

 [image:]

 Spring in Action

 Sixth Edition

 Craig Walls

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Jennifer Stout

 	

 Technical development editor:

 	

 Joshua White

 	

 Review editor:

 	

 Mihaela Batinić

 	

 Production editor:

 	

 Deirdre S. Hiam

 	

 Copy editor:

 	

 Pamela Hunt

 	

 Proofreader:

 	

 Katie Tennant

 	

 Technical proofreaders:

 	

 Doug Warren and German Gonzalez-Morris

 	

 Typesetter:

 	

 Dennis Dalinnik

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617297571

 From the fifth edition of Spring in Action by Craig Walls

 “A great tool for understanding such a complex framework.”

 —Arnaldo Gabriel Ayala Meyer, Consultores Informáticos S.R.L.

 “Excellent coverage of the latest Spring release with complete practical examples.”

 —Bill Fly, Brookhaven College

 “The go-to book for learning the Spring Framework and an excellent reference guide.”

 —Colin Joyce, Cisco

 “This has always been my go-to book for Spring. The new edition is a comprehensive update that strikes the balance between practical instruction and comprehensive theory. It helps you to get started quickly and follows up with in-depth explanations.”

 —Daniel Vaughan, European Bioinfomatics Institute

 “The definitive guide to building cloud native applications using Spring.”

 —David Witherspoon, Parsons Corporation

 “The source of truth for the Spring ecosystem.”

 —Eddú Meléndez Gonzales, Scotiabank

 “I would highly recommend this book, either for newcomers to the Spring Framework or a seasoned Spring developer who wishes to deep-dive into the latest features available in the Spring 5 ecosystem.”

 —Iain Campbell, Tango Telecom

 “Even as a Spring veteran I got lots of practical tips from this book.”

 —Jettro Coenradie, Luminis

brief contents

 Part 1. Foundational Spring

 1 Getting started with Spring

 2 Developing web applications

 3 Working with data

 4 Working with nonrelational data

 5 Securing Spring

 6 Working with configuration properties

 Part 2. Integrated Spring

 7 Creating REST services

 8 Securing REST

 9 Sending messages asynchronously

 10 Integrating Spring

 Part 3. Reactive Spring

 11 Introducing Reactor

 12 Developing reactive APIs

 13 Persisting data reactively

 14 Working with RSocket

 Part 4. Deployed Spring

 15 Working with Spring Boot Actuator

 16 Administering Spring

 17 Monitoring Spring with JMX

 18 Deploying Spring

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Foundational Spring

 1 Getting started with Spring

 1.1 What is Spring?

 1.2 Initializing a Spring application

 Initializing a Spring project with Spring Tool Suite

 Examining the Spring project structure

 1.3 Writing a Spring application

 Handling web requests

 Defining the view

 Testing the controller

 Building and running the application

 Getting to know Spring Boot DevTools

 Let’s review

 1.4 Surveying the Spring landscape

 The core Spring Framework

 Spring Boot

 Spring Data

 Spring Security

 Spring Integration and Spring Batch

 Spring Cloud

 Spring Native

 2 Developing web applications

 2.1 Displaying information

 Establishing the domain

 Creating a controller class

 Designing the view

 2.2 Processing form submission

 2.3 Validating form input

 Declaring validation rules

 Performing validation at form binding

 Displaying validation errors

 2.4 Working with view controllers

 2.5 Choosing a view template library

 Caching templates

 3 Working with data

 3.1 Reading and writing data with JDBC

 Adapting the domain for persistence

 Working with JdbcTemplate

 Defining a schema and preloading data

 Inserting data

 3.2 Working with Spring Data JDBC

 Adding Spring Data JDBC to the build

 Defining repository interfaces

 Annotating the domain for persistence

 Preloading data with CommandLineRunner

 3.3 Persisting data with Spring Data JPA

 Adding Spring Data JPA to the project

 Annotating the domain as entities

 Declaring JPA repositories

 Customizing repositories

 4 Working with nonrelational data

 4.1 Working with Cassandra repositories

 Enabling Spring Data Cassandra

 Understanding Cassandra data modeling

 Mapping domain types for Cassandra persistence

 Writing Cassandra repositories

 4.2 Writing MongoDB repositories

 Enabling Spring Data MongoDB

 Mapping domain types to documents

 Writing MongoDB repository interfaces

 5 Securing Spring

 5.1 Enabling Spring Security

 5.2 Configuring authentication

 In-memory user details service

 Customizing user authentication

 5.3 Securing web requests

 Securing requests

 Creating a custom login page

 Enabling third-party authentication

 Preventing cross-site request forgery

 5.4 Applying method-level security

 5.5 Knowing your user

 6 Working with configuration properties

 6.1 Fine-tuning autoconfiguration

 Understanding Spring’s environment abstraction

 Configuring a data source

 Configuring the embedded server

 Configuring logging

 Using special property values

 6.2 Creating your own configuration properties

 Defining configuration property holders

 Declaring configuration property metadata

 6.3 Configuring with profiles

 Defining profile-specific properties

 Activating profiles

 Conditionally creating beans with profiles

 Part 2. Integrated Spring

 7 Creating REST services

 7.1 Writing RESTful controllers

 Retrieving data from the server

 Sending data to the server

 Updating data on the server

 Deleting data from the server

 7.2 Enabling data-backed services

 Adjusting resource paths and relation names

 Paging and sorting

 7.3 Consuming REST services

 GETting resources

 PUTting resources

 DELETEing resources

 POSTing resource data

 8 Securing REST

 8.1 Introducing OAuth 2

 8.2 Creating an authorization server

 8.3 Securing an API with a resource server

 8.4 Developing the client

 9 Sending messages asynchronously

 9.1 Sending messages with JMS

 Setting up JMS

 Sending messages with JmsTemplate

 Receiving JMS messages

 9.2 Working with RabbitMQ and AMQP

 Adding RabbitMQ to Spring

 Sending messages with RabbitTemplate

 Receiving messages from RabbitMQ

 9.3 Messaging with Kafka

 Setting up Spring for Kafka messaging

 Sending messages with KafkaTemplate

 Writing Kafka listeners

 10 Integrating Spring

 10.1 Declaring a simple integration flow

 Defining integration flows with XML

 Configuring integration flows in Java

 Using Spring Integration’s DSL configuration

 10.2 Surveying the Spring Integration landscape

 Message channels

 Filters

 Transformers

 Routers

 Splitters

 Service activators

 Gateways

 Channel adapters

 Endpoint modules

 10.3 Creating an email integration flow

 Part 3. Reactive Spring

 11 Introducing Reactor

 11.1 Understanding reactive programming

 Defining Reactive Streams

 11.2 Getting started with Reactor

 Diagramming reactive flows

 Adding Reactor dependencies

 11.3 Applying common reactive operations

 Creating reactive types

 Combining reactive types

 Transforming and filtering reactive streams

 Performing logic operations on reactive types

 12 Developing reactive APIs

 12.1 Working with Spring WebFlux

 Introducing Spring WebFlux

 Writing reactive controllers

 12.2 Defining functional request handlers

 12.3 Testing reactive controllers

 Testing GET requests

 Testing POST requests

 Testing with a live server

 12.4 Consuming REST APIs reactively

 GETting resources

 Sending resources

 Deleting resources

 Handling errors

 Exchanging requests

 12.5 Securing reactive web APIs

 Configuring reactive web security

 Configuring a reactive user details service

 13 Persisting data reactively

 13.1 Working with R2DBC

 Defining domain entities for R2DBC

 Defining reactive repositories

 Testing R2DBC repositories

 Defining an OrderRepository aggregate root service

 13.2 Persisting document data reactively with MongoDB

 Defining domain document types

 Defining reactive MongoDB repositories

 Testing reactive MongoDB repositories

 13.3 Reactively persisting data in Cassandra

 Defining domain classes for Cassandra persistence

 Creating reactive Cassandra repositories

 Testing reactive Cassandra repositories

 14 Working with RSocket

 14.1 Introducing RSocket

 14.2 Creating a simple RSocket server and client

 Working with request-response

 Handling request-stream messaging

 Sending fire-and-forget messages

 Sending messages bidirectionally

 14.3 Transporting RSocket over WebSocket

 Part 4. Deployed Spring

 15 Working with Spring Boot Actuator

 15.1 Introducing Actuator

 Configuring Actuator’s base path

 Enabling and disabling Actuator endpoints

 15.2 Consuming Actuator endpoints

 Fetching essential application information

 Viewing configuration details

 Viewing application activity

 Tapping runtime metrics

 15.3 Customizing Actuator

 Contributing information to the /info endpoint

 Defining custom health indicators

 Registering custom metrics

 Creating custom endpoints

 15.4 Securing Actuator

 16 Administering Spring

 16.1 Using Spring Boot Admin

 Creating an Admin server

 Registering Admin clients

 16.2 Exploring the Admin server

 Viewing general application health and information

 Watching key metrics

 Examining environment properties

 Viewing and setting logging levels

 16.3 Securing the Admin server

 Enabling login in the Admin server

 Authenticating with the Actuator

 17 Monitoring Spring with JMX

 17.1 Working with Actuator MBeans

 17.2 Creating your own MBeans

 17.3 Sending notifications

 18 Deploying Spring

 18.1 Weighing deployment options

 18.2 Building executable JAR files

 18.3 Building container images

 Deploying to Kubernetes

 Enabling graceful shutdown

 Working with application liveness and readiness

 18.4 Building and deploying WAR files

 18.5 The end is where we begin

 Appendix. Bootstrapping Spring applications

 index

 front matter

preface

 Spring entered the development world more than 18 years ago with the fundamental mission of making Java application development easier. Originally, that meant offering a lightweight alternative to EJB 2.x. But Spring was just getting started. Over the years, Spring expanded its mission of simplicity to address common development challenges, including persistence, security, integration, cloud computing, and others.

