

 [image: cover]

 Hibernate Search in Action

 Emmanuel Bernard & John Griffin

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B fax: (609) 877-8256
 Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without elemental chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development editor: Nermina Miller
Copyeditor: Linda Recktenwald
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 08

Dedication

 To Iwona

 For her infinite support and patience.

 EB

 To Judy, my wife

 Thank you for giving me up for a year.

 I love you forever.

 And to my buddies Clancy and Molly.

 JG

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 1. Understanding Search Technology

 Chapter 1. State of the art

 Chapter 2. Getting started with Hibernate Search

 2. Ending structural and synchronization mismatches

 Chapter 3. Mapping simple data structures

 Chapter 4. Mapping more advanced data structures

 Chapter 5. Indexing: where, how, what, and when

 3. Taming the retrieval mismatch

 Chapter 6. Querying with Hibernate Search

 Chapter 7. Writing a Lucene query

 Chapter 8. Filters: cross-cutting restrictions

 4. Performance and scalability

 Chapter 9. Performance considerations

 Chapter 10. Scalability: using Hibernate Search in a cluster

 Chapter 11. Accessing Lucene natively

 5. Native Lucene, scoring, and the wheel

 Chapter 12. Document ranking

 Chapter 13. Don’t reinvent the wheel

 Appendix Quick reference

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 1. Understanding Search Technology

