

 [image: cover]

Functional Reactive Programming

 Stephen Blackheath
 Anthony Jones

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Dennis Sellinger
Review editor: Aleksandar Dragosavljevic
Project editor: Tiffany Taylor
Copyeditor: Tiffany Taylor
Proofreader: Melody Dolab
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781633430105

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover

 Chapter 1. Stop listening!

 Chapter 2. Core FRP

 Chapter 3. Some everyday widget stuff

 Chapter 4. Writing a real application

 Chapter 5. New concepts

 Chapter 6. FRP on the web

 Chapter 7. Switch

 Chapter 8. Operational primitives

 Chapter 9. Continuous time

 Chapter 10. Battle of the paradigms

 Chapter 11. Programming in the real world

 Chapter 12. Helpers and patterns

 Chapter 13. Refactoring

 Chapter 14. Adding FRP to existing projects

 Chapter 15. Future directions

 Appendix A. Sodium API

 Appendix B. The six plagues of event handling

 Appendix C. Comparison of FRP systems

 Appendix D. A section for managers

 Appendix E. Denotational semantics of Sodium

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover

 Chapter 1. Stop listening!

 1.1. Project, meet complexity wall

 1.2. What is functional reactive programming?

 1.2.1. A stricter definition

 1.2.2. Introducing Sodium

 1.3. Where does FRP fit in? The lay of the land

 1.4. Interactive applications: what are events?

 1.5. State machines are hard to reason about

 1.6. Interactive applications without the bugs

 1.7. Listeners are a mainstay of event handling, but ...

 1.8. Banishing the six plagues of listeners

 1.9. Why not just fix listeners?

 1.10. “Have you tried restarting it?” or why state is problematic

 1.11. The benefit of FRP: dealing with complexity

 1.12. How does FRP work?

 1.12.1. Life cycle of an FRP program

 1.13. Paradigm shift

 1.13.1. Paradigm

 1.13.2. Paradigm shift

 1.14. Thinking in terms of dependency

 1.15. Thinking declaratively: what the program is, not what it does

 1.16. Conceptual vs. operational understanding of FRP

 1.16.1. Opening your mind to FRP

 1.16.2. What’s really going on when the code runs?

 1.17. Applying functional programming to event-based code

 1.18. Summary

 Chapter 2. Core FRP

 2.1. The Stream type: a stream of events

 2.2. The map primitive: transforming a value

 2.2.1. Transforming a stream

 2.3. The components of an FRP system

 2.3.1. Combining primitives

 2.3.2. Separating I/O from logic

 2.4. Referential transparency required

 2.5. The Cell type: a value that changes over time

 2.5.1. Why Stream and Cell?

 2.5.2. The constant primitive: a cell with a constant value

 2.5.3. Mapping cells

 2.6. The merge primitive: merging streams

 2.6.1. Simultaneous events

 2.6.2. Collection variants of merge

 2.6.3. How does merge do its job?

 2.7. The hold primitive: keeping state in a cell

 2.8. The snapshot primitive: capturing the value of a cell

 2.9. Looping hold and snapshot to create an accumulator

 2.9.1. Forward references

 2.9.2. Constructing FRP in an explicit transaction

 2.9.3. Accumulator code

 2.9.4. Does snapshot see the new value or the old value?

 2.10. The filter primitive: propagating an event only sometimes

 2.11. The lift primitive: combining cells

 2.12. The never primitive: a stream that never fires

 2.13. Referential transparency dos and don’ts

 2.14. FRP cheat sheet

 2.15. Summary

 Chapter 3. Some everyday widget stuff

 3.1. Spinner as a standalone SWidget

 3.2. Form validation

 3.3. Summary

 Chapter 4. Writing a real application

 4.1. The petrol pump example

 4.2. Running the petrol pump example

 4.3. Code, meet outside world

 4.4. The life cycle of a petrol pump fill

 4.4.1. Code for LifeCycle

 4.5. Is this really better?

 4.6. Counting liters delivered

 4.7. Showing dollars of fuel delivered

 4.8. Communicating with the point-of-sale system

 4.9. Modularity illustrated: a keypad module

 4.10. Notes about modularity

 4.10.1. The form of a module

 4.10.2. Tuples vs. classes

 4.10.3. Explicit wiring

 4.10.4. When inputs and outputs proliferate

 4.10.5. Some bugs are solved, some aren’t

 4.10.6. Testability

 4.11. Adding a preset dollar amount

 4.12. What have you achieved?

 4.13. Summary

 Chapter 5. New concepts

 5.1. In search of the mythical von Neumann machine

 5.1.1. Why so slow? The cache

 5.1.2. The madness of bus optimization

