

 [image: cover]

JavaScript Application Design: A Build First Approach

 Nicolas Bevacqua

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 761
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Susan Conant
Technical development editor: Douglas Duncan
Copyeditor: Katie Petito
Proofreader: Alyson Brener
Technical proofreaders: Deepak Vohra
Valentin Crettaz
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781617291951

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Dedication

 To Marian, for withstanding the birth of this book, your unconditional love, and your endless patience.

 I love you!

 Will you marry me?

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Build processes

 Chapter 1. Introduction to Build First

 Chapter 2. Composing build tasks and flows

 Chapter 3. Mastering environments and the development workflow

 Chapter 4. Release, deployment, and monitoring

 2. Managing complexity

 Chapter 5. Embracing modularity and dependency management

 Chapter 6. Understanding asynchronous flow control methods in JavaScript

 Chapter 7. Leveraging the Model-View-Controller

 Chapter 8. Testing JavaScript components

 Chapter 9. REST API design and layered service architectures

 Appendix A. Modules in Node.js

 Appendix B. Introduction to Grunt

 Appendix C. Picking your build tool

 Appendix D. JavaScript code quality guide

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Build processes

 Chapter 1. Introduction to Build First

 1.1. When things go wrong

 1.1.1. How to lose $172,222 a second for 45 minutes

 1.1.2. Build First

 1.1.3. Rites of initiation

 1.2. Planning ahead with Build First

 1.2.1. Core principles in Build First

 1.3. Build processes

 Build

 Deployment

 Benefits of a Build Process

 1.4. Handling application complexity and design

 Modularity

 Design

 Asynchronous Code

 Testing Practices

 Practical design considerations

 Build process

 Design and Rest API

 Battle testing

 1.5. Diving into Build First

 1.5.1. Keeping code quality in check

 1.5.2. Lint in the command line

 1.6. Summary

 Chapter 2. Composing build tasks and flows

 2.1. Introducing Grunt

 2.1.1. Installing Grunt

 2.1.2. Setting up your first Grunt task

 2.1.3. Using Grunt to manage the build process

 2.2. Preprocessing and static asset optimization

 2.2.1. Discussing preprocessing

 2.2.2. Doing LESS

 2.2.3. Bundling static assets

 2.2.4. Static asset minification

 2.2.5. Implementing image sprites

 2.3. Setting up code integrity

 2.3.1. Cleaning up your working directory

 2.3.2. Lint, lint, lint!

 2.3.3. Automating unit testing

 2.4. Writing your first build task

 2.5. Case study: database tasks

 Two-way schema changes

 Having a backup plan

 2.6. Summary

 Chapter 3. Mastering environments and the development workflow

 3.1. Application environments

 3.1.1. Configuring build distributions

 3.1.2. Environment-level configuration

 3.1.3. What’s so special about development?

 3.2. Configuring environments

 3.2.1. Storing configuration in a waterfall

 3.2.2. Using encryption to harden environment configuration security

 3.2.3. Setting environment-level configuration at the OS level

 3.2.4. Merging configuration as a waterfall in code

 3.3. Automating tedious first-time setup tasks

 3.4. Working in continuous development

 3.4.1. Waste no time, use a watch!

 3.4.2. Monitoring for changes to the Node app

 3.4.3. A text editor that cares

 3.4.4. Browser refresh is so Y2K

 3.5. Summary

 Chapter 4. Release, deployment, and monitoring

 4.1. Releasing your application

 4.1.1. Image optimization

 4.1.2. Static asset caching

 4.1.3. Inlining critical above-the-fold CSS

 4.1.4. Testing before a deployment

 4.2. Predeployment operations

 Predeployment operations

 4.2.1. Semantic versioning

 4.2.2. Using changelogs

 4.2.3. Bumping changelogs

 4.3. Deploying to Heroku

 4.3.1. Deploying builds

 4.3.2. Managing environments

 4.4. Continuous integration

 4.4.1. Hosted CI using Travis

 4.4.2. Continuous deployments

 4.5. Monitoring and diagnostics

 4.5.1. Logging and notifications

 4.5.2. Debugging Node applications

 4.5.3. Adding performance analytics

 4.5.4. Uptime and process management

 4.6. Summary

 2. Managing complexity

 Chapter 5. Embracing modularity and dependency management

 5.1. Working with code encapsulation

 5.1.1. Understanding the Single Responsibility Principle

 5.1.2. Information hiding and interfaces

 5.1.3. Scoping and this keyword

 5.1.4. Strict mode

 5.1.5. Variable hoisting

 5.2. JavaScript modules

 5.2.1. Closures and the module pattern

 5.2.2. Prototypal modularity

 5.2.3. CommonJS modules

 5.3. Using dependency management

 5.3.1. Dependency graphs

 5.3.2. Introducing RequireJS

