

 [image: cover]

TypeScript Quickly

 Yakov Fain, Anton Moiseev

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Technical development editor: Dennis Sellinger
Review editor: Aleks Dragosavljević
Production editor: Lori Weidert
Copy editor: Andy Carroll
Proofreader: Keri Hales
Technical proofreader: George Onofrei
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617295942

 Printed in the United States of America

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Mastering the TypeScript syntax

 Chapter 1. Getting familiar with TypeScript

 Chapter 2. Basic and custom types

 Chapter 3. Object-oriented programming with classes and interfaces

 Chapter 4. Using enums and generics

 Chapter 5. Decorators and advanced types

 Chapter 6. Tooling

 Chapter 7. Using TypeScript and JavaScript in the same project

 2. Applying TypeScript in a blockchain app

 Chapter 8. Developing your own blockchain app

 Chapter 9. Developing a browser-based blockchain node

 Chapter 10. Client-server communications using Node.js, TypeScript, and WebSockets

 Chapter 11. Developing Angular apps with TypeScript

 Chapter 12. Developing the blockchain client in Angular

 Chapter 13. Developing React.js apps with TypeScript

 Chapter 14. Developing a blockchain client in React.js

 Chapter 15. Developing Vue.js apps with TypeScript

 Chapter 16. Developing the blockchain client in Vue.js

 Appendix. Modern JavaScript

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Mastering the TypeScript syntax

 Chapter 1. Getting familiar with TypeScript

 1.1. Why program in TypeScript

 1.2. Typical TypeScript workflows

 1.3. Using the Typescript compiler

 1.4. Getting familiar with Visual Studio Code

 Summary

 Chapter 2. Basic and custom types

 2.1. Declaring variables with types

 2.1.1. Basic type annotations

 2.1.2. Types in function declarations

 2.1.3. The union type

 2.2. Defining custom types

 2.2.1. Using the type keyword

 2.2.2. Using classes as custom types

 2.2.3. Using interfaces as custom types

 2.2.4. Structural vs. nominal type systems

 2.2.5. Unions of custom types

 2.3. The any and unknown types, and user-defined type guards

 2.4. A mini project

 Summary

 Chapter 3. Object-oriented programming with classes and interfaces

 3.1. Working with classes

 3.1.1. Getting familiar with class inheritance

 3.1.2. Access modifiers public, private, protected

 3.1.3. Static variables and a singleton example

 3.1.4. The super() method and the super keyword

 3.1.5. Abstract classes

 3.1.6. Method overloading

 3.2. Working with interfaces

 3.2.1. Enforcing the contract

 3.2.2. Extending interfaces

 3.2.3. Programming to interfaces

 Summary

 Chapter 4. Using enums and generics

 4.1. Using enums

 4.1.1. Numeric enums

 4.1.2. String enums

 4.1.3. Using const enums

 4.2. Using generics

 4.2.1. Understanding generics

 4.2.2. Creating your own generic types

 4.2.3. Creating generic functions

 4.2.4. Enforcing the return type of higher-order functions

 Summary

 Chapter 5. Decorators and advanced types

 5.1. Decorators

 5.1.1. Creating class decorators

 5.1.2. Creating method decorators

 5.2. Mapped types

 5.2.1. The Readonly mapped type

 5.2.2. Declaring your own mapped types

 5.2.3. Other built-in mapped types

 5.3. Conditional types

 5.3.1. The infer keyword

 Summary

 Chapter 6. Tooling

 6.1. Source maps

 6.2. The TSLint linter

 6.3. Bundling code with Webpack

 6.3.1. Bundling JavaScript with Webpack

 6.3.2. Bundling TypeScript with Webpack

 6.4. Using the Babel compiler

 6.4.1. Using Babel with JavaScript

 6.4.2. Using Babel with TypeScript

 6.4.3. Using Babel with TypeScript and Webpack

 6.5. Tools to watch

 6.5.1. Introducing Deno

 6.5.2. Introducing ncc

 Summary

 Chapter 7. Using TypeScript and JavaScript in the same project

 7.1. Type definition files

 7.1.1. Getting familiar with type definition files

 7.1.2. Type definition files and IDEs

 7.1.3. Shims and type definitions

 7.1.4. Creating your own type definition files

 7.2. A sample TypeScript app that uses JavaScript libraries

 7.3. Introducing TypeScript in your JavaScript project

 Summary

 2. Applying TypeScript in a blockchain app

 Chapter 8. Developing your own blockchain app

 8.1. Blockchain 101

 8.1.1. Cryptographic hash functions

 8.1.2. What a block is made of

 8.1.3. What’s block mining

 8.1.4. A mini project with hash and nonce

 8.2. Developing your first blockchain

 8.2.1. The project’s structure

 8.2.2. Creating a primitive blockchain

 8.2.3. Creating a blockchain with proof of work

 Summary

 Chapter 9. Developing a browser-based blockchain node

 9.1. Running the blockchain web app

 9.1.1. The project structure

 9.1.2. Deploying the app using npm scripts

 9.1.3. Working with the blockchain web app

 9.2. The web client

 9.3. Mining blocks

 9.4. Using crypto APIs for hash generation

 9.5. The standalone blockchain client

 9.6. Debugging TypeScript in the browser

 Summary

 Chapter 10. Client-server communications using Node.js, TypeScript, and WebSockets

 10.1. Resolving conflicts using the longest chain rule

 10.2. Adding a server to the blockchain

 10.3. The project structure

 10.4. The project’s configuration files

 10.4.1. Configuring the TypeScript compilation

 10.4.2. What’s in package.json

 10.4.3. Configuring nodemon

 10.4.4. Running the blockchain app

 10.5. A brief introduction to WebSockets

 10.5.1. Comparing HTTP and WebSocket protocols

 10.5.2. Pushing data from a Node server to a plain client

 10.6. Reviewing notification workflows

 10.6.1. Reviewing the server’s code

 10.6.2. Reviewing the client’s code

 Summary

 Chapter 11. Developing Angular apps with TypeScript

 11.1. Generating and running a new app with Angular CLI

 11.2. Reviewing the generated app

 11.3. Angular services and dependency injection

 11.4. An app with ProductService injection

 11.5. Programming to abstractions in TypeScript

 11.6. Getting started with HTTP requests

 11.7. Getting started with forms

 11.8. Router basics

 Summary

 Chapter 12. Developing the blockchain client in Angular

 12.1. Launching the Angular blockchain app

 12.2. Reviewing AppComponent

 12.3. Reviewing TransactionFormComponent

 12.4. Reviewing the BlockComponent

 12.5. Reviewing services

 Summary

 Chapter 13. Developing React.js apps with TypeScript

 13.1. Developing the simplest web page with React

 13.2. Generating and running a new app with Create React App

 13.3. Managing a component’s state

 13.3.1. Adding state to a class-based component

 13.3.2. Using hooks to manage state in functional components

 13.4. Developing a weather app

 13.4.1. Adding a state hook to the App component

 13.4.2. Fetching data with the useEffect hook in the App component

 13.4.3. Using props

 13.4.4. How a child component can pass data to its parent

 13.5. What’s Virtual DOM?

 Summary

 Chapter 14. Developing a blockchain client in React.js

 14.1. Starting the client and the messaging server

 14.2. What changed in the lib directory

 14.3. The smart App component

 14.3.1. Adding a transaction

 14.3.2. Generating a new block

 14.3.3. Explaining the useEffect() hooks

 14.3.4. Memoization with the useCallback() hook

 14.4. The TransactionForm presentation component

 14.5. The PendingTransactionsPanel presentation component

 14.6. The BlocksPanel and BlockComponent presentation components

 Summary

 Chapter 15. Developing Vue.js apps with TypeScript

 15.1. Developing the simplest web page with Vue

 15.2. Generating and running a new app with Vue CLI

 15.3. Developing single-page apps with router support

 15.3.1. Generating a new app with the Vue Router

 15.3.2. Displaying a list of products in the Home view

 15.3.3. Passing data with the Vue Router

 Summary

 Chapter 16. Developing the blockchain client in Vue.js

 16.1. Starting the client and the messaging server

 16.2. The App component

 16.3. The TransactionForm presentation component

 16.4. The PendingTransactionsPanel presentation component

 16.5. The BlocksPanel and Block presentation components

 Summary

 Epilogue

 Appendix. Modern JavaScript

 A.1. How to run the code samples

 A.2. The keywords let and const

 A.2.1. The var keyword and hoisting

 A.2.2. Block scoping with let and const

 A.3. Template literals

 A.3.1. Tagged template strings

 A.4. Optional parameters and default values

 A.5. Arrow function expressions

 A.6. The rest operator

 A.7. The spread operator

 A.8. Destructuring

 A.8.1. Destructuring objects

 A.8.2. Destructuring arrays

 A.9. Classes and inheritance

 A.9.1. Constructors

 A.9.2. The super keyword and the super function

 A.9.3. Static class members

 A.10. Asynchronous processing

 A.10.1. A callback hell

 A.10.2. Promises

 A.10.3. Resolving several promises at once

 A.10.4. async-await

 A.11. Modules

 A.11.1. Imports and exports

 A.12. Transpilers

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 This book is about the programming language TypeScript, which is one of the most loved languages, according to the Developer Survey on Stack Overflow (see https://insights.stackoverflow.com/survey/2019). According to the latest issue of the reputable ThoughtWork’s Technology Radar (http://mng.bz/Ze5P), “TypeScript is a carefully considered language and its consistently improving tools and IDE support continues to impress
 us. With a good repository of TypeScript-type definitions, we benefit from all the rich JavaScript libraries while gaining
 type safety.”