 Although Spring is closing in on two decades of enabling and simplifying enterprise Java development, it shows no signs of slowing down. Spring continues to address Java development challenges, whether it be creating an application deployed to a conventional application server or a containerized application deployed to a Kubernetes cluster in the cloud. And with Spring Boot providing autoconfiguration, build dependency help, and runtime monitoring, there has never been a better time to be a Spring developer!

 This edition of Spring in Action is your guide to Spring and Spring Boot and has been updated to reflect the best of what both have to offer. Even if you’re new to Spring, you’ll have your first Spring application up and running before the end of the first chapter. As the book progresses, you’ll learn how to create web applications, work with data, secure your application, and manage application configuration. Next, you’ll explore options for integrating your Spring applications with other applications and how to benefit from reactive programming in your Spring applications, including the new RSocket communication protocol. As the book draws to a close, you’ll see how to prepare your application for production and learn options for deploying.

 Whether you’re new to Spring or have many years of Spring development to your credit, this is your next step in your journey. I’m excited for you and happy to bring this guide to you. I look forward to seeing what you create with Spring!

acknowledgments

 One of the most amazing things that Spring and Spring Boot do is automatically provide all of the foundational plumbing for an application, leaving you as a developer to focus primarily on the logic that’s unique to your application. Unfortunately, no such magic exists for writing a book. Or does it?

 At Manning, several people worked their magic to make sure that this book is the best it can possibly be. Many thanks in particular to my development editor, Jenny Stout, and to production editor, Deirdre Hiam, copy editor, Pamela Hunt, graphics editor, Jennifer Houle, and the entire production team for their wonderful work in making this book a reality.

 As the book was forming, we had several peer reviewers take an early look, give us feedback, and help make sure that the book stayed on target and covered the right stuff. For this, my thanks go to Al Pezewski, Alessandro Campeis, Becky Huett, Christian Kreutzer-Beck, Conor Redmond, David Paccoud, David Torrubia Iñigo, David Witherspoon German Gonzalez-Morris, Iain Campbell, Jon Guenther, Kevin Liao, Mark Dechamps, Michael Bright, Philippe Vialatte, Pierre-Michel Ansel, Tony Sweets, William Fly, and Zorodzayi Mukuya.

 I absolutely must give a shout out to everyone on the Spring engineering team. You consistently produce some of the most incredible stuff I’ve ever worked with, and I am proud to consider you my colleagues.

 Many thanks go to my fellow speakers on the No Fluff/Just Stuff tour. I continue to learn so much from every one of you. And many thanks to those of you who have attended one of my sessions on the NFJS tour; although I’m the one at the front of the room, I often learn a lot from you, too.

 As I did in the previous edition, I’d like to thank the Phoenicians. You know what you did.

 Finally, to my beautiful wife, Raymie, the love of my life and my sweetest dream: thank you for your encouragement and for putting up with yet another book project. And to my sweet and wonderful girls, Maisy and Madi: I am so proud of you and of the amazing young ladies you are becoming. I love all of you more than you can possibly know or words can express.

about this book

 Spring in Action, Sixth Edition, was written to equip you to build amazing applications using the Spring Framework, Spring Boot, and a variety of ancillary members of the Spring ecosystem. It begins by showing you how to develop web-based, database-backed Java applications with Spring and Spring Boot. It then expands on the essentials by showing how to integrate with other applications and programs using reactive types. Finally, it discusses how to ready an application for deployment.

 Although all of the projects in the Spring ecosystem provide excellent documentation, this book does something that none of the reference documents do: provide a hands-on, project-driven guide to bringing the elements of Spring together and build a real application.

Who should read this book

 Spring in Action, Sixth Edition, is for Java developers who want to get started with Spring Boot and the Spring Framework as well as for seasoned Spring developers who want to go beyond the basics and learn the newest features of Spring.

How this book is organized: A roadmap

 The book has four parts spanning 18 chapters. Part 1 covers the foundational topics of building Spring applications:

 	

 Chapter 1 introduces Spring and Spring Boot and how to initialize a Spring project. In this chapter, you’ll take the first steps toward building a Spring application that you’ll expand on throughout the course of the book.

 	

 Chapter 2 discusses building the web layer of an application using Spring MVC. In this chapter, you’ll build controllers that handle web requests and views that render information in the web browser.

 	

 Chapter 3 delves into the backend of a Spring application, where data is persisted to a relational database.

 	

 Chapter 4 continues the subject of data persistence by looking at how to persist data to nonrelational databases, specifically, Cassandra and MongoDB.

 	

 In chapter 5, you’ll use Spring Security to authenticate users and prevent unauthorized access to an application.

 	

 Chapter 6 reveals how to configure a Spring application using Spring Boot configuration properties. You’ll also learn how to selectively apply configuration using profiles.

 Part 2 covers topics that help integrate your Spring application with other applications:

 	

 Chapter 7 expands on the discussion of Spring MVC started in chapter 2, by looking at how to write and consume REST APIs in Spring.

 	

 Chapter 8 shows how to secure the APIs created in chapter 7, with Spring Security and OAuth 2.

 	

 Chapter 9 looks at using asynchronous communication to enable a Spring application to both send and receive messages using the Java Message Service, RabbitMQ, or Kafka.

 	

 Chapter 10 discusses declarative application integration using the Spring Integration project.

 Part 3 explores the exciting new support for reactive programming in Spring:

 	

 Chapter 11 introduces Project Reactor, the reactive programming library that underpins Spring 5’s reactive features.

 	

 Chapter 12 revisits REST API development, introducing Spring WebFlux, a new web framework that borrows much from Spring MVC while offering a new reactive model for web development.

 	

 Chapter 13 takes a look at writing reactive data persistence with Spring Data to read and write data to Cassandra and Mongo databases.

 	

 Chapter 14 introduces RSocket, a new communication protocol that offers a reactive alternative to HTTP for creating APIs.

 In part 4, you’ll ready an application for production and see how to deploy it:

 	

 Chapter 15 introduces the Spring Boot Actuator, an extension to Spring Boot that exposes the internals of a running Spring application as REST endpoints.

 	

 In chapter 16, you’ll see how to use Spring Boot Admin to put a user-friendly browser-based administrative application on top of the Actuator.

 	

 Chapter 17 discusses how to expose and consume Spring beans as JMX MBeans.

 	

 Finally, in chapter 18, you’ll see how to deploy your Spring application in a variety of production environments, including Kubernetes.

 In general, developers new to Spring should start with chapter 1 and work through each chapter sequentially. Experienced Spring developers may prefer to jump in at any point that interests them. Even so, each chapter builds on the previous one, so there may be some context missing if you dive into the middle of the book.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/spring-in-action-sixth-edition. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/spring-in-action-sixth-edition, and from GitHub at github.com/habuma/spring-in-action-6-samples.

Book forum

 Purchase of Spring in Action, Sixth Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://forums.manning.com/forums/spring-in-action-sixth-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help?

 	

 The Spring website has several useful getting-started guides (some of which were written by the author of this book) at https://spring.io/guides.

 	

 The Spring tag at Stack Overflow (https://stackoverflow.com/questions/tagged/spring) as well as the Spring Boot tag at Stack Overflow (https://stackoverflow.com/questions/tagged/spring-boot) are great places to ask questions and help others with Spring. Helping someone else with their Spring questions is a great way to learn Spring!

about the author

 Craig Walls is a senior engineer with VMware. He’s a zealous promoter of the Spring Framework, speaking frequently at local user groups and conferences and writing about Spring. When he’s not slinging code, Craig is planning his next trip to Disney World or Disneyland and spending as much time as he can with his wife, two daughters, three dogs, and a parrot.

about the cover illustration

 The figure on the cover of Spring in Action, 6th edition, is “Le Caraco,” or an inhabitant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak, which boasts an ancient hilltop castle with magnificent views of the Dead Sea and surrounding plains. The illustration is taken from a French travel book, Encyclopédie des voyages by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time, and travel guides such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopédie des voyages speaks vividly of the distinctiveness and individuality of the world’s towns and provinces just 200 years ago. This was a time when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other. The travel guide brings to life a sense of isolation and distance of that period, and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life. We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. Foundational Spring

 Part 1 of this book will get you started writing a Spring application, learning the foundations of Spring along the way.

