

 [image: cover]

Machine Learning Systems: Designs that scale

 Jeff Smith

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Review editor: Aleksandar Dragosavljević
Technical development editor: Kostas Passadis
Project editor: Tiffany Taylor
Copyeditor: Corbin Collins
Proofreader: Katie Tennant
Technical proofreader: Jerry Kuch
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617293337

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Fundamentals of reactive machine learning

 Chapter 1. Learning reactive machine learning

 Chapter 2. Using reactive tools

 2. Building a reactive machine learning system

 Chapter 3. Collecting data

 Chapter 4. Generating features

 Chapter 5. Learning models

 Chapter 6. Evaluating models

 Chapter 7. Publishing models

 Chapter 8. Responding

 3. Operating a machine learning system

 Chapter 9. Delivering

 Chapter 10. Evolving intelligence

 Getting set up

 A reactive machine learning system

 Phases of machine learning

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Fundamentals of reactive machine learning

 Chapter 1. Learning reactive machine learning

 1.1. An example machine learning system

 1.1.1. Building a prototype system

 1.1.2. Building a better system

 1.2. Reactive machine learning

 1.2.1. Machine learning

 1.2.2. Reactive systems

 1.2.3. Making machine learning systems reactive

 1.2.4. When not to use reactive machine learning

 Summary

 Chapter 2. Using reactive tools

 2.1. Scala, a reactive language

 2.1.1. Reacting to uncertainty in Scala

 2.1.2. The uncertainty of time

 2.2. Akka, a reactive toolkit

 2.2.1. The actor model

 2.2.2. Ensuring resilience with Akka

 2.3. Spark, a reactive big data framework

 Summary

 2. Building a reactive machine learning system

 Chapter 3. Collecting data

 3.1. Sensing uncertain data

 3.2. Collecting data at scale

 3.2.1. Maintaining state in a distributed system

 3.2.2. Understanding data collection

 3.3. Persisting data

 3.3.1. Elastic and resilient databases

 3.3.2. Fact databases

 3.3.3. Querying persisted facts

 3.3.4. Understanding distributed-fact databases

 3.4. Applications

 3.5. Reactivities

 Summary

 Chapter 4. Generating features

 4.1. Spark ML

 4.2. Extracting features

 4.3. Transforming features

 4.3.1. Common feature transforms

 4.3.2. Transforming concepts

 4.4. Selecting features

 4.5. Structuring feature code

 4.5.1. Feature generators

 4.5.2. Feature set composition

 4.6. Applications

 4.7. Reactivities

 Summary

 Chapter 5. Learning models

 5.1. Implementing learning algorithms

 5.1.1. Bayesian modeling

 5.1.2. Implementing Naive Bayes

 5.2. Using MLlib

 5.2.1. Building an ML pipeline

 5.2.2. Evolving modeling techniques

 5.3. Building facades

 5.3.1. Learning artistic style

 5.4. Reactivities

 Summary

 Chapter 6. Evaluating models

 6.1. Detecting fraud

 6.2. Holding out data

 6.3. Model metrics

 6.4. Testing models

 6.5. Data leakage

 6.6. Recording provenance

 6.7. Reactivities

 Summary

 Chapter 7. Publishing models

 7.1. The uncertainty of farming

 7.2. Persisting models

 7.3. Serving models

 7.3.1. Microservices

 7.3.2. Akka HTTP

 7.4. Containerizing applications

 7.5. Reactivities

 Summary

 Chapter 8. Responding

 8.1. Moving at the speed of turtles

 8.2. Building services with tasks

 8.3. Predicting traffic

 8.4. Handling failure

 8.5. Architecting response systems

 8.6. Reactivities

 Summary

 3. Operating a machine learning system

 Chapter 9. Delivering

 9.1. Shipping fruit

 9.2. Building and packaging

 9.3. Build pipelines

 9.4. Evaluating models

 9.5. Deploying

 9.6. Reactivities

 Summary

 Chapter 10. Evolving intelligence

 10.1. Chatting

 10.2. Artificial intelligence

 10.3. Reflex agents

 10.4. Intelligent agents

 10.5. Learning agents

 10.6. Reactive learning agents

 10.6.1. Reactive principles

 10.6.2. Reactive strategies

 10.6.3. Reactive machine learning

 10.7. Reactivities

 10.7.1. Libraries

 10.7.2. System data

 10.8. Reactive explorations

 10.8.1. Users

 10.8.2. System dimensions

 10.8.3. Applying reactive principles

 Summary

 Getting set up

 Scala

 Git code repository

 sbt

 Spark

 Couchbase

 Docker