 We use TypeScript daily, and we like it a lot! We really like TypeScript for allowing us to focus on the main problem we’re
 solving and not on typos in an object’s property name. In TypeScript programs, the chances of getting runtime errors are substantially
 lower compared to code originally written in JavaScript. We also like that IDEs offer great TypeScript support and literally
 walk us through the maze of APIs from third-party libraries we use in our projects.

 TypeScript is great, but since it’s a compiled-to-JavaScript language, we also need to talk a bit about JavaScript. In May
 1995, after 10 days of hard work, Brendan Eich created the JavaScript programming language. This scripting language didn’t
 need a compiler and was meant to be used in the Netscape Navigator web browser.

 No compilers were needed to deploy a JavaScript program in the browser. Adding a <script> tag with the JavaScript sources (or a reference to a file with sources) would instruct the browser to load and parse the
 code and execute it in the browser’s JavaScript engine. People enjoyed the simplicity of the language—there was no need to
 declare the types of variables and no need to use any tools. You’d just write your code in a plain text editor and use it
 in a web page.

 When you first start learning JavaScript, you can see your first program running in two minutes. There’s nothing to install
 or configure, and there’s no need to compile the program, because JavaScript is an interpreted language.

 JavaScript is also a dynamically typed language, which gives additional freedom to software developers. There’s no need to
 declare an object’s properties up front, as the JavaScript engine will create the property at runtime if the object doesn’t
 already have it.

 Actually, there’s no way to declare the type of a variable in JavaScript. The JavaScript engine will guess the type based
 on the assigned value (for example, var x = 123 means that x is a number). If, later on, the script has an assignment x ="678", the type of x will automatically change from a number to a string. Did you really want to change the type of x or was that a mistake? You’ll know that only at runtime, as there’s no compiler to warn you about it.

 JavaScript is a very forgiving language, which is not a shortcoming if the codebase is small, and you’re the only person working
 on the project. Most likely, you’ll remember that x is supposed to be a number, and you don’t need any help with this. And, of course, you’ll work for your current employer
 forever, so the variable x is never forgotten.

 Over the years, JavaScript became super popular and the de facto standard programming language of the web. But 20 years ago,
 developers used JavaScript to display web pages with some interactive content; today we develop complex web apps that contain
 thousands of lines of code developed by teams of developers. Not everyone in your team remembers that x was supposed to be a number. To minimize the number of runtime errors, JavaScript developers write unit tests and perform
 code reviews.

 To be more productive, software developers get help from IDEs with autocomplete features, easy refactoring, and so on. But
 how can an IDE help you with refactoring if the language allows complete freedom in adding properties to objects and changing
 types on the fly?

 Web developers needed a better language, but replacing JavaScript with another one that would be supported by all the different
 browsers was not realistic. Instead, new compile-to-JavaScript languages were created. They were more tool-friendly, but the
 program still had to be converted to JavaScript before deployment so every browser could support it. TypeScript is one of
 these languages, and after reading this book, you’ll see what makes it stand out.

Acknowledgments

 Yakov would like to thank his best friend Sammy for creating a warm and cozy environment while he was working on this book.
 Unfortunately, Sammy can’t talk, but like any dog, he loves all his family members more than they love themselves.

 Anton would like to thank the authors of and contributors to the open source projects used in this book. Without the numerous
 hours they regularly dedicate to the projects, and their constant work growing and supporting communities, this book wouldn’t
 be possible. He’s also grateful to his family for being patient while he was working on the book.

 Special thanks go to multiple book reviewers who provided valuable feedback: Ahmad F Subahi, Alexandros Dallas, Brian Daley,
 Cameron Presley, Cameron Singe, Deniz Vehbi, Floris Bouchot, George Onofrei, George Thomas, Gerald James Stralko, Guy Langston,
 Jeff Smith, Justin Kahn, Kent R. Spillner, Kevin Orr, Lucas Pardue, Marko Letic, Matteo Battista, Paul Brown, Polina Keselman,
 Richard Tuttle, Srihari Sridharan, Tamara Forza, and Thomas Overby Hansen.

About This Book

Who should read this book

 This book is written for software engineers who want to become more productive developing web or standalone apps. Both authors
 are practitioners, and we wrote this book for practitioners. Not only do we explain the syntax of the language using basic
 code samples, but we also develop multiple apps that show how you can use TypeScript with popular libraries and frameworks.

 While working on this book, we ran workshops using the code samples from the book, giving us early feedback about the book’s
 content. We really hope that you’ll enjoy the process of learning TypeScript with this book.

 We expect readers to have a working knowledge of HTML, CSS, and JavaScript that use recent additions from ECMAScript specs.
 If you are only familiar with the ECMAScript 5 syntax, looking through the appendix first will make it easier to understand
 the code samples in the book—the appendix provides an introduction to modern JavaScript.

How this book is organized: A roadmap

 This book is divided into two parts. In part 1, we cover various syntax elements of TypeScript using small code snippets for illustration. In part 2, we apply TypeScript in several versions of a blockchain app. If your goal is to quickly learn TypeScript’s syntax and tooling,
 part 1 of this book is all you need.

 Chapter 1 will get you started with TypeScript development. You’ll compile and run very basic programs so you understand the workflow,
 from writing a program in TypeScript to compiling it into runnable JavaScript. We’ll also cover the benefits of programming
 in TypeScript versus JavaScript and introduce the Visual Studio Code editor.

 Chapter 2 explains how to declare variables and functions with types. You’ll learn how to declare type aliases with the type keyword and how to declare custom types with classes and interfaces. This will help you understand the difference between
 nominal and structural type systems.

 Chapter 3 explains how class inheritance works and when to use abstract classes. You’ll see how TypeScript interfaces can force a class
 to have methods with known signatures, without worrying about the implementation details. You’ll also learn what “programming
 to interfaces” means.

 Chapter 4 is dedicated to enums and generics. This chapter covers the benefits of using enums, the syntax for numeric and string enums,
 what generic types are for, and how to write classes, interfaces, and functions that support generics.

 Chapter 5 covers decorators and mapped and conditional types. It’s about advanced TypeScript types, and you should be familiar with
 the syntax of generics to understand the material in this chapter.

 Chapter 6 is about tooling. We explain the use of source maps and TSLinter (although TSLinter is being deprecated, many developers
 are still using it). Then we show you how to compile and bundle TypeScript apps with Webpack. You’ll also learn how and why
 to compile TypeScript with Babel.

 Chapter 7 teaches you to use JavaScript libraries in your TypeScript app. We start by explaining the role of type definition files,
 and then we present a small app that uses a JavaScript library in a TypeScript app. Finally, we go over the process of gradually
 upgrading an existing JavaScript project to TypeScript.

 In part 2, we apply TypeScript in a blockchain app. You might be thinking to yourself, “None of the companies I’ve worked for are using
 blockchain technology, so why should I learn about blockchain when my goal is to master TypeScript?” We didn’t want our sample
 app to be yet another ToDo example, so we looked for a hot technology where you could apply the different TypeScript elements
 and techniques introduced in part 1. Seeing how TypeScript is used in a not-so-trivial app will make this content more practical, even if you’re not going to
 use blockchain technology in the near future.

 In this part of the book, you’ll develop several blockchain apps: a standalone app, a browser app, an Angular app, a React.js
 app, a Vue.js app. Feel free to read only those chapters that interest you, but make sure you read chapters 8 and 10 where the foundational concepts are introduced.

 Chapter 8 introduces the principles of blockchain apps. You’ll learn what the hashing functions are for, what block mining means, and
 why the proof of work is required to add a new block to a blockchain. After covering the blockchain basics, we present a project
 and explain the code that creates a basic blockchain app. Most chapters in part 2 have runnable blockchain projects with detailed explanations of how they were written and how to run them.

 Chapter 9 describes how to create a web client for a blockchain. This app will not use any web frameworks; we’ll use only HTML, CSS,
 and TypeScript. We’ll also create a small library for hash generation that can be used in both web and standalone clients.
 You’ll also see how to debug your TypeScript code in the browser.

 Chapter 10 reviews the code of a blockchain app that uses a messaging server for communications between blockchain members. We create
 a Node.js and WebSocket server in TypeScript, and we’ll show you how the blockchain uses the longest chain rule to achieve
 consensus. You’ll find practical examples of using TypeScript interfaces, abstract classes, access qualifiers, enums, and
 generics.