 5.3.3. Browserify: CJS in the browser

 5.3.4. The Angular way

 5.4. Understanding package management

 5.4.1. Introducing Bower

 5.4.2. Big libraries, small components

 5.4.3. Choosing the right module system

 5.4.4. Learning about circular dependencies

 5.5. Harmony: a glimpse of ECMAScript 6

 5.5.1. Traceur as a Grunt task

 5.5.2. Modules in Harmony

 5.5.3. Let there be block scope

 5.6. Summary

 Chapter 6. Understanding asynchronous flow control methods in JavaScript

 6.1. Using callbacks

 6.1.1. Avoiding callback hell

 6.1.2. Untangling the callback jumble

 6.1.3. Requests upon requests

 6.1.4. Asynchronous error handling

 6.2. Using the async library

 6.2.1. Waterfall, series, or parallel?

 6.2.2. Asynchronous functional tasks

 6.2.3. Asynchronous task queues

 6.2.4. Flow composition and dynamic flows

 6.3. Making Promises

 6.3.1. Promise fundamentals

 6.3.2. Chaining Promises

 6.3.3. Controlling the flow

 6.3.4. Handling rejected Promises

 6.4. Understanding events

 6.4.1. Events and the DOM

 6.4.2. Creating your own event emitters

 6.5. Glimpse of the future: ES6 generators

 6.5.1. Creating your first generator

 6.5.2. Asynchronicity and generators

 6.6. Summary

 Chapter 7. Leveraging the Model-View-Controller

 7.1. jQuery isn’t enough

 Code organization and jQuery

 View templates

 Using controllers

 Models

 Views

 Controllers

 Router

 7.2. Model-View-Controller in JavaScript

 7.2.1. Why Backbone?

 7.2.2. Installing Backbone

 7.2.3. Browserifying your Backbone module with Grunt

 7.3. Introduction to Backbone

 7.3.1. Backbone views

 7.3.2. Creating Backbone models

 7.3.3. Organizing models with Backbone collections

 7.3.4. Adding Backbone routers

 7.4. Case study: the shopping list

 7.4.1. Starting with a static shopping list

 7.4.2. This time with remove buttons

 7.4.3. Adding items to your cart

 7.4.4. Using inline editing

 7.4.5. A service layer and view routing

 7.5. Backbone and Rendr: server/client shared rendering

 7.5.1. Diving into Rendr

 7.5.2. Understanding boilerplate in Rendr

 7.5.3. A simple Rendr application

 7.6. Summary

 Chapter 8. Testing JavaScript components

 8.1. JavaScript testing crash course

 8.1.1. Logical units in isolation

 8.1.2. Using the Test Anything Protocol (TAP)

 8.1.3. Putting together our first unit test

 8.1.4. Tape in the browser

 8.1.5. Arrange, Act, Assert

 8.1.6. Unit testing

 8.1.7. Convenience over convention

 8.1.8. Case study: unit testing an event emitter

 8.1.9. Testing the event emitter

 8.1.10. Testing for the .on method

 8.1.11. Mocks, spies, and proxies

 8.1.12. Mocking

 8.1.13. Introducing Sinon.js

 8.1.14. Spying on function calls

 8.1.15. Proxying require calls

 8.2. Testing in the browser

 8.2.1. Faking XHR and server communication

 8.2.2. Case study: testing DOM interaction

 8.3. Case study: unit testing the MVC shopping list

 8.3.1. Testing the view router

 8.3.2. Testing validation on a view model

 8.4. Automating Tape tests

 8.4.1. Automating Tape tests for the browser

 8.4.2. Continuous testing

 8.5. Integration, visual, and performance testing

 8.5.1. Integration testing

 8.5.2. Visual testing

 8.5.3. Performance testing

 8.6. Summary

 Chapter 9. REST API design and layered service architectures

 9.1. Avoiding API design pitfalls

 9.2. Learning REST API design

 9.2.1. Endpoints, HTTP verbs, and versioning

 9.2.2. Requests, responses, and status codes

 9.2.3. Paging, caching, and throttling

 9.2.4. Documenting an API

 9.3. Implementing layered service architectures

 9.3.1. Routing layer

 9.3.2. Service layer

 9.3.3. Data layer

 9.3.4. Routing layer

 9.3.5. Service layer

 9.3.6. Data layer

 9.4. Consuming a REST API on the client side

 9.4.1. The request handling layer

 9.4.2. Shooting down old requests

 9.4.3. Consistent AJAX error management

 9.5. Summary

 Appendix A. Modules in Node.js

 A.1. Installing Node.js

 A.2. The module system

 A.3. Exporting functionality

 A.4. Regarding packages

 Appendix B. Introduction to Grunt

 B.1. Grunt plugins

 B.2. Tasks and targets

 B.3. Command-line interface

 B.4. Using Grunt in a project

 B.5. Configuring Grunt

 B.6. Globbing patterns

 B.6.1. Brace expressions

 B.6.2. Negation expressions

 B.7. Setting up a task

 B.8. Creating custom tasks

 Appendix C. Picking your build tool

 C.1. Grunt: the good parts

 C.2. Grunt: the bad parts

 C.3. npm as a build tool

 C.3.1. Installing npm task dependencies

 C.3.2. Using shell scripts in npm tasks

 C.3.3. npm and Grunt compared: the good and the bad

 C.4. Gulp: the streaming build tool

 Running Tests in Gulp

 Building a Library in Gulp

 Appendix D. JavaScript code quality guide

 D.1. Module organization

 D.1.1. Strict mode