 In chapter 1, I’ll give you a quick overview of Spring and Spring Boot essentials and show you how to initialize a Spring project as you work on building Taco Cloud, your first Spring application. In chapter 2, you’ll dig deeper into the Spring MVC and learn how to present model data in the browser and how to process and validate form input. You’ll also get some tips on choosing a view template library. You’ll add data persistence to the Taco Cloud application in chapter 3, where we’ll cover using Spring’s JDBC template and how to insert data using prepared statements and key holders. Then you’ll see how to declare JDBC (Java Database Connectivity) and JPA (Java Persistence API) repositories with Spring Data. Chapter 4 continues the Spring persistence story by looking at two more Spring Data modules for persisting data to Cassandra and MongoDB. Chapter 5 covers security for your Spring application, including autoconfiguring Spring Security, defining custom user storage, customizing the login page, and securing against cross-site request forgery attacks. To close out part 1, we’ll look at configuration properties in chapter 6. You’ll learn how to fine-tune autoconfigured beans, apply configuration properties to application components, and work with Spring profiles.

1 Getting started with Spring

 This chapter covers

 	
Spring and Spring Boot essentials

 	
Initializing a Spring project

 	
An overview of the Spring landscape

 Although the Greek philosopher Heraclitus wasn’t well known as a software developer, he seems to have had a good handle on the subject. He has been quoted as saying, “The only constant is change.” That statement captures a foundational truth of software development.

 The way we develop applications today is different than it was a year ago, 5 years ago, 10 years ago, and certainly 20 years ago, before an initial form of the Spring Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design and Development (Wrox, 2002, http://mng.bz/oVjy).

 Back then, the most common types of applications developed were browser-based web applications, backed by relational databases. Although that type of development is still relevant—and Spring is well equipped for those kinds of applications—we’re now also interested in developing applications composed of microservices destined for the cloud that persist data in a variety of databases. And a new interest in reactive programming aims to provide greater scalability and improved performance with nonblocking operations.

 As software development evolved, the Spring Framework also changed to address modern development concerns, including microservices and reactive programming. The creators of Spring also set out to simplify its development model by introducing Spring Boot.

 Whether you’re developing a simple database-backed web application or constructing a modern application built around microservices, Spring is the framework that will help you achieve your goals. This chapter is your first step in a journey through modern application development with Spring.

1.1 What is Spring?

 I know you’re probably itching to start writing a Spring application, and I assure you that before this chapter ends, you’ll have developed a simple one. But first, let me set the stage with a few basic Spring concepts that will help you understand what makes Spring tick.

 Any nontrivial application comprises many components, each responsible for its own piece of the overall application functionality, coordinating with the other application elements to get the job done. When the application is run, those components somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application context, that creates and manages application components. These components, or beans, are wired together inside the Spring application context to make a complete application, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection (DI). Rather than have components create and maintain the life cycle of other beans that they depend on, a dependency-injected application relies on a separate entity (the container) to create and maintain all components and inject those into the beans that need them. This is done typically through constructor arguments or property accessor methods.

 For example, suppose that among an application’s many components, you will address two: an inventory service (for fetching inventory levels) and a product service (for providing basic product information). The product service depends on the inventory service to be able to provide a complete set of information about products. Figure 1.1 illustrates the relationships between these beans and the Spring application context.

 On top of its core container, Spring and a full portfolio of related libraries offer a web framework, a variety of data persistence options, a security framework, integration with other systems, runtime monitoring, microservice support, a reactive programming model, and many other features necessary for modern application development.

 Historically, the way you would guide Spring’s application context to wire beans together was with one or more XML files that described the components and their relationship to other components.

 [image:]

 Figure 1.1 Application components are managed and injected into each other by the Spring application context.

 For example, the following XML code declares two beans, an InventoryService bean and a ProductService bean, and wires the InventoryService bean into ProductService via a constructor argument:

 <bean id="inventoryService"

 class="com.example.InventoryService" />

<bean id="productService"

 class="com.example.ProductService" >

 <constructor-arg ref="inventoryService" />

</bean>

 In recent versions of Spring, however, a Java-based configuration is more common. The following Java-based configuration class is equivalent to the XML configuration:

 @Configuration

public class ServiceConfiguration {

 @Bean

 public InventoryService inventoryService() {

 return new InventoryService();

 }

 @Bean

 public ProductService productService() {

 return new ProductService(inventoryService());

 }

}

 The @Configuration annotation indicates to Spring that this is a configuration class that will provide beans to the Spring application context.

 The configuration’s methods are annotated with @Bean, indicating that the objects they return should be added as beans in the application context (where, by default, their respective bean IDs will be the same as the names of the methods that define them).

 Java-based configuration offers several benefits over XML-based configuration, including greater type safety and improved refactorability. Even so, explicit configuration with either Java or XML is necessary only if Spring is unable to automatically configure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring and component scanning. With component scanning, Spring can automatically discover components from an application’s classpath and create them as beans in the Spring application context. With autowiring, Spring automatically injects the components with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has gone well beyond component scanning and autowiring. Spring Boot is an extension of the Spring Framework that offers several productivity enhancements. The most well known of these enhancements is autoconfiguration, where Spring Boot can make reasonable guesses at what components need to be configured and wired together, based on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration, but I can’t. Autoconfiguration is much like the wind—you can see the effects of it, but there’s no code that I can show you and say “Look! Here’s an example of autoconfiguration!” Stuff happens, components are enabled, and functionality is provided without writing code. It’s this lack of code that’s essential to autoconfiguration and what makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit configuration (whether with XML or Java) required to build an application. In fact, by the time you finish the example in this chapter, you’ll have a working Spring application that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine developing Spring applications without it. For that reason, this book treats Spring and Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possible and explicit configuration only when necessary. And, because Spring XML configuration is the old-school way of working with Spring, we’ll focus primarily on Spring’s Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes the phrase in action, so let’s get moving, so you can start writing your first application with Spring.

1.2 Initializing a Spring application

 Through the course of this book, you’ll create Taco Cloud, an online application for ordering the most wonderful food created by man—tacos. Of course, you’ll use Spring, Spring Boot, and a variety of related libraries and frameworks to achieve this goal.

 You’ll find several options for initializing a Spring application. Although I could walk you through the steps of manually creating a project directory structure and defining a build specification, that’s wasted time—time better spent writing application code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your application.

 The Spring Initializr is both a browser-based web application and a REST API, which can produce a skeleton Spring project structure that you can flesh out with whatever functionality you want. Several ways to use Spring Initializr follow:

 	

 From the web application at http://start.spring.io

 	

 From the command line using the curl command

 	

 From the command line using the Spring Boot command-line interface

 	

 When creating a new project with Spring Tool Suite

 	

 When creating a new project with IntelliJ IDEA

 	

 When creating a new project with Apache NetBeans

 Rather than spend several pages of this chapter talking about each one of these options, I’ve collected those details in the appendix. In this chapter, and throughout this book, I’ll show you how to create a new project using my favorite option: Spring Initializr support in Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environment that comes in the form of extensions for Eclipse, Visual Studio Code, or the Theia IDE. You can download ready-to-run binaries of Spring Tool Suite at https://spring.io/tools. Spring Tool Suite offers a handy Spring Boot Dashboard feature that makes it easy to start, restart, and stop Spring Boot applications from the IDE.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over to the appendix and substitute the Initializr option that suits you best for the instructions in the following sections. But know that throughout this book, I may occasionally reference features specific to Spring Tool Suite, such as the Spring Boot Dashboard. If you’re not using Spring Tool Suite, you’ll need to adapt those instructions to fit your IDE.

1.2.1 Initializing a Spring project with Spring Tool Suite

 To get started with a new Spring project in Spring Tool Suite, go to the File menu and select New, and then select Spring Starter Project. Figure 1.2 shows the menu structure to look for.

 [image:]

 Figure 1.2 Starting a new project with the Initializr in Spring Tool Suite

 Once you select Spring Starter Project, a new project wizard dialog (figure 1.3) appears. The first page in the wizard asks you for some general project information, such as the project name, description, and other essential information. If you’re familiar with the contents of a Maven pom.xml file, you’ll recognize most of the fields as items that end up in a Maven build specification. For the Taco Cloud application, fill in the dialog as shown in figure 1.3, and then click Next.

 [image:]

 Figure 1.3 Specifying general project information for the Taco Cloud application

 The next page in the wizard lets you select dependencies to add to your project (see figure 1.4). Notice that near the top of the dialog, you can select on which version of Spring Boot you want to base your project. This defaults to the most current version available. It’s generally a good idea to leave it as is unless you need to target a different version.

 [image:]

 Figure 1.4 Choosing starter dependencies

 As for the dependencies themselves, you can either expand the various sections and seek out the desired dependencies manually or search for them in the search box at the top of the Available list. For the Taco Cloud application, you’ll start with the dependencies shown in figure 1.4.