 Chapter 11 provides a brief introduction to developing web apps in Angular with TypeScript, and chapter 12 reviews the code of a blockchain web client developed using this framework.

 Chapter 13 offers a brief introduction to developing web apps in React.js with TypeScript, and chapter 14 reviews the code of a blockchain web client developed using React.

 Chapter 15 similarly introduces developing web apps in Vue.js with TypeScript, and chapter 16 reviews the blockchain web client developed with this Vue.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
 of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 Part 1 is about the syntax of the language, and most of the code samples are published online on the TypeScript Playground—an interactive
 tool that quickly checks the syntax of a TypeScript code snippet and compiles it into JavaScript. The links to these code
 snippets are provided in the book as needed.

 The second part of the book consists of multiple projects that use TypeScript to develop applications using popular libraries
 and frameworks (such as Angular, React.js, and Vue.js). The source code of these apps is located on GitHub at https://github.com/yfain/getts.

 We thoroughly tested every app that comes with the book, but new versions of TypeScript and other libraries may be released,
 with breaking changes. If you’re getting an error while trying to run one of these projects, please open an issue on the book’s
 GitHub repository.

liveBook discussion forum

 Purchase of Typescript Quickly includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/TypeScriptQuickly/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 Yakov Fain is a cofounder of two IT companies: Farata Systems and SuranceBay. He has authored and co-authored books such as Java Programming: 24-Hour Trainer, Angular Development with TypeScript, Java Programming for Kids, and others. A Java Champion, he has taught multiple classes and workshops on web- and Java-related technologies and has
 presented at international conferences. Fain has written more than a thousand blog entries at yakovfain.com. His Twitter and Instagram handles are @yfain. He also publishes videos on YouTube.

 Anton Moiseev is a lead software developer at SuranceBay. He’s been developing enterprise applications for more than a decade with Java
 and .NET technologies. He has a solid background and a strong focus on web technologies, implementing best practices to make
 the frontend work seamlessly with the backend. He has taught a number of training sessions on AngularJS and Angular frameworks.
 He blogs occasionally at antonmoiseev.com, and his Twitter handle is @antonmoiseev.

About the Cover Illustration

 The figure on the cover of TypeScript Quickly is captioned “Bourgeoise Florentine.” The illustration is taken from a collection of dress costumes from various countries
 by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes civils actuels de tous les peuples connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
 collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
 each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. Mastering the TypeScript syntax

 Part 1 starts with explaining the benefits of TypeScript compared to JavaScript. Then, we’ll cover various syntax elements of TypeScript
 using small code snippets for illustration. You’ll see how to use built-in and declare custom types. We’ll introduce the use
 of classes and interfaces as well as generics, enums, decorators, mapped and conditional types. You’ll learn the tooling used
 by TypeScript developers (such as compilers, linters, debuggers, and bundlers). Finally, we’ll show you how to use the TypeScript
 and JavaScript code in the same app.

 For those of you who like learning by watching videos, Yakov Fain has published a number of videos (see http://mng.bz/m4M8) that illustrate the materials from Part 1 of this book. If your goal is to quickly learn the TypeScript’s syntax and tooling, Part 1 of this book is all you need.

Chapter 1. Getting familiar with TypeScript

 This chapter covers

 	The benefits of programming in TypeScript over JavaScript

 	How to compile the TypeScript code into JavaScript

 	How to work with the Visual Studio Code editor

 The goal of this chapter is to get you started with TypeScript development. We’ll start by paying respect to JavaScript, and
 then we’ll share our own opinion on why you should be programming in TypeScript. To round out this chapter, we’ll compile
 and run a very basic program so you can follow the workflow from writing a program in TypeScript to compiling it into runnable
 JavaScript.

 If you’re a seasoned JavaScript developer you’d need a good reason to switch to TypeScript, which would have to be compiled
 into JavaScript before deployment anyway. If you’re a backend developer planning to learn the frontend ecosystem, you’d also
 need a reason for learning any programming language other than JavaScript, so let’s start with the reasoning.

1.1. Why program in TypeScript

 TypeScript is a compile-to-JavaScript language, which was released as an open source project by Microsoft in 2012. A program
 written in TypeScript has to be transpiled into JavaScript first, and then it can be executed in the browser or a standalone JavaScript engine.

 The difference between transpiling and compiling is that the latter turns the source code of a program into bytecode or machine
 code, whereas the former converts the program from one language to another, such as from TypeScript to JavaScript. But in
 the TypeScript community, the word compile is more popular, so we’ll use it in this book to describe the process of converting TypeScript code into JavaScript.

 You may wonder, why go through the hassle of writing a program in TypeScript and then compiling it into JavaScript if you
 could write the program in JavaScript in the first place? To answer this question, let’s look at TypeScript from a very high-level
 perspective.

 TypeScript is a superset of JavaScript, so you can take any JavaScript file, such as myProgram.js, change its file extension
 from .js to .ts, and myProgram.ts will likely become a valid TypeScript program. We say “likely” because the original JavaScript
 code may have hidden type-related bugs (it may dynamically change the types of object properties or add new ones after the
 object is declared) and other problems that will be revealed only after your JavaScript code is compiled.

 	

 Tip

 In section 7.3, we’ll provide some tips on migrating your JavaScript code to TypeScript.

 	

 In general, the word superset implies that the superset contains everything that the set has, plus something else. Figure 1.1 illustrates TypeScript as a superset of ECMAScript, which is a spec for all versions of JavaScript. ES.Next represents the
 very latest additions to ECMAScript that are still in the works.

 Figure 1.1. TypeScript as a superset

 [image:]

 In addition to the JavaScript set, TypeScript also supports static typing, whereas JavaScript supports only dynamic typing. Here, the word “typing” refers to assigning types to program variables.

 In programming languages with static typing, a type must be assigned to a variable before you can use it. In TypeScript, you
 can declare a variable of a certain type, and any attempt to assign it a value of a different type results in a compilation
 error.

 This is not the case in JavaScript, which doesn’t know about the types of your program variables until runtime. Even in the
 running program, you can change the type of a variable just by assigning it a value of a different type. In TypeScript, if
 you declare a variable as a string, trying to assign a numeric value to it will result in a compile-time error.

 let customerId: string;
customerId = 123; // compile-time error

 JavaScript decides on the variable type at runtime, and the type can be dynamically changed, as in the following example:

 let customerId = "A15BN"; // OK, customerId is a string
customerId = 123; // OK, from now on it's a number

 Now let’s consider a JavaScript function that applies a discount to a price. It has two arguments and both must be numbers.

 function getFinalPrice(price, discount) {
 return price - price / discount;
}

 How do you know that the arguments must be numbers? First of all, you authored this function some time ago, and having an
 exceptional memory, you may just remember the types of all the arguments. Second, you used descriptive names for the arguments
 that hint at their types. Third, you can guess the types by reading the function code.

 This is a pretty simple function, but let’s say someone invoked this function by providing a discount as a string. This function
 would print NaN at runtime.

 console.log(getFinalPrice(100, "10%")); // prints NaN

 This is an example of a runtime error caused by the wrong use of a function. In TypeScript, you could provide types for the
 function arguments, and such a runtime error would never happen. If someone tried to invoke the function with the wrong type
 of argument, this error would be caught as you were typing. Let’s see it in action.

 The official TypeScript web page (www.typescriptlang.org) offers language documentation and a Playground where you can enter code snippets in TypeScript, which will be immediately
 compiled to JavaScript.

 At http://mng.bz/Q0Mm you’ll see our code snippet in the TypeScript Playground, with the squiggly red line under the "10%". If you hover your mouse over the erroneous code, you’ll see a prompt explaining the error, as shown in figure 1.2.

 Figure 1.2. Using TypeScript Playground

 [image:]

 This error is caught by the TypeScript static code analyzer while you type, even before you compile this code with the Typescript
 compiler (tsc). Moreover, if you specify the variable types, your editor or IDE will offer an autocomplete feature suggesting
 argument names and types for the getFinalPrice() function.

 Isn’t it nice that errors are caught before runtime? We think so. Most developers with a background in such languages as Java,
 C++, and C# take it for granted that such errors are caught at compile time, and this is one of the main reasons why they
 like TypeScript.

 	

 Note

 There are two types of programming errors—those that are immediately reported by tools as you type, and those that are reported
 by users of your program. Programming in TypeScript substantially decreases the number of the latter.

 	

 	

 Tip

 The TypeScript site (www.typescriptlang.org) has a section called “Documentation and Tutorials.” There you’ll find useful tips for configuring TypeScript in specific
 environments, like ASP.NET, React, and others.