 D.1.2. Spacing

 D.1.3. Semicolons

 D.1.4. Linting

 D.2. Strings

 Bad Strings

 Good Strings

 Better Strings

 D.2.1. Variable declaration

 D.3. Conditionals

 Bad conditionals

 Good conditionals

 Bad coercing equality

 Good strict equality

 D.3.1. Ternary operators

 D.3.2. Functions

 D.3.3. Prototypes

 D.3.4. Object literals

 D.3.5. Array literals

 D.4. Regular expressions

 Bad regular expressions

 Good regular expressions

 D.4.1. Debugging statements

 D.4.2. Comments

 D.4.3. Variable naming

 D.4.4. Polyfills

 D.4.5. Everyday tricks

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 The process of designing a robust JavaScript web app has gone through a roaring renaissance in recent years. With the language
 being used to develop increasingly ambitious apps and interfaces, this is the perfect time for JavaScript Application Design. Through concise examples, lessons learned from the field, and key concepts for scalable development, Nico Bevacqua will
 give you a whirlwind tour of taking the process and design of your apps to the next level.

 This book will also help you craft build processes that will save you time. Time is a key factor in staying productive. As
 web app developers, we want to make the most of ours, and a Build First philosophy can help us hit the ground running with
 clean, testable apps that are well structured from the get-go. Learning process workflow and how to manage complexity are
 fundamental cornerstones of modern JavaScript app development. Getting them right can make a massive difference in the long
 run.

 JavaScript Application Design will walk you through automation for the front end. It covers everything from avoiding repetitive tasks and monitoring production
 builds to mitigating the cost of human error through a clean tooling setup. Automation is a big factor here. If you aren’t
 using automation in your workflow today, you’re working too hard. If a series of daily tasks can be accomplished with a single
 command, follow Nico’s advice and spend the time you save improving the code quality of your apps.

 Modularity is the final crucial concept that can assist with building scalable, maintainable apps. Not only does this help
 ensure that the pieces composing our application can be more easily tested and documented, it encourages reuse and focus on
 quality. In JavaScript Application Design, Nico expertly walks you through writing modular JavaScript components, getting asyncronous flow right, and enough client-side
 MVC for you to build an app of your own.

 Strap on your seatbelts, adjust your command line, and enjoy a ride through the process of improving your development workflow.

 ADDY OSMANI

 SENIOR ENGINEER WITH A PASSION FOR DEVELOPER TOOLING GOOGLE

Preface

 Like most people in our field, I’ve always been fascinated with problem solving. The painful thrill of hunting for a solution,
 the exhilarating relief of having found a fix—there’s nothing quite like it. When I was young I really enjoyed strategy games,
 such as chess, which I’ve played ever since I was a kid; StarCraft, a real-time strategy game I played for 10 years straight;
 and Magic: The Gathering, a trading card game that can be described as the intersection between poker and chess. They presented
 plenty of problem-solving opportunities.

 At primary school I learned Pascal and rudimentary Flash programming. I was psyched. I would go on and learn Visual Basic,
 PHP, C, and start developing websites, reaping the benefits of a masterful handle on <marquee> and <blink> tags, paired with a modest understanding of MySQL; I was unstoppable, but my thirst for problem solving didn’t end there,
 and I went back to gaming.

 Ultima Online (UO), a massively multiplayer online role-playing game (no wonder they abbreviate that as MMORPG), wasn’t any
 different than other games that got me hooked for years. Eventually I found out that there was an open source[1] implementation of the UO server, which was named RunUO and written entirely in C#. I played on a RunUO server where the administrators
 had no programming experience. They slowly started trusting me to handle minor bug fixes by literally emailing source code
 files back and forth. I was hooked. C# was a wonderful, expressive language, and the open source software for the UO server
 was amicable and inviting—you didn’t even need an IDE (or even need to know what that was) because the server would compile
 script files dynamically for you. You’d be essentially writing a file with 10 to 15 lines in it, inheriting from the Dragon class, and adding an intimidating text bubble over their head, or overriding a method so they’d spit more fireballs. You’d
 learn the language and its syntax without even trying, simply by having fun!

 1 You can check out the RunUO website at runuo.com, although the project isn’t maintained anymore.

 Eventually, a friend revealed that I could make a living out of writing C# code: “You know, people actually pay you to do
 that,” he said. That’s when I started developing websites again, except I wasn’t using only Front Page and piles of <marquee> tags or Java applets for fun anymore. It still feels like a game to me, though.

 A few years ago I read The Pragmatic Programmer[2], and something clicked. The book has a lot of solid advice, and I can’t recommend it highly enough. One thing that particularly
 affected me: the authors advocate you get out of your comfort zone and try something you’ve been meaning to do but haven’t
 gotten around to. My comfort zone was C# and ASP.NET at that point, so I decided to try Node.js, an unmistakably UNIX-y platform
 for JavaScript development on the server side, certainly a break from my Microsoft-ridden development experience so far.

 2 The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David Thomas (Addison Wesley, 1999) is a timeless classic you should seriously consider reading.

 I learned a ton from that experiment and ended up with a blog[3] where I’d write about everything I learned in the process. About six months later I’d decided that I’d put my years of experience
 in C# design into a book about JavaScript. I contacted Manning, and they jumped at the opportunity, helping me brainstorm
 and turn raw ideas into something more deliberate and concise.

 3 You can read my blog, “Pony Foo,” at ponyfoo.com. I write articles about the web, performance, progressive enhancement, and JavaScript.

 This book is the result of many hours of hard work, dedication, and love for the web. In it, you’ll find practical advice
 about application design, process automation, and best practices that will improve the quality of your web projects.

Acknowledgments

 You wouldn’t be holding this book in your hands if it weren’t for everyone who supported and endured me throughout the writing
 process. I can only hope that those who deserve acknowledgment the most, my friends and family, already know that I can’t
 put into words how thankful I am for their love, understanding, and frequent reassurance.

 Many more people contributed—directly or indirectly—a great deal of wisdom and inspiration to this book.

 The open source JavaScript community is an endless spring of insight, encouragement, and selfless contributions. They have
 opened my eyes to a better approach to software development, where collaboration isn’t only possible, but actively encouraged.
 Most of these people have contributed indirectly by evangelizing for the web, maintaining blogs, sharing their experience
 and resources, and otherwise educating me. Others have contributed directly by developing tools discussed in the book. Among
 these individuals are Addy Osmani, Chris Coyier, Guillermo Rauch, Harry Roberts, Ilya Grigorik, James Halliday, John-David
 Dalton, Mathias Bynens, Max Ogden, Mikeal Rogers, Paul Irish, Sindre Sorhus, and T.J. Holowaychuk.

 There are also many book authors and content distributors who have influenced and motivated me to become a better educator.
 Through their writing and sharing, these people have significantly helped shape my career. They include Adam Wiggins, Alan
 Cooper, Andrew Hunt, Axel Rauschmayer, Brad Frost, Christian Heilmann, David Thomas, Donald Norman, Frederic Cambus, Frederick
 Brooks, Jeff Atwood, Jeremy Keith, Jon Bentley, Nicholas C. Zakas, Peter Cooper, Richard Feynmann, Steve Krug, Steve McConnell,
 and Vitaly Friedman.

 Susan Conant, my developmental editor at Manning, deserves to be singled out. She held this book to the greatest standard
 of quality I could possibly create, and it’s in much better shape than it would’ve been if not for her. On top of that, she
 had to hand-hold me through the delicate and intimate process of writing my first book. Through her relentless, yet gentle,
 guidance she helped shape my lumps of ideas into a book that I’m not afraid to publish. I’ve become a better writer because
 of her, and I’m grateful for that.

 She wasn’t alone in that endeavor. All of the staff at Manning wanted this book to be the best that it could be. The publisher,
 Marjan Bace—along with his editorial collective—are to be thanked for that. Valentin Crettaz and Deepak Vohra, the technical
 proofreaders, were not only instrumental in ensuring the code samples were consistent and useful, but provided me with great
 feedback as well.

 There are also the hordes of anonymous souls that were willing to read through the manuscript, leaving their impressions and
 helping improve the book. Thanks to the MEAP readers who posted corrections and comments in the Author Online forum, and to
 the reviewers who read the chapters at various stages of development: Alberto Chiesa, Carl Mosca, Dominic Pettifer, Gavin
 Whyte, Hans Donner, Ilias Ioannou, Jonas Bandi, Joseph White, Keith Webster, Matthew Merkes, Richard Harriman, Sandeep Kumar
 Patel, Stephen Wakely, Torsten Dinkheller, and Trevor Saunders.