 At this point, you can click Finish to generate the project and add it to your workspace. But if you’re feeling slightly adventurous, click Next one more time to see the final page of the new starter project wizard, as shown in figure 1.5.

 [image:]

 Figure 1.5 Optionally specifying an alternate Initializr address

 By default, the new project wizard makes a call to the Spring Initializr at http://start.spring.io to generate the project. Generally, there’s no need to override this default, which is why you could have clicked Finish on the second page of the wizard. But if for some reason you’re hosting your own clone of Initializr (perhaps a local copy on your own machine or a customized clone running inside your company firewall), then you’ll want to change the Base Url field to point to your Initializr instance before clicking Finish.

 After you click Finish, the project is downloaded from the Initializr and loaded into your workspace. Wait a few moments for it to load and build, and then you’ll be ready to start developing application functionality. But first, let’s take a look at what the Initializr gave you.

1.2.2 Examining the Spring project structure

 After the project loads in the IDE, expand it to see what it contains. Figure 1.6 shows the expanded Taco Cloud project in Spring Tool Suite.

 [image:]

 Figure 1.6 The initial Spring project structure as shown in Spring Tool Suite

 You may recognize this as a typical Maven or Gradle project structure, where application source code is placed under src/main/java, test code is placed under src/test/java, and non-Java resources are placed under src/main/resources. Within that project structure, you’ll want to take note of the following items:

 	

 mvnw and mvnw.cmd—These are Maven wrapper scripts. You can use these scripts to build your project, even if you don’t have Maven installed on your machine.

 	

 pom.xml—This is the Maven build specification. We’ll look deeper into this in a moment.

 	

 TacoCloudApplication.java—This is the Spring Boot main class that bootstraps the project. We’ll take a closer look at this class in a moment.

 	

 application.properties—This file is initially empty but offers a place where you can specify configuration properties. We’ll tinker with this file a little in this chapter, but I’ll postpone a detailed explanation of configuration properties to chapter 6.

 	

 static—This folder is where you can place any static content (images, stylesheets, JavaScript, and so forth) that you want to serve to the browser. It’s initially empty.

 	

 templates—This folder is where you’ll place template files that will be used to render content to the browser. It’s initially empty, but you’ll add a Thymeleaf template soon.

 	

 TacoCloudApplicationTests.java—This is a simple test class that ensures that the Spring application context loads successfully. You’ll add more tests to the mix as you develop the application.

 As the Taco Cloud application grows, you’ll fill in this barebones project structure with Java code, images, stylesheets, tests, and other collateral that will make your project more complete. But in the meantime, let’s dig a little deeper into a few of the items that Spring Initializr provided.

 Exploring the build specification

 When you filled out the Initializr form, you specified that your project should be built with Maven. Therefore, the Spring Initializr gave you a pom.xml file already populated with the choices you made. The following listing shows the entire pom.xml file provided by the Initializr.

 Listing 1.1 The initial Maven build specification

 <?xml version="1.0" encoding="UTF-8"?><project

xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.5.3</version> ❶

 <relativePath />

 </parent>

 <groupId>sia</groupId>

 <artifactId>taco-cloud</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>taco-cloud</name>

 <description>Taco Cloud Example</description>

 <properties>

 <java.version>11</java.version>

 </properties>

 <dependencies>

 <dependency> ❷

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-thymeleaf</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-devtools</artifactId>

 <scope>runtime</scope>

 <optional>true</optional>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 <exclusions>

 <exclusion>

 <groupId>org.junit.vintage</groupId>

 <artifactId>junit-vintage-engine</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin> ❸

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

 <repositories>

 <repository>

 <id>spring-milestones</id>

 <name>Spring Milestones</name>

 <url>https://repo.spring.io/milestone</url>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-milestones</id>

 <name>Spring Milestones</name>

 <url>https://repo.spring.io/milestone</url>

 </pluginRepository>

 </pluginRepositories>

</project>

 ❶ Spring Boot version

 ❷ Starter dependencies

 ❸ Spring Boot plugin

 The first thing to take note of is the <parent> element and, more specifically, its <version> child. This specifies that your project has spring-boot-starter-parent as its parent POM. Among other things, this parent POM provides dependency management for several libraries commonly used in Spring projects. For those libraries covered by the parent POM, you won’t have to specify a version, because it’s inherited from the parent. The version, 2.5.6, indicates that you’re using Spring Boot 2.5.6 and, thus, will inherit dependency management as defined by that version of Spring Boot. Among other things, Spring Boot’s dependency management for version 2.5.6 specifies that the underlying version of the core Spring Framework will be 5.3.12.

 While we’re on the subject of dependencies, note that there are four dependencies declared under the <dependencies> element. The first three should look somewhat familiar to you. They correspond directly to the Spring Web, Thymeleaf, and Spring Boot DevTools dependencies that you selected before clicking the Finish button in the Spring Tool Suite new project wizard. The other dependency is one that provides a lot of helpful testing capabilities. You didn’t have to check a box for it to be included because the Spring Initializr assumes (hopefully, correctly) that you’ll be writing tests.

 You may also notice that all dependencies except for the DevTools dependency have the word starter in their artifact ID. Spring Boot starter dependencies are special in that they typically don’t have any library code themselves but instead transitively pull in other libraries. These starter dependencies offer the following primary benefits:

 	

 Your build file will be significantly smaller and easier to manage because you won’t need to declare a dependency on every library you might need.

 	

 You’re able to think of your dependencies in terms of what capabilities they provide, rather than their library names. If you’re developing a web application, you’ll add the web starter dependency rather than a laundry list of individual libraries that enable you to write a web application.

 	

 You’re freed from the burden of worrying about library versions. You can trust that the versions of the libraries brought in transitively will be compatible for a given version of Spring Boot. You need to worry only about which version of Spring Boot you’re using.

 Finally, the build specification ends with the Spring Boot plugin. This plugin performs a few important functions, described next:

 	

 It provides a Maven goal that enables you to run the application using Maven.

 	

 It ensures that all dependency libraries are included within the executable JAR file and available on the runtime classpath.

 	

 It produces a manifest file in the JAR file that denotes the bootstrap class (TacoCloudApplication, in your case) as the main class for the executable JAR.

 Speaking of the bootstrap class, let’s open it up and take a closer look.

 Bootstrapping the application

 Because you’ll be running the application from an executable JAR, it’s important to have a main class that will be executed when that JAR file is run. You’ll also need at least a minimal amount of Spring configuration to bootstrap the application. That’s what you’ll find in the TacoCloudApplication class, shown in the following listing.

 Listing 1.2 The Taco Cloud bootstrap class

 package tacos;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication ❶

public class TacoCloudApplication {

 public static void main(String[] args) {

 SpringApplication.run(TacoCloudApplication.class, args); ❷

 }

}

 ❶ Spring Boot application

 ❷ Runs the application

 Although there’s little code in TacoCloudApplication, what’s there packs quite a punch. One of the most powerful lines of code is also one of the shortest. The @SpringBootApplication annotation clearly signifies that this is a Spring Boot application. But there’s more to @SpringBootApplication than meets the eye.

 @SpringBootApplication is a composite annotation that combines the following three annotations:

 	

 @SpringBootConfiguration—Designates this class as a configuration class. Although there’s not much configuration in the class yet, you can add Java-based Spring Framework configuration to this class if you need to. This annotation is, in fact, a specialized form of the @Configuration annotation.

 	

 @EnableAutoConfiguration—Enables Spring Boot automatic configuration. We’ll talk more about autoconfiguration later. For now, know that this annotation tells Spring Boot to automatically configure any components that it thinks you’ll need.

 	

 @ComponentScan—Enables component scanning. This lets you declare other classes with annotations like @Component, @Controller, and @Service to have Spring automatically discover and register them as components in the Spring application context.

 The other important piece of TacoCloudApplication is the main() method. This is the method that will be run when the JAR file is executed. For the most part, this method is boilerplate code; every Spring Boot application you write will have a method similar or identical to this one (class name differences notwithstanding).

 The main() method calls a static run() method on the SpringApplication class, which performs the actual bootstrapping of the application, creating the Spring application context. The two parameters passed to the run() method are a configuration class and the command-line arguments. Although it’s not necessary that the configuration class passed to run() be the same as the bootstrap class, this is the most convenient and typical choice.

 Chances are you won’t need to change anything in the bootstrap class. For simple applications, you might find it convenient to configure one or two other components in the bootstrap class, but for most applications, you’re better off creating a separate configuration class for anything that isn’t autoconfigured. You’ll define several configuration classes throughout the course of this book, so stay tuned for details.

 Testing the application

 Testing is an important part of software development. You can always test your project manually by building it and then running it from the command line like this:

 $./mvnw package

...

$ java -jar target/taco-cloud-0.0.1-SNAPSHOT.jar

 Or, because we’re using Spring Boot, the Spring Boot Maven plugin makes it even easier, as shown next:

 $./mvnw spring-boot:run

 But manual testing implies that there’s a human involved and thus potential for human error and inconsistent testing. Automated tests are more consistent and repeatable.