 	

 Some hard-core JavaScript developers say that TypeScript slows them down by requiring them to declare types, and that they’d
 be more productive in JavaScript. But remember that types in TypeScript are optional—you can continue writing in JavaScript
 but still introduce tsc in your workflow. Why? Because you’ll be able to use the latest ECMAScript syntax (such as async and await) and compile your JavaScript down to ES5 so your code can run in older browsers.

 But most web developers aren’t JavaScript ninjas and can appreciate the helping hand offered by TypeScript. As a matter of
 fact, all strongly typed languages provide better tool support and thus increase productivity (even for ninjas). Having said
 that, we’d like to stress that TypeScript gives you the benefits of statically typed languages when and where you want it,
 without stopping you from using the good old dynamic JavaScript objects when you want them.

 More than a hundred programming languages are compiled to JavaScript (as this list shows: http://mng.bz/MO42). What makes TypeScript stand out is that its creators follow the ECMAScript standards and implement upcoming JavaScript
 features a lot faster than the vendors of web browsers.

 You can find the current proposals for new ECMAScript features on GitHub: https://github.com/tc39/proposals. A proposal has to go through several stages to be included in the final version of the next ECMAScript spec. If a proposal
 makes it to stage 3, it will most likely be included in the latest version of TypeScript.

 In the summer of 2017, the async and await keywords (see section A.10.4 in the appendix) were included in ECMAScript specification ES2017 (a.k.a. ES8). It took more than a year for major browsers
 to start supporting these keywords, but TypeScript has supported them since November 2015. TypeScript developers were able
 to start using these keywords about three years before those who waited for browser support. The best part is that you can
 use the future JavaScript syntax in today’s TypeScript code, and compile it down to the older JavaScript syntax (such as ES5)
 supported by all browsers!

 Having said that, we’d like to make a clear distinction between the syntax described in the latest ECMAScript specifications
 and the syntax that’s unique to TypeScript. We recommend you read the appendix first, so you know where ECMAScript ends and
 TypeScript begins.

 Although JavaScript engines do a decent job of guessing the types of variables by their values, development tools have limited
 ability to help you without knowing variable types. In mid- and large-size applications, this JavaScript shortcoming lowers
 the productivity of software developers.

 TypeScript follows the latest specifications of ECMAScript and adds to them types, interfaces, decorators, class member variables
 (fields), generics, enums, the keywords public, protected, and private, and more. Check the TypeScript roadmap (https://github.com/Microsoft/TypeScript/wiki/Roadmap) to see what’s available and what’s coming in future releases of TypeScript. And one more thing: the JavaScript code generated
 from TypeScript is easy to read, and it looks like hand-written code.

 	

 Five facts about TypeScript

 	The core developer of TypeScript is Anders Hejlsberg, who also designed Turbo Pascal and Delphi and is the lead architect
 of C# at Microsoft.

 	At the end of 2014, Google approached Microsoft asking if they could introduce decorators in TypeScript so this language could
 be used for developing the Angular 2 framework. Microsoft agreed, and this gave a tremendous boost to TypeScript’s popularity,
 given that hundreds of thousands of developers use Angular.

 	As of December 2019, tsc had several million downloads per week from npmjs.org, and this is not the only TypeScript repository. For current statistics, see www.npmjs.com/package/typescript.

 	According to Redmonk, a respectable software analytics firm, TypeScript came in 12th in the programming language rankings
 of January 2019 (see the rankings here: http://mng.bz/4eow).

 	According to Stack Overflow’s 2019 Developer Survey, TypeScript is the third most loved language (see https://insights.stackoverflow.com/survey/2019).

 	

 Now we’ll introduce the process of configuring and using the tsc on your computer.

1.2. Typical TypeScript workflows

 Let’s get familiar with the TypeScript workflow, from writing your code to deploying your app. Figure 1.3 shows such a workflow, assuming that the entire source code of the app is written in TypeScript.

 Figure 1.3. Deploying an app written in TypeScript

 [image:]

 As you can see, the project consists of three TypeScript files: a.ts, b.ts, and c.ts. These files have to be compiled to JavaScript
 by the Typescript compiler (tsc), which will generate three new files: a.js, b.js, and c.js. Later in this section, we’ll
 show you how to tell the compiler to generate JavaScript of specific versions.

 At this point, some JavaScript developers will say, “TypeScript forces me to introduce an additional compilation step between
 writing code and seeing it run.” But do you really want to stick to the ES5 version of JavaScript, ignoring all the latest
 syntax introduced by ES6, 7, 8, through to ES.Next? If not, you’ll have a compilation step in your workflow anyway—you’ll
 need to compile your source written in a newer JavaScript version into the well-supported ES5 syntax.

 Figure 1.3 shows just three files, but real-world projects may have hundreds or even thousands of files. Developers don’t want to deploy
 so many files in the web server or a standalone JavaScript app, so we usually bundle these files (think “concatenate”) together.

 JavaScript developers use different bundlers, like Webpack or Rollup, which not only concatenate multiple JavaScript files,
 but can optimize the code and remove unused code (performing tree-shaking). If your app consists of several modules, each
 module can be deployed as a separate bundle.

 Figure 1.3 shows just one deployed bundle—main.js. If this were a web app, there would be an HTML file with a <script src='main.js'> tag. If the app were run in a standalone JavaScript engine like Node.js, you could start it with the following command (assuming
 Node.js is installed):

 node main.js

 The JavaScript ecosystem includes thousands of libraries, which won’t be rewritten in TypeScript. The good news is that your
 app doesn’t have to be TypeScript-only, and it can use any of the existing JavaScript libraries.

 If you just add the JavaScript library to your app, tsc won’t help with autocomplete or error messages when you use the APIs
 of these libraries. But there are special type definition files with the extension .d.ts (covered in chapter 6), and if they’re present, tsc will show you errors and offer context-sensitive help for this library.

 Figure 1.4 shows a sample workflow for an app that uses the popular JavaScript library lodash.

 Figure 1.4. Deploying an app written in both TypeScript and JavaScript

 [image:]

 This diagram includes the type definition file lodash.d.ts, which is used by tsc during development. It also includes the
 actual JavaScript library lodash.js, which will be bundled with the rest of your app during deployment.The term bundle refers to the process of combining several script files into one.

1.3. Using the Typescript compiler

 Now you’ll learn how to compile a basic TypeScript program into a JavaScript version. The compiler, tsc, can be bundled with
 your IDE of choice or can be installed as an IDE plugin, but we prefer to install it independently of an IDE by using the
 npm package manager that comes with Node.js.

 Node.js (or simply Node) isn’t just a framework or a library—it’s a JavaScript runtime environment as well. We use the Node runtime for running various
 utilities like npm or launching JavaScript code without a browser.

 To get started, you need to download and install the current version of Node.js from https://nodejs.org. It will install node and npm.

 Using npm, you can install software either locally inside your project directory, or globally where it can be used across
 projects. We’ll use npm to install tsc and other packages from the npm repository located at www.npmjs.com, which hosts more than half a million packages.

 You can install tsc globally (with the -g option) by running the following command in your terminal window:

 npm install -g typescript

 	

 Note

 For simplicity, we’ll use the globally installed tsc in the first part of this book. In real-world projects, however, we prefer
 to install tsc locally in the project directory by adding it in the devDependencies section of the project’s package.json.
 You’ll see how we do that in chapter 8 where we’ll start working on a sample blockchain project.

 	

 In this book’s code samples, we used TypeScript version 3 or newer. To check your tsc version, run the following command from
 the terminal window:

 tsc -v

 Now let’s look at how you can compile a simple program from TypeScript to JavaScript. In any directory, create a new main.ts
 file with the following content.

 Listing 1.1. A main.ts file

 function getFinalPrice(price: number, discount: number) { 1
 return price - price/discount;
}

console.log(getFinalPrice(100, 10)); 2
console.log(getFinalPrice(100, "10%")); 3

 	
1 Function arguments have types.

 	
2 Correct function invocation

 	
3 Wrong function invocation

 The following command will compile main.ts into main.js.

 tsc main

 It will print the error message “argument of type ‘10%’ is not assignable to parameter of type ‘number’,” but it will generate
 the main.js file with the following content anyway.

 Listing 1.2. The resulting main.js file

 function getFinalPrice(price, discount) { 1
 return price - price/discount;
}

console.log(getFinalPrice(100, 10)); 2
console.log(getFinalPrice(100, "10%")); 3

 	
1 Arguments have no types.

 	
2 Correct function invocation

 	
3 Wrong function invocation, but the error will be shown during runtime only

 You may ask, “What’s the point of producing the JavaScript file if there’s a compilation error?” Well, from the JavaScript
 perspective, the content of the main.js file is valid. But in real-world TypeScript projects, we won’t want to allow code
 generation for erroneous files.

 tsc offers dozens of compilation options, described in the TypeScript documentation (http://mng.bz/rf14), and one of them is noEmitOnError. Delete the main.js file and try to compile main.ts as follows:

 tsc main --noEmitOnError true

 Now the main.js file won’t be generated until that error is fixed in main.ts.