 Special thanks to Addy Osmani for contributing the foreword, and to everyone else who played a part. Even if they didn’t make
 the keystrokes themselves, they played an instrumental role in getting this book published, and one step closer to you.

About this Book

 Web development has grown out of proportion, and today it’s hard to imagine a world without the web. The web is famously fault
 tolerant. While traditional programming teaches us that missing a semicolon, forgetting to add a closing tag, or declaring
 invalid properties will have crippling consequences, the same cannot be said about the web. The web is a place where it’s
 okay to make mistakes, yet there’s increasingly less room for error. This dichotomy stems from the fact that modern web applications
 are an order of magnitude more complex than they used to be. During the humble beginnings of the web, we would maybe modestly
 make a minor change in web pages using JavaScript; whereas on the modern web, entire sites are rendered in a single page,
 powered by JavaScript.

 JavaScript Application Design is your guide to a better modern web development experience, one where you can develop maintainable JavaScript applications
 as you would if you were using any other language. You’ll learn how to leverage automation as a replacement for tedious and
 repetitive error-prone processes, how to design modular applications that are easy to test, and how to test them.

 Process automation is a critical time-saver across the board. Automation in the development environment helps us focus our
 efforts on thinking, writing code, and debugging. Automation helps ensure our code works after every change that we publish
 to version control. It saves time when preparing the application for production by bundling, minifying assets, creating spritesheets,
 and adding other performance optimization techniques. It also helps with deployments by reducing risk and automating away
 a complicated and error-prone process. Many books discuss processes and automation when it comes to back-end languages, but
 it’s much harder to find material on the subject when it comes to JavaScript-driven applications.

 The core value of JavaScript Application Design is quality. Automation gives you a better environment in which to build your application, but that alone isn’t enough: the
 application itself needs to be quality conscious as well. To that end, the book covers application design guidelines, starting
 with a quick rundown of language-specific caveats, teaching you about the power of modularity, helping you untangle asynchronous
 code, develop client-side MVC applications, and write unit tests for your JavaScript code.

 This book relies on specific tools and framework versions, as books about web technologies usually do, but it separates library-specific
 concerns from the theory at hand. This is a concession to the fact that tooling changes frequently in the fast-paced web development
 arena, but design and the processes behind tooling tend to have a much slower rhythm. Thanks to this separation of concerns,
 I hope this book stays relevant for years to come.

Road map

 JavaScript Application Design is broken into two parts and four appendixes. The first part is dedicated to the Build First approach, what it is, and how
 it can aid your everyday job. This part covers process automation in detail, from everyday development to automated deployments,
 as well as continuous integration and continuous deployments; it spans 4 chapters.

 	
Chapter 1 describes the core principles that drive Build First, and the different processes and flows you can set up. It then introduces
 the application design guidelines that we’ll discuss throughout the book and lays the foundation for the rest of the book.

 	In chapter 2 you learn about Grunt, and how you can use it to compose build flows. Then we look at a few different build tasks that you
 can easily perform using Grunt.

 	
Chapter 3 is all about environments and the development workflow. You’ll learn that not all environments are born the same, and how
 you can prioritize debugging and productivity in the development environment.

 	
Chapter 4 walks you through the release flow and discusses deployments. You’ll learn about a few more build tasks that are geared toward
 performance optimization, and discover how to perform automated deployments. You’ll also learn how to hook up continuous integration
 and how to monitor your application once in production.

 While part 1 is focused on building applications using Grunt, appendix C teaches you to choose the best build tool for the job. Once you’ve read past part 1, you’ll go into the second part of the book, which is dedicated to managing complexity in your application designs. Modules,
 MVC, asynchronous code flows, testing, and a well-designed API all play significant roles in modern applications and are discussed
 in the next chapters.

 	
Chapter 5 focuses on developing modular JavaScript. It starts by expressing what constitutes a module and how you can design applications
 modularly and lists the benefits of doing so. Afterward, you’ll get a crash course on lexical scoping and related quirks in
 the JavaScript language. Later you get a rundown of the major ways to attain modularity: RequireJS, CommonJS, and the upcoming
 ES6 module system. The chapter concludes by going over different package management solutions such as Bower and npm.

 	In chapter 6 you learn about asynchronous code flows. If you ever descend into callback hell, this may be your way out. This chapter discusses
 different approaches to deal with complexity in asynchronous code flows, namely callbacks, Promises, events, and ES6 generators.
 You’ll also learn how to do proper error handling under each of those paradigms.

 	
Chapter 7 starts by describing MVC architectures, and then ties them specifically to the web. You’ll learn how you can use Backbone
 to develop rich client-side applications that separate concerns using MVC. Later, you’ll learn about Rendr, which can be used
 to render Backbone views on the server side, optimizing the performance and accessibility of your applications.