 Chapter 1. State of the art

 1.1. What is search?

 1.1.1. Categorizing information

 1.1.2. Using a detailed search screen

 1.1.3. Using a user-friendly search box

 1.1.4. Mixing search strategies

 1.1.5. Choosing a strategy: the first step on a long road

 1.2. Pitfalls of search engines in relational databases

 1.2.1. Query information spread across several tables

 1.2.2. Searching words, not columns

 1.2.3. Filtering the noise

 1.2.4. Find by words...fast

 1.2.5. Searching words with the same root and meaning

 1.2.6. Recovering from typos

 1.2.7. Relevance

 1.2.8. Many problems. Any solutions?

 1.3. Full-text search: a promising solution

 1.3.1. Indexing

 1.3.2. Searching

 1.3.3. Full-text search solutions

 1.4. Mismatches between the round object world and the flat text world

 1.4.1. The structural mismatch

 1.4.2. The synchronization mismatch

 1.4.3. The retrieval mismatch

 1.5. Summary

 Chapter 2. Getting started with Hibernate Search

 2.1. Requirements: what Hibernate Search needs

 2.2. Setting up Hibernate Search

 2.2.1. Adding libraries to the classpath

 2.2.2. Providing configuration

 2.3. Mapping the domain model

 2.3.1. Indexing an entity

 2.3.2. Indexing properties

 2.3.3. What if I don’t use Hibernate Annotations?

 2.4. Indexing your data

 2.5. Querying your data

 2.5.1. Building the Lucene query

 2.5.2. Building the Hibernate Search query

 2.5.3. Executing a Hibernate Search query

 2.6. Luke: inside look into Lucene indexes

 2.7. Summary

 2. Ending structural and synchronization mismatches

 Chapter 3. Mapping simple data structures

 3.1. Why do we need mapping, again?

 3.1.1. Converting the structure

 3.1.2. Converting types

 3.1.3. Defining the indexing strategy

 3.2. Mapping entities

 3.2.1. Marking an entity as indexed

 3.2.2. Subclasses

 3.2.3. Mapping the primary key

 3.2.4. Understanding the index structure

 3.3. Mapping properties

 3.3.1. Marking a property as indexed

 3.3.2. Built-in bridges

 3.3.3. Choosing an indexing strategy

 3.3.4. Indexing the same property multiple times

 3.4. Refining the mapping

 3.4.1. Analyzers

 3.4.2. Boost factors

 3.5. Summary

 Chapter 4. Mapping more advanced data structures

 4.1. Mapping the unexpected: custom bridges

 4.1.1. Using a custom bridge

 4.1.2. Writing simple custom bridges

 4.1.3. Injecting parameters to bridges

 4.1.4. Writing flexible custom bridges

 4.2. Mapping relationships between entities

 4.2.1. Querying on associations and full-text searching

 4.2.2. Indexing embedded objects

 4.2.3. Indexing associated objects

 4.3. Summary

 Chapter 5. Indexing: where, how, what, and when

 5.1. DirectoryProvider: storing the index

 5.1.1. Defining a directory provider for an entity

 5.1.2. Using a filesystem directory provider

 5.1.3. Using an in-memory directory provider

 5.1.4. Directory providers and clusters

 5.1.5. Writing you own directory provider

 5.2. Analyzers: doors to flexibility

 5.2.1. What’s the job of an analyzer?

 5.2.2. Must-have analyzers

 5.2.3. Indexing to cope with approximative search

 5.2.4. Searching by phonetic approximation

 5.2.5. Searching by synonyms

 5.2.6. Searching by words from the same root

 5.2.7. Choosing a technique

 5.3. Transparent indexing

 5.3.1. Capturing which data has changed

 5.3.2. Indexing the changed data

 5.3.3. Choosing the right backend

 5.3.4. Extension points: beyond the proposed architectures

 5.4. Indexing:when transparency is not enough

 5.4.1. Manual indexing APIs

 5.4.2. Initially indexing a data set

 5.4.3. Disabling transparent indexing: taking control

 5.5. Summary

 3. Taming the retrieval mismatch

 Chapter 6. Querying with Hibernate Search

 6.1. Understanding the query paradigm

 6.1.1. The burdens of using Lucene by hand

 6.1.2. Query mimicry

 6.1.3. Getting domain objects from a Lucene query

 6.2. Building a Hibernate Search query

 6.2.1. Building a FullTextSession or a FullTextEntityManager

 6.2.2. Creating a FullTextQuery

 6.2.3. Limiting the types of matching entities

 6.3. Executing the full-text query

 6.3.1. Returning a list of results

 6.3.2. Returning an iterator on the results

 6.3.3. Returning a scrollable result set

 6.3.4. Returning a single result

 6.4. Paginating through results and finding the total

 6.4.1. Using pagination

 6.4.2. Retrieving the total number of results

 6.4.3. Multistage search engine

 6.5. Projection properties and metadata

 6.6. Manipulating the result structure

 6.7. Sorting results

 6.8. Overriding fetching strategy

 6.9. Understanding query results

 6.10. Summary

 Chapter 7. Writing a Lucene query

 7.1. Understanding Lucene’s query syntax

 7.1.1. Boolean queries—this and that but not those

 7.1.2. Wildcard queries

 7.1.3. Phrase queries

 7.1.4. Fuzzy queries—similar terms (even misspellings)

 7.1.5. Range queries—from x TO y

 7.1.6. Giving preference with boost

 7.1.7. Grouping queries with parentheses

 7.1.8. Getting to know the standard QueryParser and ad hoc queries

 7.2. Tokenization and fields

 7.2.1. Fields/properties

 7.2.2. Tokenization

 7.2.3. Analyzers and their impact on queries

 7.2.4. Using analyzers during indexing

 7.2.5. Manually applying an analyzer to a query

 7.2.6. Using multiple analyzers in the same query

 7.3. Building custom queries programmatically

 7.3.1. Using Query.toString()

 7.3.2. Searching a single field for a single term: TermQuery

 7.3.3. MultiFieldQueryParser queries more than one field

 7.3.4. Searching words by proximity: PhraseQuery

 7.3.5. Searching for more: WildcardQuery, PrefixQuery

 7.3.6. When we’re not sure: FuzzyQuery

 7.3.7. Searching in between: RangeQuery

 7.3.8. A little of everything: BooleanQuery

 7.3.9. Using the boost APIs

 7.4. Summary

 Chapter 8. Filters: cross-cutting restrictions

 8.1. Defining and using a filter

 8.1.1. Lucene filter

 8.1.2. Declaring a filter in Hibernate Search

 8.1.3. Applying filters to a query

 8.2. Examples of filter usage and their implementation

 8.2.1. Applying security

 8.2.2. Restricting results to a given range

 8.2.3. Searching within search results

 8.2.4. Filter results based on external data

 8.3. Summary

 4. Performance and scalability

 Chapter 9. Performance considerations

 9.1. Optimizing indexing

 9.1.1. What influences indexing time for a single entity

 9.1.2. Optimizing many concurrent indexing operations

 9.1.3. Optimizing mass indexing

 9.2. Optimizing searches

 9.2.1. Optimizing the way you write queries

 9.2.2. Maximizing benefits from the caching mechanisms

 9.3. Optimizing the index structure

 9.3.1. Running an optimization

 9.3.2. Tuning index structures and operations

 9.4. Sharding your indexes

 9.4.1. Configuring sharding

 9.4.2. Choosing how to shard your data

 9.5. Testing your Hibernate Search application

 9.5.1. Mocking Hibernate Search

 9.5.2. Testing with an in-memory index and database

 9.5.3. Performance testing

 9.5.4. Testing users

 9.6. Summary

 Chapter 10. Scalability: using Hibernate Search in a cluster

 10.1. Exploring clustering approaches

 10.1.1. Synchronous clustering

 10.1.2. Asynchronous clustering

 10.2. Configuring slave nodes

 10.2.1. Preparing the backend

 10.2.2. Preparing the directory providers

 10.3. Configuring the master node

 10.3.1. Building the message consumer

 10.3.2. Preparing the master queue

 10.3.3. Preparing the directory providers

 10.4. Summary

 Chapter 11. Accessing Lucene natively

 11.1. Getting to the bottom of Hibernate Search

 11.1.1. Accessing a Lucene directory

 11.1.2. Obtaining DirectoryProviders from a non-sharded entity

 11.1.3. And now for sharding one entity into two shards

 11.1.4. Indexing two non-sharded entities

 11.1.5. Shoehorning multiple entities into one index (merging)

 11.2. Obtaining and using a Lucene IndexReader within the framework

 11.3. Writing a DirectoryProvider your way

 11.4. Projecting your will on indexes

 11.5. Summary

 5. Native Lucene, scoring, and the wheel

 Chapter 12. Document ranking

 12.1. Scoring documents

 12.1.1. Introducing the vector space model

 12.1.2. Normalizing document length to level the playing field

 12.1.3. Minimizing large term count effects

 12.2. Exploring Lucene’s scoring approach and the DefaultSimilarity class

 12.2.1. DefaultSimilarity examples

 12.2.2. Query boosting

 12.3. Scoring things my way

 12.3.1. Modifying a query’s Weight class

 12.3.2. Revisiting the Scorer class

 12.3.3. Is it worth it?

 12.4. Document relevance

 12.4.1. Understanding Precision vs. Recall

 12.4.2. Measuring a system’s relevance accurately

 12.4.3. Document feedback: tell me what you want!

 12.4.4. Improving relevance with MoreLikeThis

 12.5. Summary

 Chapter 13. Don’t reinvent the wheel

 13.1. Playing in the Sandbox

 13.1.1. Making results stand out with the term Highlighter class

 13.1.2. Modifying a score the easy way with BoostingQuery

 13.1.3. But I was querying for “flick” utilizing a synonym search

 13.1.4. Implementing regular expression searches and querying for “sa.[aeiou]s.*”

 13.1.5. Utilizing a spellchecker

 13.2. Making use of third-party contributions

 13.2.1. Utilizing PDFBox to index PDF documents

 13.2.2. Indexing Microsoft Word files with POI

 13.2.3. Indexing a simple text file

 13.3. Processing XML

 13.3.1. Parsing with SAX

 13.3.2. Parsing with the DOM

 13.3.3. Pros and cons of the different methods

 13.4. Summary

 Appendix Quick reference

 Hibernate Search mapping annotations

 Hibernate Search APIs

 Lucene queries

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I joined an e-commerce company in 2000, nothing unusual I suppose. We were quite annoyed by the quality of Amazon’s search
 engine results compared to ours. A few years later, we reimplemented our search engine from scratch using Lucene. That’s where
 I learned that a good search engine is 50% kick-ass technology and 50% deep understanding of the business and the users you
 serve. Then I sailed different seas and joined the Hibernate team and, later on, JBoss Inc.

 It must be Destiny that a few years later I worked on unifying Hibernate and Lucene. Hibernate Search’s design has been influenced
 by the work on Java Persistence and JBoss Seam: ease of use, domain model-centric, annotation-driven and focused on providing
 a unified experience to the developer. Hibernate Search brings full-text search to Hibernate application without programmatic
 shift or infrastructural code.

 Search is now a key component of our digital life (Google, Spotlight, Amazon, Facebook). Virtually every website, every application,
 has to provide a human-friendly, word-centric search. While Google addresses the internet, Spotlight searches your desktop
 files, Amazon focuses on products, and Facebook finds people. I firmly believe Lucene’s flexibility is a key differentiator
 for developers building business-centric search engines. This has also influenced the design on Hibernate Search: While Hibernate
 Search relieves you of the burdens of indexing and retrieving objects, we made sure that all the flexibility of Lucene is
 accessible to you, especially when you build queries.

 I am thrilled to see the rapidly growing community around Hibernate Search and nothing is more rewarding than hearing people
 saying: “I wish I knew about Hibernate Search six months ago.”

 EMMANUEL BERNARD

 At JavaOne 2007 I attended a presentation titled “Google Your Database!” and heard Emmanuel present his full-text search framework
 Hibernate Search. I had been working with Lucene, Hibernate Search’s engine, for over a year and a half and when Emmanuel
 invited anyone to help collaborate, I jumped. After Emmanuel’s presentation we had time only to exchange email addresses.
 That was the last time I saw him in person until JavaOne 2008 where we at least got to hang out together for an evening. Email
 and IM are amazing things.

 We have two other active project committers now and I have to admit it never ceases to amaze me that four people: Emmanuel
 in Atlanta, Georgia; myself in a little town in Utah; Sanne Grinovero in Rome, Italy; and Hardy Ferentschik in Stockholm,
 Sweden, can produce and maintain a framework like Hibernate Search.

 JOHN GRIFFIN

Acknowledgments

 We never really like to enumerate names because invariably someone is left off the list and may be offended, but for a work
 of this magnitude anything less would be a disservice to the individuals.

	
Nermina Miller— I remember thinking–a long time ago it seems–-“We have to have what?!?! by when?!?! But we finished ahead of schedule and
 no small thanks to you. You are an amazing psychologist who managed to get the best out of us.

 	
Michael Stephens— I remember our first phone call where we talked for a good hour about full-text search and how it is changing the world we
 know. Thanks for inviting us to write this book.

 	
Sanne Grinovero— Not only are you an excellent contributor to Hibernate Search but one of the most tireless technical proofreaders I have ever
 met. Do you ever sleep?

 	
Elizabeth Martin— You kept us moving even through corrupted files, were a pleasure to work with, and have the coolest email address I have seen
 in a long time.

 	
Karen Tegtmeyer— I really do not know how you handle the pressure of getting reviewers, not just for us but for the many other Manning books.
 The range of knowledge and selection of people that reviewed our book was a direct cause of our not slacking in any way during
 our writing. What do you threaten these people with to get them to actually turn in their reviews? And then some of them come
 back and do it again?!

 	
All of the Reviewers— Thank you very much to: Erik Hatcher, Otis Gospodnetic`, Hung Tang, Alberto Lagna, Frank Wang, Grant Ingersoll, Aaron Walker,
 Andy Dingley, Ayende Rahien, Michael McCandless, Patrick Dennis, Peter Pavolovich, Richard Brewter, Robert Hanson, Roger D.
 Cornejo, Spencer Stejskal, Davide D’Alto, Deepak Vohra, Hardy Ferentschik, Keith Kin, David Grossman, Costantino Cerbo, and
 Daniel Hinojosa. You kept us honest and did not let anything slip through. You improved the book a great deal.

 	
The MEAP Contributors— This was one of the most interesting parts of writing this book. We had a very active MEAP and it really helps to know that
 there are a lot of people interested in what you are doing and are hungry for information on your work.

 	All the contributors and users of Hibernate Search. This book would be meaningless without you.

Emmanuel would also like to thank his fellows and friends at JBoss--Sacha Labourey, Gavin King and Christian Bauer--for warning
 him that writing a book will be harder than he can imagine (they were dead on), but nevertheless letting him do it. Many thanks
 to Bruno Georges, his manager, for supporting him on this endeavor all along. Bruno has a rare quality as a manager: Present
 when you need him, out of your way the rest of the time. Emmanuel also thanks Hardy Ferentschik and Sanne Grinovero for pushing
 Hibernate Search 3.1 out while he was working on the book. He sends a special thanks to Iwona who literally supported him
 during this whole year and to his parents, they know why.

 John would also like to thank Spencer Stejskal for having a math degree and agreeing to review chapter 12. This Bud, eh, I mean that chapter is dedicated to you. In addition, Professor David Grossman of the Illinois Institute of
 Technology was extremely gracious to allow us to use his “gold silver truck” example to aid in the explanation of document
 ranking. He would also like to again thank Hardy Ferentschik and Sanne Grinovero for being patient with him and Emmanuel for
 allowing him to be his co-author.

About this book

 Hibernate Search is a library providing full-text search capabilities to Hibernate. It opens doors to more human friendly
 and efficient search engines while still following the Hibernate and Java Persistence development paradigm. This library relieves
 you of the burdens of keeping indexes up to date with the database, converts Lucene results into managed objects of your domain
 model, and eases the transition from a HQL-based query to a full-text query. Hibernate Search also helps you scale Lucene
 in a clustered environment.

 Hibernate Search in Action aims not only at providing practical knowledge of Hibernate Search but also uncovering some of the background behind Hibernate
 Search’s design.

 We will start by describing full-text search technology and why this tool is invaluable in your development toolbox. Then
 you will learn how to start with Hibernate Search, how to prepare and index your domain model, how to query your data. We
 will explore advanced concepts like typo recovery, phonetic approximation, and search by synonym. You will also learn how
 to improve performance when using Hibernate Search and use it in a clustered environment. The book will then guide you to
 more advanced Lucene concepts and show you how to access Lucene natively in case Hibernate Search does not cover some of your
 needs. We will also explore the notion of document scoring and how Lucene orders documents by relevance as well as a few useful
 tools like term highlighters.

 Even though this is an “in Action” book, the authors have included a healthy amount of theory on most of the topics. They
 feel that it is not only important to know “how” but also “why.” This knowledge will help you better understand the design
 of Hibernate Search. This book is a savant dosage of theory, reference on Hibernate Search and practical knowledge. The latter
 is the meat of this book and is lead by practical examples.

 After reading it, you will be armed with sufficient knowledge to use Hibernate Search in all situations.

How to use this book

 While this book can be read from cover to cover, we made sure you can read the sections you are interested independently from
 the others. Feel free to jump to the subject you are most interested in. Chapter 2, which you should read first, will give you an overview of Hibernate Search and explain how to set it up. Check the road
 map section which follows for an overview of Hibernate Search in Action.

 Most chapters start with background and theory on the subject they are covering, so feel free to jump straight to the practical
 knowledge if you are not interested in the introduction. You can always return to the theory.

Who should read this book

 This book is aimed at any person wanting to know more about Hibernate Search and full-text search in general. Any person curious
 to understand what full text search technology can bring to them and what benefits Hibernate Search provides will be interested.

 Readers looking for a smooth and practical introduction to Hibernate Search will appreciate the step-by-step introduction
 of each feature and its concrete examples.

 The more advanced architect will find sections describing concepts and features offered by Hibernate Search as well as the
 chapter about clustering to be of interest.

 The regular Hibernate Search users will enjoy in-depth descriptions of each subject and the ability to jump to the chapter
 covering the subject they are interested in. They will also appreciate the chapter focusing on performance optimizations.

 The search guru will also enjoy the advanced chapters on Lucene describing scoring, access to the native Lucene APIs from
 Hibernate Search, and the Lucene contribution package.

 Developers or architects using or willing to use Hibernate Search on their project will find useful knowledge (how-to, practical
 examples, architecture recommendations, optimizations).

 It is recommended to have basic knowledge of Hibernate Core or Java Persistence but some reviewers have read the book with
 no knowledge of Hibernate, some with knowledge of the .Net platform, and found the book useful.

Roadmap

 In the first part of the book, we introduce full-text search and Hibernate Search.

 Chapter 1 describes the weakness of SQL as a tool to answer human queries and describes full-text search technology. This chapter also
 describes full-text search approaches, the issues with integrating them in a classic Java SE/EE application and why Hibernate
 Search is needed.

 Chapter 2 is a getting started guide on Hibernate Search. It describes how to set up and configure it in a Java application, how to
 define the mapping in your domain model. It then describes how Hibernate Search indexes objects and how to write full-text
 queries. We also introduce Luke, a tool to inspect Lucene indexes.

 PART 2 focuses on mapping and indexing.

 Chapter 3 describes the basics of domain model mapping. We will walk you through the steps of marking an entity and a property as indexed.
 You will understand the various mapping strategies.

 Chapter 4 goes a step further into the mapping possibilities. Custom bridges are introduced as well as mapping of relationships.

 Chapter 5 introduces where and how Hibernate Search indexes your entities. We will learn how to configure directory providers (the
 structure holding index data), how to configure analyzers and what feature they bring (text normalization, typo recovery,
 phonetic approximation, search by synonyms and so on). Then we will see how Hibernate Search transparently indexes your entities
 and how to take control and manually trigger such indexing.

 PART 3 of Hibernate Search in Action covers queries.

 Chapter 6 covers the programmatic model used for queries, how it integrates into the Hibernate model and shares the same persistence
 context. You will also learn how to customize queries by defining pagination, projection, fetching strategies, and so on.

 Chapter 7 goes into the meat of full-text queries. It describes what is expressible in a Lucene query and how to do it. We start by
 using the query parser, then move on to the full programmatic model. At this stage of the book, you will have a good understanding
 of the tools available to you as a search engine developer.

 Chapter 8 describes Hibernate Search filters and gives examples where cross-cutting restrictions are useful. You will see how to best
 benefit from the built-in cache and explore use cases such as security filtering, temporal filtering, and category filtering.

 PART 4 focuses on performance and scalability.

 Chapter 9 brings in one chapter all the knowledge related to Hibernate Search and Lucene optimization. All areas are covered: indexing,
 query time, index structure, and index sharding.

 Chapter 10 describes how to cluster a Hibernate Search application. You will understand the underlying problems and be introduced to
 various solutions. The benefits and drawbacks of each will be explored. This chapter includes a full configuration example.

 PART 5 goes beyond Hibernate Search and explores advanced knowledge of Lucene.

 Chapter 11 describes ways to access the native Lucene APIs when working with Hibernate Search. While this knowledge is not necessary
 in most applications, it can come in handy in specific scenarios.

 Chapter 12 takes a deep dive into Lucene scoring. If you always wanted to know how a full-text search engine order results by relevance,
 this chapter is for you. This will be a gem if you need to customize the scoring algorithm.

 Chapter 13 gives you an introduction to some of Lucene’s contribution projects like text highlighting, spell checking, and so on.

Code conventions

 All source code in listings and in text is in a fixed-width font just like this to separate it from normal text. Additionally, Java class names, method names, and object properties are also presented using
 fixed-width font. Java method names generally don’t include the signature (the list of parameter types).

 In almost all cases the original source code has been reformatted; we’ve added line breaks and reworked indentation to fit
 page space in the book. It was even necessary occasionally to add line continuation markers.

 Annotations accompany all of the code listings and are followed by numbered bullets, also known as cueballs, which are linked
 to explanations of the code.

Code downloads

 Hibernate Search and Hibernate Core are open source projects released under the Lesser GNU Public License 2.1. You can download
 the latest versions (both source and binaries) at http://www.hibernate.org.

 Apache Lucene is an open source project from the Apache Software Foundation released under the Apache Public License 2.0.
 Lucene JARs are included in the Hibernate Search distribution but you can download additional contributions, documentation
 and the source code at http://lucene.apache.org.

 The source code used in this book as well as various online resources are freely available at http://book.emmanuelbernard.com/hsia or from a link on the publisher’s website at http://www.manning.com/HibernateSearchinAction

Author Online

 Purchase of Hibernate Search in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to http://www.manning.com/HibernateSearchinAction or http://www.manning.com/bernard. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 EMMANUEL BERNARD graduated from Supelec (French “Grande Ecole”) then spent a few years in the retail industry as a developer
 and architect. That’s where he started to be involved in the ORM space. He joined the Hibernate team in 2003 and is now a
 lead developer at JBoss, a division of Red Hat.

 Emmanuel is the cofounder and lead developer of Hibernate Annotations and Hibernate EntityManager (two key projects on top
 of Hibernate Core implementing the Java Persistence(tm) specification) and more recently Hibernate Search and Hibernate Validator.

 Emmanuel is a member of the JPA 2.0 expert group and the spec lead of JSR 303: Bean Validation. He is a regular speaker at
 various conferences and JUGs, including JavaOne, JBoss World and Devoxx.

 JOHN GRIFFIN has been in the software and computer industry in one form or another since 1969. He remembers writing his first
 FORTRAN IV program in a magic bus on his way back from Woodstock. Currently, he is the software engineer/architect for SOS
 Staffing Services, Inc. He was formerly the lead e-commerce architect for Iomega Corporation, lead SOA architect for Realm
 Systems and an independent consultant for the Department of the Interior among many other callings.

 John has even spent time as an adjunct university professor. He enjoys being a committer to projects because he believes “it’s
 time to get involved and give back to the community.”

 John is the author of XML and SQL Server 2000 published by New Riders Press in 2001 and a member of the ACM. John has also spoken at various conferences and JUGs.

 He resides in Layton, Utah, with wife Judy and their Australian Shepherds Clancy and Molly.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The illustration on the cover of Hibernate Search in Action is captioned “Scribe” and is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs.
 This book was first published in Paris in 1788, one year before the French Revolution. Each illustration is colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were
 just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or the countryside,
 they were easy to place—sometimes with an error of no more than a dozen miles—just by their dress. Dress codes have changed
 everywhere with time and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
 of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied
 personal life—certainly a more varied and faster-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Understanding Search Technology

 In the first two chapters of Hibernate Search in Action, you will discover the place of search in modern applications, the different solutions at your disposal, and their respective
 strengths. Chapter 1 covers the reasons behind the need for search, introduces the concepts behind full-text search, and describes the types of
 full-text search solutions available. Going closer to the Java developer’s mind, chapter 1 also explains some of the problems that arise with integrating the object-oriented domain model and full-text search. Once
 you are equipped with this background, chapter 2 will guide you through your first steps with Hibernate Search.

 After reading this part of the book, you will understand the concepts behind full-text search and benefits of this technology.
 You will also discover some issues that may arise when integrating full-text search in an object-oriented world and will learn
 how to set up and start using Hibernate Search in your Java applications.

Chapter 1. State of the art

	
This chapter covers

	
	The need for search in modern applications

 	Full-text search concepts

 	Full-text search solutions

Search is a quite vague notion involving machine processes, human processes, human thoughts, and even human feelings. As vague as
 it is, search is also a mandatory functionality in today’s applications, especially since we’re exposed to and have access
 to much more information than we used to. Since the exposure rate doesn’t seem to slow down these days, searching efficiently,
 or should we say finding efficiently, becomes a discriminatory element among applications, systems, and even humans. It’s
 no wonder your customers or your users are all about searching.