 5.1.3. How does this relate to FRP?

 5.2. Compositionality

 5.2.1. When complexity gets out of control

 5.2.2. Reductionism and engineering

 5.2.3. Compositionality is no longer optional

 5.3. Lack of compositionality illustrated

 5.3.1. Why the OO version lacks compositionality

 5.4. Compositionality: eliminating whole classes of bugs

 5.5. Don’t pull out the rug: use immutable values

 5.5.1. Immutable data structures

 5.6. Clarity of intent

 5.7. The consequences of cheap abstraction

 5.8. Summary

 Chapter 6. FRP on the web

 6.1. RxJS

 6.2. Observable

 6.2.1. Hot and cold observables

 6.2.2. How to maintain state

 6.2.3. A stateful accumulator with scan()

 6.2.4. The most recent value of an observable with withLatestFrom()

 6.3. Keeping state in RxJS, Kefir.js, and Flapjax

 6.3.1. startWith() as shorthand for BehaviorSubject

 6.3.2. The same again with Kefir.js

 6.3.3. And now...Flapjax

 6.4. The latest of two observables with combineLatest

 6.4.1. Glitches in combineLatest

 6.4.2. merge isn’t compositional

 6.5. Creating your own hot observable

 6.5.1. Don’t use this to implement logic

 6.6. Example: autocomplete the FRP way

 6.7. RxJS/Sodium cheat sheet

 6.8. Static typing preferred

 6.9. Summary

 Chapter 7. Switch

 7.1. The sample primitive: getting a cell’s value

 7.2. switch

 7.2.1. The concept of switch: a TV remote control

 7.3. switch use case #1: zombies

 7.3.1. The end of the world

 7.3.2. A simple human

 7.3.3. Using sample in map or snapshot

 7.3.4. A game loop

 7.3.5. An enhanced obstacle-avoiding human

 7.3.6. A flesh-eating zombie

 7.3.7. Putting together the two characters

 7.4. Transforming the game character with switch

 7.4.1. If a tree falls...switch and memory management

 7.5. switch use case #2: creation and destruction of game characters

 7.5.1. Not quite referentially transparent

 7.5.2. Another “What are we doing this for?” moment

 7.5.3. An exercise for you

 7.6. The efficiency of big merges

 7.6.1. Efficiency of this approach

 7.7. Game characters and efficiency in RxJS

 7.8. Switch use case #3: removing invalid states

 7.8.1. And now, improved with flatMapLatest

 7.9. Switch use case #4: switching between screens

 7.10. Summary

 Chapter 8. Operational primitives

 8.1. Interfacing FRP code with the rest of your program

 8.1.1. Sending and listening to streams

 8.1.2. Multiple send()s in a single transaction

 8.1.3. Sending and listening to cells

 8.1.4. Threading model and callback requirements

 8.2. Laziness solves loop craziness

 8.3. Transactions

 8.3.1. Constructing FRP logic under an explicit transaction

 8.4. Getting a stream from a cell with updates and value

 8.4.1. Introducing updates and value

 8.5. Spawning new transactional contexts with the split primitive

 8.5.1. Deferring a single event to a new transaction

 8.5.2. Ending up in the same transaction

 8.6. Scalable addressing

 8.7. Summary

 Chapter 9. Continuous time

 9.1. Rasterizing time

 9.2. Position as a function of time

 9.3. The animation loop

 9.4. Measuring time

 9.4.1. Newtonian physics primer

 9.4.2. Signals for quadratic motion

 9.4.3. A natural representation of a bouncing ball

 9.5. Summary

 Chapter 10. Battle of the paradigms

 10.1. Classic state machine vs. FRP vs. actor model

 10.1.1. Classic state machine

 10.1.2. FRP

 10.1.3. Actor model

 10.1.4. And the winner is...

 10.2. Let’s add a feature: Shift key gives axis lock

 10.3. Improvement: Shift key updates the document

 10.3.1. Changing this in the classic paradigm

 10.3.2. Changing this in FRP

 10.3.3. Changing this in the actor model

 10.3.4. How are the different paradigms doing?

 10.3.5. State machines with long sequences

 10.4. Summary

 Chapter 11. Programming in the real world

 11.1. Dealing with I/O

 11.1.1. Error-handling in FRP

 11.1.2. Executing an I/O action

 11.1.3. Putting the application together

 11.2. Promises/Futures

 11.2.1. A map viewer example using Promise

 11.2.2. Initiating I/O with the spark idiom

 11.3. Distributed processing

 11.3.1. Sacrificing consistency

 11.3.2. A stream that goes over a network connection

 11.4. Unit testing

 11.4.1. Unit testing FRP code

 11.4.2. We don’t recommend test-driven development (TDD)

 11.4.3. FRP is type-driven development

 11.4.4. FRP code is safe to refactor

 11.4.5. FRP code is inherently testable

 11.4.6. Testing your logic

 11.5. Summary