 	

 Tip

 Turning on the noEmitOnError option means that previously generated JavaScript files won’t be replaced until all errors in the TypeScript files are fixed.

 	

 The compiler’s --t option allows you to specify the target JavaScript syntax. For example, you can use the same source file and generate its
 JavaScript peer compliant with ES5, ES6, or newer syntax. Here’s how to compile the code to ES5-compatible syntax:

 tsc --t ES5 main

 tsc allows you to preconfigure the process of compilation (specifying the source and destination directories, target, and
 so on). If you have a tsconfig.json file in the project directory, you can just enter tsc on the command line, and the compiler will read all the options from tsconfig.json. A sample tsconfig.json file is shown
 here.

 Listing 1.3. A tsconfig.json file

 {
 "compilerOptions": {
 "baseUrl": "src", 1
 "outDir": "./dist", 2
 "noEmitOnError": true, 3
 "target": "es5" 4
 }
}

 	
1 Transpiles .ts files located in the src directory

 	
2 Saves the generated .js files in the the dist directory

 	
3 If any of the files have compilation errors, don’t generate JavaScript files.

 	
4 Transpiles TypeScript files into the ES5 syntax

 	

 Tip

 The compiler’s target option is also used for syntax checking. For example, if you specify es3 as the compilation target, TypeScript will complain about the getter methods in your code. It simply doesn’t know how to
 compile getters into the ECMAScript 3 version of the language.

 	

 Let’s see if you can do it yourself by following these instructions:

 	Create a file named tsconfig.json in the folder where the main.ts file is located. Add the following content to tsconfig.json:

{
 "compilerOptions": {
 "noEmitOnError": true,
 "target": "es5",
 "watch": true
 }
}

 Note the last option, watch. The compiler will watch your typescript files, and when they change, tsc will recompile them.

 	In the terminal window, go to the directory where the tsconfig.json file is located, and run the following command:

tsc

 You’ll see the error message described earlier in this section, but the compiler won’t exit because it’s running in watch
 mode. The file main.js won’t be created.

 	Fix the error, and the code will be automatically recompiled. Check to see that the main.js file was created this time.
 If you want to get out of watch mode, just press Ctrl-C on your keyboard in the terminal window.

 	

 Tip

 To start a new TypeScript project, run the command tsc --init in any directory. It’ll create a tsconfig.json file for you with all the compiler’s options, most of which will be commented
 out. Uncomment them as needed.

 	

 	

 Note

 A tsconfig.json file can inherit configurations from another file by using the extends property. In chapter 10 we’ll look at a sample project that has three config files: the first with common tsc compiler options for the entire project,
 the second for the client, and the third for the server portion of the project. See section 10.4.1 for details.

 	

 	

 The REPL environment for TypeScript

 REPL stands for Read-Evaluate-Print-Loop, and it refers to a simple interactive language shell that allows you to quickly
 execute a code fragment. The TypeScript Playground at www.typescriptlang.org/play is an example of a REPL that allows you to write, compile, and execute a code snippet in a browser.

 The following example shows how you can use the TypeScript Playground to compile a simple TypeScript class into the ES5 version
 of JavaScript.

 [image:]

Transpiling TypeScript to ES5

 The following image shows how the same code is compiled into the ES6 version of JavaScript.

 [image:]

Transpiling TypeScript to ES6

 The Playground has an Options menu where you can select the compiler’s options. In particular, you can select the compilation
 target, such as ES2018 or ES5.

 If you'd like to run code snippets from the command line without the browser, install the TypeScript Node REPL, which is available
 at https://github.com/TypeStrong/ts-node.

 	

1.4. Getting familiar with Visual Studio Code

 Integrated development environments (IDEs) and code editors increase developers’ productivity, and TypeScript is well supported
 by such tools: Visual Studio Code, WebStorm, Eclipse, Sublime Text, Atom, Emacs, Vim. For this book, we decided to use the
 open source and free Visual Studio Code (VS Code) editor created by Microsoft, but you can use any other editor or IDE to
 work with TypeScript.

 	

 Note

 According to the Stack Overflow 2019 Developer Survey (https://insights.stackoverflow.com/survey/2019), VS Code is the most popular developer environment, and more than 50% of all respondents use it. By the way, VS Code is
 written in TypeScript.

 	

 On real-world projects, good context-sensitive help and support for refactoring are very important. Renaming all occurrences
 of a TypeScript variable or function name in statically typed languages can be done by IDEs in a split second, but this isn’t
 the case in JavaScript, which doesn’t support types. If you make a mistake in a function, class, or a variable name in the
 TypeScript code, it’s marked in red.

 You can download VS Code from https://code.visualstudio.com. The installation process depends on your computer’s OS, and it’s explained in the Setup section of the VS Code documentation
 (https://code.visualstudio.com/docs).

 Once it’s installed, start VS Code. Then, using the File > Open menu option, open the chapter1/vscode directory included with
 this book’s code samples. It contains the main.ts file from the previous section and a simple tsconfig.json file. Figure 1.5 shows the “10%” underlined with a red squiggly line, indicating an error. If you hover the mouse pointer over the underlined
 code, it will show the same error message shown earlier in figure 1.2.

 Figure 1.5. Highlighting errors in VS Code

 [image:]

 	

 VS Code modes for TypeScript

 VS Code supports two modes for TypeScript code: file scope and explicit project. The file scope is pretty limited, as it doesn’t allow a script in a file to use variables declared in another. The explicit
 project mode requires you to have a tsconfig.json file in the project directory.

 The tsconfig.json file that comes with this section follows.

 Listing 1.4. vscode/tsconfig.json

 {
 "compilerOptions": {
 "outDir": "./dist", 1
 "noEmitOnError": true, 2
 "lib": ["dom", "es2015"] 3
 }
}

 	
1 Saves generated JavaScript files in the dist directory

 	
2 Doesn’t generate JavaScript until all errors are fixed

 	
3 The libraries added so tsc won’t complain about unknown APIs, such as console()

 	

 If you’d like to be able to open VS Code from the command prompt, its executable will have to be added to the PATH environment variable on your computer. In Windows, the setup process should do it automatically. In macOS, start VS Code,
 select the View > Command Palette menu option, type shell command, and pick this option: Shell Command: Install ‘code’ Command in PATH. Then restart your terminal window and enter code . from any directory. VS Code will start, and you’ll be able to work with the files from the directory you’re in.

 In the previous section, we compiled the code in a separate terminal window, but VS Code comes with an integrated terminal.
 This eliminates the need to leave the editor window to use the command prompt window. To open VS Code’s terminal window, select
 View > Terminal or Terminal > New Terminal from the menu.

 Figure 1.6 shows the integrated terminal view right after we executed the tsc command. The arrow on the right points at the plus icon that allows you to open as many terminal views as needed. We’ve commented
 out the last erroneous line, and tsc will generate the main.js file in the dist directory.

 Figure 1.6. Running the tsc command in VS Code

 [image:]

 	

 Tip

 VS Code picks the tsc compiler that’s included with Node.JS on your computer. Open any TypeScript file, and you’ll see the
 tsc version noted on the bottom toolbar at the right. If you prefer to use the tsc that you’ve installed globally on your
 computer, click the version number at the bottom-right corner, and select the tsc compiler of your choice.

 	

 In figure 1.6, at the bottom of the black panel at the left, you can see a square icon—it’s used for finding and installing extensions
 from the VS Code marketplace. These are some extensions that will make your TypeScript programming in VS Code more flexible:

 	
ESLint— Integrates the JavaScript linter and checks your code for readability and maintainability

 	
Prettier— Enforces a consistent style by parsing your code and reformatting it with its own rules

 	
Path Intellisense— Autocompletes file paths

 For more details about using VS Code for TypeScript programming, take a look at the product documentation at https://code.visualstudio.com/docs/languages/typescript.

 	

 Tip

 There is an excellent online IDE called StackBlitz (https://stackblitz.com). It’s powered by VS Code, but you don’t need to install it on your computer.

 	

 	

 Note

 Part 2 of this book contains various versions of a sample blockchain app. Although reading part 2 is optional, we recommend you read at least chapters 8 and 9.

 	

Summary

 	TypeScript is a superset of JavaScript. A program written in TypeScript has to be transpiled into JavaScript first, and then
 it can be executed in the browser or a standalone JavaScript engine.

 	Errors are caught by the TypeScript static code analyzer as you type, even before you compile code with the Typescript compiler
 (tsc).

 	TypeScript gives you the benefits of statically typed languages when and where you want it, without stopping you from using
 the good old dynamic JavaScript objects when you want them.

 	TypeScript follows the latest specifications of ECMAScript and adds to them types, interfaces, decorators, class member variables
 (fields), generics, enums, the keywords public, protected, and private, and more. Check the TypeScript roadmap at https://github.com/Microsoft/TypeScript/wiki/Roadmap to see what’s available now and what’s coming in future releases of TypeScript.

