, it generally doesn’t matter which item gets added first, provided that the invariants
 of the system are maintained. It’s when the race condition leads to broken invariants that there’s a problem, such as with
 the doubly linked list example mentioned. When talking about concurrency, the term race condition is usually used to mean a problematic race condition; benign race conditions aren’t so interesting and aren’t a cause of bugs. The C++ Standard also defines the
 term data race to mean the specific type of race condition that arises because of concurrent modification to a single object (see section 5.1.2 for details); data races cause the dreaded undefined behavior.

 Problematic race conditions typically occur where completing an operation requires modification of two or more distinct pieces
 of data, such as the two link pointers in the example. Because the operation must access two separate pieces of data, these
 must be modified in separate instructions, and another thread could potentially access the data structure when only one of
 them has been completed. Race conditions can often be hard to find and hard to duplicate because the window of opportunity
 is small. If the modifications are done as consecutive CPU instructions, the chance of the problem exhibiting on any one run-through
 is small, even if the data structure is being accessed by another thread concurrently. As the load on the system increases,
 and the number of times the operation is performed increases, the chance of the problematic execution sequence occurring also
 increases. It’s almost inevitable that such problems will show up at the most inconvenient time. Because race conditions are
 generally timing-sensitive, they can often disappear entirely when the application is run under the debugger, because the
 debugger affects the timing of the program, even if only slightly.

 If you’re writing multithreaded programs, race conditions can easily be the bane of your existence; a great deal of the complexity
 in writing software that uses concurrency comes from avoiding problematic race conditions.

 3.1.2. Avoiding problematic race conditions

 There are several ways to deal with problematic race conditions. The simplest option is to wrap your data structure with a
 protection mechanism to ensure that only the thread performing a modification can see the intermediate states where the invariants
 are broken. From the point of view of other threads accessing that data structure, such modifications either haven’t started or have completed. The C++ Standard Library provides several of these mechanisms, which
 are described in this chapter.

 Another option is to modify the design of your data structure and its invariants so that modifications are done as a series
 of indivisible changes, each of which preserves the invariants. This is generally referred to as lock-free programming and is difficult to get right. If you’re working at this level, the nuances of the memory model and identifying which threads
 can potentially see which set of values can get complicated. The memory model is covered in chapter 5, and lock-free programming is discussed in chapter 7.

 Another way of dealing with race conditions is to handle the updates to the data structure as a transaction, just as updates to a database are done within a transaction. The required series of data modifications and reads is stored
 in a transaction log and then committed in a single step. If the commit can’t proceed because the data structure has been
 modified by another thread, the transaction is restarted. This is termed software transactional memory (STM), and it’s an active research area at the time of writing. It won’t be covered in this book, because there’s no direct support
 for STM in C++ (though there is a Technical Specification for Transactional Memory Extensions to C++[1]). But the basic idea of doing something privately and then committing in a single step is something that I’ll come back to
 later.

 1

ISO/IEC TS 19841:2015—Technical Specification for C++ Extensions for Transactional Memory http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343.

 The most basic mechanism for protecting shared data provided by the C++ Standard is the mutex, so we’ll look at that first.

3.2. Protecting shared data with mutexes

 So, you have a shared data structure such as the linked list from the previous section, and you want to protect it from race
 conditions and the potential broken invariants that can ensue. Wouldn’t it be nice if you could mark all the pieces of code
 that access the data structure as mutually exclusive, so that if any thread was running one of them, any other thread that tried to access that data structure had to wait until
 the first thread was finished? That would make it impossible for a thread to see a broken invariant except when it was the
 thread doing the modification.

 Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchronization primitive called a mutex (mutual exclusion). Before accessing a shared data structure, you lock the mutex associated with that data, and when you’ve finished accessing the data structure, you unlock the mutex. The Thread Library then ensures that once one thread has locked a specific mutex, all other threads that try to
 lock the same mutex have to wait until the thread that successfully locked the mutex unlocks it. This ensures that all threads
 see a self-consistent view of the shared data, without any broken invariants.

 Mutexes are the most general of the data-protection mechanisms available in C++, but they’re not a silver bullet; it’s important
 to structure your code to protect the right data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see section 3.2.3). Mutexes also come with their own problems in the form of a deadlock (see section 3.2.4) and protecting either too much or too little data (see section 3.2.8). Let’s start with the basics.

 3.2.1. Using mutexes in C++

 In C++, you create a mutex by constructing an instance of std::mutex, lock it with a call to the lock() member function, and unlock it with a call to the unlock() member function. But it isn’t recommended practice to call the member functions directly, because this means that you have
 to remember to call unlock() on every code path out of a function, including those due to exceptions. Instead, the Standard C++ Library provides the std::lock_guard class template, which implements that RAII idiom for a mutex; it locks the supplied mutex on construction and unlocks it
 on destruction, ensuring a locked mutex is always correctly unlocked. The following listing shows how to protect a list that
 can be accessed by multiple threads using std::mutex, along with std::lock_guard. Both of these are declared in the <mutex> header.