 Recognizing this, the Spring Initializr gives you a test class to get started. The following listing shows the baseline test class.

 Listing 1.3 A baseline application test

 package tacos;

import org.junit.jupiter.api.Test;

import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest ❶

public class TacoCloudApplicationTests {

 @Test ❷

 public void contextLoads() {

 }

}

 ❶ A Spring Boot test

 ❷ The test method

 There’s not much to be seen in TacoCloudApplicationTests: the one test method in the class is empty. Even so, this test class does perform an essential check to ensure that the Spring application context can be loaded successfully. If you make any changes that prevent the Spring application context from being created, this test fails, and you can react by fixing the problem.

 The @SpringBootTest annotation tells JUnit to bootstrap the test with Spring Boot capabilities. Just like @SpringBootApplication, @SpringBootTest is a composite annotation, which is itself annotated with @ExtendWith(SpringExtension.class), to add Spring testing capabilities to JUnit 5. For now, though, it’s enough to think of this as the test class equivalent of calling SpringApplication.run() in a main() method. Over the course of this book, you’ll see @SpringBootTest several times, and we’ll uncover some of its power.

 Finally, there’s the test method itself. Although @SpringBootTest is tasked with loading the Spring application context for the test, it won’t have anything to do if there aren’t any test methods. Even without any assertions or code of any kind, this empty test method will prompt the two annotations to do their job and load the Spring application context. If there are any problems in doing so, the test fails.

 To run this and any test classes from the command line, you can use the following Maven incantation:

 $./mvnw test

 At this point, we’ve concluded our review of the code provided by the Spring Initializr. You’ve seen some of the boilerplate foundation that you can use to develop a Spring application, but you still haven’t written a single line of code. Now it’s time to fire up your IDE, dust off your keyboard, and add some custom code to the Taco Cloud application.

1.3 Writing a Spring application

 Because you’re just getting started, we’ll start off with a relatively small change to the Taco Cloud application, but one that will demonstrate a lot of Spring’s goodness. It seems appropriate that as you’re just starting, the first feature you’ll add to the Taco Cloud application is a home page. As you add the home page, you’ll create the following two code artifacts:

 	

 A controller class that handles requests for the home page

 	

 A view template that defines what the home page looks like

 And because testing is important, you’ll also write a simple test class to test the home page. But first things first ... let’s write that controller.

1.3.1 Handling web requests

 Spring comes with a powerful web framework known as Spring MVC. At the center of Spring MVC is the concept of a controller, a class that handles requests and responds with information of some sort. In the case of a browser-facing application, a controller responds by optionally populating model data and passing the request on to a view to produce HTML that’s returned to the browser.

 You’re going to learn a lot about Spring MVC in chapter 2. But for now, you’ll write a simple controller class that handles requests for the root path (for example, /) and forwards those requests to the home page view without populating any model data. The following listing shows the simple controller class.

 Listing 1.4 The home page controller

 package tacos;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

@Controller ❶

public class HomeController {

 @GetMapping("/") ❷

 public String home() {

 return "home"; ❸

 }

}

 ❶ The controller

 ❷ Handles requests for the root path /

 ❸ Returns the view name

 As you can see, this class is annotated with @Controller. On its own, @Controller doesn’t do much. Its primary purpose is to identify this class as a component for component scanning. Because HomeController is annotated with @Controller, Spring’s component scanning automatically discovers it and creates an instance of HomeController as a bean in the Spring application context.

 In fact, a handful of other annotations (including @Component, @Service, and @Repository) serve a purpose similar to @Controller. You could have just as effectively annotated HomeController with any of those other annotations, and it would have still worked the same. The choice of @Controller is, however, more descriptive of this component’s role in the application.

 The home() method is as simple as controller methods come. It’s annotated with @GetMapping to indicate that if an HTTP GET request is received for the root path /, then this method should handle that request. It does so by doing nothing more than returning a String value of home.

 This value is interpreted as the logical name of a view. How that view is implemented depends on a few factors, but because Thymeleaf is in your classpath, you can define that template with Thymeleaf.

 Why Thymeleaf?

 You may be wondering why I chose Thymeleaf for a template engine. Why not JSP? Why not FreeMarker? Why not one of several other options?

 Put simply, I had to choose something, and I like Thymeleaf and generally prefer it over those other options. And even though JSP may seem like an obvious choice, there are some challenges to overcome when using JSP with Spring Boot. I didn’t want to go down that rabbit hole in chapter 1. Hang tight. We’ll look at other template options, including JSP, in chapter 2.

 The template name is derived from the logical view name by prefixing it with /templates/ and postfixing it with .html. The resulting path for the template is /templates/home.html. Therefore, you’ll need to place the template in your project at /src/main/resources/templates/home.html. Let’s create that template now.

1.3.2 Defining the view

 In the interest of keeping your home page simple, it should do nothing more than welcome users to the site. The next listing shows the basic Thymeleaf template that defines the Taco Cloud home page.

 Listing 1.5 The Taco Cloud home page template

 <!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:th="http://www.thymeleaf.org">

 <head>

 <title>Taco Cloud</title>

 </head>

 <body>

 <h1>Welcome to...</h1>

 </body>

</html>

 There’s not much to discuss with regard to this template. The only notable line of code is the one with the tag to display the Taco Cloud logo. It uses a Thymeleaf th:src attribute and an @{...} expression to reference the image with a context-relative path. Aside from that, it’s not much more than a Hello World page.

 Let’s talk about that image a bit more. I’ll leave it up to you to define a Taco Cloud logo that you like. But you’ll need to make sure you place it at the right place within the project.

 The image is referenced with the context-relative path /images/TacoCloud.png. As you’ll recall from our review of the project structure, static content, such as images, is kept in the /src/main/resources/static folder. That means that the Taco Cloud logo image must also reside within the project at /src/main/resources/static/ images/TacoCloud.png.

 Now that you’ve got a controller to handle requests for the home page and a view template to render the home page, you’re almost ready to fire up the application and see it in action. But first, let’s see how you can write a test against the controller.

1.3.3 Testing the controller

 Testing web applications can be tricky when making assertions against the content of an HTML page. Fortunately, Spring comes with some powerful test support that makes testing a web application easy.

 For the purposes of the home page, you’ll write a test that’s comparable in complexity to the home page itself. Your test will perform an HTTP GET request for the root path / and expect a successful result where the view name is home and the resulting content contains the phrase “Welcome to....” The following code should do the trick.

 Listing 1.6 A test for the home page controller

 package tacos;

import static org.hamcrest.Matchers.containsString;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;

import org.springframework.test.web.servlet.MockMvc;

@WebMvcTest(HomeController.class) ❶

public class HomeControllerTest {

 @Autowired

 private MockMvc mockMvc; ❷

 @Test

 public void testHomePage() throws Exception {

 mockMvc.perform(get("/")) ❸

 .andExpect(status().isOk()) ❹

 .andExpect(view().name("home")) ❺

 .andExpect(content().string(❻

 containsString("Welcome to...")));

 }

}

 ❶ Web test for HomeController

 ❷ Injects MockMvc

 ❸ Performs GET /

 ❹ Expects HTTP 200

 ❺ Expects home view

 ❻ Expects Welcome to...

 The first thing you might notice about this test is that it differs slightly from the TacoCloudApplicationTests class with regard to the annotations applied to it. Instead of @SpringBootTest markup, HomeControllerTest is annotated with @WebMvcTest. This is a special test annotation provided by Spring Boot that arranges for the test to run in the context of a Spring MVC application. More specifically, in this case, it arranges for HomeController to be registered in Spring MVC so that you can send requests to it.

 @WebMvcTest also sets up Spring support for testing Spring MVC. Although it could be made to start a server, mocking the mechanics of Spring MVC is sufficient for your purposes. The test class is injected with a MockMvc object (thanks to the @Autowired annotation) for the test to drive the mockup.

 The testHomePage() method defines the test you want to perform against the home page. It starts with the MockMvc object to perform an HTTP GET request for / (the root path). From that request, it sets the following expectations:

 	

 The response should have an HTTP 200 (OK) status.

 	

 The view should have a logical name of home.

 	

 The rendered view should contain the text “Welcome to....”

 You can run the test in your IDE of choice or with Maven like this:

 $ mvnw test

 If, after the MockMvc object performs the request, any of those expectations aren’t met, then the test will fail. But your controller and view template are written to satisfy those expectations, so the test should pass with flying colors—or at least with some shade of green indicating a passing test.

 The controller has been written, the view template created, and you have a passing test. It seems that you’ve implemented the home page successfully. But even though the test passes, there’s something slightly more satisfying with seeing the results in a browser. After all, that’s how Taco Cloud customers are going to see it. Let’s build the application and run it.

1.3.4 Building and running the application

 Just as we have several ways to initialize a Spring application, we also have several ways to run one. If you like, you can flip over to the appendix to read about some of the more common ways to run a Spring Boot application.