 	To start a new TypeScript project, run the command tsc --init in any directory. It’ll create the tsconfig.json file for you, containing all the compiler’s options with most of them commented
 out. Uncomment them as needed.

Chapter 2. Basic and custom types

 This chapter covers

 	Declaring variables with types, and using types in function declarations

 	Declaring type aliases with the type keyword

 	Declaring custom types with classes and interfaces

 You can think of TypeScript as JavaScript with types. That’s an oversimplified statement because TypeScript has some syntax
 elements that JavaScript doesn’t (such as interfaces, generics, and some others). Still, the main power of TypeScript is types.

 Although declaring types of identifiers before their use is highly recommended, it’s still optional. In this chapter, you’ll
 start getting familiar with different ways of using the built-in and custom types. In particular, you’ll see how to use classes
 and interfaces to declare custom types; the coverage of classes and interfaces will continue in chapter 3.

 	

 Note

 If you’re not familiar with the syntax of modern JavaScript, you may want to read the appendix before proceeding with learning
 TypeScript. This appendix will also help you understand which syntax elements exist in JavaScript and which were added in
 TypeScript.

 	

2.1. Declaring variables with types

 Why declare variable types if, in JavaScript, you can just declare a variable name and store the data of any type in it? Writing
 code in JavaScript is easier than in other languages mainly because you don’t have to specify types for identifiers, isn’t
 it?

 Moreover, in JavaScript, you can assign a numeric value to a variable, and later assign a text value to that variable. This
 isn’t the case in TypeScript, where once the type is assigned to a variable, you can’t change its type, as shown in figure 2.1.

 Figure 2.1. Attempting to change a variable’s type in TypeScript (left) and JavaScript (right)

 [image:]

 On the left of figure 2.1, you see the TypeScript code entered in the Playground section of www.typescriptlang.org. But where did we declare the type of the taxCode variable? We didn’t do it explicitly, but since we initialized it with a numeric value, TypeScript assigns the type number to taxCode.

 The second line is marked with a squiggly line, indicating an error. If you hover over this squiggly line, the error message
 will read “‘lowIncome’ is not assignable to type ‘number’.” In the TypeScript world, this means that if you declared the variable
 to store numeric values, you can’t assign string values to it. On the right side in figure 2.1, the compiled JavaScript code doesn’t show any errors because JavaScript allows you to assign values of different types to
 a variable at runtime.

 Although declaring variable types forces developers to write more code, their productivity increases in the long run because,
 more often than not, if a developer tries to assign a string value to a variable that already stores a number, it’s a mistake.
 It helps that the compiler can catch such errors during development rather than not discovering it until runtime.

 A type can be assigned to a variable either explicitly by the software developer or implicitly (an inferred type) by the Typescript compiler. In figure 2.1, we declared a taxCode variable without providing its type. Assigning the value 1 to this variable lets the compiler know that its type is number. This is an example of an inferred type. Most of the code samples in the next section use explicit types, with a couple of
 exceptions that are marked as inferred types.

 2.1.1. Basic type annotations

 When you declare a variable, you can add a colon and a type annotation to specify the variable type:

 let firstName: string;
let age: number;

 TypeScript offers the following type annotations:

 	
string—For textual data

 	
boolean—For true/false values

 	
number—For numeric values

 	
symbol—A unique value created by calling the Symbol constructor

 	
any—For variables that can hold values of various types, which may be unknown when you’re writing the code

 	
unknown—A counterpart of any, but no operations are permitted on an unknown without first asserting or narrowing it to a more specific type

 	
never—For representing unreachable code (we’ll provide an example shortly)

 	
void—An absence of a value

 Most of the basic types are self-descriptive and need no further explanation.

 Starting with ECMAScript 2015, symbol is a primitive data type that is always unique and immutable. In the following code snippet, sym1 is not equal to sym2:

 const sym1 = Symbol("orderID");
const sym2 = Symbol("orderID");

 When you create a new symbol (note the absence of the new keyword), you can optionally provide its description, such as orderID. Symbols are typically used to create unique keys for object properties.

 Listing 2.1. Symbols as object properties

 const ord = Symbol('orderID'); 1

const myOrder = {
 ord: "123" 2
};

console.log(myOrder['ord']); 3

 	
1 Creates a new symbol

 	
2 Uses the symbol as an object’s property

 	
3 This line prints “123”.

 Being a superset of JavaScript, TypeScript also has two special values: null and undefined. A variable that has not been assigned a value has a value of undefined. A function that doesn’t return a value also has a value of undefined. The value of null represents an intentional absence of value, as in let someVar = null;.

 You can assign null and undefined values to variables of any type, but more often they’re used in combination with values of other types. The following code
 snippet shows how you can declare a function that returns either a string or a null value (the vertical bar represents the union type, discussed in section 2.1.3):

 function getName(): string | null {
 ...
}

 As in most programming languages, if you declare a function that returns string, you can still return null, but being explicit about what a function can return increases code readability.

 If you declare a variable of type any, you can assign any value to it, whether it’s numeric, textual, Boolean, or a custom type like Customer. You should avoid using the type any, because you’re losing the benefits of type checking, and the readability of your code suffers.

 The never type is assigned to a function that never returns—one that either keeps running forever or that just throws an error. The
 arrow function in the next listing never returns, and the type checker will infer (guess) its return type as never.

 Listing 2.2. An arrow function that returns the never type

 const logger = () => {
 while (true) { 1
 console.log("The server is up and running");
 }
};

 	
1 This function never ends.

 In the preceding listing, the type assigned to logger is () => never. In listing 2.9 you’ll see another example where the never type is assigned.

 The void type is not something you’d use in a variable declaration. It’s used to declare a function that doesn’t return a value:

 function logError(errorMessage: string): void {
 console.error(errorMessage);
}

 Unlike the never type, the void function does complete its execution, but it returns no value.

 	

 Tip

 If a function body doesn’t have a return statement, it still returns a value of type undefined. The void type annotation can be used to prevent programmers from accidentally returning an explicit value from the function.

 	

 The fact that any JavaScript program is a valid TypeScript program means that using type annotations is optional in TypeScript.
 If some variables don’t have explicit type annotations, TypeScript’s type checker will try to infer the types. The following
 two lines are valid TypeScript syntax:

 let name1 = 'John Smith'; 1

let name2: string = 'John Smith'; 2

 	
1 Declares and initializes a variable without an explicit type

 	
2 Declares and initializes a variable with a type annotation

 The first line declares and initializes a name1 variable in JavaScript style, and we can say that the inferred type of name1 is string. Do you think that the second line is a good example of declaring and initializing the name2 variable in TypeScript? In terms of code style, specifying types is redundant here.

 Although the second line is correct TypeScript syntax, specifying the type string is unnecessary, because the variable is initialized with the string and TypeScript will infer that the type of name2 is string.

 You should avoid explicit type annotations where the Typescript compiler can infer them. The following code snippet declares
 the variables age and yourTax. There’s no need to specify the types of these variables because the Typescript compiler will infer the types.

 Listing 2.3. Identifiers with inferred types

 const age = 25; 1

function getTax(income: number): number {
 return income * 0.15;
}

let yourTax = getTax(50000); 2

 	
1 The age constant doesn’t declare its type.

 	
2 The yourTax variable doesn’t declare its type.

 TypeScript also allows you to use literals as types. The following line declares a variable of type John Smith.

 let name3: 'John Smith';

 We can say that the variable name3 has a literal type John Smith. The name3 variable will only allow one value, John Smith. Any attempt to assign another value to a variable of a literal type will result in a type checker error:

 let name3: 'John Smith';

name3 = 'Mary Lou'; // error: Type '"Mary Lou"' is not assignable to type
[image:] '"John Smith"'

 It’s not likely that you’ll be using string literals for declaring a type as shown in the name3 variable, but you may use string literals as types in unions (explained in section 2.1.3) and enums (explained in chapter 4).

 Here are some examples of variables declared with explicit types:

 let salary: number;
let isValid: boolean;
let customerName: string = null;

 	

 Type widening

 If you declare a variable without initializing it with a specific value, TypeScript uses the internal types null or undefined, which are converted to any. This is called type widening.

 The value of the following variable would be undefined.

 let productId;
productId = null;
productId = undefined;

 The Typescript compiler applies type widening and assigns the type any to null and undefined values. Hence, the type of the productId variable is any.

 It’s worth mentioning that the Typescript compiler supports a --strictNullCheck option that prohibits the assignment of null to variables with known types. In the following code snippet, the type of productId is number, and the second and third lines won’t compile if you turn on --strictNullCheck:

 let productId = 123;
productId = null; // compiler error
productId = undefined; // compiler error

 The --strictNullCheck option also helps in catching potentially undefined values. For example, a function may return an object with an optional
 property, and your code might wrongly assume that this property is there and try to apply a function on it.

 	

 	

 Tip

 Add explicit type annotations for function or methods signatures and public class members.