 A reactive machine learning system

 Phases of machine learning

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Today’s data scientists and software engineers are spoiled for choice when looking for tools to build machine learning systems.
 They have a range of new technologies that make it easier than ever to build entire machine learning systems. Considering
 where we—the machine learning community—started, it’s exciting to see a book that explores how powerful and approachable the
 current technologies are.

 To better understand how we got here, I’d like to share a bit of my own story. They tell me I’m a data scientist, but I think
 I’m only here by accident. I began as a software person and grew up on Java 1.3 and EJB. I left the software-engineer role
 at Google a decade ago, although I dabbled in open source and created a recommender system that went on to be part of Apache
 Mahout in 2009. Its goal was to implement machine learning algorithms on the then-new Apache Hadoop MapReduce framework. The
 engineering parts were familiar—MapReduce came from Google, after all. The machine learning was new and exciting, but the
 tools were lacking.

 Not knowing any better, and with no formal background in ML, I tried to help build ML at scale. In theory, this was going
 to open an era of better ML, because more data generally means better models. ML just needed tooling rebuilt on the nascent
 distributed computing platforms like Hadoop.

 Mahout (0.x) was what you’d expect when developers with a lot of engineering background and a little stats background try
 to build ML tools: JVM-based, modular, scalable, complex, developer-oriented, baroque, and sometimes eccentric in its interpretation
 of stats concepts. In retrospect, classic Mahout wasn’t interesting because it was a better version of stats tooling. In truth,
 it was much less usable than, say, R (which I admit having never heard of until 2010). Mahout was interesting, because it
 was built from the beginning to work at web scale, using tooling developed for enterprise software engineering. The collision
 of stats tooling with new approaches to handling web-scale data gave birth to what became known as data science.

 The more I back-filled my missing context about how real statisticians and analysts had been successfully applying ML for
 decades, thank you very much, the more I realized that the existing world of analytics tooling optimizes for some usages and
 not others. Python, R, and their ecosystems have rich analytics libraries and visualization tools. They’re not as concerned
 with issues of scale or production deployment.

 Coming from an enterprise software world, I was somewhat surprised that the tooling generally ended at building a model. What
 about doing something with the model in production? I found this was usually viewed as a separate activity for software engineers
 to undertake. The engineering community hadn’t settled on clear patterns for product application around Hadoop-related technologies.

 [image:]

 In 2012, I spun out a small company, Myrrix, to expand on the core premise of Mahout and make it into a continuously learning,
 updating service with the ability to serve results from the model in production—not just a library that output coefficients.
 This became part of Cloudera and was reimagined again, on top of Apache Spark, as Oryx (https://github.com/OryxProject/oryx).

 Spark was another game changer for the Hadoop ecosystem. It brought a higher-level, natural functional paradigm to big data
 software development, more like you’d encounter in Python. It added language bindings to Python and R. It brought a new machine
 learning library, Spark MLlib. By 2015, the big data ecosystem at large was suddenly much closer to the world of conventional
 analytics tools.

 These and other tools have bridged the worlds of stats and software engineering such that the two now interact regularly.
 Today’s big data engineer has ready access to Python-only tooling like TensorFlow for deep learning and Seaborn for visualization.
 The software-engineering culture of version control and testing and strongly typed languages has flowed into the data science
 community, too.