 Chapter 12. Helpers and patterns

 12.1. Calming: removing duplicate values

 12.2. Pausing a game

 12.3. Junction or client registry

 12.4. Writable remote values

 12.5. Persistence

 12.6. Unique ID generation

 12.7. An FRP-based GUI system

 12.7.1. Drawable

 12.7.2. Fridget

 12.7.3. Your first fridget: FrButton

 12.7.4. Bringing a Fridget to life with FrView

 12.7.5. Layout

 12.7.6. A form with text fields

 12.8. Summary

 Chapter 13. Refactoring

 13.1. To refactor or not to refactor?

 13.2. A drag-and-drop example

 13.2.1. Coding it the traditional way

 13.2.2. The FRP way: diagrams to code

 13.3. Adding a feature: drawing the floating element

 13.4. Fixing a bug: clicks are being treated as drags

 13.5. FRP: refactoring is a breeze

 13.6. Summary

 Chapter 14. Adding FRP to existing projects

 14.1. Where can FRP help?

 14.2. Changing to immutable data structures

 14.3. Stream as a drop-in replacement for callbacks

 14.3.1. Caveat: you can’t send() inside a listener

 14.3.2. Choosing the right chunk size

 14.4. Program initialization with one big transaction

 14.5. Module extensibility with junction/client registry

 14.6. Cells can replace mutable variables

 14.7. Summary

 Chapter 15. Future directions

 15.1. Performance

 15.2. Precompiled FRP for performance or embedded systems

 15.3. Parallelism

 15.4. Syntax improvements

 15.4.1. Auto-lifting

 15.4.2. Implicit forward references

 15.4.3. Infix operators

 15.4.4. Type inference

 15.5. Standardization and code reuse

 15.5.1. Code reuse and FRP abstractions

 15.5.2. FRP engine performance

 15.5.3. Common syntax between languages

 15.6. FRP database applications

 15.7. Visualization and debugging tools

 15.8. Visual programming

 15.9. Refactoring tools

 15.10. Summary

 Appendix A. Sodium API

 A.1. Package nz.sodium

 A.1.1. Interface Handler<A>

 A.1.2. Interface Lambda0<A>

 A.1.3. Interface Lambda1<A,B>

 A.1.4. Interface Lambda2<A,B,C>

 A.1.5. Interface Lambda3<A,B,C,D>

 A.1.6. Interface Lambda4<A,B,C,D,E>

 A.1.7. Interface Lambda5<A,B,C,D,E,F>

 A.1.8. Interface Lambda6<A,B,C,D,E,F,G>

 A.1.9. Class Cell<A>

 A.1.10. Class CellLoop<A> extends Cell<A>

 A.1.11. Class CellSink<A> extends Cell<A>

 A.1.12. Class Lazy<A>

 A.1.13. Class Listener

 A.1.14. Class Operational

 A.1.15. Class Stream<A>

 A.1.16. Class StreamLoop<A> extends Stream<A>

 A.1.17. Class StreamSink<A> extends Stream<A>

 A.1.18. Class Transaction

 A.1.19. Class Tuple2<A,B>

 A.2. Package nz.sodium.time

 A.2.1. Interface Timer

 A.2.2. Interface TimerSystemImpl<T>

 A.2.3. Class MillisecondsTimerSystem extends TimerSystem<java.lang.Long>

 A.2.4. Class SecondsTimerSystem extends TimerSystem<java.lang.Double>

 A.2.5. Class TimerSystem<T extends java.lang.Comparable>

 Appendix B. The six plagues of event handling

 B.1. Plague 1: unpredictable order

 B.2. Plague 2: missed first event

 B.3. Plague 3: messy state

 B.4. Plague 4: threading issues

 B.5. Plague 5: leaking callbacks

 B.6. Plague 6: accidental recursion

 Appendix C. Comparison of FRP systems

 Appendix D. A section for managers

 D.1. Doing what you said you’d do

 D.2. What is the investment?

 D.3. Can I hire people with FRP experience?

 D.4. Who else is using FRP?

 D.5. The burden of success

 Appendix E. Denotational semantics of Sodium

 E.1. Introduction

 E.2. Revision history

 E.3. Data types

 E.4. Primitives

 E.5. Test cases

 E.5.1. Never

 E.5.2. MapS

 E.5.3. Snapshot

 E.5.4. Merge

 E.5.5. Filter

 E.5.6. SwitchS

 E.5.7. Execute

 E.5.8. Updates

 E.5.9. Value

 E.5.10. Split

 E.5.11. Constant

 E.5.12. Hold

 E.5.13. MapC

 E.5.14. Apply

 E.5.15. SwitchC

 E.5.16. Sample

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 In 1968, in a presentation that would later become known as the “the mother of all demos,” computer scientist Douglas Engelbart
 and his team started the personal computer revolution by demonstrating a system that featured text editing on a screen, his
 newly invented mouse, mixing of text and graphics, outline views, hypertext links, screen-sharing, and even videoconferencing.
 At a time when computers were room-sized machines conceived to outperform humans at computational tasks, he instead proposed
 that they help the human perform intellectual tasks, “augmenting” human intelligence by becoming interactive assistants in
 everyone’s daily work. The graphical user interface was born.