 	

 	

 Note

 TypeScript includes other types that are used in interactions with the web browser, such as HTMLElement and Document. Also, you can use the keywords type, class, and interface to declare your own types, such as Customer or Person. We’ll show how to do that in the next section. You’ll also see how you can combine types using unions.

 	

 Type annotations are used not only for declaring variable types, but also for declaring types of function arguments and their
 return values. We’ll discuss that next.

 2.1.2. Types in function declarations

 TypeScript functions and function expressions are similar to JavaScript functions, but you can explicitly declare the types
 of arguments and return values.

 Let’s start by writing a JavaScript function (with no type annotations) that calculates tax. The function in the next listing
 has three parameters and will calculate tax based on the state, income, and number of dependents. For each dependent, the
 person is entitled to a $500 or $300 tax deduction, depending on the state the person lives in.

 Listing 2.4. Calculating tax in JavaScript

 function calcTax(state, income, dependents) { 1
 if (state === 'NY') {
 return income * 0.06 - dependents * 500; 2
 } else if (state === 'NJ') {
 return income * 0.05 - dependents * 300; 3
 }
}

 	
1 The function arguments have no type annotations.

 	
2 Calculates the New York tax

 	
3 Calculates the New Jersey tax

 Suppose a person with an income of $50,000 lives in the state of New Jersey and has two dependents. Let’s invoke calcTax():

 let tax = calcTax('NJ', 50000, 2);

 The tax variable gets the value of 1,900, which is correct. Even though calcTax() didn’t declare any types for the function parameters, we guessed how to call this function based on the parameter names.

 What if we didn’t guess it right? Let’s invoke it the wrong way, passing a string value for the number of dependents:

 let tax = calcTax('NJ', 50000, 'two');

 You won’t know there’s a problem until you invoke this function. The tax variable will have a NaN value (not a number). A bug sneaked in just because you couldn’t explicitly specify the types of the parameters, and the
 compiler couldn’t infer the types of the function arguments.

 The next listing shows a TypeScript version of this function, using type annotations for the function arguments and return
 value.

 Listing 2.5. Calculating tax in TypeScript

 function calcTax(state: string, income: number, dependents: number) : number {1

 if (state === 'NY'){
 return income * 0.06 - dependents * 500;
 } else if (state ==='NJ'){
 return income * 0.05 - dependents * 300;
 }
}

 	
1 The function arguments and its return value have type annotations.

 Now there’s no way to make the same mistake and pass a string value for the number of dependents:

 let tax: number = calcTax('NJ', 50000, 'two');

 The Typescript compiler will display an error: “Argument of type string is not assignable to parameter of type number.” Moreover, the return value of the function is declared as number, which stops you from making another mistake and assigning the result of the tax calculation to a non-numeric variable:

 let tax: string = calcTax('NJ', 50000, 'two');

 The compiler will catch this, producing the error “The type ‘number’ is not assignable to type ‘string’: var tax: string.”
 This kind of type-checking during compilation can save you a lot of time on any project.

 	

 Fixing the calcTax() function

 This section has JavaScript and TypeScript versions of the calcTax() function, but they only process two states: NY and NJ. Invoking either of these functions for any other state will return
 undefined at runtime.

 The Typescript compiler won’t warn you that the function in listing 2.5 is poorly written and may return undefined, but the TypeScript syntax allows you to warn the person who reads this code that the function in listing 2.5 may return not only a number but also an undefined value, if you invoke it with any other state but NY or NJ. You should change this function signature to declare such a use
 case as follows:

 function calcTax(state: string, income: number, dependents: number) :
[image:]number | undefined

 	

 2.1.3. The union type

 Unions allow you to express that a value can be one of several types. You can declare a custom type based on two or more existing
 types. For example, you can declare a variable of a type that can accept either a string value or a number (the vertical bar means union):

 let padding: string | number;

 Although the padding variable can store the value of either of the two specified types, at any given time it can be only of one type—either a
 string or a number.

 TypeScript supports the type any, but the preceding declaration provides some benefits compared to the declaration let padding: any. Listing 2.6 shows one a code sample from the TypeScript documentation (see http://mng.bz/5742). This function can add the left padding to the provided string. The padding can be specified either as a string that will
 prepend the provided value or as a number of spaces that should prepend the provided string.

 Listing 2.6. padLeft with the any type

 function padLeft(value: string, padding: any): string { 1
 if (typeof padding === "number") { 2
 return Array(padding + 1).join(" ") + value;
 }
 if (typeof padding === "string") { 3
 return padding + value;
 }
 throw new Error(`Expected string or number, got '${padding}'.`); 4
}

 	
1 Provides the string and the padding of type any

 	
2 For a numeric argument, generates spaces

 	
3 For a string, uses concatenation

 	
4 If the second argument is neither a string nor a number, throws an error

 The following listing illustrates the use of padLeft():

 Listing 2.7. Invoking the padLeft function

 console.log(padLeft("Hello world", 4)); 1
console.log(padLeft("Hello world", "John says ")); 2
console.log(padLeft("Hello world", true)); 3

 	
1 Returns “Hello world”

 	
2 Returns “John says Hello world”

 	
3 Runtime error

 	

 Type guards typeof and instanceof

 An attempt to apply conditional statements to refine a variable’s type is called type narrowing. In the if statement in listing 2.6, we used the typeof type guard to narrow the type of a variable that can store more than one TypeScript type. We used typeof to find out the actual type of padding at runtime.

 Similarly, the instanceof type guard is used with custom types (with constructors), as will be explained in section 2.2. The instanceof guard allows you to check the actual object type at runtime:

 if (person instanceof Person) {...}

 The difference between typeof and instanceof is that the former is used with the built-in TypeScript types and the latter with the custom ones.

 	

 	

 Tip

 In section 2.2.4, we’ll explain the structural type system implemented in TypeScript. In short, an object created using the object literal
 syntax (the syntax with curly braces) can be used where an object of a class (such as Person) is expected if the object literal has the same properties as Person. Because of this, if (person instanceof Person) may give you a false negative if the variable person points at an object that was not created by the constructor of the class Person.

 	

 If we now change the type of padding to the union of string and number (as shown in the following listing), the compiler will report an error if you try to invoke padLeft() providing anything other than string or number. This will also eliminate the need to throw an exception.

 Listing 2.8. padLeft with the union type

 function padLeft(value: string, padding: string | number): string { 1
 if (typeof padding === "number") {
 return Array(padding + 1).join(" ") + value;
 }
 if (typeof padding === "string") {
 return padding + value;
 }
}

 	
1 Allows only a string or a number as a second argument

 Now invoking padLeft() with the wrong type for the second argument (such as true) returns a compilation error:

 console.log(padLeft("Hello world", true)); // compilation error

 	

 Tip

 If you need to declare a variable that can hold values of more than one type, don’t use the type any; use a union such as let padding: string | number. Another choice is to declare two separate variables: let paddingStr: string; let paddingNum: number;.

 	

 Let’s modify the code in listing 2.8 to illustrate the type never by adding an else clause to the if statement. This next listing shows how the type checker will infer the never type for an impossible value.

 Listing 2.9. The never type of an impossible value

 function padLeft(value: string, padding: string | number): string {
 if (typeof padding === "number") {
 return Array(padding + 1).join(" ") + value;
 }
 if (typeof padding === "string") {
 return padding + value;
 }
 else {
 return padding; 1
 }
}

 	
1 This else block is never executed.

 Since we declared in the function signature that the padding argument can be either string or number, any other value for padding is impossible. In other words, the else case is not possible, and the type checker will infer the type never for the padding variable in the else clause. You can see it for yourself by copying the code from listing 2.9 into the TypeScript Playground and hovering the mouse over the padding variable.

 	

 Note

 Another benefit of using the union type is that IDEs have an autocomplete feature that will prompt you with allowed argument
 types, so you won’t even have the chance to make such a mistake.

 	

 Compare the code of the padLeft() functions in listings 2.6 and 2.9. What are the main benefits of using the string | number union versus the any type for the second argument? If you use the union, the Typescript compiler will prevent incorrect invocations of padLeft() by reporting an error at compile time.

 We just used a union of primitive types (string and number), but in the next section you’ll see how to declare unions of custom types.

2.2. Defining custom types

 TypeScript allows you to create custom types with the type keyword, by declaring a class or an interface, or by declaring an enum (covered in chapter 4). Let’s get familiar with the type keyword first.

 2.2.1. Using the type keyword

 The type keyword allows you to declare a new type or a type alias for an existing type. Let’s say your app deals with patients who
 are represented by their name, height, and weight. Both height and weight are numbers, but to improve the readability of your
 code, you can create aliases hinting at the units in which the height and weight are measured.

 Listing 2.10. Declaring alias types Foot and Pound

 type Foot = number;
type Pound = number;

 You can create a new Patient type and use the preceding aliases in its declaration.