 That brings us back to this book. It doesn’t cover just tools but also the entire job of building a machine learning system.
 It gets into topics that people used to gloss over, like model serialization and building model servers. The language of the
 book is primarily Scala, a unique language that is both principled and expressive without sacrificing conveniences like type
 inference. Scala has been used to build powerful technologies like Spark and Akka, which the book shows you how to use to
 build machine learning systems. The book also doesn’t ignore the importance of interoperability with Python technologies or
 portable application builds with Docker.

 We’ve come a long way, and there’s farther to go. The person who can master the tools and techniques in this book will be
 well prepared to play a role in machine learning’s even more exciting future.

 SEAN OWEN
DIRECTOR OF DATA SCIENCE, CLOUDERA

Preface

 I’ve been working with data for my entire professional career. Following my interests, I’ve worked on ever-more-analytically
 sophisticated systems as my career has progressed, leading to a focus on machine learning and artificial intelligence systems.

 As my work content evolved from more traditional data-warehousing sorts of tasks to building machine learning systems, I was
 struck by a strange absence. When I was working primarily with databases, I could rely on the rich body of academic and professional
 literature about how to build databases and applications that interact with them to help me define what a good design was.
 So, I was confused and surprised to find that machine learning as a field generally lacked this sort of guidance. There were
 no canonical implementations of anything other than the model learning algorithms. Huge chunks of the system that needed to
 be built were largely glossed over in the literature. Often, I couldn’t even find a consistent name for a given system component,
 so my colleagues and I inevitably confused each other with our choices of terminology.

 What I wanted was a framework, something like a Ruby on Rails for machine learning, but no such framework seemed to exist.[1] Barring a commonly accepted framework, I wanted at least some clear design patterns for how to build machine learning systems;
 but alas, there was no Design Patterns for Machine Learning Systems to be found, either.

 1

Eventually, I came across Sean Owen’s work on Oryx and Simon Chan’s on PredictionIO, which were super-instructive. If you’re
 interested in the background of machine learning architectures, you’ll benefit from reviewing them both.

 So, I built machine learning systems the hard way: by trying things and figuring out what didn’t work. When I needed to invent
 terminology, I just picked reasonable terms. Over time, I tried to synthesize some of my learnings about what worked for machine
 learning system design and what didn’t into a coherent whole. Fields like distributed systems and functional programming offered
 the promise of adding coherence to my views about machine learning systems, but neither was particularly focused on application
 to machine learning.

 Then, I discovered reactive systems design, via reading the Reactive Manifesto (www.reactivemanifesto.org). It was startling in its simple coherence and bold mission. Here was a complete world view of what the challenge of building
 modern software applications was and a principled way of building applications that met that challenge. I was excited by the promise of the approach and immediately
 began attempting to apply it to the problems I’d seen in architecting and building machine learning systems.

 [image:]

Poop prediction

 This inquiry led me to poop—specifically, to dog poop. I tried to imagine how a naive machine learning system could be refactored
 into something much better, using the tools from reactive systems design. To do this, I wrote a blog post about a dog poop
 prediction startup (http://mng.bz/9YK8; see figure).

 The post got a surprisingly large and serious response from a wide range of people. I learned two things from that response:

 	I wasn’t the only one interested in coming up with a principled approach to building machine learning systems.

 	People really enjoyed talking about machine learning in terms of cartoon animals.

 Those insights led to the book you’re reading. In this book, I try to cover a range of issues you’re likely to encounter in
 building real-world machine learning systems that have to keep customers happy. My focus is on all the stuff you won’t find
 in other books. I’ve tried to make the book as broad as possible, in the hopes of covering the full responsibilities of the
 modern data scientist or engineer. I explore how to use general principles and techniques to break down the seemingly unique
 problems of a given component of a machine learning system. My goal is to be as comprehensive as possible in my coverage of
 machine learning system components, but that means I can’t be comprehensive on huge topics like model learning algorithms
 and distributed systems. Instead, I’ve designed examples that provide you with experience building various components of a
 machine learning system.