 But in addition to its groundbreaking interactivity, Engelbart’s system is also interesting for the way it was built: it was
 written in several different programming languages that were specifically designed for it and adapted as the system changed.
 Building a truly innovative system also required building appropriate languages to program it. The next important milestone
 inspired by Engelbart’s vision was the Xerox Alto system in 1973. In addition to introducing the desktop metaphor and other
 user interface innovations, it also featured the first object-oriented language, Smalltalk.

 Today, building graphical user interfaces and using object-oriented languages have become mainstream. Unfortunately, though,
 programming user interfaces is still surprisingly difficult. Code written in the currently predominant style, event-driven
 programming and the observer pattern, has an uncanny tendency to quickly evolve into an unmaintainable mess, commonly referred
 to as spaghetti code. Is there a better way?

 I think it’s time for another step in the evolution of user interfaces and programming languages. In recent years, the ideas
 of functional programming and a (separate) programming style called functional reactive programming (FRP) have shown great promise in making it easier to develop any kind of interactive programs.

 This text is one of the first comprehensive introductions to functional reactive programming in book form. With great enthusiasm,
 Stephen Blackheath and Anthony Jones teach you the basic concepts of FRP, explain a large example in detail, and discuss various
 patterns that commonly occur in practice. To show that FRP does indeed make things simpler, the pair of brothers also presents
 an illuminating case study where they solve one problem in three different programming styles and compare the results. Of
 the three approaches—event-based programming, actors, and functional reactive programming—the latter compares most favorably.

 Functional reactive programming is a style that is usually supported by a library for a particular programming language. The
 authors have written an FRP library called Sodium that is available for several languages, including Java, and this book profits
 from their experience in detail. For the sake of concreteness, they use it in this book as well. Of course, the concepts apply
 more generally, and the authors also present a short guide to many other FRP libraries.

 Not all programming languages are created equal. As the name suggests, functional reactive programming derives much of its
 expressive power from functional programming. In this book, Stephen and Anthony don’t assume any prior knowledge of functional
 programming; instead, they gently introduce you to the necessary concepts as needed. But this heritage also means that FRP
 libraries can only exist in languages that support them. Java is a popular example, and the authors have chosen it as the
 main vehicle for explaining FRP. Still, Java is mainly an imperative language, and I think the mismatch is showing in some
 places. That is why personally, I prefer the purely functional language Haskell for my FRP work. But I think the authors made
 an excellent choice by picking a more popular and widely used language for this book and not shying away from the difficulties
 of dealing with the imperative aspects of Java.

 Not all FRP libraries are created equal, either. As already mentioned, this book focuses on the Sodium library. But for the
 case where your programming environment is limited, the authors also discuss libraries like RxJS, which implement a style
 called reactive programming. This is very similar to functional reactive programming, but the authors rightfully note that it lacks some benefits and
 guarantees, such as a deterministic merge primitive. I wholeheartedly recommend the Sodium library as designed by the authors.

 The field of functional reactive programming is still very young, and you may find that you’ll need to think in new ways to
 express your code in this style. This book gives you the necessary tools and foundation for doing that.

 HEINRICH APFELMUS

 OPEN SOURCE DEVELOPER

 AUTHOR OF THE FRP LIBRARY REACTIVE-BANANA

Preface

 This book was born of frustration. We were each involved in a large project with a lot of event-based logic. Petty problems
 regularly turned into long days of debugging.

 Anthony joined a team working on a complex configuration GUI full of plumbing that was replicated over and over. He decided
 to tidy this up by shifting all the logic to a single abstraction called PublishedScalar. This was a revolutionary change.

 Stephen was working on embedded development for vehicle telematics, and the challenges kept coming. He started fantasizing
 about a career change to truck driving but instead found new approaches in functional programming.

 A lot of leading-edge work goes on quietly in the Haskell programming language community. Stephen found a gem called functional reactive programming. He later worked with Ryan Trinkle on a video game project; they decided to use FRP but weren’t happy with any of the existing
 implementations. Using FRP is great, but implementing an FRP system turned out to be more challenging than expected.

 Stephen’s fifth attempt at FRP became the Sodium project, and Ryan went on to develop Reflex. Since that time, Stephen has
 been using FRP every day on the telematics project, now in its tenth year.

 Stephen and Anthony regularly compared notes and strategized about sharing this great discovery with the world. Manning picked
 up the signal, and this book was born.

Acknowledgments

 We’d like to thank the following people:

 	Our wives and children, for their forbearance.

 	The first and second waves: the FRP pioneers and those who are making FRP practical.