 Listing 2.11. Declaring a new type that uses aliases

 type Patient = { 1
 name: string;
 height: Foot; 2
 weight: Pound; 3
}

 	
1 Declares the Patient type

 	
2 Uses the type alias Foot

 	
3 Uses the type alias Pound

 Declarations of type aliases don’t generate code in the compiled JavaScript. In TypeScript, declaring and initializing a variable
 of type Patient can look like the following.

 Listing 2.12. Declaring and initializing a type’s properties

 let patient: Patient = { 1
 name: 'Joe Smith',
 height: 5,
 weight: 100
}

 	
1 We create an instance using the object literal notation.

 What if, while initializing the patient variable, you forget to specify the value of one of the properties, such as weight?

 Listing 2.13. Forgetting to add the weight property

 let patient: Patient = {
 name: 'Joe Smith',
 height: 5
}

 TypeScript will complain:

 "Type '{ name: string; height: number; }' is not assignable to type 'Patient'.
 Property 'weight' is missing in type '{ name: string; height: number; }'."

 If you want to declare some of the properties as optional, you must add a question mark to their names. In the following type
 declaration, providing the value for the weight property is optional, and there won’t be any errors.

 Listing 2.14. Declaring optional properties

 type Patient = {
 name: string;
 height: Height;
 weight?: Weight; 1
}

let patient: Patient = { 2
 name: 'Joe Smith',
 height: 5
}

 	
1 The weight property is optional.

 	
2 The patient variable is initialized without the weight.

 	

 Tip

 You can use the question mark to define optional properties in classes or interfaces as well. You’ll get familiar with TypeScript
 classes and interfaces later in this section.

 	

 You can also use the type keyword to declare a type alias for a function signature. Imagine you’re writing a framework that should allow you to create
 form controls and assign validator functions to them. A validator function must have a specific signature—it must accept an object of type FormControl and return either an object describing the errors of the form control value, or null if the value is valid. You can declare a new ValidatorFn type as follows:

 type ValidatorFn =
 (c: FormControl) => { [key: string]: any }| null

 Here, { [key: string]: any } means an object that can have properties of any type, but the key has to be either of type string or convertable to a string.

 The constructor of the FormControl can have a parameter for the validator function, and it can use the custom ValidatorFn type as follows:

 class FormControl {

 constructor (initialValue: string, validator: ValidatorFn | null) {...};
}

 	

 Tip

 In the appendix, you can see the syntax for declaring optional function parameters in JavaScript. The preceding code snippet
 shows you a way of declaring an optional parameter using the TypeScript union type.

 	

 2.2.2. Using classes as custom types

 We assume you’re familiar with the JavaScript classes covered in the appendix. In this section we’ll start showing you additional
 features that TypeScript brings to JavaScript classes. In chapter 3, we’ll continue covering classes in more detail.

 JavaScript doesn’t offer any syntax for declaring class properties, but TypeScript does. In figure 2.2, on the left, you can see how we declared and instantiated a Person class that has three properties. The right side of figure 2.2 shows the ES6 version of this code produced by the Typescript compiler.

 Figure 2.2. The Person class compiled into JavaScript (ES6)

 [image:]

 As you can see, there are no properties in the JavaScript version of the Person class. Also, since the Person class didn’t declare a constructor, we had to initialize its properties after instantiation. A constructor is a special function
 that’s executed once when the instance of a class is created.

 Declaring a constructor with three arguments would allow you to instantiate the Person class and initialize its properties in one line. In TypeScript you can provide type annotations for a constructor’s arguments,
 but there’s more.

 TypeScript offers the access level qualifiers public, private, and protected (covered in chapter 3), and if you use any of them with the constructor arguments, the Typescript compiler will generate the code for adding these
 arguments as properties in the generated JavaScript object (see figure 2.3).

 Figure 2.3. The Person class with a constructor

 [image:]

 Now the code of the TypeScript class (on the left) is more concise, and the generated JavaScript code creates three properties
 in the constructor. Note line 6 in figure 2.3 on the left. We declared the constant without specifying its type, but we could rewrite this line explicitly specifying the
 type of p as follows:

 const p: Person = new Person("John", "Smith", 25);

 This would be an unnecessary use of an explicit type annotation. Since you declare a constant and immediately initialize it
 with an object of a known type (Person), the TypeScript type checker can easily infer and assign the type to the constant p. The generated JavaScript code will look the same regardless of whether you specify the type of p or not. You can see how to instantiate the class Person without explicitly declaring its type by following this link to the TypeScript Playground: http://mng.bz/zlV1. Hover the mouse pointer over the variable p—its type is Person.

 	

 Tip

 In figure 2.3, we used the public access level with each constructor argument in the TypeScript class, which simply means that the generated corresponding
 properties can be accessed from any code located both inside and outside of the class.

 	

 When you declare properties of a class, you can also mark them as readonly. Such properties can be initialized either at the declaration point or in the class constructor, and their values can’t be
 changed afterwards. The readonly qualifier is similar to the const keyword, but the latter can’t be used with class properties.

 In chapter 8, we’ll start developing a blockchain app, and any blockchain consists of blocks with immutable properties. That app will
 include a Block class, and a fragment of it follows.

 Listing 2.15. The properties of the Block class

 class Block {
 readonly nonce: number; 1
 readonly hash: string; 1

 constructor (
 readonly index: number, 2
 readonly previousHash: string, 2
 readonly timestamp: number, 2
 readonly data: string 2
) {
 const { nonce, hash } = this.mine(); 3
 this.nonce = nonce;
 this.hash = hash;
 }
 // The rest of the code is omitted for brevity
}

 	
1 This property is initialized in the constructor.

 	
2 The value for this property is provided to the constructor during instantiation.

 	
3 Uses destructuring to extract the values from the object returned by the mine() method

 The Block class includes six readonly properties. Note that we don’t need to explicitly declare class properties for constructor arguments that have readonly, private, protected, or public qualifiers as we would in other object-oriented languages. In listing 2.15, two class properties are declared explicitly and four implicitly.

 2.2.3. Using interfaces as custom types

 Many object-oriented languages include a syntax construct called interface, which is used to enforce the implementation of specified properties or methods on an object. JavaScript doesn’t support
 interfaces, but TypeScript does. In this section, we’ll show you how to use interfaces to declare custom types, and in chapter 3, you’ll see how to use interfaces to ensure that a class implements the specified members.

 TypeScript includes the keywords interface and implements to support interfaces, but interfaces aren’t compiled into JavaScript code. They just help you to avoid using wrong types
 during development. Let’s get familiar with using the interface

OEBPS/01fig03_alt.jpg
TypeScript JavaScript JavaScript JavaScript
fles Compile it Bundle 1D Deploy [Chone

mainjs mainjs

OEBPS/01fig04_alt.jpg
JavaScript

JavaScript

JavaScript
file

TypeScript
fles | oie| 1S | e engine
ats ajs main js mainjs
bis bjs
cts cis

Compiler Your TS code
uses uses Bundle

library

lodash.js

JavaScript

OEBPS/01fig01.jpg
TypeScript

ES.Next

ES 3,5,6,7,8

OEBPS/01fig02_alt.jpg
hcaats vt |

Toction et ricerice miger,

consateptotrinipricet 15,
frente e b gt

e gl

Comste mtoerimarictios, 1):
i, o

OEBPS/pub.jpg

OEBPS/arrow.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig05_alt.jpg
1 function getFinalPrice price: number, discount: mumber) (
"2 retumn price - price/discount;
3
w4
45 console.log/getFinalPrice(100, 10);
6 console.log/getFinalPrice(100, "10%") ;|

OEBPS/f0012-01_alt.jpg
s Parean {

s ctass +/ (function () {
fonction personty ¢

)
return person;

OEBPS/f0012-02_alt.jpg
“use strict";
class person {
constructor() {

OEBPS/cover.jpg

OEBPS/02fig01_alt.jpg
Select... D TypeScript Options

=1 1 var taxCode
2 taxCode = 'lowIncome'; 1 ; taxCode = 'lanncome'-

let taxCode

OEBPS/01fig06_alt.jpg
1 function getFinalPrice price: nusber, discoun
return price - price/discount;

2
3
4
5 console. log getFinatPrice 100, 10
6| 77 consote-oplgetFinatprice(100, "1ov));

7
Open another
termical whidow

OEBPS/02fig03_alt.jpg
TypeScript Javascript (ES6)

ctass person ¢ 1
Constructor(pulic firsthase: string, H
e Lasoane strim, mic s mmber) 05 3
) h
5
Const p = e Persant*don, ity 2513 .

5)
- A SO

OEBPS/02fig02_alt.jpg
TypeScript Javascript (ES6)

= class Person {
firstName: string;
lastName: string;
age: number;

“use strict";

class Person {

}

const p = new Person();
p.firstName = "John";
p.lastName = "Smith";
const p = new Person(); p.age = 25;
p.firstName = “John";
p.lastName = "Smitl
10 p.age = 25;

IR T IF IV

1
2
3
4
5 {k
6
7
8
9