 I firmly believe that to build a truly powerful machine learning system, you must take a system-level view of the problem.
 In this book, I provide that high-level perspective and then help you build skills around each of the key components in that
 system. I learned through my experience as a technical lead and manager that understanding the entire machine learning system
 and the composition of its components is one of the most important skills a developer of machine learning systems can have.
 So, the book tries to cover all the different pieces it takes to build up a powerful, real-world machine learning system.
 Throughout, we’ll take the perspective of teams shipping sophisticated machine learning systems for live users. So, we’ll
 explore how to build everything in a machine learning system. It’s a big job, and I’m excited that you’re interested in taking it on.

Acknowledgments

 A book is the opposite of an academic paper when it comes to attribution. In an academic paper, everyone who ever even grabbed
 lunch at the lab can get their name on the paper; but in a book, for some reason, we only put one or two names on the cover.
 But it’s not that simple to pull a book together; lots of people are involved. Here are all the people who made this book
 happen.

 As I mentioned in the preface, the book grew out of (believe it or not) a blog post about dog poop (http://mng.bz/9YK8). I’m immensely grateful to the serious and accomplished people who took my cartoons about dog poop seriously enough to provide
 useful feedback: Roland Kuhn, Simon Chan, and Sean Owen.

 In the early days of the book, the members of the reactive study group and the data team at Intent Media were invaluable in
 helping me understand where I was trying to take these ideas about building machine learning systems. I’m also indebted to
 Chelsea Alburger from Intent Media, who provided great early art direction for the book’s visuals.

 Thanks go to the team at Manning who took my original ideas and helped them become a book: Frank Pöhlmann, who suggested that
 there might be a book in this reactive machine learning stuff; Susanna Kline, who dragged me kicking and screaming through
 the dark forest; Kostas Passadis, who kept me from looking like a complete fool; and Marjan Bace, who green-lit the whole
 mad endeavor. I also want to thank the technical peer reviewers, led by Aleksandar Dragosavljevic: David Andrzejewski, Jose
 Carlos Estefania Aulet, Óscar Belmonte-Fernández, Tony M. Dubitsky, Vipul Gupta, Jason Hales, Massimo Ilario, Shobha Iyer,
 Shanker Janakiraman, Jon Lehto, Anuja Kelkar, Alexander Myltsev, Tommy O’Dell, Jean Safar, José San Leandro, Jeff Smith, Chris
 Snow, Ian Stirk, Fabien Tison, Jeremy Townson, Joseph Wang, and Jonathan Woodard.

 Once the book really got rolling, the team at x.ai were immensely helpful in providing a test lab for various ideas and supporting
 me as I took the book’s ideas on the road in the form of talks. I thank you, Dennis Mortensen, Alex Poon, and everyone on
 the tech team.

 Also, thanks go to anyone who came out to hear one of the talks associated with the book at conferences and meetups. All the
 feedback provided, in person and online, was instrumental to helping me understand how the material was evolving.

 Finally, I thank my illustrator, yifan, without whom the book wouldn’t have been possible. You’ve brought to life my vision
 of cartoon animals who do machine learning, and now I’m excited to be able to share it with the world.

 P.S. Thanks to my muse: nom nom, the data dog. Who’s a good little machine learner? You are!

About this book

 This book serves two slightly different audiences. First, it serves software engineers who are interested in machine learning
 but haven’t built many real-world machine learning systems. I presume such readers want to put their skills into practice
 by actually building something with machine learning. The book is different from other books you may have picked up on machine
 learning. In it, you’ll find techniques applicable to building whole production-grade systems, not just naive scripts. We’ll
 explore the entire range of possible components you might need to implement in a machine learning system, with lots of hard-won
 tips about common design pitfalls. Along the way, you’ll learn about the various jobs of a machine learning system, in the
 context of implementing systems that fulfill those needs. So, if you don’t have a lot of background in machine learning, don’t
 worry that you’ll have to wade through pages of math before you get to build things. The book will have you coding all the
 way through, often relying on libraries to handle the more complex implementation concerns like model learning algorithms
 and distributed data processing.