 	Our many reviewers and critics, for making this book better, and everyone who has raised bugs and asked technical questions,
 including Danae Aguilar, Jim Andrew, Mark Butler, Alessandro Campeis, Ron Cranston, Rafael Freire, Bruce Hernandez, Unnikrishnan
 Kumar, Yuri Kushch, Michael Lund, Sergio Martinez, Bhakti Mehta, Orlando Méndez, Wil Moore III, Giovanni Morana, Jean-François
 Morin, Chris Pearce, Thomas Peklak, Patrick Regan, Paulo Rios, Bruno Sonnino, William E. Wheeler, Henry Widd, and Arthur Zubarev.
 Thank you!

 	Adam Buczynski, for JavaScript assistance.

 	The many Manning staff who do an amazing job of taking people who know technical stuff and somehow transmogrifying them into
 authors: publisher Marjan Bace and everyone on the editorial and production teams, including Michael Stephens, Jennifer Stout,
 Janet Vail, Tiffany Taylor, Melody Dolab, and many others who worked behind the scenes. There’s a reason their books are so
 good.

 	Duncan Hill, for the beautiful illustrations: http://duncanhill.nz/.

About this Book

 Functional programming (FP) holds real solutions to today’s complex software needs, especially the challenges of parallelism.
 It’s catching on, but there are barriers to its adoption. FRP is a subset of FP that doesn’t require you to learn a new language.
 This makes FRP an ideal gateway drug to functional programming. FRP solves a specific problem now, yet it gives you grounding
 in ideas that have wide application.

 Lambda expressions have now been added to every language. The only thing standing in the way of wide adoption of FRP is gone.
 FRP is essentially an embedded logic language, so code written in it looks basically the same in any language. It turns out
 that Java has especially clear FRP syntax, and this was why we chose it as the primary vehicle in this book, but the language
 really doesn’t matter.

 There’s a need for FRP, the languages are ready, and functional programming is in vogue. The time is right for FRP to take
 over a small corner of the world.

Roadmap

 Chapter 1, “Stop listening!” introduces the what and why of FRP and finishes with a simple example.

 Chapter 2, “Core FRP,” covers all the basics of FRP and includes a minimal example for each element except the switch and sample primitives (covered in chapter 7) and operational primitives (chapter 8). In chapter 3, “Some everyday widget stuff,” the examples become more practical.

 Chapter 4, “Writing a real application,” shows the practicalities of writing a real-world example—the logic for a petrol pump—entirely
 in FRP.

 At this point, you may be wondering why we’re doing things in this strange way. Chapter 5, “New concepts,” covers the theoretical background that justifies FRP’s radical departure from the usual way of doing things.

 Chapter 6, “FRP on the web,” talks about JavaScript FRP systems and can be read any time.

 As presented so far, FRP code has a fixed structure. Chapter 7, “Switch,” introduces the switch primitive that enables the all-important capability of making runtime changes to the logic structure.

 Chapter 8, “Operational primitives,” deals with interfacing FRP to the rest of your program.

 Chapter 9, “Continuous time,” describes an amazing capability of FRP: modeling your system with continuously varying values instead
 of having values change in discrete steps.

 FRP is better for some tasks than others. Chapter 10, “Battle of the paradigms,” compares the strengths and weaknesses of FRP against classic state machines and the actor model
 to help you decide which tool to use for which job.

 Chapter 11, “Programming in the real world,” covers different ways of modeling I/O in FRP programs.

 Chapter 12, “Helpers and patterns,” presents an assortment of interesting problems that come up and how to solve them with FRP.

 Chapter 13, “Refactoring,” explains why FRP is so easy to refactor by comparing an example with the equivalent object-oriented code.

 Chapter 14, “Adding FRP to existing projects,” recommends some practices for step-by-step conversion of non-FRP code to FRP.

 Chapter 15, “Future directions,” covers areas for potential development of FRP.

Who should read this book

 This book is for programmers familiar with object-oriented programming. No prior knowledge of functional programming is needed.
 A familiarity with graphical user interface (GUI) programming is useful but not required.

Code conventions

 This book provides copious examples. Source code in listings and code terms in text are in a fixed-width font like this to separate them from ordinary text. In some places, we’ve added line breaks and reworked indentation to accommodate the
 available page space in the book. When even this was not enough, listings include line-continuation markers. Additionally,
 comments in the source code have often been removed from the listings when the code is described in the text. Code annotations
 accompany some of the source code listings, highlighting important concepts.

Source code downloads

 All the examples can be found on the publisher’s website at www.manning.com/books/functional-reactive-programming. You can also find them in the book/ directory of the Sodium project at https://github.com/SodiumFRP/, where you can download them with this command:

 git clone https://github.com/SodiumFRP/sodium

 To run the Java examples, you’ll need to install the Java Development Kit (JDK) version 8 or higher and either the maven or ant build tool. Windows users may find maven easier:

 	
https://maven.apache.org/

 	
https://ant.apache.org/

About the authors

 STEPHEN BLACKHEATH lives near Palmerston North, New Zealand. He has done a lot of event-based commercial programming, got into functional programming
 around 2007, and is the founder of the open source Sodium FRP system. He likes to play Go.