 Because you chose to use Spring Tool Suite to initialize and work on the project, you have a handy feature called the Spring Boot Dashboard available to help you run your application inside the IDE. The Spring Boot Dashboard appears as a tab, typically near the bottom left of the IDE window. Figure 1.7 shows an annotated screenshot of the Spring Boot Dashboard.

 [image:]

 Figure 1.7 Highlights of the Spring Boot Dashboard

 I don’t want to spend much time going over everything the Spring Boot Dashboard does, although figure 1.7 covers some of the most useful details. The important thing to know right now is how to use it to run the Taco Cloud application. Make sure taco-cloud application is highlighted in the list of projects (it’s the only application shown in figure 1.7), and then click the start button (the left-most button with both a green triangle and a red square). The application should start right up.

 As the application starts, you’ll see some Spring ASCII art fly by in the console, followed by some log entries describing the steps as the application starts. Before the logging stops, you’ll see a log entry saying Tomcat started on port(s): 8080 (http), which means that you’re ready to point your web browser at the home page to see the fruits of your labor.

 Wait a minute. Tomcat started? When did you deploy the application to a Tomcat web server?

 Spring Boot applications tend to bring everything they need with them and don’t need to be deployed to some application server. You never deployed your application to Tomcat—Tomcat is a part of your application! (I’ll describe the details of how Tomcat became part of your application in section 1.3.6.)

 Now that the application has started, point your web browser to http://localhost:8080 (or click the globe button in the Spring Boot Dashboard) and you should see something like figure 1.8. Your results may be different if you designed your own logo image, but it shouldn’t vary much from what you see in figure 1.8.

 [image:]

 Figure 1.8 The Taco Cloud home page

 It may not be much to look at. But this isn’t exactly a book on graphic design. The humble appearance of the home page is more than sufficient for now. And it provides you a solid start on getting to know Spring.

 One thing I’ve glossed over up until now is DevTools. You selected it as a dependency when initializing your project. It appears as a dependency in the generated pom.xml file. And the Spring Boot Dashboard even shows that the project has DevTools enabled. But what is DevTools, and what does it do for you? Let’s take a quick survey of a couple of DevTools’s most useful features.

1.3.5 Getting to know Spring Boot DevTools

 As its name suggests, DevTools provides Spring developers with some handy development-time tools. Among those are the following:

 	

 Automatic application restart when code changes

 	

 Automatic browser refresh when browser-destined resources (such as templates, JavaScript, stylesheets, and so on) change

 	

 Automatic disabling of template caches

 	

 Built in H2 Console, if the H2 database is in use

 It’s important to understand that DevTools isn’t an IDE plugin, nor does it require that you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA, and NetBeans. Furthermore, because it’s intended only for development purposes, it’s smart enough to disable itself when deploying in a production setting. We’ll discuss how it does this when you get around to deploying your application in chapter 18. For now, let’s focus on the most useful features of Spring Boot DevTools, starting with automatic application restart.

 Automatic application restart

 With DevTools as part of your project, you’ll be able to make changes to Java code and properties files in the project and see those changes applied after a brief moment. DevTools monitors for changes, and when it sees something has changed, it automatically restarts the application.

 More precisely, when DevTools is active, the application is loaded into two separate class loaders in the Java virtual machine (JVM). One class loader is loaded with your Java code, property files, and pretty much anything that’s in the src/main/ path of the project. These are items that are likely to change frequently. The other class loader is loaded with dependency libraries, which aren’t likely to change as often.

 When a change is detected, DevTools reloads only the class loader containing your project code and restarts the Spring application context but leaves the other class loader and the JVM intact. Although subtle, this strategy affords a small reduction in the time it takes to start the application.

 The downside of this strategy is that changes to dependencies won’t be available in automatic restarts. That’s because the class loader containing dependency libraries isn’t automatically reloaded. Any time you add, change, or remove a dependency in your build specification, you’ll need to do a hard restart of the application for those changes to take effect.

 Automatic browser refresh and template cache disable

 By default, template options such as Thymeleaf and FreeMarker are configured to cache the results of template parsing so that templates don’t need to be reparsed with every request they serve. This is great in production, because it buys a bit of a performance benefit.

 Cached templates, however, are not so great at development time. They make it impossible to make changes to the templates while the application is running and see the results after refreshing the browser. Even if you’ve made changes, the cached template will still be in use until you restart the application.

 DevTools addresses this issue by automatically disabling all template caching. Make as many changes as you want to your templates and know that you’re only a browser refresh away from seeing the results.

 But if you’re like me, you don’t even want to be burdened with the effort of clicking the browser’s refresh button. It’d be much nicer if you could make the changes and witness the results in the browser immediately. Fortunately, DevTools has something special for those of us who are too lazy to click a refresh button.

 DevTools automatically enables a LiveReload server (http://livereload.com/) along with your application. By itself, the LiveReload server isn’t very useful. But when coupled with a corresponding LiveReload browser plugin, it causes your browser to automatically refresh when changes are made to templates, images, stylesheets, JavaScript, and so on—in fact, almost anything that ends up being served to your browser.

 LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers. (Sorry, Internet Explorer and Edge fans.) Visit http://livereload.com/extensions/ to find information on how to install LiveReload for your browser.

 Built-in H2 console

 Although your project doesn’t yet use a database, that will change in chapter 3. If you choose to use the H2 database for development, DevTools will also automatically enable an H2 console that you can access from your web browser. You only need to point your web browser to http:/ /localhost:8080/h2-console to gain insight into the data your application is working with.

 At this point, you’ve written a complete, albeit simple, Spring application. You’ll expand on it throughout the course of the book. But now is a good time to step back and review what you’ve accomplished and how Spring played a part.

1.3.6 Let’s review

 Think back on how you got to this point. In short, you’ve taken the following steps to build your Taco Cloud Spring application:

 	

 You created an initial project structure using the Spring Initializr.

 	

 You wrote a controller class to handle the home page request.

 	

 You defined a view template to render the home page.

 	

 You wrote a simple test class to prove your work.

 Seems pretty straightforward, doesn’t it? With the exception of the first step to bootstrap the project, each action you’ve taken has been keenly focused on achieving the goal of producing a home page.

 In fact, almost every line of code you’ve written is aimed toward that goal. Not counting Java import statements, I count only two lines of code in your controller class and no lines in the view template that are Spring-specific. And although the bulk of the test class utilizes Spring testing support, it seems a little less invasive in the context of a test.

 That’s an important benefit of developing with Spring. You can focus on the code that meets the requirements of an application, rather than on satisfying the demands of a framework. Although you’ll no doubt need to write some framework-specific code from time to time, it’ll usually be only a small fraction of your codebase. As I said before, Spring (with Spring Boot) can be considered the frameworkless framework.

 How does this even work? What is Spring doing behind the scenes to make sure your application needs are met? To understand what Spring is doing, let’s start by looking at the build specification.

 In the pom.xml file, you declared a dependency on the Web and Thymeleaf starters. These two dependencies transitively brought in a handful of other dependencies, including the following:

 	

 Spring’s MVC framework

 	

 Embedded Tomcat

 	

 Thymeleaf and the Thymeleaf layout dialect

 It also brought Spring Boot’s autoconfiguration library along for the ride. When the application starts, Spring Boot autoconfiguration detects those libraries and automatically performs the following tasks:

 	

 Configures the beans in the Spring application context to enable Spring MVC

 	

 Configures the embedded Tomcat server in the Spring application context

 	

 Configures a Thymeleaf view resolver for rendering Spring MVC views with Thymeleaf templates

 In short, autoconfiguration does all the grunt work, leaving you to focus on writing code that implements your application functionality. That’s a pretty sweet arrangement, if you ask me!

 Your Spring journey has just begun. The Taco Cloud application only touched on a small portion of what Spring has to offer. Before you take your next step, let’s survey the Spring landscape and see what landmarks you’ll encounter on your journey.

1.4 Surveying the Spring landscape

 To get an idea of the Spring landscape, look no further than the enormous list of checkboxes on the full version of the Spring Initializr web form. It lists over 100 dependency choices, so I won’t try to list them all here or to provide a screenshot. But I encourage you to take a look. In the meantime, I’ll mention a few of the highlights.

1.4.1 The core Spring Framework

 As you might expect, the core Spring Framework is the foundation of everything else in the Spring universe. It provides the core container and dependency injection framework. But it also provides a few other essential features.

 Among these is Spring MVC, Spring’s web framework. You’ve already seen how to use Spring MVC to write a controller class to handle web requests. What you’ve not yet seen, however, is that Spring MVC can also be used to create REST APIs that produce non-HTML output. We’re going to dig more into Spring MVC in chapter 2 and then take another look at how to use it to create REST APIs in chapter 7.

 The core Spring Framework also offers some elemental data persistence support, specifically, template-based JDBC support. You’ll see how to use JdbcTemplate in chapter 3.

 Spring includes support for reactive-style programming, including a new reactive web framework called Spring WebFlux that borrows heavily from Spring MVC. You’ll look at Spring’s reactive programming model in part 3 and Spring WebFlux specifically in chapter 12.

1.4.2 Spring Boot

 We’ve already seen many of the benefits of Spring Boot, including starter dependencies and autoconfiguration. Be certain that we’ll use as much of Spring Boot as possible throughout this book and avoid any form of explicit configuration, unless it’s absolutely necessary. But in addition to starter dependencies and autoconfiguration, Spring Boot also offers the following other useful features:

 	

 The Actuator provides runtime insight into the inner workings of an application, including metrics, thread dump information, application health, and environment properties available to the application.

 	

 Flexible specification of environment properties.

 	

 Additional testing support on top of the testing assistance found in the core framework.

 What’s more, Spring Boot offers an alternative programming model based on Groovy scripts that’s called the Spring Boot CLI (command-line interface). With the Spring Boot CLI, you can write entire applications as a collection of Groovy scripts and run them from the command line. We won’t spend much time with the Spring Boot CLI, but we’ll touch on it on occasion when it fits our needs.

 Spring Boot has become such an integral part of Spring development that I can’t imagine developing a Spring application without it. Consequently, this book takes a Spring Boot–centric view, and you might catch me using the word Spring when I’m referring to something that Spring Boot is doing.

1.4.3 Spring Data

 Although the core Spring Framework comes with basic data persistence support, Spring Data provides something quite amazing: the ability to define your application’s data repositories as simple Java interfaces, using a naming convention when defining methods to drive how data is stored and retrieved.

 What’s more, Spring Data is capable of working with several different kinds of databases, including relational (via JDBC or JPA), document (Mongo), graph (Neo4j), and others. You’ll use Spring Data to help create repositories for the Taco Cloud application in chapter 3.

1.4.4 Spring Security

 Application security has always been an important topic, and it seems to become more important every day. Fortunately, Spring has a robust security framework in Spring Security.

 Spring Security addresses a broad range of application security needs, including authentication, authorization, and API security. Although the scope of Spring Security is too large to be properly covered in this book, we’ll touch on some of the most common use cases in chapters 5 and 12.

1.4.5 Spring Integration and Spring Batch

 At some point, most applications will need to integrate with other applications or even with other components of the same application. Several patterns of application integration have emerged to address these needs. Spring Integration and Spring Batch provide the implementation of these patterns for Spring applications.

 Spring Integration addresses real-time integration where data is processed as it’s made available. In contrast, Spring Batch addresses batched integration where data is allowed to collect for a time until some trigger (perhaps a time trigger) signals that it’s time for the batch of data to be processed. You’ll explore Spring Integration in chapter 10.

1.4.6 Spring Cloud

 The application development world is entering a new era where we’ll no longer develop our applications as single-deployment, unit monoliths and will instead compose applications from several individual deployment units known as microservices.

 Microservices are a hot topic, addressing several practical development and runtime concerns. In doing so, however, they bring to fore their own challenges. Those challenges are met head-on by Spring Cloud, a collection of projects for developing cloud-native applications with Spring.

 Spring Cloud covers a lot of ground, and it’d be impossible to cover it all in this book. For a complete discussion of Spring Cloud, I suggest taking a look at Cloud Native Spring in Action by Thomas Vitale (Manning, 2020, www.manning.com/books/cloud-native-spring-in-action).

1.4.7 Spring Native

 A relatively new development in Spring is the Spring Native project. This experimental project enables compilation of Spring Boot projects into native executables using the GraalVM native-image compiler, resulting in images that start significantly faster and have a lighter footprint.

 For more information on Spring Native, see https://github.com/spring-projects-experimental/spring-native.

Summary

 	

 Spring aims to make developer challenges easy, like creating web applications, working with databases, securing applications, and microservices.

 	

 Spring Boot builds on top of Spring to make Spring even easier with simplified dependency management, automatic configuration, and runtime insights.

 	

 Spring applications can be initialized using the Spring Initializr, which is web-based and supported natively in most Java development environments.

 	

 The components, commonly referred to as beans, in a Spring application context can be declared explicitly with Java or XML, discovered by component scanning, or automatically configured with Spring Boot autoconfigurations.

2 Developing web applications

 This chapter covers

 	
Presenting model data in the browser

 	
Processing and validating form input

 	
Choosing a view template library

 First impressions are important. Curb appeal can sell a house long before the home buyer enters the door. A car’s cherry red paint job will turn more heads than what’s under the hood. And literature is replete with stories of love at first sight. What’s inside is important, but what’s outside—what’s seen first—-is also important.

 The applications you’ll build with Spring will do all kinds of things, including crunching data, reading information from a database, and interacting with other applications. But the first impression your application users will get comes from the user interface. And in many applications, that UI is a web application presented in a browser.

 In chapter 1, you created your first Spring MVC controller to display your application home page. But Spring MVC can do far more than simply display static content. In this chapter, you’ll develop the first major bit of functionality in your Taco Cloud application—the ability to design custom tacos. In doing so, you’ll dig deeper into Spring MVC, and you’ll see how to display model data and process form input.

2.1 Displaying information

 Fundamentally, Taco Cloud is a place where you can order tacos online. But more than that, Taco Cloud wants to enable its customers to express their creative side and design custom tacos from a rich palette of ingredients.

 Therefore, the Taco Cloud web application needs a page that displays the selection of ingredients for taco artists to choose from. The ingredient choices may change at any time, so they shouldn’t be hardcoded into an HTML page. Rather, the list of available ingredients should be fetched from a database and handed over to the page to be displayed to the customer.

 In a Spring web application, it’s a controller’s job to fetch and process data. And it’s a view’s job to render that data into HTML that will be displayed in the browser. You’re going to create the following components in support of the taco creation page:

 	

 A domain class that defines the properties of a taco ingredient

 	

 A Spring MVC controller class that fetches ingredient information and passes it along to the view

 	

 A view template that renders a list of ingredients in the user’s browser

 The relationship between these components is illustrated in figure 2.1.

 [image:]

 Figure 2.1 A typical Spring MVC request flow

 Because this chapter focuses on Spring’s web framework, we’ll defer any of the database stuff to chapter 3. For now, the controller is solely responsible for providing the ingredients to the view. In chapter 3, you’ll rework the controller to collaborate with a repository that fetches ingredients data from a database.

 Before you write the controller and view, let’s hammer out the domain type that represents an ingredient. This will establish a foundation on which you can develop your web components.

2.1.1 Establishing the domain

 An application’s domain is the subject area that it addresses—the ideas and concepts that influence the understanding of the application.1 In the Taco Cloud application, the domain includes such objects as taco designs, the ingredients that those designs are composed of, customers, and taco orders placed by the customers. Figure 2.2 shows these entities and how they are related.

 [image:]

 Figure 2.2 The Taco Cloud domain

 To get started, we’ll focus on taco ingredients. In your domain, taco ingredients are fairly simple objects. Each has a name as well as a type so that it can be visually categorized (proteins, cheeses, sauces, and so on). Each also has an ID by which it can easily and unambiguously be referenced. The following Ingredient class defines the domain object you need.

 Listing 2.1 Defining taco ingredients

 package tacos;

import lombok.Data;

@Data

public class Ingredient {

 private final String id;

 private final String name;

 private final Type type;

 public enum Type {

 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE

 }

}

 As you can see, this is a run-of-the-mill Java domain class, defining the three properties needed to describe an ingredient. Perhaps the most unusual thing about the Ingredient class as defined in listing 2.1 is that it seems to be missing the usual set of getter and setter methods, not to mention useful methods like equals(), hashCode(), toString(), and others.

 You don’t see them in the listing partly to save space, but also because you’re using an amazing library called Lombok to automatically generate those methods at compile time so that they will be available at run time. In fact, the @Data annotation at the class level is provided by Lombok and tells Lombok to generate all of those missing methods as well as a constructor that accepts all final properties as arguments. By using Lombok, you can keep the code for Ingredient slim and trim.

 Lombok isn’t a Spring library, but it’s so incredibly useful that I find it hard to develop without it. Plus, it’s a lifesaver when I need to keep code examples in a book short and sweet.

 To use Lombok, you’ll need to add it as a dependency in your project. If you’re using Spring Tool Suite, it’s an easy matter of right-clicking on the pom.xml file and selecting Add Starters from the Spring context menu. The same selection of dependencies you were given in chapter 1 (in figure 1.4) will appear, giving you a chance to add or change your selected dependencies. Find Lombok under Developer Tools, make sure it’s selected, and click OK; Spring Tool Suite automatically adds it to your build specification.

 Alternatively, you can manually add it with the following entry in pom.xml:

 <dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

</dependency>

 If you decide to manually add Lombok to your build, you’ll also want to exclude it from the Spring Boot Maven plugin in the <build> section of the pom.xml file:

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <excludes>

 <exclude>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 </exclude>

 </excludes>

 </configuration>

 </plugin>

 </plugins>

</build>

 Lombok’s magic is applied at compile time, so there’s no need for it to be available at run time. Excluding it like this keeps it out of the resulting JAR or WAR file.