 Second, this book serves data scientists who are interested in the bigger picture of machine learning systems. I presume that
 such readers know the concepts of machine learning but may only have implemented simple machine learning functionality (for
 example, scripts over files on a laptop). For such readers, the book may introduce you to a range of concerns that you’ve
 never before considered part of the work of machine learning. In places, I’ll introduce vocabulary to name components of a
 system that are often neglected in academic machine learning discussions, and then I’ll show you how to implement them. Although
 the book does get into some powerful programming techniques, I don’t presume that you have deep experience in software engineering,
 and I’ll introduce all concepts beyond the very basic, in context.

 For either type of reader, I assume that you have some interest in reactive systems and how this approach can be used to build
 better machine learning systems. The reactive perspective on system design underpins every part of the book, so you’ll spend
 a lot of time examining the properties your system has or doesn’t have, often presuming that real-world problems like server
 outages and network partitions will occur in your system.

 Concretely, this focus on reactive systems means the book contains a fair bit of material on distributed systems and functional
 programming. The goal of unifying these concerns with the task of building machine learning systems is to give you tools to
 solve some of the hardest problems in technology today. Again, if you don’t have a background in distributed systems or functional
 programming, don’t worry: I’ll introduce this material in context with the appropriate motivation. Once you see tools like
 Scala, Spark, and Akka in action, I hope it will become clear to you how helpful they can be in solving real-world machine
 learning problems.

How this book is organized

 This book is organized into three parts. Part 1 introduces the overall motivation of the book and some of the tools you’ll use:

 	
Chapter 1 introduces machine learning, reactive systems, and the goals of reactive machine learning.

 	
Chapter 2 introduces three of the technologies the book uses: Scala, Spark, and Akka.

 Part 2 forms the bulk of the book. It proceeds component by component, helping you to deeply understand all the things a machine
 learning system must do, and how you can do them better using reactive techniques:

 	
Chapter 3 discusses the challenges of collecting data and ingesting it into a machine learning system. As part of that, it introduces
 various concepts around handling uncertain data. It also goes into detail about how to persist data, focusing on properties
 of distributed databases.

 	
Chapter 4 gets into how you can extract features from raw data and the various ways in which you can compose this functionality.

 	
Chapter 5 covers model learning. You’ll implement your own model learning algorithms and use library implementations. It also covers
 how to work with model learning algorithms from other languages.

 	
Chapter 6 covers a range of concerns related to evaluating models once they’ve been learned.

 	
Chapter 7 shows how to take learned models and make them available for use. In the service of this goal, this chapter introduces Akka
 HTTP, microservices, and containerization via Docker.

 	
Chapter 8 is all about using machine learned models to act on the real world. It also introduces an alternative to Akka HTTP for building
 services: http4s.

 Finally, part 3 introduces a few more concerns that become relevant once you’ve built a machine learning system and need to keep it running
 and evolve it into something better:

 	
Chapter 9 shows how to build Scala applications using SBT. It also introduces concepts from continuous delivery.

 	
Chapter 10 shows how to build artificially intelligent agents of various levels of complexity as an example of system evolution. It
 also covers more techniques for analyzing the reactive properties of a machine learning system.

 How should you read this book? If you have good experience in Scala, Spark, and Akka, then you might skip chapter 2. The heart of the book is the journey through the various system components in part 2. Although they’re meant to stand alone as much as possible, it will probably be easiest to follow the flow of the data through
 the system if you proceed in order from chapter 3 through chapter 8. The final two chapters are separate concerns and can be read in any order (after you’ve read part 2).

Code conventions and downloads

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 The code used in the book can be found on the book’s website, www.manning.com/books/machine-learning-systems, and in this Git repository: http://github.com/jeffreyksmithjr/reactive-machine-learning-systems.

Book forum

 Purchase of Machine Learning Systems includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/machine-learning-systems. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest
 his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as
 long as the book is in print.