 Listing 3.1. Protecting a list with a mutex

 #include <list>
#include <mutex>
#include <algorithm>
std::list<int> some_list; 1
std::mutex some_mutex; 2
void add_to_list(int new_value)
{
 std::lock_guard<std::mutex> guard(some_mutex); 3
 some_list.push_back(new_value);
}
bool list_contains(int value_to_find)
{
 std::lock_guard<std::mutex> guard(some_mutex); 4
 return std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end();
}

 In listing 3.1, there’s a single global variable 1, and it’s protected with a corresponding global instance of std::mutex 2. The use of std::lock_guard<std::mutex> in add_to_list() 3, and again in list_contains() 4, means that the accesses in these functions are mutually exclusive: list_contains() will never see the list partway through a modification by add_to_list().

 C++17 has a new feature called class template argument deduction, which means that for simple class templates like std::lock_guard, the template argument list can often be omitted. 3 and 4 can be reduced to

 std::lock_guard guard(some_mutex);

 on a C++17 compiler. As we will see in section 3.2.4, C++17 also introduces an enhanced version of lock guard called std::scoped_lock, so in a C++17 environment, this may well be written as

 std::scoped_lock guard(some_mutex);

 For clarity of code and compatibility with older compilers, I’ll continue to use std::lock_guard and specify the template arguments in other code snippets.

 Although there are occasions where this use of global variables is appropriate, in the majority of cases it’s common to group
 the mutex and the protected data together in a class rather than use global variables. This is a standard application of object-oriented
 design rules: by putting them in a class, you’re clearly marking them as related, and you can encapsulate the functionality
 and enforce the protection. In this case, the add_to_list and list_contains functions would become member functions of the class, and the mutex and protected data would both become private members of the class, making it much easier to identify which code has access to the data and thus which code needs to lock
 the mutex. If all the member functions of the class lock the mutex before accessing any other data members and unlock it when
 done, the data is nicely protected from all comers.

 Well, that’s not quite true, as the astute among you will have noticed: if one of the member functions returns a pointer or reference to the protected
 data, then it doesn’t matter that the member functions all lock the mutex in a nice, orderly fashion, because you’ve blown
 a big hole in the protection. Any code that has access to that pointer or reference can now access (and potentially modify) the protected data without locking
 the mutex. Protecting data with a mutex therefore requires careful interface design to ensure that the mutex is locked before there’s
 any access to the protected data and that there are no backdoors.

 3.2.2. Structuring code for protecting shared data

 As you’ve seen, protecting data with a mutex is not quite as easy as slapping an std::lock_guard object in every member function; one stray pointer or reference, and all that protection is for nothing. At one level, checking
 for stray pointers or references is easy; as long as none of the member functions return a pointer or reference to the protected
 data to their caller either via their return value or via an out parameter, the data is safe. If you dig a little deeper,
 it’s not that straightforward—nothing ever is. As well as checking that the member functions don’t pass out pointers or references
 to their callers, it’s also important to check that they don’t pass these pointers or references in to functions they call that aren’t under your control. This is just as dangerous: those functions might store the pointer
 or reference in a place where it can later be used without the protection of the mutex. Particularly dangerous in this regard
 are functions that are supplied at runtime via a function argument or other means, as in the next listing.

 Listing 3.2. Accidentally passing out a reference to protected data

 class some_data
{
 int a;
 std::string b;
public:
 void do_something();
};
class data_wrapper
{
private:
 some_data data;
 std::mutex m;
public:
 template<typename Function>
 void process_data(Function func)
 {
 std::lock_guard<std::mutex> l(m);
 func(data); 1
 }
};
some_data* unprotected;
void malicious_function(some_data& protected_data)
{
 unprotected=&protected_data;
}
data_wrapper x;
void foo()
{
 x.process_data(malicious_function); 2
 unprotected->do_something(); 3
}

OEBPS/01fig03.jpg
Process 1

Thread

Interprocess
commurication

Operating
system

Thread

Process 2

OEBPS/01fig04.jpg
Process

Thread 1

I

Shared memory

I

Thread 2

OEBPS/01fig01_alt.jpg
Core1
Dual core

Core 2

Single core _

OEBPS/01fig02_alt.jpg

OEBPS/common2.jpg

OEBPS/f00xx-01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/03fig01_alt.jpg
-

—> [
&3
<
—> [
L)

v
]

a)
b)
o)
d)

OEBPS/cover.jpg
SECOND EDITION

Anthony Williams