 ANTHONY JONES lives in Auckland, New Zealand. He has spent half a decade refactoring a Java-based configuration GUI to a FRP-based framework
 and is a contributor to the Sodium project. He likes riding his bicycle.

Author Online

 Purchase of Functional Reactive Programming includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/books/functional-reactive-programming. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the Author Online remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from
 the publisher’s website as long as the book is in print.

About the Cover

 The caption for the illustration on the cover of Functional Reactive Programming is “Turban-Bearer to the Grand Signior.” The illustration is taken from a collection of costumes of the Ottoman Empire published
 on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we have
 been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and
 each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their
 art gracing the front cover of a computer programming book...200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller proposed that the money be transferred to him by wire, and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago. We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business
 with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from
 this collection.

Chapter 1. Stop listening!

 This chapter covers

 	What FRP is

 	What events are, and how they cause trouble

 	What FRP is for: the problem we’re trying to solve

 	The benefits of FRP

 	How an FRP system works

 	A different way of thinking that underlies FRP

 Welcome to our book! We love functional reactive programming (FRP). Many people like the idea too, yet they aren’t entirely clear what FRP is and what it will do for them. The short
 answer: it comes in the form of a simple library in a standard programming language, and it replaces listeners (also known
 as callbacks) in the widely used observer pattern, making your code cleaner, clearer, more robust, and more maintainable—in a word, simpler.

 It’s more than this: FRP is a very different way of doing things. It will improve your code and transform your thinking for
 the better. Yet it’s surprisingly compatible with the usual ways of writing code, so it’s easy to factor into existing projects
 in stages. This book is about the concepts of FRP as they apply to a range of FRP systems and programming languages.

 FRP is based on ideas from functional programming, but this book doesn’t assume any prior knowledge of functional programming.
 Chapter 1 will lay down some underlying concepts, and in chapter 2 we’ll get into the coding. So stop listening, and start reacting!

1.1. Project, meet complexity wall

 It seemed to be going so well. The features weren’t all there yet, but development was swift. The boss was happy, the customers
 were impressed, the investors were optimistic. The future was bright.

 It came out of nowhere ... Software quality crumbled. The speed of development went from treacle to molasses. Before long,
 there were unhappy customers and late nights. What happened?

 Sooner or later, many big projects hit the complexity wall. The complexities in the program that seemed acceptable compound
 exponentially: At first you hardly notice, and then—BAM! It hits broadside. The project will then typically go one of four
 ways:

 	It’s shelved.

 	It’s rewritten from scratch, and a million dollars later, it hits the same wall again.

 	The company staffs up. As the team expands, its productivity shambles off into the realm of the eternal quagmire. (Often the
 company has been acquired around this time.)

 	It undergoes major refactoring, leading eventually to maintainable code.

 Refactoring is the only way forward. It’s your primary tool to save a project that has hit the wall, but it’s best used earlier,
 as part of a development methodology, to prevent disaster before it happens.

 But this book isn’t about refactoring. It’s about functional reactive programming (FRP), a programming style that works well with refactoring because it can prevent or repair out-of-control complexity. FRP
 isn’t a methodology, and—apologies if you bought this book under false pretenses—it won’t solve all of your problems. FRP
 is a specific programming technique to improve your code in an area that just happens to be a common source of complexity
 (and therefore bugs): event propagation.

 	

 Simple things taking too long

 I joined a team that was developing a Java-based configuration tool for an embedded system. The software was difficult to
 modify to the point where a request for adding a check box to one of the screens was estimated as a two-week job.

 This was caused by having to plumb the Boolean value through layers of interfaces and abstraction. To solve this, we put together
 what we’d later discover was a basic FRP system. Adding a check box was reduced to a one-line change.

 We learned that every piece of logic, every listener, and every edge case you need to write code for is a potential source
 of bugs.

 	

1.2. What is functional reactive programming?

 FRP can be viewed from different angles:

 	It’s a replacement for the widely used observer pattern, also known as listeners or callbacks.

 	It’s a composable, modular way to code event-driven logic.

 	It’s a different way of thinking: the program is expressed as a reaction to its inputs, or as a flow of data.

 	It brings order to the management of program state.

 	It’s something fundamental: we think that anyone who tries to solve the problems in the observer pattern will eventually invent
 FRP.

 	It’s normally implemented as a lightweight software library in a standard programming language.

 	It can be seen as a complete embedded language for stateful logic.

 If you’re familiar with the idea of a domain-specific language (DSL), then you can understand FRP as a minimal complete DSL
 for stateful logic. Aside from the I/O parts, an arbitrarily complex video game (for example) can be written completely in
 FRP. That’s how powerful and expressive it is. Yet it isn’t all-or-nothing—FRP can be easily introduced into an existing project
 to any extent you like.