Other online resources

 	For more information about Scala and pointers to various resources on how to learn the language, the language website is the
 best place to start: www.scala-lang.org.

 	The Spark project site contains excellent documentation and pointers to other useful Spark-related resources: http://spark.apache.org.

 	Similarly, the Akka project website has invaluable documentation and links to other useful resources: http://akka.io.

 	The Reactive Manifesto was the starting point for the recent focus on reactive systems: www.reactivemanifesto.org.

 	I maintain a site related to the book. It gathers together talks and other resources about reactive machine learning: http://reactivemachinelearning.com.

About the author

 [image:]

 Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications,
 teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr),
 tweets (jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.

About the cover illustration

 The figure on the cover of Machine Learning Systems is captioned “Japanese Infantry—Musician.” The illustration is taken from Auguste Wahlen’s Manners, Customs and Costumes of All Peoples of the World, a four-volume set published in Brussels by the Librairie Historique in 1843. The books contain scarce and beautiful images:
 the costumes of the world are finely illustrated with a wonderful series of highly colored full-page plates.

 Wahlen, whose real name was Jean-François-Nicolas Loumyer (1801–1875), was an archivist for the heraldic authority of Belgium.
 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the early nineteenth century, and
 collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants
 of other countries.

 The diversity of the drawings in Wahlen’s volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
 and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
 to life by Wahlen’s pictures.

Part 1. Fundamentals of reactive machine learning

 Reactive machine learning brings together several different areas of technology, and this part of the book is all about making
 sure you’re sufficiently oriented in all of them. Throughout this book, you’ll be looking at and building machine learning
 systems, starting with chapter 1. If you don’t have experience with machine learning, it’s important to be familiar with some of the basics of how it works.
 You’ll also get a flavor for all of the problems with how machine learning systems are often built in the real world. With
 this knowledge in hand, you’ll be ready for another big topic: reactive systems design. Applying the techniques of reactive
 systems design to the challenges of building machine learning systems is the core topic of this book.

 After you’ve had an overview of what you’re going to do in this book, chapter 2 focuses on how you’ll do it. The chapter introduces three technologies that you’ll use throughout the book: the Scala programming language,
 the Akka toolkit, and the Spark data-processing library. These are powerful technologies that you can only begin to learn
 in a single chapter. The rest of the book will go deeper into how to use them to solve real problems.

Chapter 1. Learning reactive machine learning

 This chapter covers

 	Introducing the components of machine learning systems

 	Understanding the reactive systems design paradigm

 	The reactive approach to building machine learning systems

 This book is all about how to build machine learning systems, which are sets of software components capable of learning from data and making predictions about the future. This chapter
 discusses the challenges of building machine learning systems and offers some approaches to overcoming those challenges. The
 example we’ll look at is of a startup that tries to build a machine learning system from the ground up and finds it very,
 very hard.

 If you’ve never built a machine learning system before, you may find it challenging and a bit confusing. My goal is to take
 some of the pain and mystery out of this process. I won’t be able to teach you everything there is to know about the techniques
 of machine learning; that would take a mountain of books. Instead, we’ll focus on how to build a system that can put the power
 of machine learning to use.

 I’ll introduce you to a fundamentally new and better way of building machine learning systems called reactive machine learning. Reactive machine learning represents the marriage of ideas from reactive systems and the unique challenges of machine learning.
 By understanding the principles that govern these systems, you’ll see how to build systems that are more capable, both as
 software and as predictive systems. This chapter will introduce you to the motivating ideas behind this approach, laying a
 foundation for the techniques you’ll learn in the rest of the book.

1.1. An example machine learning system

 Consider the following scenario. Sniffable is “Facebook for dogs.” It’s a startup based out of a dog-filled loft in New York.
 Using the Sniffable app, dog owners post pictures of their dogs, and other dog owners like, share, and comment on those pictures.
 The network was growing well, and the team felt there might be a meteoric opportunity here. But if Sniffable was really going
 to take off, it was clear that they’d have to build more than just the standard social-networking features.