 Unfortunately, integrating efficient search solutions into our daily applications isn’t an easy task. In Java applications,
 where the domain model of your business is described by an object model, it can be particularly tricky to provide “natural”
 search capabilities without spending a lot of time on complex plumber code. Without breaking the suspense of this chapter,
 we’ll just say that Hibernate Search helps you build advanced search functionalities in Java-based applications (functionalities that will not shy against the
 big contenders in this field like Google or Yahoo!). But even more important, it relieves the application developer from the
 burdens of infrastructure and glue code and lets him focus on what matters in the end, optimizing the search queries to return
 the best possible information.

 Before jumping into the details of Hibernate Search, we want you to understand where it comes from and why this project was
 needed. This chapter will help you understand what search means today when speaking about interacting with an information
 system (whether it be a website, a backend application, or even a desktop). We’ll explore how various technologies address
 the problem. You’ll be able to understand where Hibernate Search comes from and what solutions it provides. Take a comfortable
 position, relax, and enjoy the show.

1.1. What is search?

	
Search: transitive verb. To look into or over carefully or thoroughly in an effort to find or discover something.

Whenever users interact with an information system, they need to access information. Modern information systems tend to give
 users access to more and more data. Knowing precisely where to find what you’re looking for is the edge case of search, and you have practically no need for a search function in this situation.
 But most of the time, where and what are blurrier. Of course, before knowing where to look, you need to have a decent understanding of what you’re looking for.

 Surprisingly, some users barely know what they’re looking for; they have vague (sometimes unorganized) ideas or partial information
 and seek help and guidance based on this incomplete knowledge. They seek ways to refine their search until they can browse
 a reasonably small subset of information. Too much information and the gem are lost in the flow of data; too little and the
 gem might have been filtered out.

 Depending on typical system usage, the search feature (or let’s call it the reach feature) will have to deal with requests where what is looked for is more or less clear in the user’s mind. The clearer it
 is, the more important it is for the results to be returned by relevance.

	

Note

 WHAT IS RELEVANCE? Relevance is a barbarian word that simply means returning the information considered the most useful at the top of a result list. While
 the definition is simple, getting a program to compute relevance is not a trivial task, mainly because the notion of usefulness
 is hard for a machine to understand. Even worse, while most humans will understand what usefulness means, most will disagree
 on the practical details. Take two persons in the street, and the notion of usefulness will differ slightly. Let’s look at
 an example: I’m a customer of a wonderful online retail store and I’m looking for a “good reflex camera.” As a customer, I’m
 looking for a “good reflex camera” at the lowest possible price, but the vendor might want to provide me with a “good reflex
 camera” at the highest retail margin. Worst-case scenario, the information system has no notion of relevance, and the end
 user will have to order the data manually.

	

Even when users know precisely what they’re looking for, they might not precisely know where to look and how to access the
 information. Based on the what, they expect the information system to provide access to the exact data as efficiently and as fast as possible with as few
 irrelevant pieces as possible. (This irrelevant information is sometimes called noise.)

 You can refine what you’re looking for in several ways. You can categorize information and display it as such, you can expose
 a detailed search screen to your user, or you can expose a single-search text box and hide the complexity from the user.

 1.1.1. Categorizing information

 One strategy is to categorize information up front. You can see a good example of this approach in figure 1.1. The online retail website Amazon provides a list of departments and subdepartments that the visitor can go through to direct
 her search.

 Figure 1.1. Searching by category at Amazon.com. Navigating across the departments and subdepartments helps the user to structure her
 desires and refine her search.

 [image:]

 The categorization is generally done by business experts during data insertion. The role of the business expert is to anticipate
 searches and define an efficient category tree that will match the most common requests. There are several drawbacks when
 using this strategy:

	Predefined categories might not match the search criteria or might not match the mindset of the user base. I can navigate
 pretty efficiently through the mountain of papers on my desk and floor because I made it, but I bet you’d have a hard time
 seeing any kind of categorization.

 	Manual categorization takes time and is nearly impossible when there’s too much data.

However, categorization is very beneficial if the user has no predefined idea because it helps her to refine what she’s looking
 for. Usually categorization is reflected as a navigation system in the application. To make an analogy with this book, categories
 are the table of contents. You can see a category search in action figure 1.1.

 Unfortunately, this solution isn’t appropriate for all searches and all users. An alternative typical strategy is to provide
 a detailed search screen with various criteria representing field restrictions (for example, find by word and find by range).

 1.1.2. Using a detailed search screen

 A detailed search screen is very useful when the user knows what to look for. Expert users especially appreciate this. They
 can fine-tune their query to the information system. Such a solution is not friendly to beginner or average users, especially
 users browsing the internet. Users who know what they are looking for and know pretty well how data is organized will make
 the most out of this search mode (see, for example, the Amazon.com book search screen in figure 1.2).

 Figure 1.2. A detailed search screen exposes advanced and fine-grained functionalities to the user interface. This strategy doesn’t fit
 beginners very well.

 [image:]

 For beginners, a very simple search interface is key. Unfortunately it does add a lot of complexity under the hood because
 a simple user interface has to “guess” the user’s wishes. A third typical strategy is to provide a unique search box that
 hides the complexity of the data (and data model) and keeps the user free to express the search query in her own terms.

 1.1.3. Using a user-friendly search box

 A search box, when properly implemented, provides a better user experience for both beginning and average users regardless
 of the qualification of their search (that is, whether the what is vaguely or precisely defined). This solution puts a lot more pressure on the information system: Instead of having the
 user use the language of the system, the system has to understand the language of the user. Proceeding with our book analogy,
 such a solution is the 21st-century version of a book index. See the Search box at Amazon.com in figure 1.3.

 Figure 1.3. Using one search box gives freedom of expression to users but introduces more complexity and work to the underlying search
 engine.

 [image:]

 While very fashionable these days, this simple approach has its limits and weaknesses. The proper approach is usually to use
 a mix of the previous strategies, just like Amazon.com does.

 1.1.4. Mixing search strategies

 These strategies are not mutually exclusive; au contraire, most information systems with a significant search feature implement these three strategies or a mix or variation of them.

 While not always consciously designed as such by its designer, a search feature addresses the where problem. A user trying to access a piece of information through an information system will try to find the fastest or easiest
 possible way. Application designers may have provided direct access to the data through a given path that doesn’t fit the
 day-to-day needs of their users. Often data is exposed by the way it’s stored in the system, and the access path provided
 to the user is the easiest access path from an information system point of view. This might not fit the business efficiently.
 Users will then work around the limitation by using the search engine to access information quickly.

 Here’s one example of such hidden usage. In the book industry, the common identifier is the ISBN (International Standard Book
 Number). Everybody uses this number when they want to share data on a given book. Emmanuel saw a backend application specifically
 designed for book industry experts, where the common way to interact on a book was to share a proprietary identifier (namely,
 the database primary key value in the company’s datastore). The whole company interaction process was designed around this
 primary key. What the designers forgot was that book experts employed by this company very often have to interact outside
 the company boundaries. It turned out that instead of sharing the internal identifiers, the experts kept using the ISBN as the unique identifier. To convert the ISBN into the internal identifier, the search engine was used extensively
 as a palliative. It would have been better to expose the ISBN in the process and hide the internal identifier for machine
 consumption, and this is what the employees of this company ended up doing.

 1.1.5. Choosing a strategy: the first step on a long road

 Choosing one or several strategies is only half the work though, and implementing them efficiently can become fairly challenging
 depending on the underlying technology used. In most Java applications, both simple text-box searches and detailed screen
 searches are implemented using the request technology provided by the data store. The data store being usually a relational
 database management system, an SQL query is built from the query elements provided by the user (after a more or less sophisticated
 filtering and adjustment algorithm). Unfortunately, data source query technologies often do not match user-centric search
 needs. This is particularly true in the case of relational databases.

1.2. Pitfalls of search engines in relational databases

 SQL (Structured Query Language) is a fantastic tool for retrieving information. It especially shines when it comes to restricting
 columns to particular values or ranges of values and expressing data aggregation. But is it the right tool to use to find
 information based on user input?

 To answer this question, let’s look at an example and see the kind of input a user can provide and how an SQL-based search
 engine would deal with it. A user is looking for a book at her favorite online store. The online store uses a relational database
 to store the books catalog. The search engine is entirely based on SQL technology. The search box on the upper right is ready
 to receive the user’s request:

 "a book about persisting objects with ybernate in Java"

 A relational database groups information into tables, each table having one or several columns.

 A simple version of the website could be represented by the following model:

	A Book table containing a title and a description

 	An Author table containing a first name and a last name

 	A relation between books and their authors

Thanks to this example, we’ll be able to uncover typical problems arising on the way to building an SQL-based search engine.
 While this list is by no mean complete, we’ll face the following problems:

	Writing complex queries because the information is spread across several tables

 	Converting the search query to search words individually

 	Keeping the search engine efficient by eliminating meaningless words (those that are either too common or not relevant)

 	
Finding efficient ways to search a given word as opposed to a column value

 	Returning results matching words from the same root

 	Returning results matching synonymous words

 	Recovering from user typos and other approximations

 	Returning the most useful information first

Let’s now dive into some details and start with the query complexity problem.

 1.2.1. Query information spread across several tables

 Where should we look for the search information our user has requested? Realistically, title, description, first name, and
 last name potentially contain the information the user could base her search on. The first problem comes to light: The SQL-based
 search engine needs to look for several columns and tables, potentially joining them and leading to somewhat complex queries.
 The more columns the search engine targets, the more complex the SQL query or queries will be.

 select book.id from Book book left join book.authors author where
 book.title = ? OR book.description = ? OR author.firstname = ? OR
 author.lastname = ?

 This is often one area where search engines limit the user in order to keep queries relatively simple (to generate) and efficient
 (to execute). Note that this query doesn’t take into account in how many columns a given word is found, but it seems that
 this information could be important (more on this later).

 1.2.2. Searching words, not columns

 Our search engine now looks for the user-provided sentence across different columns. It’s very unlikely that any of the columns
 contains the complete following phrase: “a book about persisting objects with ybernate in Java.” Searching each individual
 word sounds like a better strategy. This leads to the second problem: A phrase needs to be split into several words. While
 this could sound like a trivial matter, do you actually know how to split a Chinese sentence into words? After a little Java
 preprocessing, the SQL-based search engine now has access to a list of words that can be searched for: a, about, book, ybernate, in, Java, persisting, objects, with.

 1.2.3. Filtering the noise

 Not all words seem equal, though; book, ybernate, Java, persisting, and objects seem relevant to the search, whereas a, about, in, and with are more noise and return results completely unrelated to the spirit of the search. The notion of a noisy word is fairly
 relative. First of all, it depends on the language, but it also depends on the domain on which a search is applied. For an
 online book store, book might be considered a noisy word. As a rule of thumb, a word can be considered noisy if it’s very common in the data and
 hence not discriminatory (a, the, or, and the like) or if it’s not meaningful for the search (book in a bookstore). You’ve now discovered yet another bump in the holy quest of SQL-based search engines: A word-filtering solution needs to be in place to make the question more selective.

 1.2.4. Find by words...fast

 Restricted to the list of meaningful query words, the SQL search engine can look for each word in each column. Searching for
 a word inside the value of a column can be a complex and costly operation in SQL. The SQL like operator is used in conjunction with the wild card character % (for example, select ... from ... where title like ‘%persisting%’...). And unfortunately for our search engine, this operation can be fairly expensive; you’ll understand why in a minute.

 To verify if a table row matches title like ‘%persisting%’, a database has two main solutions:

	Walk through each row and do the comparison; this is called a table scan, and it can be a fairly expensive operation, especially when the table is big.

 	Use an index.

An index is a data structure that makes searching by the value of a column much more efficient by ordering the index data by column
 value (see figure 1.4).

 Figure 1.4. A typical index structure in a database. Row IDs can be quickly found by title column value, thanks to the structure.

 [image:]

 To return the results of the query select * from Book book where book.title = 'Alice's adventures in Wonderland', the database can use the index to find out which rows match. This operation is fairly efficient because the title column
 values are ordered alphabetically. The database will look in the index in a roughly similar way to how you would look in a
 dictionary to find words starting with A, followed by l, then by i. This operation is called anindex seek. The index structure is used to find matching information very quickly.

 Note that the query select * from Book book where book.title like 'Alice%' can use the same technique because the index structure is very efficient in finding values that start with a given string.
 Now let’s look at the original search engine’s query, where title like ‘%persisting%’. The database cannot reuse the dictionary trick here because the column value might not start with persisting. Sometimes the database will use the index, reading every single entry in it, and see which entry has the word persisting somewhere in the key; this operation is called an index scan. While faster than a table scan (the index is more compact), this operation is in essence similar to the table scan and thus
 often slow. Because the search engine needs to find a word inside a column value, our search engine query is reduced to using
 either the table scan or the index scan technique and suffers from their poor performance.

 1.2.5. Searching words with the same root and meaning

 After identifying all the previous problems, we end up with a slow, complex-to-implement SQL-based search engine. And we need
 to apply complex analysis to the human query before morphing it into an SQL query.

 Unfortunately, we’re still far from the end of our journey; the perfect search engine is not there yet. One of the fundamental
 problems still present is that words provided by the user may not match letter to letter the words in our data. Our search
 user certainly expects the search engine to return books containing not only persisting but also persist, persistence, persisted, and any word whose root is persist. The process used to identify a root from a word (called a stem) is named the stemming process. Expectations might even go further; why not consider persist and all of its synonyms? Save and store are both valid synonyms of persist. It would be nice if the search engine returned books containing the word save when the query is asking for persist.