 	In chapter 8, now that your applications are modular, clean-cut, and maintainable, you’ll take the next logical step and look into testing
 your applications in different ways. To this end we’ll go over an assortment of JavaScript testing tools and get hands-on
 experience using them to test small components. Then we’ll go back to the MVC application built in chapter 7 and add tests to it. You won’t be doing unit testing only, you’ll also learn more about continuous integration, visual testing,
 and measuring performance.

 	
Chapter 9 is the last chapter of the book, and it’s dedicated to REST API design. This is the layer where the client side interacts
 with the server, and it sets the scene for everything that we do in the application. If the API is convoluted and complicated,
 chances are the application as a whole will be as well. REST introduces clear guidelines when designing an API, making sure
 the API is concise. Last, we’ll look at consuming these services in the client side in a conventional manner.

 The appendixes can be read after you’re done with the book, but you’ll probably get the most value from them by reading them
 if you get stuck with the areas they cover, as they contain answers to questions you might have. Throughout the book, you’ll
 be pointed to the appendixes where it makes sense to expand a little on one of these subjects.

 	
Appendix A is a soft introduction to Node.js and its module system, CommonJS. It’ll help you troubleshoot your Node.js installation
 and answer a few questions on how CommonJS works.

 	
Appendix B is a detailed introduction to Grunt. Whereas the chapters in part I only explain what’s absolutely necessary about Grunt,
 the appendix covers its inner workings in more detail, and will be handy if you’re serious about developing a full-blown build
 process using Grunt.

 	
Appendix C makes it clear that this book is in no way married to Grunt, and lists a couple of alternatives, Gulp and npm run. The appendix discusses the pros and cons of each of the three tools, and leaves it up to you to determine which one (if
 any) fits your needs best.

 	
Appendix D presents a JavaScript quality guide containing a myriad of best practices you may choose to follow. The idea isn’t to force
 those specific guidelines down your throat, but rather to arm you with the idea that consistency is a good thing to enforce
 throughout a code base when working in a development team.

Code conventions and downloads

 All source code is in fixed-size width font like this, and sometimes grouped under named code listings. Code annotations accompany many of the listings, highlighting important
 concepts. The source code for this book is open source and publicly hosted on GitHub. You can download it by visiting github.com/buildfirst/buildfirst.
 The online repository will always have the most up-to-date version of the accompanying source code. While source code might
 only be discussed at a glance in the book, it’s better documented in the repository, and I encourage you to check out the
 commented code there, if you run into trouble.

 You can also download the code from the publisher’s website at www.manning.com/JavaScriptApplicationDesign.

Author Online

 Purchase of JavaScript Application Design includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/JavaScriptApplicationDesign. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 Nicolas Bevacqua is an active member of the open source JavaScript community, a freelance web developer, an occasional public
 speaker, and a passionate writer. He maintains many open source projects and blogs about the web, performance, progressive
 enhancement, and JavaScript development at ponyfoo.com. Nico currently lives in Buenos Aires, Argentina, with his beautiful girlfriend, Marian.

 [image:]

About the Cover Illustration

 The figure on the cover of JavaScript Application Design is captioned “Winter Habit of a Kamtchadal in 1760.” The Kamchatka Peninsula is the eastern-most part of Russia, lying between
 the Pacific Ocean to the east and the Sea of Okhotsk to the west. The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
 with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who
 was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of national costumes two and a half centuries ago, brought
 back to life by Jefferys’ pictures.

Part 1. Build processes

 The first part of this book is dedicated to build processes and provides a practical introduction to Grunt. You’ll learn the
 why, how, and what of build processes, both in theory and in practice.

 In chapter 1, we go over what the Build First philosophy entails: a build process and application complexity management. Then, we’ll start
 fiddling with our first build task, using lint to prevent syntax errors in our code.

 Chapter 2 is all about build tasks. You’ll learn about the various tasks that comprise a build, how to configure them, and how to create
 your own tasks. In each case, we’ll take a look at the theory and then walk through practical examples using Grunt.

 In chapter 3, we’ll learn how to configure application environments while keeping sensitive information safe. We’ll go over the development
 environment workflow, and you’ll learn how to automate the build step itself.

 Chapter 4 then describes a few more tasks we need to take into account when releasing our application, such as asset optimization and
 managing documentation. You’ll learn about keeping code quality in check with continuous integration, and we’ll also go through
 the motions of deploying an application to a live environment.

Chapter 1. Introduction to Build First

 This chapter covers

 	Identifying problems in modern application design

 	Defining Build First

 	Building processes

 	Managing complexity within applications

 Developing an application properly can be hard. It takes planning. I’ve created applications over a weekend, but that doesn’t
 mean they were well-designed. Improvisation is great for throw-away prototypes and great when concept-proofing an idea; however,
 building a maintainable application requires a plan, the glue that holds together the features you currently have in mind
 and maybe even those you might add in the near future. I’ve participated in countless endeavors where the application’s front-end
 wasn’t all it could be.