 1.1.1. Building a prototype system

 Sniffable users, called sniffers, are all about promoting their specific dog. Many sniffers hope that their dog will achieve canine celebrity status. The
 team had an idea that what sniffers really wanted were tools to help make their posts, called pupdates, more viral. Their initial concept for the new feature was a sort of competitive intelligence tool for the canine equivalent
 of stage moms, internally known as den mothers. The belief was that den mothers were taking many pictures of their dogs and were trying to figure out which picture would
 get the biggest response on Sniffable. The team intended the new tool to predict the number of likes a given pupdate might
 get, based on the hashtags used. They named the tool Pooch Predictor. It was their hope that it would engage the den mothers, help them create viral content, and grow the Sniffable network as
 a whole.

 The team turned to their lone data scientist to get this product off the ground. The initial spec for the minimal viable product
 was pretty fuzzy, and the data scientist was already a pretty busy guy—he was the entire data science department, after all.
 Over the course of several weeks, he stitched together a system that looked something like figure 1.1.

 Figure 1.1. Pooch Predictor 1.0 architecture

 [image:]

 The app already sent all raw user-interaction data to the application’s relational database, so the data scientist decided
 to start building his model with that data. He wrote a simple script that dumped the data he wanted to flat files. Then he
 processed that interaction data using a different script to produce derived representations of the data, the features, and
 the concepts. This script produced a structured representation of a pupdate, the number of likes it got, and other relevant
 data such as the hashtags associated with the post. Again, this script just dumped its output to flat files. Then he ran his
 model-learning algorithm over his files to produce a model that predicted likes on posts, given the hashtags and other data
 about the post.

 The team was thoroughly amazed by this prototype of a predictive product, and they pushed it through the engineering roadmap
 to get it out the door as soon as possible. They assigned a junior engineer the job of taking the data scientist’s prototype
 and getting it running as a part of the overall system. The engineer decided to embed the data scientist’s model directly
 into the app’s post-creation code. That made it easy to display the predicted number of likes in the app.

 A few weeks after Pooch Predictor went live, the data scientist happened to notice that the predictions weren’t changing much,
 so he asked the engineer about the retraining frequency of the modeling pipeline. The engineer had no idea what the data scientist
 was talking about. They eventually figured out that the data scientist had intended his scripts to be run on a daily basis
 over the latest data from the system. Every day there should be a new model in the system to replace the old one. These new
 requirements changed how the system needed to be constructed, resulting in the architecture shown in figure 1.2.

 Figure 1.2. Pooch Predictor 1.1 architecture

 [image:]

 In this version of Pooch Predictor, the scripts were run on a nightly basis, scheduled by cron. They still dumped their intermediate
 results to files, but now they needed to insert their models into the application’s database. And now the backend server was
 responsible for producing the predictions displayed in the app. It would pull the model out of the database and use it to
 provide predictions to the app’s users.

 This new system was definitely better than the initial version, but in its first several months of operation, the team discovered
 several pain points with it. First of all, Pooch Predictor wasn’t very reliable. Often something would change in the database,
 and one of the queries would fail. Other times there would be high load on the server, and the modeling job would fail. This
 was happening more and more as both the size of the social network and the size of the dataset used by the modeling system
 increased. One time, the server that was supposed to be running the data-processing job failed, and all the relevant data
 was lost. These sorts of failures were hard to detect without building up a more sophisticated monitoring and alerting infrastructure.
 But even if someone did detect a failure in the system, there wasn’t much that could be done other than kick off the job again
 and hope it succeeded this time.

 Besides these big system-level failures, the data scientist started to find other problems in Pooch Predictor. Once he got
 at the data, he realized that some of the features weren’t being correctly extracted from the raw data. It was also really
 hard to understand how a change to the features that were being extracted would impact modeling performance, so he felt a
 little blocked from making improvements to the system.