 This is a new category of problems that would force us to modify our data structure to cope with them. A possible implementation
 could involve an additional data structure to store the stem and synonyms for each word, but this would involve a significant
 additional amount of work.

 1.2.6. Recovering from typos

 One last case about words: ybernate. You’re probably thinking that the publication process is pretty bad at Manning to let such an obvious typo go through. Don’t
 blame them; I asked for it. Your user will make typos. He will have overheard conversation at Starbucks about a new technology
 but have no clue as to how to write it. Or he might simply have made a typo. The search engine needs a way to recover from
 ibernate, ybernate, or hypernate. Several techniques use approximation to recover from such mistakes. A very interesting one is to use a phonetic approach
 to match words by their phonetic (approximate) equivalent. Like the last two problems, there’s no simple approach to solving
 this issue with SQL.

 1.2.7. Relevance

 Let’s describe one last problem, and this is probably the most important one. Assuming the search engine manages to retrieve
 the appropriate matching data, the amount of data might be very large. Users usually won’t scroll through 200 or 2000 results, but if they have to, they’ll probably
 be very unhappy.

 How can we ensure data is ordered in a way that returns the most interesting data in the first 20 or 40 results? Ordering
 by a given property will most likely not have the appropriate effect. The search engine needs a way to sort the results by
 relevance.

 While this is a very complex topic, let’s have a look at simple techniques to get a feel for the notion. For a given type
 of query, some parts of the data, some fields, are more important than others. In our example, finding a matching word in
 the title column has more value than finding a matching word in the description column, so the search engine can give priority
 to the former. Another strategy would be to consider that the more matching words found in a given data entry, the more relevant
 it is. An exact word certainly should be valued higher than an approximated word. When several words from the query are found
 close to each other (maybe in the same sentence), it certainly seems to be a more valuable result. If you’re interested in
 the gory details of relevance, this book dedicates a whole chapter on the subject: chapter 12.

 Defining such a magical ordering equation is not easy. SQL-based search engines don’t even have access to the raw information
 needed to fill this equation: word proximity, number of matching words per result, and so on.

 1.2.8. Many problems. Any solutions?

 The list of problems could go on for awhile, but hopefully we’ve convinced you that we must use an alternative approach for
 search engines in order to overcome the shortcomings of SQL queries. Don’t feel depressed by this mountain of problem descriptions.
 Finding solutions to address each and every one of them is possible, and such technology exists today: full-text search, also
 called free-text search.

1.3. Full-text search: a promising solution

 Full-text search is a technology focused on finding documents matching a set of words. Because of its focus, it addresses
 all the problems we’ve had during our attempt to build a decent search engine using SQL. While sounding like a mouthful, full-text
 search is more common than you might think. You probably have been using full-text search today. Most of the web search engines
 such as Google, Yahoo!, and Altavista use full-text search engines at the heart of their service. The differences between
 each of them are recipe secrets (and sometimes not so secret), such as the Google PageRank™ algorithm. PageRank™ will modify
 the importance of a given web page (result) depending on how many web pages are pointing to it and how important each page
 is.

 Be careful, though; these so-called web search engines are way more than the core of full-text search: They have a web UI,
 they crawl the web to find new pages or existing ones, and so on. They provide business-specific wrapping around the core
 of a full-text search engine.

 Given a set of words (the query), the main goal of full-text search is to provide access to all the documents matching those
 words. Because sequentially scanning all the documents to find the matching words is very inefficient, a full-text search
 engine (its core) is split into two main operations: indexing the information into an efficient format and searching the relevant
 information from this precomputed index. From the definition, you can clearly see that the notion of word is at the heart of full-text search; this is the atomic piece of information that the engine will manipulate. Let’s dive
 into those two different operations.

 1.3.1. Indexing

 Indexing is a multiple-step operation whose objective is to build a structure that will make data search more efficient. It
 solves one of the problems we had with our SQL-based search engine: efficiency. Depending on the full-text search tools, some
 of those operations are not considered to be part of the core indexing process and are sometimes not included (see figure 1.5).

 Figure 1.5. The indexing process. Gather data, and convert it to text. From the text-only representation of the data, apply word processing
 and store the index structure.

 [image:]

 Let’s have a look at each operation:

	The first operation needed is to gather information, for example, by extracting information from a database, crawling the
 net for new pages, or reacting to an event raised by a system. Once retrieved, each row, each HTML page, or each event will
 be processed.

 	The second operation converts the original data into a searchable text representation: the document. A document is the container holding the text representation of the data, the searchable representation of the row, the HTML
 page, the event data, and so on. Not all of the original data will end up in the document; only the pieces useful for search
 queries will be included. While indexing the title and content of a book make sense, it’s probably unnecessary to index the
 URL pointing to the cover image. Optionally, the process might also want to categorize the data; the title of an HTML page
 may have more importance than the core of the page. These items will probably be stored in different fields. Think of a document as a set of fields. The notion of fields is step 1 of our journey to solve one of our SQL-based search
 engine problems; some columns are more significant than others.

 	The third operation will process the text of each field and extract the atomic piece of information a full-text search engine
 understands: words. This operation is critical for the performance of full-text search technologies but also for the richness
 of the feature set. In addition to chunking a sentence into words, this operation prepares the data to handle additional problems we’ve been facing in the SQL-based search engine: search by
 object root or stem and search by synonyms. Depending on the full-text search tool used, such additional features are available
 out of the box—or not—and can be customized, but the core sentence chunking is always there.

 	The last operation in the indexing process is to store your document (optionally) and create an optimized structure that will
 make search queries fast. So what’s behind this magic optimized structure? Nothing much, other than the index in the database
 we’ve seen in section 1.2, but the key used in this index is the individual word rather than the value of the field (see figure 1.6). The index stores additional information per word. This information will help us later on to fix the order-by-relevance
 problem we faced in our SQL-based search engine; word frequency, word position, and offset are worth noticing. They allow
 the search engine to know how “popular” a word is in a given document and its position compared to another word.
 Figure 1.6. Optimizing full-text queries using a specialized index structure. Each word in the title is used as a key in the index structure.
 For a given word (key), the list of matching ids is stored as well as the word frequency and position.

 [image:]

While indexing is quite essential for the performance of a search engine, searching is really the visible part of it (and
 in a sense the only visible feature your user will ever care about). While every engineer knows that the mechanics are really
 what makes a good car, no user will fall in love with the car unless it has nice curvy lines and is easy to drive. Indexing is the mechanics of our search engine, and searching is the user-oriented polish that will hook our customers.

 1.3.2. Searching

 If we were using SQL as our search engine, we would have to write a lot of the searching logic by hand. Not only would it
 be reinventing the wheel, but very likely our wheel would look more like a square than a circle. Searching takes a query from
 a user and returns the list of matching results efficiently and ordered by relevance. Like indexing, searching is a multistep
 process, as shown in figure 1.7. We’ll walk through the steps and see how they solve the problems we’ve seen during the development of our SQL-based search
 engine.