 1.2.1. A stricter definition

 Conal Elliott is one of the inventors of FRP, and this book is about FRP by his definition. We’ll call this true FRP as a shorthand. What is and isn’t FRP? Here’s part of Elliott’s reply to a Stack Overflow post, “Specification for a Functional
 Reactive Programming language” (http://mng.bz/c42s):

 I’m glad you’re starting by asking about a specification rather than implementation first. There are a lot of ideas floating
 around about what FRP is. For me it’s always been two things: (a) denotative and (b) temporally continuous. Many folks drop
 both of these properties and identify FRP with various implementation notions, all of which are beside the point in my perspective.

 By “denotative,” I mean founded on a precise, simple, implementation-independent, compositional semantics that exactly specifies
 the meaning of each type and building block. The compositional nature of the semantics then determines the meaning of all
 type-correct combinations of the building blocks.

 A true FRP system has to be specified using denotational semantics.

 	

 Definition

 Denotational semantics is a mathematical expression of the formal meaning of a programming language. For an FRP system, it provides both a formal
 specification of the system and a proof that the important property of compositionality holds for all building blocks in all cases.

 	

 Compositionality is a mathematically strong form of the concept of composability that is often recommended in software design. We’ll describe
 it in detail in chapter 5.

 This book emphasizes the practice of FRP as expressed through FRP systems you can use right away. Some of the systems we’ll
 cover aren’t true FRP. As we go, we’ll point out what’s specifically lacking and why it’s so important that an FRP system
 should be based on denotational semantics. We’ll cover continuous time in chapter 9.

 1.2.2. Introducing Sodium

 The primary vehicle for FRP in this book is the authors’ BSD-licensed Sodium library, which you can find at https://github.com/SodiumFRP. It’s a system with a denotational semantics that we give in appendix E. It’s a practical system that has passed through the crucible of serious commercial use by the authors.

 We’re using Sodium because it’s a practically useful, simple, true FRP system. At the time of writing, there aren’t many systems
 like this available in nonfunctional languages. There’s minimal variation between FRP systems, so the lessons learned from
 Sodium are applicable to all systems. To aid in understanding, we’ll use Sodium as a common reference point when discussing
 other systems. This book is about FRP, and Sodium is the best means to that end available to us.

 Like anything, Sodium is the product of design decisions. It isn’t perfect, and we don’t wish to promote its use over any
 other system. We intend Sodium to be four things:

 	A production-ready library you can use in commercial and non-commercial software across a range of programming languages

 	A vehicle to promote the true definition of FRP

 	A reference and benchmark for future innovation

 	A solid learning platform, due to its minimalist design philosophy

1.3. Where does FRP fit in? The lay of the land

 	

 Note

 This book assumes knowledge of general programming, but not functional programming. Further, to use FRP, you only need a subset of the concepts from functional programming, and we’ll explain what you need
 to know along the way. FRP gives you many of the benefits of functional programming with a shorter learning curve, and you
 can use it in your existing language.

 	

 It may sound oversimplified, but it turns out that FRP is the intersection of functional programming and reactive programming—see figure 1.1. Here’s what these technologies are:

 	
Functional programming— A style or paradigm of programming based on functions, in the mathematical sense of the word. It deliberately avoids shared
 mutable state, so it implies the use of immutable data structures, and it emphasizes compositionality.
 Compositionality turns out to be a powerful idea, as we’ll explain. It’s the reason why FRP can deal with complexity so effectively.

 	
Reactive programming— A broad term meaning that a program is 1) event-based, 2) acts in response to input, and 3) is viewed as a flow of data, instead
 of the traditional flow of control. It doesn’t dictate any specific method of achieving these aims. Reactive programming gives
 looser coupling between program components, so the code is more modular.

 	
Functional reactive programming— A specific method of reactive programming that enforces the rules of functional programming, particularly the property of compositionality.

 Figure 1.1. FRP is a subset of both functional and reactive programming

 [image:]

 Typically, systems described as reactive programming emphasize distributed processing, whereas FRP is more fine-grained and starts with strong consistency. Consistency must be
 relaxed to achieve scalability in a distributed system. (We explain why in section 11.3.) FRP and reactive programming take different approaches to this question. FRP can be useful for distributed processing,
 but it isn’t designed specifically for it.

 The Akka system is classified as reactive programming. It’s designed for distributed processing and is largely based on the actor model. (We’ll contrast FRP against actors in chapter 10.)

 Microsoft’s Reactive Extensions (Rx) isn’t true FRP at the time of writing. It sits somewhere between Akka and FRP. There’s a difference in design goals
 between Rx and FRP. Rx is mostly concerned with chaining event handlers, and it gives you many options for how you do it.
 FRP controls what you do more tightly and gives you strong guarantees in return. Most of what you’ll learn in this book can
 be applied to Rx. We’ll cover the FRP-like parts of Rx in chapter 6.