 Eventually, I realized that back-end services usually have an architect devoted to their planning, design, and overview—and
 often it’s not one architect but an entire team of them. This is hardly the case with front-end development, where a developer
 is expected to prototype a working sketch of the application and then asked to run with it, hoping that the prototype will survive an implementation in production. Front-end development requires as much
 dedication to architecture planning and design as back-end development does.

 Long gone are the days when we’d copy a few snippets of code off the internet, paste them in our page, and call it a day.
 Mashing together JavaScript code as an afterthought no longer holds up to modern standards. JavaScript is now front and center.
 We have many frameworks and libraries to choose from, which can help you organize your code by allowing you to write small
 components rather than a monolithic application. Maintainability isn’t something you can tack onto a code base whenever you’d
 like; it’s something you have to build into the application, and the philosophy under which the application is designed, from
 the beginning. Writing an application that isn’t designed to be maintainable translates into stacking feature after feature
 in an ever-so-slightly tilting Jenga tower.

 If maintainability isn’t built in, it gets to a point where you can’t add any more pieces to the tower. The code becomes convoluted
 and bugs become increasingly hard to track down. Refactoring means halting product development, and the business can’t afford
 that. The release schedule must be maintained, and letting the tower come crashing down is unacceptable, so we compromise.

1.1. When things go wrong

 You might want to deploy a new feature to production, so humans can try it out. How many steps do you have to take to do that?
 Eight? Five? Why would you risk a mistake in a routine task such as a deployment? Deploying should be no different than building
 your application locally. One step. That’s it.

 Unfortunately that’s rarely the standard. Have you faced the challenging position I’ve found myself in of having to take many
 of these steps manually? Sure, you can compile the application in a single step, or you might use an interpreted server-side
 language that doesn’t need any pre-compilation. Maybe later you need to update your database to the latest version. You may
 have even created a script for those updates, and yet you log into your database server, upload the file, and run the schema
 updates yourself.

 Cool, you’ve updated the database; however, something’s not right and the application is throwing an error. You look at the
 clock. Your application has been down for more than 10 minutes. This should’ve been a straightforward update. You check the
 logs; you forgot to add that new variable to your configuration file. Silly! You add it promptly, mumbling something about
 wrestling with the code base. You forget to alter the config file before it deploys; it slipped your mind to update it before
 deploying to production!

 Sound like a familiar ritual? Fear not, this is an unfortunately common illness, spread through different applications. Consider
 the crisis scenarios described next.

 1.1.1. How to lose $172,222 a second for 45 minutes

 I bet you’d consider losing almost half a billion dollars a serious issue, and that’s exactly what happened to Knight’s Capital.[1] They developed a new feature to allow stock traders to participate in something called the Retail Liquidity Program (RLP).
 The RLP functionality was intended to replace an unused piece of functionality called Power Peg (PP), which had been discontinued
 for close to nine years. The RLP code reused a flag, which was used to activate the PP code. They removed the Power Peg feature
 when they added RLP, so all was good. Or at least they thought it was good, until the point when they flipped the switch.

 1 For more information about Knight’s Capital, see http://bevacqua.io/bf/knight.

 Deployments had no formal process and were executed by hand by a single technician. This person forgot to deploy the code
 changes to one of their eight servers, meaning that in the case of the eighth server, the PP code, and not the RLP feature,
 would be behind the activation flag. They didn’t notice anything wrong until a week later when they turned on the flag, activating
 RLP on all servers but one, and the nine-year-old Power Peg feature on the other.

 Orders routed through the eighth server triggered the PP code rather than RLP. As a result, the wrong types of orders were
 sent to trading centers. Attempts to amend the situation only further aggravated it, because they removed the RLP code from
 the servers which did have it. Long story short, they lost somewhere in the vicinity of $460 million in less than an hour.
 When you consider that all they needed to do to avoid their downfall was have a more formal build process in place, the whole
 situation feels outrageous, irresponsible, and, in retrospect, easily averted. Granted, this is an extreme case, but it boldly
 illustrates the point. An automated process would have increased the probability that human errors could be prevented or at
 least detected sooner.

 1.1.2. Build First

 In this book, my goal is to teach you the Build First philosophy of designing for clean, well-structured, and testable applications
 before you write a single line of code. You’ll learn about process automation, which will mitigate the odds of human error,
 such as those leading to Knight’s Capital’s bankruptcy. Build First is the foundation that will empower you to design clean,
 well-structured, and testable applications, which are easy to maintain and refactor. Those are the two fundamental aspects
 of Build First: process automation and design.