 There was also a major issue that ended up involving the entire team. For a period of a couple of weeks, the team saw their
 interaction rates steadily trend down with no real explanation. Then someone noticed a problem with Pooch Predictor while
 testing on the live version of the app. For the pupdates of users who were based outside the United States, Pooch Predictor
 would always predict a negative number of likes. In forums around the internet, disgruntled users were voicing their rage
 at having the adorableness of their particular dog insulted by the Pooch Predictor feature. Once the Sniffable team detected
 the issue, they were able to quickly figure out that it was a problem with the modeling system’s location-based features.
 The data scientist and engineer came up with a fix, and the issue went away, but only after having their credibility seriously
 damaged among sniffers located abroad.

 Shortly after that, Pooch Predictor ran into more problems. It started with the data scientist implementing more feature-extraction
 functionality in an attempt to improve modeling performance. To do that, he got the engineer’s help to send more data from
 the user app back to the application database. On the day the new functionality rolled out, the team saw immediate issues.
 For one thing, the app slowed down dramatically. Posting was now a very laborious process—each button tap seemed to take several
 seconds to register. Sniffers became seriously irritated with these issues. Things went from bad to worse when Pooch Predictor
 began to cause yet more problems with posting. It turned out that the new functionality caused exceptions to be thrown on
 the server, which led to pupdates being dropped.

 At this point, it was all hands on deck in a furious effort to put out this fire. They realized that there were two major
 issues with the new functionality:

 	
Sending the data from the app back to the server required a transaction. When the data scientist and engineer added more data
 to the total amount of data being collected for modeling, this transaction took way too long to maintain reasonable responsiveness
 within the app.

 	The prediction functionality within the server that supported the app didn’t handle the new features properly. The server
 would throw an exception every time the prediction functionality saw any of the new features that had been added in another
 part of the application.

 After understanding where things had gone wrong, the team quickly rolled back all of the new functionality and restored the
 app to a normal operational state.

 1.1.2. Building a better system

 Everyone on the team agreed that something was wrong with the way they were building their machine learning system. They held
 a retrospective to figure out what went wrong and determine how they were going to do better in the future. The outcome was
 the following vision for what a Pooch Predictor replacement needed to look like:

 	The Sniffable app must remain responsive, regardless of any other problems with the predictive system.

 	The predictive system must be considerably less tightly coupled to the rest of the systems.

 	The predictive system must behave predictably regardless of high load or errors in the system itself.

 	It should be easier for different developers to make changes to the predictive system without breaking things.

 	The code must use different programming idioms that ensure better performance when used consistently.

 	The predictive system must measure its modeling performance better.

 	The predictive system should support evolution and change.

 	The predictive system should support online experimentation.

 	It should be easy for humans to supervise the predictive system and rapidly correct any rogue behavior.

1.2. Reactive machine learning

 In the previous example, it seems like the Sniffable team missed something big, right? They built what initially looked like
 a useful machine learning system that added value to their core product. But all the issues they experienced in getting there
 obviously had a cost. Production issues with their machine learning system frequently pulled the team away from work on improvements
 to the capability of the system. Even though they had a bunch of smart people in the room thinking hard about how to predict
 the dynamics of dog-based social networking, their system repeatedly failed at its mission.

 1.2.1. Machine learning

 Building machine learning systems that do what they’re supposed to do is hard, but not impossible. In our example story, the data scientist knew how to do machine learning. Pooch Predictor totally worked on his laptop; it made predictions from data. But the data scientist wasn’t
 thinking of machine learning as an application—he only understood machine learning as a technique. Pooch Predictor didn’t consistently produce trustable, accurate predictions. It was a failure both as a predictive system
 and as a piece of software.

OEBPS/xxifig01.jpg

OEBPS/01fig01_alt.jpg
Model

Files I

OEBPS/xiiifig01.jpg

OEBPS/enter.jpg

OEBPS/common01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xfig01.jpg
Oryx

OEBPS/common02.jpg

OEBPS/01fig02.jpg

OEBPS/cover.jpg