 The Lombok dependency provides you with Lombok annotations (such as @Data) at development time and with automatic method generation at compile time. But you’ll also need to add Lombok as an extension in your IDE, or your IDE will complain, with errors about missing methods and final properties that aren’t being set. Visit https://projectlombok.org/ to find out how to install Lombok in your IDE of choice.

 Why are there so many errors in my code?

 It bears repeating that when using Lombok, you must install the Lombok plugin into your IDE. Without it, your IDE won’t be aware that Lombok is providing getters, setters, and other methods and will complain that they are missing.

 Lombok is supported in a number of popular IDEs, including Eclipse, Spring Tool Suite, IntelliJ IDEA, and Visual Studio Code. Visit https://projectlombok.org/ for more information on how to install the Lombok plugin into your IDE.

 I think you’ll find Lombok to be very useful, but know that it’s optional. You don’t need it to develop Spring applications, so if you’d rather not use it, feel free to write those missing methods by hand. Go ahead ... I’ll wait.

 Ingredients are the essential building blocks of a taco. To capture how those ingredients are brought together, we’ll define the Taco domain class, as shown next.

 Listing 2.2 A domain object defining a taco design

 package tacos;

import java.util.List;

import lombok.Data;

@Data

public class Taco {

 private String name;

 private List<Ingredient> ingredients;

}

 As you can see, Taco is a straightforward Java domain object with a couple of properties. Like Ingredient, the Taco class is annotated with @Data to have Lombok automatically generate essential JavaBean methods for you at compile time.

 Now that we have defined Ingredient and Taco, we need one more domain class that defines how customers specify the tacos that they want to order, along with payment and delivery information. That’s the job of the TacoOrder class, shown here.

 Listing 2.3 A domain object for taco orders

 package tacos;

import java.util.List;

import java.util.ArrayList;

import lombok.Data;

@Data

public class TacoOrder {

 private String deliveryName;

 private String deliveryStreet;

 private String deliveryCity;

 private String deliveryState;

 private String deliveryZip;

 private String ccNumber;

 private String ccExpiration;

 private String ccCVV;

 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {

 tacos.add(taco);

 }

}

 Aside from having more properties than either Ingredient or Taco, there’s nothing particularly new to discuss about TacoOrder. It’s a simple domain class with nine properties: five for delivery information, three for payment information, and one that is the list of Taco objects that make up the order. There’s also an addTaco() method that’s added for the convenience of adding tacos to the order.

 Now that the domain types are defined, we’re ready to put them to work. Let’s add a few controllers to handle web requests in the application.

2.1.2 Creating a controller class

 Controllers are the major players in Spring’s MVC framework. Their primary job is to handle HTTP requests and either hand off a request to a view to render HTML (browser-displayed) or write data directly to the body of a response (RESTful). In this chapter, we’re focusing on the kinds of controllers that use views to produce content for web browsers. When we get to chapter 7, we’ll look at writing controllers that handle requests in a REST API.

 For the Taco Cloud application, you need a simple controller that will do the following:

 	

 Handle HTTP GET requests where the request path is /design

 	

 Build a list of ingredients

 	

 Hand off the request and the ingredient data to a view template to be rendered as HTML and sent to the requesting web browser

 The DesignTacoController class in the next listing addresses those requirements.

 Listing 2.4 The beginnings of a Spring controller class

 package tacos.web;

import java.util.Arrays;

import java.util.List;

import java.util.stream.Collectors;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.ModelAttribute;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.SessionAttributes;

import lombok.extern.slf4j.Slf4j;

import tacos.Ingredient;

import tacos.Ingredient.Type;

import tacos.Taco;

import tacos.TacoOrder

@Slf4j

@Controller

@RequestMapping("/design")

@SessionAttributes("tacoOrder")

public class DesignTacoController {

@ModelAttribute

public void addIngredientsToModel(Model model) {

 List<Ingredient> ingredients = Arrays.asList(

 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),

 new Ingredient("COTO", "Corn Tortilla", Type.WRAP),

 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),

 new Ingredient("CARN", "Carnitas", Type.PROTEIN),

 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES),

 new Ingredient("LETC", "Lettuce", Type.VEGGIES),

 new Ingredient("CHED", "Cheddar", Type.CHEESE),

 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE),

 new Ingredient("SLSA", "Salsa", Type.SAUCE),

 new Ingredient("SRCR", "Sour Cream", Type.SAUCE)

);

 Type[] types = Ingredient.Type.values();

 for (Type type : types) {

 model.addAttribute(type.toString().toLowerCase(),

 filterByType(ingredients, type));

 }

 }

 @ModelAttribute(name = "tacoOrder")

 public TacoOrder order() {

 return new TacoOrder();

 }

 @ModelAttribute(name = "taco")

 public Taco taco() {

 return new Taco();

 }

 @GetMapping

 public String showDesignForm() {

 return "design";

 }

 private Iterable<Ingredient> filterByType(

 List<Ingredient> ingredients, Type type) {

 return ingredients

 .stream()

 .filter(x -> x.getType().equals(type))

 .collect(Collectors.toList());

 }

}

OEBPS/Images/01-02.png
Spring Tool Suite [J7ICH] Edit Source Refactor Navigate Search Project Run Window Help

New. EN >

T 1" Spring Starter Project
ES' BiNie E pen File... 0 -
= 3 Open Projects from File System... gs’""_"" Spifa GEtuig staried Cortari = |
E [# Package Explorer SK | pring Legacy Project
Close M| 28 Java Project
)

Close All a3eWl 28 ctatic Weh Praiect

OEBPS/Images/02-02.png
deliveryName: String
deliveryStreet: String
deliveryCity: String
deliveryState: String
deliveryZip: String
ccNumber: String
ccExpiration: String

CcCVV: String

OEBPS/Images/02-01.png
Ingredients

Request

OEBPS/Images/01-07.png
Starts/restarts the selected Opens a web browser on
project in debug mode the running application

Stops the
selected
Starts/restarts the project Opens the console
selected project on the running
\ / application
@ BootDashbeard 3¢ 280% /09 %+ 50

v @ local
Install local cloud services
4 taco-cloud [devtogs] (:8080]

7

Indicates that the Indicates that the
project has Spring Boot running application
DevTools enabled is listening on port 8080

List of Spring __,
Boot projects

OEBPS/Images/cover.jpeg
=
=
=
=
=
==
==
=
=

(raig Walls

OEBPS/Images/01-01.png
Inventory
service

Spring application context

Injected into

OEBPS/Images/01-06.png
18 Package Explorer 33

¥ &taco-cloud [boot] [devtools]

v (8 srcjmainfjava
v i tacos
> [3) TacoCloudApplication java
¥ (8 src/main/resources
> stati
> templates
/2 application.properties.
¥ @8 src/test/java
v i tacos
> (1) TacoCloudApplicationTests java
» i\ JRE System Library [JavaSE-11)
») Maven Dependencies
> Gsic
Ctarget
B HeLpmd
munw
< munwcmd
[pom.xmi

OEBPS/Images/Manning_M_small.png

OEBPS/Images/01-05.png
New Spring Starter Project

site Info

Base Url.

Fullurl

hitps: ing.ojstar
hitps:fjstart.springJofstarter.zip?names=taco-
cloudagroupld=siaBarifactid=taco-cloudaversion=0.0.1-

SNAPSHOTadescription=Tacos Cloud+Example&packageName=tacosaype=may.
en-

proectgpackaging=iaraiavaversio

talanquag

vaBibootVersion=2.5.38des

<onek cance

OEBPS/Images/01-03.png
New Spring Starter Project

Service URL

Name taco-cloud

Use defaut location

Location
Type: Maven 8 Packaging: dar [}
Javaversion: 11 8 Language: saa e
Group. sia
Artifact taco-cloud
Version 00.1-SNAPSHOT
Description Taco Cloud Example
Package. tacos
Working sets.
Add project to working sets New.
Working sets:

® et > Cancel

OEBPS/Images/Manning_copyright.png

OEBPS/Images/01-04.png
New Spring Starter Project Dependencies

Spring Boot Version: 2.5:3

Availabl:

~ Developer Tools
Spring Native [Experimental]
‘Spring Boot DevTools
Lombok
Spring Configuration Processor

‘Google Cloud Platform
3

Messaging

Microsoft Azure

NosaL.

Observability

Ops.

saL

Security

Spring Cloud

Spring Cloud Circuit Breaker
Spring Cloud Config

Spring Cloud Discovery
‘Spring Cloud Messaging
‘Spring Cloud Routing

‘Spring Cloud Tools

@ <ack

Selected:
X Spring Boot DevTools

X Thymeleat
X Spring Web

Make Default

Next> Cancel

Clar Selection

OEBPS/Images/01-08.png
e0e <]

Welcome to...

T

localhost

S