 To teach you the Build First approach, this book will show you techniques that will improve the quality of your software as
 well as your web development workflow. In Part 1, we’ll begin by learning how to establish build processes appropriate for modern web application development. Then, you’ll
 walk through best practices for productive day-to-day development, such as running tasks when your code changes, deploying
 applications from your terminal by entering a single command, and monitoring the state of your application once it’s in production.

 The second part of the book—managing complexity and design—focuses on application quality. Here I give you an introduction
 to writing more modular JavaScript components by comparing the different options that are currently available. Asynchronous
 flows in JavaScript tend to grow in complexity and length, which is why I prepared a chapter where you’ll gain insight into
 writing cleaner asynchronous code while learning about different tools you can use to improve that code. Using Backbone as
 your gateway drug of choice, you’ll learn enough about MVC in JavaScript to get you started on the path to client-side MVC.
 I mentioned testable applications are important, and while modularity is a great first step in the right direction, testing
 merits a chapter of its own. The last chapter dissects a popular API design mentality denominated REST (Representational State
 Transfer), helping you design your own, as well as delving into application architecture on the server side, but always keeping
 an eye on the front end. We’ll begin our exploration of build processes after looking at one more crisis scenario Build First
 can avert by automating your process.

 1.1.3. Rites of initiation

 Complicated setup procedures, such as when new team members come onboard, are also a sign you may be lacking in the automation
 department. Much to my torment, I’ve worked on projects where getting a development environment working for the first time
 took a week. A full week before you can even begin to fathom what the code does.

 Download approximately 60 gigabytes worth of database backups, create a database configuring things you’ve never heard of
 before, such as collation, and then run a series of schema upgrade scripts that don’t quite work. Once you’ve figured that
 out, you might want to patch your Windows Media Player by installing specific and extremely outdated codecs in your environment,
 which will feel as futile as attempts to cram a pig into a stuffed refrigerator.

 Last, try compiling the 130+ project monolith in a single pass while you grab a cup of coffee. Oh, but you forgot to install
 the external dependencies; that’ll do it. Nope, wait, you also need to compile a C++ program so codecs will work again. Compile
 again, and another 20 minutes go by. Still failing? Shoot. Ask around, maybe? Well, nobody truly knows. All of them went through
 that excruciating process when they started out, and they erased the memory from their minds. Check out the wiki? Sure, but
 it’s all over the place. It has bits of information here and there, but they don’t address your specific problems.

 The company never had a formal initiation workflow, and as things started to pile up, it became increasingly hard to put one
 together. They had to deal with giant backups, upgrades, codecs, multiple services required by the website, and compiling
 the project took half an hour for every semi-colon you changed. If they’d automated these steps from the beginning, like we’ll
 do in Build First, the process would’ve been that much smoother.

 Both the Knight’s Capital debacle and the overly complicated setup story have one thing in common: if they’d planned ahead
 and automated their build and deployment processes, their issues would’ve been averted. Planning ahead and automating the processes surrounding your applications are fundamental aspects of the Build First philosophy, as you’ll learn in the
 next section.

1.2. Planning ahead with Build First

 In the case of Knight’s Capital, where they forgot to deploy code to one of the production web servers, having a single-step
 deployment process that automatically deployed the code to the whole web farm would’ve been enough to save the company from
 bankruptcy. The deeper issue in this case was code quality, because they had unused pieces of code sitting around in their
 code base for almost 10 years.

 A complete refactor that doesn’t provide any functional gains isn’t appealing to a product manager; their goal is to improve
 the visible, consumer-facing product, not the underlying software. Instead, you can continuously improve the average quality
 of code in your project by progressively improving the code base and refactoring code as you touch it, writing tests that
 cover the refactored functionality, and wrapping legacy code in interfaces, so you can refactor later.

 Refactoring won’t do the trick on its own, though. Good design that’s ingrained into the project from its inception is much
 more likely to stick, rather than attempts to tack it onto a poor structure as an afterthought. Design is the other fundamental
 aspect of the book, along with build processes mentioned previously.

 Before we dive into the uncharted terrains of Build First, I want to mention this isn’t a set of principles that only apply
 to JavaScript. For the most part, people usually associate these principles with back-end languages, such as Java, C#, or
 PHP, but here I’m applying them to the development process for JavaScript applications. As I mentioned previously, client-side
 code often doesn’t get the love and respect it deserves. That often means broken code because we lack proper testing, or a
 code base that’s hard to read and maintain. The product (and developer productivity) suffers as a result.

OEBPS/0ivfig02.jpg

OEBPS/logo.jpg

OEBPS/xxvfig01.jpg

OEBPS/0ivfig01.jpg

OEBPS/cover.jpg