 Figure 1.7. Searching process. From a user or program request, determine the list of words, find the appropriate documents matching those
 words, eliminate the documents not matching, and order the results by relevance.

 [image:]

 The first operation is about building the query. Depending on the full-text search tool, the way to express query is either:

	
String based— A text-based query language. Depending on the focus, such a language can be as simple as handling words and as complex as
 having Boolean operators, approximation operators, field restriction, and much more!

 	
Programmatic API based— For advanced and tightly controlled queries a programmatic API is very neat. It gives the developer a flexible way to express
 complex queries and decide how to expose the query flexibility to users (it might be a service exposed through a Representational
 State Transfer (REST) interface).

Some tools will focus on the string-based query, some on the programmatic API, and some on both. Because the query language
 or API is focused on full-text search, it ends up being much simpler (in complexity) to write than its SQL equivalent and
 helps to reduce one of the problems we had with our SQL-based search engine: complexity.

 The second operation, let’s call it analyzing, is responsible for taking sentences or lists of words and applying the similar operation performed at indexing time (chunk
 into words, stems, or phonetic description). This is critical because the result of this operation is the common language
 that indexing and searching use to talk to each other and happens to be the one stored in the index. If the same set of operations
 is not applied, the search won’t find the indexed words—not so useful! This common language is the cornerstone of full-text
 search performances (another problem we had with our SQL-based search engine).

 Based on the common language between indexing and searching, the third operation (finding documents) will read the index and
 retrieve the index information associated with each matching word (see figure 1.8). Remember, for each word, the index could store the list of matching documents, the frequency, the word positions in a document,
 and so on. The implicit deal here is that the document itself is not loaded, and that’s one of the reasons why full-text search
 is efficient: The document does not have to be loaded to know whether it matches or not.

 Figure 1.8. Search results returned as a web page: one of the possible ways to expose results

 [image:]

 The next operation (filtering and ordering) will process the information retrieved from the index and build the list of documents
 (or more precisely, handlers to documents). From the information available (matching documents per word, word frequency, and
 word position), the search engine is able to exclude documents from the matching list. More important, it is able to compute
 a score for each document. The higher its score, the higher a document will be in the result list. A lengthy discussion about
 scoring is available in chapter 12, but in the meantime let’s have a look at some factors influencing its value:

	In a query involving multiple words, the closer they are in a document, the higher the rank.

 	In a query involving multiple words, the more are found in a single document, the higher the rank.

 	The higher the frequency of a matching word in a document, the higher the rank.

 	The less approximate a word, the higher the rank.

Depending on how the query is expressed and how the product computes score, these rules may or may not apply. This list is
 here to give you a feeling of what may affect the score, therefore the relevance of a document. This last part has solved
 the final problem faced by our SQL-based search engine: ordering results by relevance.

 Once the ordered list of documents is ready, the full-text search engine exposes the results to the user. It can be through
 a programmatic API or through a web page. Figure 1.8 shows a result page from the Google search engine.

 Sounds like we’ve found the perfect solution to address our problem. Now let’s have a look at the kind of full-text search
 solutions on the market.

 1.3.3. Full-text search solutions

 A variety of full-text search solutions are available. Depending on their focus, they might better fit different needs. Some
 go beyond the core part of full-text searching and all the way up to exposing the results in a web page for you. Three main
 families of solutions exist:

	An integrated full-text engine in the relational database engine

 	A black box server providing the full-text service

 	A library providing a full-text engine implementation

Let’s explore these three classic approaches.

Full Text in Relational Databases

 Integrating full-text search with the relational engine sounds like a very appealing solution when full-text searches aim
 at targeting data stored in the database. When the objective is to enhance SQL queries of our application with full-text search
 capabilities, this solution is a serious contender. Let’s go through some of the benefits:

	
Less management duplication— Because both your data and your index are handled by the same product, administering the system should be quite simple. (Note
 that some full-text-search relational integration is not that integrated and requires a different backup-and-restore process.)

 	
Data and index are always synchronized— Because a database knows when you update your data, keeping the index up to date is very easy. Note that not all products
 shine in that regard.

 	
Mixing SQL queries and full-text queries— The authors think this is the most appealing benefit; SQL provides a lot of flexibility when querying data. Enhancing it with
 full-text-search keywords makes the querying experience more integrated.

Performance-wise, these products differ greatly depending on the quality of the full-text search engine and the complexity
 of the integrated query (SQL and full-text).

 Recent versions of the main databases tend to include a full-text search module. Oracle DB, Microsoft SQL Server, and MySQL,
 to name a few, embed such a module. As shown in figure 1.9, your application talks only to the database.

 Figure 1.9. Full-text embedded in a relational database

 [image:]

 This solution unfortunately suffers from some problems:

	The first problem is scalability. In today’s application architecture, the database tends to be the most critical path where
 scalability cannot be as easily achieved as in other tiers. Full-text indexing and searching can be quite intensive in terms
 of CPU, memory, and input/output. Do we really want to spend database resources on such a feature set as depicted in figure 1.9? Will it be a problem in the future, and how fast will we reach the scalability limit?

 	The second problem is portability. Unfortunately, there is no standard today to express a full-text query. Relational vendors
 have extended SQL to support the ability to express those kind of queries, every single one in its own way. The end result
 for the user is the inability to build an application compatible with multiple relational backends. Even if the user is committed
 to a migration effort, the features themselves are not standard, and their behavior might change from one product to another
 (if they are even present in both).

 	The third problem is flexibility. Depending on the relational engine, indexing can be more or less flexible. Generally speaking,
 flexibility is not the strong point of such engines. Flexibility is key to adapting your search engine to your business needs
 and to fulfilling your user’s requests. Flexibility is needed both at indexing time (how you want your data to be prepared)
 and at searching time (what kind of full-text operations are available).

Full-text search engines embedded in a relational database are best for people who specifically target searching on the data
 embedded in their database, who don’t expect the requirements to go too far, who aren’t ready to invest a lot in development time, and of course who aren’t concerned
 about database portability. Scalability is another concern for some implementations.

Appliance Solutions

 On the other side of the full-text search spectrum are fully dedicated products whose focus is mainly on searching heterogeneous
 content on a website, intranet, or the information system in general. As shown in figure 1.10, they serve as the central indexing and searching service. Thanks to their focus, they tend to have very good performances
 both at indexing time and for processing queries. The best-known example today is the Google Search Appliance, but the giant
 is not the only one on this market.

OEBPS/f0010-01_alt.jpg

OEBPS/f0013-01.jpg

OEBPS/f0006-02_alt.jpg

OEBPS/f0007-01_alt.jpg

OEBPS/pub.jpg

OEBPS/f0006-01_alt.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/f0014-01.jpg

OEBPS/f0017-01_alt.jpg

OEBPS/f0015-01.jpg

OEBPS/cover.jpg

OEBPS/f0018-01.jpg