1.4. Interactive applications: what are events?

 Most applications are architected around one of two programming models, or a mix of the two:

 	Threads

 	Events

 They’re both aimed at managing state changes in response to input, but they achieve it in different ways. Which one to choose
 depends mainly on the nature of the problem you’re trying to solve:

 	
Threads model state transitions as a control flow. They tend to be a good fit for I/O or for any situation where the state transitions
 fall into a clearly defined sequence. We put actors and generators in this category, too.

 	
Events are discrete, asynchronous messages that are propagated around the program. They’re a suitable model where a sequence is
 less obvious, especially where the interactions between components are more complex. Typical applications include graphical
 user interfaces (GUIs) and video games.

 People have debated which model is the best over the years. We don’t think one is better than the other; rather, we consider
 each good for its proper purpose. When a thread is best, you should use a thread. But this book is about the second programming model: events. Often they’re the best
 choice, and when they are, this book will teach you how to stay out of trouble.

1.5. State machines are hard to reason about

 The term state machine refers to any system that works in the following way:

 1. An input event comes into the system.

 2. The program logic makes decisions based on the input event and the current program state.

 3. The program logic changes the program state.

 4. The program logic may also produce output.

 We’ve drawn this in figure 1.2. The arrows depict the flow of data.

 Figure 1.2. The flow of data in a generalized state machine

 [image:]

 We normally use the term state machine to describe programs or, more commonly, parts of programs, that directly reflect the structure just described. In fact, any
 program that does anything useful is functionally equivalent to a state machine because it’s possible to rewrite any program
 as a state machine and have it function the same way.

 We could say that all programs are fundamentally state machines. But code written in a traditional state-machine style tends
 to be unreadable and brittle. (Any embedded C programmer will attest to this.) It also tends to be extremely efficient, which
 is the usual excuse for using this style. The job of the programmer could be seen as finding ways to organize state machines
 so they’re maintainable. Of course, a programmer must express the program so that a computer can run it, but their responsibility
 doesn’t end there. It’s not possible to keep all the code in your head at once, unless the code is small or your head is especially
 large, so a programmer’s main task is to structure the code so as to make the program easy to modify. Or, we can say that
 a programmer’s primary focus is managing complexity.

 We argue that all programs are state machines, and state machines are inherently difficult to reason about, and this is why
 programming is difficult. Programmers achieve their task of transforming chaos into order by using a bag of tricks, or a set
 of abstractions they have learned, which they add to over the years through both study and creativity. Threads and events
 are two abstractions you’ll find rattling about in there. There are many others, and they all have their advantages and disadvantages
 for different problem domains. This book is about a powerful and very general abstraction you can add to your toolbox that directly addresses the problem of managing the complexity of state machines.

1.6. Interactive applications without the bugs

 The problems we’re trying to solve have inherent difficulties; this is true. In spite of this, most of our problems come from
 the way we’re doing things.

 Hikers often say that there’s no such thing as bad weather, only bad equipment. We say that there’s no such thing as bad code,
 only bad infrastructure.

 A large portion—the majority—of bugs in event-based programs are preventable. That’s the message of this book.

1.7. Listeners are a mainstay of event handling, but ...

 Listeners or callbacks—also called the observer pattern—are the dominant way of propagating events in software today. But
 it wasn’t always this way.

 In the old days, when the walls were orange, the mice living in them weren’t the event sources we know today but were small
 animals, and list boxes hadn’t been invented yet. If you wanted to propagate some value around your program, you got the value
 and called all the places where that value was going to be used. Back then, the producer had a dependency on its consumers.
 If you wanted to add a new consumer of your events, then you made the producer call it, too. Programs were monolithic, and
 if you wanted to reuse some code that produced events (such as a list box), it was a bit of work, because it was wired into
 the rest of the program.

 The idea of a list box as a reusable software component doesn’t work well if it has to know in advance what all its consumers
 are. So the observer pattern was invented: if you want to start observing an event producer, you can come along at any time
 and register a new consumer (or listener) with it, and from then on, that consumer is called back whenever an event occurs.
 When you want to stop observing the producer, you deregister the consumer from it, as shown in the following listing.

 Listing 1.1. Listeners: the observer pattern

 public class ListBox {
 public interface Listener {
 void itemSelected(int index);
 }

 private List<Listener> listeners = new ArrayList<>();
 public void addListener(Listener l) {
 listeners.add(l);
 }
 public void removeListener(Listener l) {
 listeners.remove(l);
 }
 protected void notifyItemSelected(int index) {
 for (l : listeners) l.itemSelected(index);
 }
}

 In this way, listeners invert the natural dependency. The consumer now depends on the producer, not the other way around.
 This makes the program extensible and gives you modularity through a looser coupling between components.

1.8. Banishing the six plagues of listeners

 What could possibly go wrong with the wonderful observer pattern? Uh...yeah. We’ve identified six sources of bugs with listeners;
 see figure 1.3. FRP banishes all of them. They are as follows:

