

 [image: manning]

 Learn Go with Pocket-Sized Projects

 Aliénor Latour, Donia Chaiehloudj, and Pascal Bertrand

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 © 2025 Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-­free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 ISBN 9781633438804

 Printed in the United States of America

 Development editor: Doug Rudder

 Technical editor: Egon Elbre

 Review editors: Dunja Nikitović and

 Aleksandar Dragosavljević

 Production editor: Keri Hales

 Copy editor: Julie McNamee

 Proofreader: Katie Tennant

 Technical proofreader: Mike Haller

 Typesetter: Tamara Švelić Sabljić

 Cover designer: Marija Tudor

 dedication

 To Pulsar, that brought us together, and tea time, that keeps us together

 —Aliénor

 To Didier, Lila, my mum, and all the gophers

 —Donia

 To my parents, who nurtured in me a love for books

 —Pascal

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 Meet Go

 1.1 What is Go?

 1.2 Why you should learn Go

 1.2.1 How and where Go can help you

 1.2.2 Where can Go cannot help you

 1.2.3 Comparison with commonly used languages

 1.3 Why pocket-sized projects?

 1.3.1 What you’ll know after reading the book (and writing the code)

 2 Hello, earth! Extend your hello, world

 2.1 Any travel begins at home

 2.1.1 Our first program: main.go

 2.1.2 Let’s test with the Example function

 2.1.3 Calling the greet function

 2.1.4 Testing a specific function with the testing package

 2.2 Are you a polyglot?

 2.2.1 Parlez-vous français? The switch angle

 2.2.2 Adapt the test with Test functions

 2.3 Supporting more languages with a phrasebook

 2.3.1 Introducing the Go map hash table

 2.3.2 Writing a table-driven test

 2.4 Using the flag package to read the user’s language

 2.4.1 Add a flag

 2.4.2 Test the command-line interface

 2.5 Side quests

 3 A bookworm’s digest: Playing with loops and maps

 3.1 Loading the JSON data

 3.1.1 Defining a JSON example

 3.1.2 Opening a file

 3.1.3 Parse the JSON

 3.1.4 Test it

 3.2 Finding books that bookworms have in common

 3.2.1 Count the books

 3.2.2 Keeping higher occurrences

 3.2.3 Determinism

 3.3 Print

 3.4 Improvements

 3.4.1 Implement sort.Interface

 3.4.2 Exercise: Reading recommendations

 3.4.3 Using bufio to open a file

 4 A log story: Creating a library

 4.1 Defining the API

 4.1.1 Package summary

 4.1.2 Exporting the supported levels

 4.1.3 Object-oriented Go: “GoOOP”?

 4.1.4 The New() function

 4.1.5 What about testing?

 4.1.6 Documenting code

 4.2 Implementing the exported methods

 4.2.1 Default implementation

 4.2.2 Interfacing

 4.2.3 Refactoring

 4.3 The functional options pattern

 4.3.1 Creating configurations

 4.3.2 Testing our example

 4.4 Additional functionalities

 4.4.1 Logging the log level

 4.4.2 Exposing the generic logging function

 4.5 Logging: Best practices

 5 Gordle: Play a word game in your terminal

 5.1 Basic main version

 5.1.1 Mini main

 5.1.2 Read player’s input

 5.1.3 Isolate the check

 5.1.4 Check for victory

 5.2 Providing feedback

 5.2.1 Define character status

 5.2.2 Checking a guess against the solution

 5.3 Corpus

 5.3.1 Create a list of words

 5.3.2 Read the corpus

 5.3.3 Pick a word

 5.3.4 Let’s play!

 5.4 The limit of runes

 5.5 Conclusion

 6 Money converter: CLI around an HTTP call

 6.1 Business definitions

 6.1.1 Converting money

 6.2 Representing money

 6.2.1 Floating-point numbers

 6.2.2 Back to money

 6.2.3 Floating-point number operations

 6.2.4 Implementing decimals

 6.2.5 Currency value object

 6.2.6 NewAmount

 6.3 Applying conversion logic

 6.3.1 Applying an exchange rate

 6.3.2 Validating the result

 6.4 Writing the CLI

 6.4.1 Flags and arguments

 6.4.2 Parse into business types

 6.4.3 Stringer

 6.4.4 Convert

 6.5 Calling the bank

 6.5.1 Dependency injection: Theory

 6.5.2 ECB package

 6.5.3 HTTP call: Easy version

 6.5.4 Parse the response

 6.5.5 Integration in the money package

 6.5.6 Dependency injection in main

 6.5.7 Sharing the executable

 6.6 Making improvements

 6.6.1 Caching

 6.6.2 Timeout

 6.6.3 Alternative tree

 7 Caching with generics

 7.1 A naive cache

 7.1.1 Introduction to generics

 7.1.2 Project initialization

 7.1.3 Implementation

 7.2 Introducing goroutines

 7.2.1 What’s a goroutine?

 7.2.2 How to launch a goroutine

 7.2.3 Using channels to communicate that a goroutine has ended

 7.2.4 Running goroutines and having a synchronization point

 7.3 A more thread-safe cache

 7.3.1 Using goroutines

 7.3.2 Using t.Parallel()

 7.3.3 Using go test -race .

 7.3.4 Add a mutex

 7.4 Possible improvements

 7.4.1 Adding time to live

 7.4.2 Add a maximum number of items in the cache

 7.5 Common mistakes

 7.5.1 When to use channels in a concurrency situation

 7.5.2 Concurrency effect of a workload type

 7.5.3 Finish your goroutines

 8 Gordle as a service

 8.1 Empty shell for the new service

 8.1.1 Server, service, web service, endpoints, and HTTP handlers

 8.1.2 Let’s code

 8.2 Adding endpoints

 8.2.1 Create a new game

 8.2.2 Get the game status

 8.2.3 Guess

 8.3 Domain objects

 8.3.1 Domain types

 8.3.2 API adapters

 8.4 Repository

 8.4.1 In-memory database

 8.4.2 Simplest repository

 8.4.3 Service-level dependency

 8.4.4 Add a mutex to the repository

 8.5 Adapting the Gordle library

 8.5.1 API of the library

 8.5.2 Usage in the endpoints

 8.6 Security notions and improvements

 8.6.1 Limiting the number of requests served at a time

 8.6.2 User authentication

 8.6.3 Logging

 8.6.4 Error formatting

 8.6.5 Decode query parameters

 9 Concurrent maze solver

 9.1 Maze generation

 9.1.1 What is an image?

 9.1.2 Maze constraints

 9.2 Maze solver

 9.2.1 Setup

 9.2.2 Loading the maze image

 9.2.3 Add the solver

 9.3 Let’s go exploring!

 9.3.1 Finding the entrance

 9.3.2 Communicating new possible paths

 9.3.3 Recording the explored path

 9.3.4 Waiting for unexplored paths and starting a goroutine

 9.3.5 Stop listening, we found it: Short version

 9.3.6 Testing one goroutine’s logic

 9.4 Show the result

 9.5 Notify when the treasure is found

 9.5.1 Keep track of all the goroutines

 9.5.2 Send a quit signal

 9.6 Visualization

 9.6.1 Overcome the loop constraint

 9.6.2 Animate the exploration

 10 Habits tracker using gRPC

 10.1 API definition

 10.1.1 Protobuf declaration

 10.1.2 Code generation

 10.2 Empty service

 10.2.1 Creating a small logger

 10.2.2 Server structure

 10.2.3 Creating and running the server

 10.3 First endpoint: Create

 10.3.1 Business layer

 10.3.2 API layer

 10.3.3 Data retention

 10.4 Unit testing with generated mocks

 10.4.1 Generate mocks

 10.4.2 Use the mocks

 10.5 Integration testing

 10.5.1 List habits

 10.5.2 Integration with go test

 10.6 Getting the best out of the context

 10.6.1 What is a context?

 10.6.2 Create a context

 10.6.3 Using a context

 10.7 Track your habits

 10.7.1 Tick a habit

 10.7.2 Store ticks per week

 10.7.3 Handle corner cases

 10.7.4 Get habit status

 10.7.5 Add a timestamp

 10.7.6 Habit tracker in action

 11 HTML templating with a gRPC client

 11.1 Your basic HTTP server

 11.1.1 Hello plain text

 11.1.2 Templates: Display a variable

 11.1.3 Add a gRPC client

 11.2 Basic template operations

 11.2.1 Iterate through a slice

 11.2.2 Accessing fields

 11.2.3 Conditional formatting

 11.3 Send a tick to the server

 11.3.1 What page should we display?

 11.3.2 Send tick to the backend

 11.3.3 Adding colors

 11.4 Use a form to create a habit

 11.4.1 HTML form

 11.4.2 Read a form’s values

 11.5 More template niceties

 11.5.1 Passing more than one object to the template

 11.5.2 Calling functions

 11.5.3 Using define to declare functions

 12 Go for other architectures

 12.1 Getting started with Wasm

 12.1.1 Some practice with Hello Wasm

 12.1.2 Write a file server

 12.2 Multiplication quiz project

 12.2.1 Displaying random numbers on the HTML page

 12.2.2 Registering functions in Go

 12.2.3 Reading an input from the page

 12.3 TinyGo

 12.3.1 Building a simple TinyGo application

 12.3.2 Differences with Go

 12.3.3 Debugging and deploying with TinyGo

 appendix A  Installation steps

 A.1 Install

 A.2 Check

 A.3 Go’s environment variables

 A.3.1 The go env command

 A.3.2 The GOBIN variable

 A.3.3 The GOPATH variable

 A.3.4 The GOROOT variable

 A.4 Hello!

 A.5 Installing new dependencies

 A.5.1 go install

 A.5.2 go get

 A.6 Code editors

 appendix B  Formatting cheat sheet

 appendix C  Zero values

 C.1 What is a zero value?

 C.2 The zero values of any types

 C.3 Slices and maps specificities

 C.4 Benefiting from zero values

 appendix D  Benchmarking

 appendix E  Passing by value or by reference

 E.1 Go passes everything by value

 E.1.1 Copying parameters on the stack

 E.1.2 Using pointers

 E.1.3 Shallow copies

 E.1.4 Functions vs. methods

 E.2 Special types of parameters: slices, maps, and channels

 E.2.1 Passing a slice as a parameter

 E.2.2 maps, channels, and more

 E.3 A few recommendations

 E.3.1 Passing by value should be the default

 E.3.2 Passing by pointer is a minor optimization

 E.3.3 Passing by pointer when mutating

 E.3.4 Using slices and maps

 E.3.5 Passing a pointer to a slice or to a map

 E.3.6 Writing your own Copy function

 appendix F  Fuzzing

 F.1 A new testing method

 F.2 How it works

 F.3 Writing a first test

 F.3.1 Function under test

 F.3.2 Fuzz test

 F.4 Running and interpreting fuzz tests

 F.5 Fixing the breach

 F.6 Best practices and common pitfalls

 appendix G  Connecting to a database

 G.1 Setup

 G.1.1 Starting a PostgreSQL database locally

 G.1.2 Seed the schema

 G.2 Repository package

 G.2.1 Injecting a connection

 G.2.2 Querying the database

 G.3 Libraries

 index

 foreword

 Programming is for everyone. This dream of making computers available and easier to use has been one of the guiding principles for so many pioneers in this still evolving field. We are the inheritors of this fantastic legacy. And by we, of course, I mean you and I, the generations of people who have been able to follow some of the many paths to computer use that have already been prepared for us, in particular, that collection of tools for thought known as programming languages.

 A few of those very smart yet practical people created the Go programming language. Go can be quite expressive, despite having a small number of keywords compared to many other popular programming languages. This makes it a lot easier to remember, but certainly doesn’t always make it obvious how to make Go do what you want, at least not without some guidance.

 The real trick is to make it easier for people to make some relatively quick progress toward whatever they want to achieve, while at the same time preparing them with the deeper knowledge they will need to go further. And one of the best ways to accomplish this is by way of a well-thought-out book, such as the one you’re looking at right now.

 Learn Go with Pocket-Sized Projects gives you practical projects that are neither too big to wrap your head around quickly, nor too small to actually show you something useful. Along the way, the book is seasoned with a number of important techniques that you’ll surely need, shared with a wry humor that keeps you smiling.

 Regardless if you’re a student, hobbyist, or professional practitioner, there’s something for you to grab ahold of and run with for a bit. And that is a great way to learn.

 The book introduces you to some among the wide spectrum of possibilities that Go can be used for. From an elaborated hello, world, to making LEDs blink on an Arduino, it contains a nice collection of different small applications to help you feel full but not overstuffed.

 Most importantly, the book does so with a sense of fun and playfulness. Learning doesn’t happen when you’re bored out of your mind; it happens when you are fully engaged. Grasping this simple truth and using it to write a book about Go programming just seems like a good idea, and I’m glad to see that my friends have done exactly that.
—Ron Evans,
Open Source Contributor, TinyGo, and
Technologist for Hire, The Hybrid Group

 preface

 Everything started with a friend story, one about three software engineers who found themselves facing a new set of challenges. We’re Aliénor Latour, Donia Chaiehloudj, and Pascal Bertrand—three best friends with different technical backgrounds who crossed paths while working at Airbus Defence and Space in southeastern France. Our journey with Go began there, as we discovered its unique strengths for building the kind of reliable and scalable systems that could meet our industry’s rigorous demands.

 At first, we were drawn to Go’s simplicity, but the more we worked with it, the more we saw the true depth behind its minimalistic design. We found that Go was not only fast and efficient but also naturally structured to handle the concurrent, distributed systems that modern applications increasingly rely on. As we shared our enthusiasm with others in the community, we noticed that, while Go has an incredible toolset, it can be intimidating for those approaching it for the first time.

 That’s how Learn Go with Pocket-Sized Projects came about. We wanted to create a friendly, hands-on guide to ease new learners into Go while challenging them to think critically about design, architecture, and testing. Instead of starting with heavy theory, we’ve built each chapter around a small, practical project that incrementally introduces key concepts. Our aim is to help you build confidence with Go by completing manageable tasks and seeing tangible results at each step.

 This book focuses on Go’s essential tools and its unique capabilities, guiding you from simple command-line applications to microservices, and even embedded systems. By exploring these projects, you’ll learn not only syntax but also how Go’s tools and libraries enable modern software development. We chose Go because it’s fast, reliable, and especially well suited for the kind of scalable, cloud-first applications that drive today’s tech ecosystems.

 We hope you’ll enjoy working through the projects as much as we’ve enjoyed creating them. Whether you’re new to Go or just looking to deepen your skills, we’re excited to share this journey with you. We believe you’ll come away not only with a strong foundation in Go but also with the confidence to apply it to real-world challenges. Happy coding!

 acknowledgments

 As a trio of writers, we’d like to thank the Manning team, especially Doug Rudder, our development editor, as well as the entire production staff who helped shepherd this book into its final format. Another special thank-you goes to our technical editor, Egon Elbre, a principal engineer at Storj Labs. Both Doug and Egon especially helped guide our journey while writing this book. We’d also like to extend our thanks to the Pulsar team, where it all began, and to Salvador Cavadini.

 Thanks also go to the many reviewers whose suggestions helped make this a better book: Abhishek Shivanna, Alceu Rodrigues de Freitas Junior, Alessandro Buggin, Andreas Schroepfer, Ariel Marcus, Arpit Singh, Ashish Kumar Pani, Brad Lambert, Brendan O’Hara, Clifford Thurber, Dan Sheikh, Deepak Sharma, Diana Maftei, Fernando F. Rodrigues, Giorgio Galante, Gopal Venkatesan, James Watson, Jehad Nasser, Joel Holmes, John Guthrie, Leonardo Taccari, Maria Ana, Mattia A. Di Gangi, Mihaela Barbu, Muneeb Shaikh, Naveen Achyuta, Neil Croll, Pablo Acuna, Paul Broadwith, Prahathess Rengasamy, Richard Hilliar, Ruben Gonzalez-Rubio, Stephen Griese, Sumedh Sathaye, and William Whitehead.

 Aliénor Latour: Many thanks to my mother, who always kindly pushed me for excellence, my husband, for his supportive cooking; and my daughter, for her patience and laughter. Thanks go to Ravan, Joselia, and Zuzana for their technical support while writing this book; to Céline and Marie with their myriad inspiring projects; to Pascaline and Anne-Laure, for the music; and to Juliette, for the knitting advice.

 Donia Chaiehloudj: I want to thank my mum for giving me the opportunities that shaped who I am today, and I want to thank my husband for creating the space I needed to pursue and accomplish this project. To my dearest friends—Maëlle, Anaïde, Alicia, and Cyrielle—for always asking, “How’s the book going?” and pushing me forward with your unwavering encouragement. To the amazing Gophers across the internet and at GopherCon, thank you for your enthusiasm and interest—it’s been a constant source of inspiration. To the mentors and friends I’ve met along the way in the Go community, your guidance and camaraderie have been invaluable.

 Finally, to Aliénor and Pascal—my friends, companions, and guiding lights—thank you for always lifting me up and making this journey so much more meaningful.

 Pascal Bertrand: My deepest gratitude to Thomas, Pierre, and Frédéric, who regularly keep my mind open, and to Mme Callon, who instilled in me a deep appreciation for learning and understanding the intricacies of all sorts of languages. Κοῦφον γὰρ χρῆμα ποίησίς ἐστιν καὶ πτηνὸν καὶ ἱερόν.

 To my family, my friends, my colleagues, and anyone who, by simply asking about our progress on this project, was unknowingly fueling motivation to resume its writing.

 about this book

 Learn Go with Pocket-Sized Projects is designed to help you master the Go programming language through a series of engaging, hands-on projects. Each project is carefully crafted to be concise, focusing on practical, real-world applications while gradually introducing Go’s core concepts.

 The book covers a wide range of topics, from Go’s unique approach to implicit interfaces, which play a crucial role in designing robust and testable code, to building microservices using both REST and gRPC—demonstrating Go’s strengths in cloud computing. You’ll also dive into exciting areas such as embedded systems, where we explore TinyGo and WebAssembly to show how Go can be applied in constrained environments.

 Testing is integrated throughout the book, not only as a way to verify code but also to illustrate best practices in design and architecture decisions. By the end of the book, you’ll not only have completed a series of pocket-sized projects, but you’ll also have a solid understanding of how to use Go from server-side applications to low-level systems programming.

 Who should read this book

 Learn Go with Pocket-Sized Projects is ideal for developers looking to get started with Go or deepen their understanding of the language’s unique features. The projects are designed to be engaging and easy to follow, providing a hands-on approach to learning Go.

 This book assumes some prior programming experience, although not necessarily in Go, and is not intended for absolute beginners. Instead, it aims to help developers enhance their skills, improve their software design and testing practices, and adopt Go as part of their toolkit for modern software development.

 How this book is organized: A road map

 The book has 12 chapters that broaden in scope, except the last one, which is more of a bonus:

 	Chapter 1 introduces the Go language and helps you set up your development environment. It explains the key reasons why Go is a language worth learning.

 	Chapter 2 kicks off the pocket-sized projects with a simple hello, world program. You’ll focus on testing edge cases and handling input/output in command-line applications.

 	Chapter 3 delves into Go’s slices, maps, and other key types. It also covers JSON handling and sorting techniques.

 	Chapter 4 explores the design of an API, focusing on what to expose and why. You’ll learn about the importance of logging and how to implement it in Go.

 	Chapter 5 walks you through building a word game that runs in a terminal. You’ll learn about error propagation and file reading in Go.

 	Chapter 6 introduces making HTTP calls from a CLI tool and parsing XML. We’ll also cover how to mock HTTP calls for testing.

 	Chapter 7 introduces Go’s generics and when to use them in production. This chapter also covers goroutines and concurrency in Go.

 	Chapter 8 builds on chapter 5 by turning the word game into a web service. You’ll learn how to design a REST API and handle HTTP responses and parameters.

 	Chapter 9 puts your knowledge of goroutines into action, focusing on inter-goroutine communication. It also introduces image manipulation and GIF creation.

 	Chapter 10 teaches you how to build a gRPC service while introducing Go’s Context. You’ll also learn about integration testing.

 	Chapter 11 uses the habits tracker from chapter 10 to display data on an HTML page using Go templates. This chapter focuses on connecting your gRPC client to web output.

 	Chapter 12 closes the book with an exploration of WebAssembly and TinyGo. You’ll build lightweight projects for edge and embedded environments.

 	Finally, the appendixes include short tutorials on topics such as benchmarking, fuzz testing, and database connections.

 We recommend following the chapters in order, as they are carefully sequenced to progressively build your knowledge. Many later chapters reuse code and concepts introduced earlier, so moving through the book sequentially will help you develop a solid understanding of Go.

 As you progress, you’ll encounter discussions on important topics such as design choices, architecture patterns, testing strategies, and best practices. These insights are woven into the projects to deepen your comprehension of Go’s strengths and challenges. By working through each chapter and writing the code yourself, you’ll be better prepared for the more advanced topics later in the book.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-go-with-pocket-sized-projects. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/learn-go-with-pocket-sized-projects, and from GitHub at https://github.com/alienorlatour/tiny-go-projects.

 liveBook discussion forum

 Purchase of Learn Go with Pocket-Sized Projects includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-go-with-pocket-sized-projects/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Other online resources

 If you need additional help or want to connect with fellow Go enthusiasts, you can join the Gopher’s Slack community—a great space to ask questions, discuss topics, and stay updated on all things Go. For readers of this book, there’s a dedicated channel, #learn-go-with-pocket-sized-projects-book (https://app.slack.com/client/T029RQSE6/C07P9088UPM), where you can share your progress, exchange ideas, and engage with other learners as you work through the projects.

 about the authors

 [image: Shape Description automatically generated with low confidence]

 Aliénor, Donia, and Pascal are Go developers who met a few years ago during a former working experience

 Aliénor Latour is the CTO of Skipr and has been a Go developer since 2017, with experience in various domains, from social media marketing to satellite imagery and e-commerce. Through the course of her career, she tried her skills as a frontend developer and as a project manager, and enjoyed her role as technical leader and software architect before her current managing position, all the while reaching for quality and simplicity in her software.

 Aliénor is known for her refactoring and decoupling perseverance and pushes for clean and maintainable architecture in Go. She strives for more diversity in tech, in particular in backend roles, and likes to share her values by mentoring junior developers and speaking at international conferences.

 Outside of work hours, she travels Europe from Burgundy for Scottish country dance events, knits, sews skirts with pockets, and reads about linguistics and sociology.

 Donia Chaiehloudj is a senior software engineer with expertise in Go, specializing in cloud-native distributed systems. With experience spanning industries such as aerospace, gaming, and open source contributions, she enjoys the challenge of building efficient, scalable solutions. Donia has focused her career primarily on Go, using the language’s strengths in cloud computing and distributed architectures.

 Currently contributing to open source projects such as Cilium at Isovalent at Cisco, Donia is also actively involved in community building. In 2022, she began her journey as a public speaker, inspiring others—particularly women—to explore IoT and software development. She regularly organizes tech events and advocates for diversity and inclusion in the industry.

 When not coding, Donia can be found hiking, swing dancing, sewing her latest piece of wardrobe, or playing the clarinet.

 Pascal Bertrand has been developing with Go since 2017 as a software engineer, in both big and small companies. He strives for clear code and quality test coverage, and he enjoys reviewing pull requests. Before choosing Go, he worked for 10 years with languages such as C++, PHP, and Java, which allowed him to have a broad overview of how to get the best from each language for every situation a developer will face—coding, testing, documenting, deploying, and maintaining.

 After 10 years in the French Riviera in the aviation, defense, and then aerospace and photogrammetry industries, Pascal moved to London to join Blòkur where he uses his experience in migrating a codebase to a microservice architecture. He uses his knowledge and experience in Go to mentor newcomers and ensure high-quality code in his company.

 Pascal can usually be found playing board games, learning—through books and visits—about history and linguistics, or enjoying a walk in the wilderness. He enjoys twisting his mind over math problems.

 about the cover illustration

 The figure on the cover of Learn Go with Pocket-Sized Projects, titled “Fermière bretonne,” or “Breton farmer,” is taken from a collective work edited by Léon Curmer and published in 1841. Each illustration in these articles is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Meet Go

This chapter covers

 	Go’s key features for modern software development

 	Go’s history and simplicity-driven philosophy

 	Go’s built-in tools for testing, benchmarking, and debugging

 	How hands-on projects help you master Go

 	Go’s versatility for backend and cloud applications

 In this book, we aim to help you discover the strengths of Go by guiding you through real-world scenarios. From its efficient concurrency model to its built-in tools for testing and benchmarking, Go empowers developers to write clean, maintainable code without unnecessary complexity. We’ll tackle projects of varying complexity to ensure you get a hands-on understanding of what makes Go unique.

 This book also provides you with a set of fun projects to progressively explore the features of the Go language. Each pocket-sized project is written in a reasonable number of lines. Our goal is to provide various exercises so any developer who wants to get started with Go or explore the language can follow the steps described in each chapter.

 We want to help you become a better software developer by using the Go language. We’ll use our experience as software engineers to provide meaningful advice for newcomers and seasoned developers alike.

 This book also contains tutorials for implementing APIs with microservices, demonstrating how the language is great for cloud computing. We’ll wrap the book up with a project that uses TinyGo, the compiler for embedded systems.

 Note If you’re a beginning programmer, we wholeheartedly suggest starting your Go experience with Get Programming with Go (Manning Publications, 2018; www.manning.com/books/get-programming-with-go), by Nathan Youngman and Roger Peppé.

1.1 What is Go?

 Go is a programming language that was originally designed to solve various problems in large-scale software development in the real world, initially within Google and then for the rest of the business world. It addresses slow program construction, out-of-control dependency management, complex code, and difficult cross-language construction.

 Each language tries to address these problems in a different way, either by restricting the user or by being as flexible as possible. Go’s team chose to tackle these problems by targeting modern engineering: removing the constraint of dealing with memory and making it simple to run parallel pieces of code. That’s why it comes with a rich toolchain.

 The toolchain covers compilation and construction, code formatting, package dependency management, static code inspection, testing, document generation and viewing, performance analysis, language servers, runtime program tracking, and much more.

 Go was built for concurrency and networked servers, which explains the fast adoption of the language in software companies of all sizes in the past few years. Additionally, Go is used by a large community of developers who share their source code on public platforms for others to use or be inspired by. As developers, we love to share and reuse what other clever people have written. Go was designed to improve productivity during a time when multicore networked machines and large codebases were becoming the norm.

 Go started in September 2007 when Robert Griesemer, Ken Thompson, and I began discussing a new language to address the engineering challenges we and our colleagues at Google were facing in our daily work.

 —Rob Pike, coauthor of Go

 The design choices are driven primarily by simplicity, which makes learning the language a quick task. There are only 25 reserved keywords in the entire language (as of November 2024). The rest is simply the sense you want to give to it—and poetry.

 Even more important to us, Go provides for the needs of the modern software industry. Dependency management, tools for unit testing, benchmarking and fuzzing, formatters, and all the usual tools of a developer are built in and standardized.

 According to the 2024 Go Developer Survey (https://mng.bz/ga9l), the language is most widely used for API/remote procedure call (RPC) services. The close second usage is runnable programs with a command-line interface (CLI), followed by libraries and frameworks, web services that return HTML, automation, data processing, and then agents and daemons. Just 7% of Go developers use the language on embedded systems, 4% use it for games, and 4% use it for machine learning or artificial intelligence (AI; figure 1.1).

 [image: A graph of a bar graph Description automatically generated with medium confidence]

Figure 1.1 Extract from the Go Developer Survey 2024 H1 results

 Although Go can’t yet call on decades of libraries like Java-based languages, it benefits from a vast and welcoming community of bloggers, teachers, and open source contributors who create learning material in every form, including this book.

 Go engineers are currently in high demand, so learning the language may be helpful for a big career jump forward. From the authors’ personal experience, the recruiting fields include fintech, medtech, foodtech, gaming, music, all sorts of e-commerce platforms, aerospace research, and satellite imaging processing.

1.2 Why you should learn Go

 Go was designed with simplicity and productivity in mind, making it a natural fit for backend services, APIs, and modern cloud computing needs. In this section, we’ll explore practical examples of how Go’s syntax, tools, and features come together to create maintainable and efficient applications. Let’s see why Go is a great investment of your learning time as a developer.

1.2.1 How and where Go can help you

 Go is a versatile language designed for maintainability and readability. It’s optimal for backend software development and has great integration with modern cloud technologies.

 Considering that the average turnover in tech companies is getting lower every year (stabilizing at a little over one year currently), it’s important that code written by one person can be read by another after the original code writer leaves the company. It’s therefore crucial companies choose a language that aims for readability. Go’s key features make it a reliable and secure language with a fast build time.

 Some applications use goroutines, which is a safer and less costly way of dealing with parallel computing than threads. Threads rely on the operating system, which is limited to the size and power of the CPU, whereas goroutines happen at the application’s level. To make the stacks small, Go uses resizable, bounded stacks. A newly minted goroutine is given a few kilobytes, which is almost always enough, and can grow and shrink, allowing many goroutines to live in a modest amount of memory. It’s practical to create hundreds of thousands of goroutines in the same address space.

 Even though it’s not an object-oriented language and has no inheritance system, Go supports most of the features via composition and implicit interfaces. Go’s approach to design favors simplicity and flexibility, encouraging developers to use embedded types to achieve behaviors similar to inheritance while avoiding its complexities.

 The introduction of generics in version 1.18 was a significant milestone for Go. Before this, developers had to write repetitive code for operations such as filtering slices or applying functions to maps, as these operations had to be implemented for each specific type. Generics now make it possible to write reusable, type-safe functions for such tasks, significantly reducing boilerplate code. As of now, the community continues to refine and expand the use cases for generics to ensure they enhance the language without compromising its core principles.

 Go is a compiled language, meaning that all syntax errors will be found during compilation rather than at runtime. We all prefer to know about mistakes in the safety of our own computers rather than discovering them, say, in production.

 It’s easier to run applications at scale with Go than with many other languages. Google built Go to solve problems at a Google-size scale, so it’s ideal for large concurrent applications, yet also handy for smaller uses.

 Cloud platforms love Go and provide support for Go as a major language. For example, cloud functions and lambdas support Go in all the most-used providers. Major cloud tools, such as Kubernetes or Docker, are written in Go.

1.2.2 Where can Go cannot help you

 Despite its high versatility, there are a few use cases that Go isn’t made to cover. Go relies on a garbage collector to release the memory it uses. If your application requires full control over memory, pick a lower-level language like the C family can provide. Go can wrap libraries written in C/C++ with cgo, a translation layer created to ease the transition between the two languages. With this cgo twist, you can wrap dynamically linkable libraries (we won’t use cgo in this book, however).

 The Go toolchain mostly produces executables—generating a Go-compiled library is painfully achievable (not covered in this book). In most common cases, updating the version of a Go dependency implies rebuilding the binary with that new version, which also means you need to have access to its source code to use a Go library.

 The Go compiler supports an interesting list of different platforms and operating systems, but we wouldn’t recommend writing an operating system with Go, although many brave souls have done it. The main reason for this is how memory is handled in Go: the garbage collector regularly discards bits that are no longer used. As with all garbage collectors, it’s adjustable, but it won’t release memory exactly how or when you want it to.

 Go binary files are known to be bigger than average. It’s usually not a problem in a cloud environment, but if you require light binaries, consider using the TinyGo compiler (introduced in chapter 12).

 Last, there’s the difficulty in Googling for answers to questions about Go (seriously, who names their language with such a common word? Google, apparently). Here’s a pro tip: When searching for an answer related to Go, use “golang” in your search, which isn’t the real name but is what search engines will recognize. Sometimes, it’s like trying to find documentation in C on strings—you don’t get what you expect.

 We can also mention the difficulty in hiring Go developers, which is actually good for us developers. As the use of the language rises, this is becoming less of an argument.

1.2.3 Comparison with commonly used languages

 The main reason for using a language other than Go, up to 2021, was the absence of some features and the lack of maturity in the ecosystem. That was before version 1.18, which changed the game.

 In table 1.1, we compile some of the most important features to developers when considering which language will best address their project’s needs. In our experience, verboseness and garbage collection are important language criteria for a productive, modern workflow.

 Table 1.1 Comparison of four programming languages

 	

 	 C++

 	 Python

 	 Java

 	 Go

 	 Design philosophy

 	 High-level object-oriented programming (OOP), procedural, multiparadigm

 	 High-level OOP

 	 High-level OOP

 	 Procedural and data-oriented programming, supports most OOP features

 	 Error management

 	 Via exceptions

 	 Via exceptions

 	 Via exceptions

 	 Errors are values.

 	 Types

 	 Statically typed language

 	 Dynamically typed

 	 Statically typed

 	 Statically typed language

 	 Compilation

 	 Compiled

 	 Compiled at runtime

 	 Compiled
 Runs in a virtual machine

 	 Compiled

 	 Concurrency

 	 Either memory-level or OS-level threads

 	 OS-level threads

 	 Either memory-level or OS-level threads

 	 Goroutines and channels

 	 Interfaces

 	 Explicit

 	 Implicit and explicit

 	 Explicit

 	 Implicit

 	 Memory release

 	 Full control

 	 Garbage collector

 	 Garbage collector

 	 Garbage collector

 	 Main use cases

 	 High performance, low overhead

 	 Excellent for data analysis

 	 Well-suited for web applications

 	 Adapted for web APIs and cloud computing

 	 Testing tools

 	 External frameworks

 	 Built-in native tools for testing

 	 External framework JUnit

 	 Built-in native tools (test, bench, fuzz)

1.3 Why pocket-sized projects?

 Toward the end of the 19th century, several scientists and philosophers began studying and developing theories about learning. In 1897, John Dewey wrote a long list of good reasons why doing is the best way to learn (see My Pedagogic Creed, https://mng.bz/6e5G). Since then, experience has proven his claims in many education systems and learning situations.

 The projects that we propose here are timed for busy people. We made sure to keep them as small as possible while still making them rewarding. We admit that some of them aren’t particularly fun, but these are the most useful in a real-world project.

1.3.1 What you’ll know after reading the book (and writing the code)

 Our first aim is to help you clearly understand the concepts and implementations presented in this book. We’ll guide you through our journey of chapters by describing the implementation of the current code iteratively, as we consider it important to understand what’s happening bit by bit.

 Second, we focus on providing good and clear examples for writing industry-level Go code with recommendations that apply outside our examples and that will help you venture into the real world of development. All of our examples contain functions that are reusable in a professional codebase. Last, our goal is to help you realize that you can write excellent Go code by yourself once you’ve understood the basics.

 We start at the hello, world level, discovering the syntax of the language. Then, we progress all the way to a service ready to be deployed in the cloud by walking you through all the architectural decisions.

 Grammar and syntax

 The first chapters focus on the grammar specific to Go. For example, you’ll learn how all loops start with the same keyword and breaks are implicit in switches, as well as how to expose or not expose some of your constants and methods (what Java calls public or private).

 The Go code design calls for making its interfaces implicit. In most of the other big languages, to have one entity (or class) be considered as implementing an interface, it needs to explicitly state it in its definition. In Go, implementing the methods is enough. You can therefore unknowingly implement an interface that you don’t know yet. This opens worlds of new possibilities in how we envision mocking and stubbing, dependency injection, and interoperability.

 Even though goroutines are a great feature of Go, we won’t dwell on them. In our experience, you can program efficiently in Go without them. Only one project uses them in this book.

 Finally, as you’ll learn throughout the book, Go doesn’t use exceptions. It prefers to consider errors as values. This changes the way we deal with flows that don’t follow the happy path, where nothing ever fails. Every program has to deal with errors at some point, and we’ll cover this throughout the projects.

 Testing your code

 The first 11 chapters include unit testing (chapter 12 doesn’t because it’s more of an exploration chapter). No developer today would dream of delivering code in production that isn’t covered by at least some tests, whatever their level. Tests are indispensable for any evolution the software grows through, so we include unit tests everywhere. After the first chapters, you’ll be able to write most of them autonomously, and we only give tips where necessary at that point.

 Go is also great at benchmarking different algorithms with a built-in bench command. It allows developers to compare versions, too, which means you can use it to check on every commit that your code-level performance doesn’t deteriorate.

 One last recent feature of the Go tooling test chain is fuzzing. Fuzzing is a way to test a system by throwing random values at it and seeing how it behaves. Fuzzing is a great help in checking for vulnerabilities.

 Clean code best practices

 Any code of your own that you haven’t looked at for six or more months might as well have been written by someone else.

 —Eagleson’s Law

 While the first few projects fit in one file, we’ll quickly need to organize the code in a way that makes it easy to maintain. By maintain, we mean that it should allow a newcomer to find their way through your code to fix a bug or add a feature. This fictional newcomer could be you in a very short time.

 We suggest and explain some code organization practices. Go is great for domain-driven design, so we organize our code accordingly. There is, of course, no single folder organization for a Go project, but we aim for what makes the most sense.

 What to expose and what to keep for yourself has shaken humanity for millennia and software developers for decades. This question is covered as soon as we create something that goes beyond one package.

 Architectural decisions

 As Go is mostly used for writing services deployed in cloud environments, we added two projects to help you pick your favorite protocol: one serves HTML over HTTP, and the other uses Protobuf over gRPC. You’ll write fully functioning services that you can easily deploy to play around and see what you prefer and what best fits your needs.

 Once they’re running, you need to monitor what happens in your programs. One of the early and easy projects is a logger that goes beyond what the default standard library does. Another one, Gordle as a service, reads an API and acts as an anti-corruption layer to insert the data from that API into your domain. A third is a simple cache for your system’s performance, which you can make more complex according to your needs.

 Your Go toolbox

 Go doesn’t come as just a compiler for your architecture. Instead, it’s a complete suite of tools that are all integrated for linting and formatting, testing, benchmarking, building, and executing. In chapter 12, we’ll venture into the world of other architectures, including microcontrollers, and see how we can even ship a Go program as Web­Assembly in a web page.

 Now, it’s time to set up your development environment and prepare to start coding! Head over to appendix A for detailed instructions on installing Go and the essential tools you’ll need before diving into your first project.

 Side quests

 Throughout the book, we’ve included extended exercises we call side quests, which are designed to help you practice and think more deeply about Go. These optional tasks allow you to expand your skills by applying concepts in new and creative ways. While you’re encouraged to solve them independently, you’re welcome to review the provided code afterward for additional insights or to compare approaches. We encourage you to use these side quests to enhance your understanding while making the journey more interactive and rewarding.

 Summary

 	Go is a modern, industry-oriented, simple, and versatile language that is best for backend development, widely used for cloud-oriented tools, great for CLI, and even adapted to embedded systems.

 	Its simplicity and design philosophy make Go easy to learn, enabling teams to quickly become productive while maintaining readable, maintainable codebases.

 	Go’s built-in tools for testing, benchmarking, and profiling streamline development and ensure high-quality software.

 	With its lightweight concurrency model, powered by goroutines and channels, Go is an excellent choice for scalable and concurrent applications.

 	The language’s growing community and increasing adoption across industries make learning Go a valuable career investment.

 	Pocket-sized projects provide a hands-on approach designed to teach Go’s features step-by-step, from basic syntax to cloud-ready applications.

2 Hello, earth! Extend your hello, world

This chapter covers

 	Writing to the standard output

 	Testing writing to the standard output

 	Writing table-driven tests

 	Using a hash table to hold key-value pairs

 	Using flags to read command-line parameters

 As developers, our main task is to write valid programs. These programs are executed on a computer; they’ll accept some inputs (e.g., keys pressed on a keyboard, a signal received from a microphone) and will produce outputs (e.g., emit a beep, send data over the network). The simplest program of all does nothing, and simply exits. That wouldn’t be a very gratifying introduction to coding, would it? Instead, let’s print a hearty welcoming message!

 Since 1972, learning programmers have discovered their new language through variations of the same sentence: hello, world. A programmer’s first autonomous step is, thus, usually to change this standard message and see what happens when the greeting message slightly changes. Type, compile, run, smile—this is what developing a hello, world is about.

 Programmatic greeting history

 The hello, world programmatic greeting was made popular by Brian Kernighan and Dennis Ritchie’s The C Programming Language, published in 1978. The sentence originally came from another publication, also by Brian Kernighan, “A Tutorial Introduction to the Language B,” published in 1972. This was, in all honesty, actually the second example of printing characters in this publication—the first one having the program print hi! The reason was that the B language limited the number of ASCII characters in a single variable to four characters. Hello, world, as a result, was achieved with several calls to the printing function. The original article (https://www.scribd.com/document/494619413/btut) printed hell; then o, w; then orld, and finally !; resulting in hello, world! This message was inspired by a bird hatching out of its egg, as shown in a comic strip.

 The goal of this chapter is to go a bit beyond these simple steps. Good code should be both documented and tested, so we need to understand how to test a function whose purpose is to write to the standard output. On top of that, thanks to Go’s native support of Unicode characters, this chapter will be our opportunity to greet people using languages other than English and writing systems other than the Latin alphabet.

 If you don’t have the Go compiler on your machine yet, install it by following the steps in appendix A. We’ll assume that the setup of your development environment has been completed from here on.

 To print our welcoming message, our project requires the following:

 	Write a program that takes the human language of your choice and prints the associated greeting.

 	Ensure this program is covered by unit tests.

2.1 Any travel begins at home

 Our journey as developers starts where everyone’s started: on a chair in front of a keyboard and a screen. To initiate this wonderful adventure, let’s write a small program that will greet us every time we run it—the well-honed hello, world. As good programmers, we’ll also want to ensure the code works as expected, so we’ll test it properly.

 As mentioned in appendix A, Go code runs inside modules. Start fresh by creating a new directory for your project—let’s call it hello. Enter this directory, and initialize your module using go mod init followed by the name you choose for your package. This name is usually the path to your code repository, for example,

 > go mod init example.com/your-repository

 or

 > go mod init learngo-pockets/hello

 You should now see a new file called go.mod.

2.1.1 Our first program: main.go

 How can we achieve getting a program to print a message to our screen? Let’s get into it! We need to write the necessary code in a file named main.go. In the directory of your project, create a new file named main.go, and add the following code.

 Listing 2.1 main.go

 package main

import "fmt"

func main() {

 fmt.Println("Hello world")

}

 Phew! That was a lot for a first mission. Before we take a step into these lines, you might fancy some satisfaction and run this first program. The Go command for this is as follows (run it in the same directory as the main.go file):

 > go run main.go

Hello world

 Yay! Hopefully, you’re delighted to see the expected message appear on your screen!

 What’s in a name?

 As programmers, when it comes to writing code, the biggest challenge we face on a daily basis is giving names to variables, constants, types, package aliases, functions, or files, as well as Git repositories, microservices, endpoints, namespaces, and so forth. The list is endless. Here are some tips that will help you name variables in future projects:

 	If the scope of the variable is limited to two to three lines, a one- or two-letter placeholder is perfectly valid. However, don’t pick random letters. Use something that immediately reminds you of the purpose of this variable. We’ll be using l for language and tc for test case later in this chapter.

 	Stay consistent between different functions: if the variable represents the same entity, use the same name.

 	Otherwise, use a name that explicitly refers to the current entity. There is no need for abbreviations unless they’re used in some other place in the code—url and id, for example, will be clear enough and understandable by everyone. Think row, column, book, address, order, and so on.

 	When it comes to naming, Go’s convention is to use camelCase for unexposed functions, types, variables, and constants—yes, constants too. For packages, try as much as you can to use a single word.

 	Go’s variables don’t need to describe their type. The Hungarian notation isn’t in use in Go. Your IDE will be kind enough to let you know if a variable is a pointer or a value.

 	Variable names can’t start with a number, nor can functions, types, or constants.

 Our next step is to understand what we just wrote. Our tasks as Go developers will scarcely be achievable with mere copies of what we can find in remote resources. The creative part in coding shouldn’t be ignored. As for every craft, practice makes perfect, and pretty soon, we should have acquired enough knowledge to alter this first program to meet our aspirations. This book will guide you through the different steps that will eventually guarantee self-confidence through understanding. For starters, we’ll focus on the first line of the program:

 package main

 Every Go file begins with the name of its package, in this case, main. Packages are Go’s way of organizing code, similar to modules or libraries in other languages. For now, everything fits in the main.go file, which must reside in the main package. We’ll see more on how to make and use packages in chapter 3.

 The main package is a bit particular, for two reasons. First, it doesn’t respect Go’s convention of naming the package after its directory (or the other way around). Second, this is how the compiler knows the special function called main() will be found here. The main() function is what will be executed when the program is run.

 After the package’s name, next comes the list of required imports this file will use. Imported packages are composed of standard library packages and third-party libraries:

 import "fmt"

 Most Go programs rely on external dependencies. A single Go file, without the help of imported packages, can only handle a limited set of tools. For the sake of the language’s unapologetic simplicity, these tools don’t provide much, and writing to external devices isn’t in that limited set.

 To use features in such external dependencies, we need to import the package where they reside via the import keyword, which provides visibility of the functions and variables in a specific package somewhere else. External libraries are identified by the URL to their repository (more on this in section 7.2.4 of chapter 7). For the moment, it’s important to remember that any import that doesn’t look like a URL is from the standard library, meaning it comes with the compiler.

 In our case, we use the fmt package, the standard library package for formatting and outputting any kind of data thanks to the Println function, which stands for “print with new line.” This is a very useful function for cheap debugging!

 Finally, we have the main() function itself. It doesn’t take any argument and doesn’t return anything—simple. Go is a simple language:

 func main() {

 fmt.Println("Hello world")

}

 From the fmt package, the Println function writes to the standard output. If you give the function an integer or a Boolean variable, it will display the human-readable version of that value. Println is a sibling of a vast family of functions in charge of formatting messages.

 Note that indentation in Go is made with tabs. No need to start a debate, it’s written in the documentation and everyone does it that way. If you don’t indent, nobody will be able to read your code, but the compiler will understand. Don’t do that, even if it works.

 A capital question

 You might wonder why Println starts with an uppercase letter. The whole story about scope and visibility is explained here:

 	Any symbol starting with a capital letter is exposed to external users of the package.

 	Anything else isn’t accessible from outside the package. Common examples of unexposed names include those starting with a lowercase letter and those starting with an underscore.

 This applies to variables, constants, functions, and types. And that’s it—really.

 The Println function starts with a capital letter so that we can use it from outside the package.

2.1.2 Let’s test with the Example function

 Now that we wrote the program, we can test it! As you’ll see, this isn’t the only way of developing—sometimes, we can start with writing the tests and then the code. What’s important is that code and tests go hand in hand. Writing code with no tests is as dangerous as thinking your brand-new toaster will return perfectly crispy and still tender bread on its first use without checking any of its settings.

 But what’s in a test? By “test,” we mean automated tests (or at least automatable), not relying on human evaluation. The test could be written in shell script, in Fortran, in Go, or in any language of your choice. It has to be able to tell the human user that everything went fine or that something didn’t—in which case, some verboseness is always welcome. For this first project, we consider that running the code and “seeing” with human eyes that the output is Hello world isn’t enough, at least not as the sole test of our code. What if that space character between the words were a nonbreakable space character, which we humans can’t differentiate from a regular space character? The output string wouldn’t be the same, but we wouldn’t be able to tell.

 And why should we test? After all, the code did execute as we wanted when we ran it, right? Although this is true, it’s only been true once. And, in a larger project, where a piece of code isn’t executed just once and is regularly tinkered with, tests are a great method of ensuring we didn’t break previous behavior. Tests are an important block of any continuous integration pipeline—if not the most important.

 Example vs. test

 A little technical foreword is needed here. While Go functions usually return values, very few write specifically to the standard output. The test strategy that we’ll implement here is only necessary when checking the standard output, which means it won’t be the default approach for the rest of the code. However, because this is our first function and we want to test it, this is the easy way. We’ll see more about test functions shortly.

 Examples are not only used for testing the standard output but also, as their name suggests, for giving the users and maintainers of your code a good starting point. They will appear in the documentation generated by go doc. Fortunately, they are also run by the test tool, so this is the solution we use when checking what happens on the standard output.

 Go offers many tools to test the code, so let’s use them! Here, our goal will be to test the main function—a task that is quite uncommon. The vast majority of Go code lies in other functions—if not other packages—and those are the functions that we heavily test. Most of the time, the main function will call these tested functions and will simply be in charge of printing a string or returning a status code. Apart from this occasion, the tests in this book won’t be on the main function, but rather on the functions it calls.

 First, we need a test file. We’ll name the file main_internal_test.go, for the following reasons:

 	
main, because the file we test is named main.go.

 	
internal, because we want to access unexposed methods, a convention that we choose to follow in this book.

 	
test, because this is a test file. When it comes to building or executing the program, *_test.go files are ignored by the compiler. Only when running tests will *_test.go files be considered.

 Internal and external testing

 There are two approaches to testing. In external testing, we test from the user’s point of view, so we can only test what is exposed. The test files should be in the {packagename}_test package and in the same folder.

 In internal testing, on the other hand, we know everything that goes on inside and we want to test the unexposed functions. The test files should be in the same package as the source file.

 These two approaches aren’t exclusive; they are complementary.

 Raise the standard

 How do we test our code? How can we make sure that something is sent to the standard output from within a function? Go provides a specific tool based on a test function’s name, which can be used to test the standard output of that function. If a function’s name in a test file matches the Example<FunctionName> pattern—in our case, ExampleMain—Go will identify it as eligible for standard output verifications. Even though main isn’t exposed, the function is in PascalCase, requiring a capital M here. The testing function wraps a call to main, the tested function, at line 4 in the following code.

 Listing 2.2 main_internal_test.go: Testing the printed output

 package main

func ExampleMain() {

 main() #1

 // Output: #2

 // Hello world

}

 #1

 Calls main

#2

 Defines the expected output

 To assert that the expected output message Hello world has been sent to the standard output, we use Go’s Example syntax, which allows us to write a commented line containing Output:. Any commented lines right after this one will be the expected value that Go’s test utility uses to check the output generated by this Example function.

 If an Example function doesn’t include the // Output: comment, it will still be compiled, but it won’t be executed during tests. However, such a function will still appear in the documentation generated by go doc or similar tools. This makes Example functions without // Output: particularly useful for illustrating usage without enforcing specific outputs.

 Let’s run the test

 To run the test, we must call Go’s test command. This will execute all tests in the current directory:

 > go test

PASS

ok learngo-pockets/hello 0.008s

 The output lists the test files that Go processed, showing the module name followed by the path to the tested package. If the main package resides at the root of the module, only the module name will appear in the output, as there is no additional path to display.

 Note Always remember what Edsger Dijkstra said: “Testing can prove the presence of bugs, but not their absence!” A single test won’t demonstrate a piece of code is error proof at all. The more tests we have, the more trustworthy the code is.

 Writing tests comes with several benefits. First, we have an automatable process that will check that the code we have produces a deterministic output. Second, with this test, we can start altering the code—and every change, every tiniest bit of line we modify, can be validated with a run of the previous test. Finally, as mentioned previously, writing tests with Example plays an important part in Go’s documentation.

2.1.3 Calling the greet function

 The goal of this chapter isn’t just to print a nice message to the user. We want some variations, some modularity. Taking a step back, the main function does two distinct things: (1) defines a specific message and (2) prints it. We’ve cobbled everything on a single line in the previous code, but that doesn’t leave any space for adaptations.

 Because we aim to enrich the message, we need some flexibility here. We’ll begin by extracting the message generation into a dedicated greet function. This function returns a string that we can keep in a variable we call greeting. Following is the full code refactored with the extraction.

 Listing 2.3 main.go: Moving the Println call

 package main

import "fmt"

func main() {

 greeting := greet() #1

 fmt.Println(greeting)

}

// greet returns a greeting to the world.

func greet() string { #2

 // return a simple greeting message

 return "Hello world"

}

 #1

 Extracts the string

 into a variable

#2

 Creates a new

 function

 Let’s look closer. The new function is called greet because it will return the greeting message. For now, it takes no parameters and simply returns the message in the form of a string:

 // greet returns a greeting to the world.

func greet() string {

 return "Hello world"

}

 In the main function, we call the new greet function and store its output in the greeting string variable, which we print:

 func main() {

 greeting := greet()

 fmt.Println(greeting)

}

 We refactored. Does the test still pass? Congratulations, you’ve made your first refactoring in Go. It should pass, but it’s not as unitary as it could be. We can write a test around greet with a lot more flexibility.

2.1.4 Testing a specific function with the testing package

 Refactoring, as we just did, shouldn’t change the code’s behavior. We can still run our previous test, and it should still pass. But because we’ll want to enrich the greet function, we should be covering it with dedicated tests, as meager as it is.

 As part of Go’s standard library packages, the package testing is available for your use. We’ll be using it a lot throughout this book, trying to benefit from every aspect that the Go designers put into the language so that we don’t have to write our own tools or spend time benchmarking independent testing libraries. As its name nicely suggests, the testing package is written for writing tests.

 We’ve already seen the Example<FunctionName>() syntax, which is used for documentation and for testing standard output. Let’s venture into a new set of test functions: those with the Test<FunctionName>(t *testing.T) signature. There’s an important difference here with the previous category: these functions accept a parameter—a pointer to a testing.T structure. The reasons for using a pointer here are beyond the scope of this chapter, but we’ll cover them in appendix E.

 A TestXxx function runs one or more tests on a function, as defined by the developer. We’ll start with one, and then grow from there. A test consists of calling the function and checking its returned value or the state of some variable against a wanted value or state. Should they match, the test is considered passing; otherwise, it’s considered failing. Every test has four main steps:

 	
Preparation phase—This is where we set up everything we need to run the test—input values, expected outputs, environment variables, global variables, network connections, and so on.

 	
Execution phase—This is where we call the tested function. This step is usually a single line.

 	
Decision phase—This is where we check that the output we got corresponds to the output we want. This might include several comparisons, evaluations, and sometimes some processing, as well as the test failing or passing.

 	
Teardown phase—This is where we kindly clean back to whatever the state was prior to the test’s execution. This step is made extremely simple thanks to Go’s defer keyword: anything that was altered or created during preparation should be fixed or destroyed here.

 Our TestGreet function will be written in the same main_internal_test.go file as earlier, mostly because the tested function, greet, is also in the same main.go file. Let’s have a look at the additions we brought to the file. In Go, we like to use want for the expected value and got for the actual one, as shown in the following listing.

 Listing 2.4 main_internal_test.go: Testing greet

 package main

import "testing"

func TestGreet(t *testing.T) {

 want := "Hello world"

 got := greet()

 if got != want {

 // mark this test as failed

 t.Errorf("expected: %q, got: %q", want, got)

 }

}

 The first difference with the previous version of this file is at line 3: we now need to import the testing package because we use a parameter of type *testing.T in our TestGreet function. This is a line that will appear in every single test file we’ll see as Go developers. Its absence should be a red flag when reviewing industry code:

 import "testing"

 The second important change in this file is, of course, the new TestGreet function:

 func TestGreet(t *testing.T)

 We’ve added comments in the body of this function so that it follows the previous list of steps. The preparation step, in our case, consists of defining the expected output of the greet function call. Because this doesn’t alter the environment, there is nothing to rewind after the execution of the test, and we don’t need to defer any closure steps. The execution phase simply consists of calling the tested greet function and, of course, capturing its output into a variable. The following is an annotated listing showing the purpose of each line.

 Listing 2.5 main_internal_test.go: Body of the test

 want := "Hello world" #1

got := greet() #2

if got != want { #3

 // mark this test as failed

 t.Errorf("expected: %q, got: %q", want, got)

}

 #1

 Preparation phase: defines the expected returned value

#2

 Execution phase: calls the examined greet function

#3

 Decision phase: checks the returned value

 The decision phase here isn’t too tricky. We need to compare two strings, and we’ll accept no alteration, so the != comparison operator works fine for us here. We’ll soon face cases where comparing two strings isn’t enough, but let’s not skip steps, as we still have a final line here that needs more explanation:

 t.Errorf("expected: %q, got: %q", want, got)

 So far, the need for the t parameter hasn’t been obvious. As mentioned earlier, a test needs to be either PASSing or FAILing. Calling t.Errorf is one way of letting the go test tool know that this test was unsuccessful. Errorf has a similar signature as Printf; see appendix B for more about formatting strings. Once again, you can run the tests with the same go test command as earlier.

 Before we move on to the next section, now’s the time for playing a bit. Change the contents of the want, and rerun the tests. The reason for this early refactoring might not appear obvious right now. By the end of this chapter, however, as we implement new functionalities in our code, the file will grow in size. It’s good practice in Go, as in many other development languages, to keep the scope of a function narrow. This serves several purposes:

 	Making the code testable

 	Making debugging the code easier

 	Making the mission of a function explicit

 Overall, the cognitive charge of a function should be minimal. No one wants to face a wall of text featuring multiple layers of indentations.

 We’ve now written a program that greets the user with a lovely message. We know it works fine because we’ve written tests to cover the code, but there’s a small catch. The program will only write English greetings. We can improve the program using languages in addition to English to reach more people. Imagine you’re applying at a Canadian company, where employees speak both French and English. How nice would it be if they could use our program too and be greeted with a language of their choosing?

2.2 Are you a polyglot?

 Our program is static—it will always run and print the same message, regardless of the user. Let’s adapt our code to support several languages, and let the users decide which language they want. In this section, we’ll do the following:

 	Add support for a new language in the greet method

 	Handle the user’s language request

 	Adapt the tests and ensure we didn’t break the previous behavior

 To display Hello world in a different language, we need to tell the program which language we want to use. This will be performed in two iterations: (1) supporting new languages and (2) opening our program to the user’s choice of language.

2.2.1 Parlez-vous français? The switch angle

 Our current greet function only returns a hardcoded message. Because it can only return one message, we want some logic in there to determine which greeting to output. There are several options for this in Go. The first one that comes to mind, the if approach, only works for one or two different languages. Add more languages, and the code becomes an unnecessarily long list of checks. Here, we’ll explore the other two options. Because we need to support another language, let’s pick French. The full code now looks like the following listing.

 Listing 2.6 main.go: Adding a new language

 package main

import "fmt"

func main() {

 greeting := greet("en")

 fmt.Println(greeting)

}

// language represents the language's code

type language string #1

// greet says hello to the world in the specified language

func greet(l language) string {

 switch l { #2

 case "en":

 return "Hello world"

 case "fr":

 return "Bonjour le monde"

 default:

 return ""

 }

}

 #1

 Declares a type

#2

 Switches on the language value

 Clarity through typing

 Using the proper type for variables is important. We need to know what we’re talking about, and what we’re talking about is having a language parameter that will be used to specify which greeting message should be returned by the greet function. This language parameter can be a string containing the language description, an integer referring to an index of existing languages, the URL to a dictionary, or many, many other things. For now, we’ll keep it simple and use a string:

 type language string

 The input language will be a string that represents a language. This type definition helps us and the users of our libraries understand what values are expected and makes mixing up parameters harder.

 Selecting the right language

 Now that we have an explicit type, we can pass it as a parameter to the greet function. The new signature becomes

 func greet(l language) string

 To call it, we changed the first line of our main function:

 greeting := greet("en")

 The compiler knows if this "en" is a string or a language by looking at the signature of the function. greet requires a language, so it types the constant as such.

 For the first iteration, we can add a switch on the language and return the corresponding greeting, as shown in listing 2.7. The default value for the moment is just an empty string. We consider that switch is clearer when dealing with most types—the exceptions being error, pointers, and bool.

 Listing 2.7 main.go: Switching on language

 switch l {

 case "en":

 return "Hello world"

 case "fr":

 return "Bonjour le monde"

 default:

 return ""

}

 Note that between each case, contrary to many other programming languages, we don’t break. Breaking is implicit in Go because it’s such a potential source of errors. Of course, as we return here in each case, the point is moot, but now you know.

 In the main function, we need to pass the desired language to our upgraded greet function—for example, "en" for English—and print the output.

2.2.2 Adapt the test with Test

 functions

 Previously, the greet function accepted no parameter. It now takes one, which means we broke the contract we had with the users of our code. Well, for now, the only user is a test, so we can change it. We now want to test the greet function with various inputs.

 We’ll make a call to the greet function by passing the desired input language and storing the output in a variable, so we can verify it. The preparation phase now contains two variables: the desired language and the expected greeting message.

 Let’s use a new convention of the testing package: when testing a function with two (or more) different scenarios, we can write several functions, Test<FunctionName>_{ScenarioName}. The full test file now looks like the following listing.

 Listing 2.8 main_internal_test.go: Split test cases

 package main

import "testing"

func ExampleMain() {

 ...

}

func TestGreet_English(t *testing.T) {

 lang := language("en") #1

 want := "Hello world"

 got := greet(lang) #2

 if got != want { #3

 // mark this test as failed

 t.Errorf("expected: %q, got: %q", want, got)

 }

}

func TestGreet_French(t *testing.T) {

 lang := language("fr") #1

 want := "Bonjour le monde"

 got := greet(lang) #2

 if got != want { #3

 // mark this test as failed

 t.Errorf("expected: %q, got: %q", want, got)

 }

}

func TestGreet_Akkadian(t *testing.T) {

 // Akkadian is not implemented yet!

 lang := language("akk") #1

 want := ""

 got := greet(lang) #2

 if got != want { #3

 // mark this test as failed

 t.Errorf("expected: %q, got: %q", want, got)

 }

}

 #1

 Preparation phase: defines the expected returned value of type language

#2

 Execution phase: calls the examined greet function

#3

 Decision phase: checks the returned value

 As you can see, the TestGreet_English function is in charge of testing the English greeting, while the TestGreet_French function tests the French message. While this approach is interesting and worth remembering, you probably noticed that, in our case, there’s no real change between the English and the French scenarios. Only the preparation step differs—only slightly. The next section will improve on this. To run the tests, simply run your new favorite go test command.

 As you’ve noticed, we’ve added another function to test a language unknown to the program. Testing isn’t always about making sure the “good” inputs provide “good” results. Making sure the safety nets are in place is almost more valuable than making sure the code works as intended.

2.3 Supporting more languages with a phrasebook

 Adding entries to a switch clause reduces the readability of the code: it increases the size of the function, sometimes beyond screen dimensions, when the only answer we need is “if this language is supported, give me its greeting.” To trim down our function without losing any functionality, in our next iteration of coding, we decide to use a map, a very common and useful data structure in Go. A map is a hash table, a set of pairs of distinct keys and their associated values. In this section, we’ll do the following:

 	Scale the number of supported languages

 	Introduce the use of map

2.3.1 Introducing the Go map hash table

 Let’s look at the implementation of the code using a map to store these pairs of <language, greeting>. The code is given in the following listing.

 Listing 2.9 main.go: Using a map

 package main

import (

 "fmt"

)

func main() {

 greeting := greet("en")

 fmt.Println(greeting)

}

// language represents the language's code

type language string

// phrasebook holds greeting for each supported language

var phrasebook = map[language]string{ #1

 "el": "Χαίρετε Κόσμε", // Greek

 "en": "Hello world", // English

 "fr": "Bonjour le monde", // French

 "he": "שלום עולם", // Hebrew

 "ur": "ہیلو دنیا", // Urdu

 "vi": "Xin chào Thế Giới", // Vietnamese

}

// greet says hello to the world in various languages

func greet(l language) string {

 greeting, ok := phrasebook[l] #2

 if !ok {

 return fmt.Sprintf("unsupported language: %q", l)

 }

 return greeting

}

 #1

 Declares a global variable

#2

 Uses the map

 Our map, defined in listing 2.10, associates a greeting message with every language as a pair of {language, greeting} where the greeting is stored as a string. For this chapter, we use a global variable that holds the greetings. While relying on global variables is generally considered bad practice, it’s acceptable for the purposes of this simple project.

 Listing 2.10 main.go: map definition

 // phrasebook holds greeting for each supported language

var phrasebook = map[language]string{

 "el": "Χαίρετε Κόσμε", // Greek

 "en": "Hello world", // English

 "fr": "Bonjour le monde", // French

 "he": "שלום עולם", // Hebrew

 "ur": "ہیلو دنیا", // Urdu

 "vi": "Xin chào Thế Giới", // Vietnamese

}

 Our next step is to use this phrasebook instead of the switch in the greet function. The following listing shows the code for this step.

 Listing 2.11 main.go: greet method

 // greet says hello to the world in various languages

func greet(l language) string {

 greeting, ok := phrasebook[l]

 if !ok {

 return fmt.Sprintf("unsupported language: %q", l)

 }

 return greeting

}

 Accessing an item in a Go map returns two pieces of valuable information: a value—in our case, the message associated with the key language l—and a Boolean (ok per convention) that tells us whether the key was found. The syntax of assigning both returned values to two different variables on a single line might be new to some programmers—it doesn’t exist in Java or C. This is something we do a lot in Go:

 greeting, ok := phrasebook[l]

if !ok {

 return fmt.Sprintf("unsupported language: %q", l)

}

 It’s necessary to check the second return value of the access to the map. If the language were unsupported, we’d receive the zero value of a string, which is the empty string, with no knowledge of whether the map had an entry for our language.

 Note that in production-ready code, we would be returning an error because an empty string doesn’t carry any meaning. We chose to keep it simple for now. Errors will be covered in later chapters.

 Multiple return values

 We’ll see many occurrences of multiple value assignment, mostly in four common cases:

 	When we read the value associated with a key from a map, we also receive whether that key was found in the map, as we did in this piece of code.

 	When we use the range keyword, which allows us to iterate through all the key-value pairs in a map or all the index-value elements of a slice or array (an example appears in the next version of the test file, as well as more information in section 3.1.4 of chapter 3).

 	When we read from a channel with the <- operator, which returns a value and whether the channel is closed (examples can be found in the maze solver in chapter 9).

 	When we retrieve multiple values returned by a single function, which is the most frequent case, mostly due to Go’s handling of errors (see chapters 3, 5, and 7 for examples).

 At this point, both tests for French and English should still pass because our refactoring didn’t change them, but now the Akkadian is failing. Let’s refactor the test before we fix it.

2.3.2 Writing a table-driven test

 Our previous tests were linear—they tested every language in a sequential way. Taking a step back, we realize each test runs the same sequence: take an input language, call the greet function, and check the greeting to see if that language is the expected one. This can be summed up in the following snippet of code that was executed for languages "en", "fr", or "akk" in our previous example.

 Listing 2.12 main_internal_test.go: Calling greet and checking

 got := greet(language(lang))

if got != want {

 t.Errorf("expected: %q, got: %q", want, got)

}

 There’s no point in duplicating this piece of code every time we want to check that we’re properly supporting a new language. Isn’t the test always going to be the same? Do we really need to add an extra 10 lines to our test file if only 2 of these lines change? This isn’t sustainable. That was our motivation to use maps in the body of the greet function, and this is also our motivation to use maps in our tests! We can make use of table-driven tests to enhance the reusability and clarity of our test file, and get the nice side effect of shrinking it a lot! Let’s look at the new test in the following listing before we explain it.

 Listing 2.13 main_internal_test.go: Table-driven tests

 func TestGreet(t *testing.T) {

 type testCase struct {

 lang language

 want string

 }

 var tests = map[string]testCase{ #1

 "English": {

 lang: "en",

 want: "Hello world",

 },

 "French": {

 lang: "fr",

 want: "Bonjour le monde",

 },

 "Akkadian, not supported": {

 lang: "akk",

 want: `unsupported language: "akk"`,

 },

 "Greek": {

 lang: "el",

 want: "Χαίρετε Κόσμε",

 },

 ...

 "Empty": {

 lang: "",

 want: `unsupported language: ""`,

 },

 }

 // range over all the scenarios

 for name, tc := range tests {

 t.Run(name, func(t *testing.T) {

 got := greet(tc.lang) #2

 if got != tc.want { #3

 t.Errorf("expected: %q, got: %q", tc.want, got)

 }

 })

 }

}

 #1

 Preparation phase: defines the expected returned value

#2

 Execution phase: calls the examined greet function

#3

 Decision phase: checks

 the returned value

 As we’ve seen previously, every test we want to run needs two values: the language of the desired message and the expected greeting message that will be returned by the greet function. For this, we introduce a new structure that contains the input language, and the expected greeting. Structures are Go’s way of aggregating data types together in a meaningful entity. In our case, because the structure represents a test case, we’ll name it testCase. Our structure needs only to be accessible in the TestGreet function (and nowhere else), so let’s define it there:

 type testCase struct {

 lang language

 want string

}

 This will make writing a test over a pair of <language, greeting> even simpler. Now that we can easily write one test case, let’s see how to write a lot of them. In Go, the common way of writing a list of test cases is to use a map structure that will refer to each test case with a specific description key. The description should be explicit about what this case tests. We now have everything we need to write a list of test cases, as shown in the following listing.

 Listing 2.14 main_internal_test.go: Test cases definition

 var tests = map[string]testCase{

 "English": {

 lang: "en",

 want: "Hello world",

 },

 "French": {

 lang: "fr",

 want: "Bonjour le monde",

 },

}

 To test these scenarios, we can iterate over the tests map and run each test case sequentially, as shown in listing 2.15. As you’ll see in more detail in the next chapter, this for + range syntax returns the key and the value of each element of the map. We then pass the name as the first parameter to Run, a method from the testing package that makes tests so much easier to use: if a test case fails, the tool will give you its name so that you can find it and fix it. Most code editors also let you run one single test case if you use this syntax. Remember, this map associates a description to a test case, hence the name of the variable, tc.

 Listing 2.15 main_internal_test.go: Execution and assertion phases

 for name, tc := range tests {

 t.Run(name, func(t *testing.T) {

 got := greet(tc.language)
#1

 if got != tc.want { #2

 t.Errorf("expected: %q, got: %q", tc.want, got)

 }

 })

}

 #1

 Execution phase:

 calls the function

#2

 Decision phase:

 checks the result

 Because the call to the greet function is the same regardless of the input language, creating a new test case only has us adding an entry in the tests map. You can see this in the following listing.

 Listing 2.16 main_internal_test.go: Test cases

 var tests = map[string]testCase{

 "English": {...},

 "French": {...},

 "Akkadian, not supported": {

 lang: "akk",

 want: `unsupported language: "akk"`,

 },

 #1

}

 #1

 Add new described scenarios here.

 Quotes in Go

 You’ve probably noticed we used a different set of quotation marks in the expected greeting for Akkadian (akk). There are three types of quotation marks used in Go, each for a specific need:

 	The double quotation mark (") is used to create literal strings. Example: s := "Hello world"

 	The backtick (`) is also used to create raw literal strings. Example: s := `Hello world`

 	The single quote (') is used to create runes. Example: r := '學'. A rune is a single Unicode code point.

 You’ve probably noticed the first two options can be used to create literal strings. The difference between raw literal strings and non-raw literal strings is that, in a raw literal string, there’s no escape sequence. Writing a \n in a raw literal string will result in a backslash character (\) followed by the letter n when the string is printed. Raw literal strings are a nice way of not having to deal with escaping double quotation marks, which is very handy when it comes to writing JSON payloads.

 We now have a program that can return a greeting in whichever language the user wants, but the only way the user gets to change the language used, so far, is to change the code of the program—which isn’t optimal! We want to get the input from the user without changing the code every time the request is sent. Because the user is running the program from the command line—by running go run main.go or by executing the compiled executable—that’s most likely where they’ll want to inform us of their choice of language.

2.4 Using the flag package to read the user’s language

 How can we use the input to get the user’s desired language of greeting? Go provides support for parsing the command-line arguments in both the os and flag packages. The former is very close to C/C++’s handling of arguments—you get to access them by their position on the line, but whether they are of the form --key=value, -key value, or -option is left up to the developer to implement. That’s a real pain if you have repeatable fields. Oh, and that’s only for parsing them—then we have to convert them to their right type.

 On the other hand, the flag package offers support for a variety of types—integers, float numbers, time durations, strings, and Booleans. Let’s roll with this one:

 	Use the flag (https://pkg.go.dev/flag) standard package to read from command-
line arguments.

 	Call flag.Parse to retrieve the values.

 	Play with the program argument flags, and check the output.

2.4.1 Add a flag

 The first thing we need to do, when it comes to exposing a parameter on our command-line executable, is to give it a nice, short name. Here, we’ll offer the user a choice of language, which makes lang a fairly obvious choice. Let’s have a look at the updated code of the main.go file in the following listing.

 Listing 2.17 main.go: Using flags

 package main

import (

 "flag"

 "fmt"

)

func main() {

 var lang string
 flag.StringVar(&lang,

 "lang",

 "en",

 "The required language, e.g. en, ur...") #1

 flag.Parse()

 greeting := greet(language(lang))

 fmt.Println(greeting)

}

// language represents a language

type language string

// phrasebook holds greeting for each supported language

var phrasebook = map[language]string{

 ...

}

// greet says hello to the world

func greet(l language) string {

 ...

}

 #1

 Go understands that a line finishing with a comma continues on the next line.

 The goal of this section is to read the flags from the command line, which means we need to import the flag package:

 import (

 "flag"

 "fmt"

)

 Now that we’ve imported this package, let’s use it. We want to read, from the command line, the name of the language in which the user expects their greeting. In our code, the type for that entity is a language, for which the closest type is a string.

 The flag package offers two very similar functions to read a string from the command line. The first requires a pointer to a variable that it will fill up:

 var lang string

flag.StringVar(&lang, "lang", "en", "The required language, e.g. en, ur...")

 The second creates the pointer and returns it:

 lang := flag.String("lang", "en", "The required language, e.g. en, ur...")

 For this example, we’ll use the first one, mostly because it will let us introduce the & operator. On the first line, we declare a variable of the type string. That variable will hold the value provided by the user. Let’s have a look at the syntax and different parameters of the StringVar call:

 	We pass the address of the string into which we’ll store the provided value to the function. Pointers are covered in detail in appendix E and used in the following chapters.

 	We pass the name of the option as it will appear on the command line.

 	We give the default value for this variable. The default value is used if the user doesn’t provide the flag when calling the program.

 	We provide a short description of what this flag represents and some example values.

 During the execution of a program, variables are stored in memory at a specific address. We can retrieve the address of a variable with the address operator &. Similarly, when we have a pointer and want to access the value, we can retrieve it with the indirection operator * used on the pointer.

 In Go, when we call a function, the arguments are passed by copy. This means that if we want to allow a function to alter one of our variables, the simplest way is to give that function a pointer to our variable.

 Finally, Go offers no pointer arithmetic. If you have a pointer to the first element of an array, it can’t be used to access the second element.

 There’s one important thing to remember when we use the flags package: StringVar, IntVar, and UintVar don’t scan the command line and extract the value of the parameter. What does this trick of parsing the command line is the flag.Parse function. It scans the input parameters and fills every variable we’ve identified as a receiver. If you need a mnemotechnical sentence to remember it, try “Sunset BoolVar begins at the Parse-ific Ocean.”

 After the call to Parse, the variable lang will contain the value passed by the user, and the rest of the code isn’t touched. Note that this conversion to the language type is acceptable in this context, but in production code, it’s the perfect place to add validation of the value against a list of supported values or at least a validation of the format (in our case, a string of two ASCII characters).

2.4.2 Test the command-line interface

 We’ve now completed the code, and it’s time to run some end-user testing. For this, we’ll simulate calls from the command line. We have several options to make sure this works as expected. The first on our list is to simply try it out! After all, we’ve spent a good many pages making sure this works as we want, so we deserve some peace of mind and some time to rest our neurons. We can pass the parameter on the command line with go run main.go -lang=en. Here is an example of running the main file in Greek:

 ❯ go run main.go -lang=el

Χαίρετε Κόσμε

2.5 Side quests

 Here is a series of exercises you can do:

 	Launch the program with the Urdu language as the flag argument.

 	Launch the program with no language.

 	Remember to check all possible scenarios. The user could be asking for languages our program doesn’t know. Launch the program with an unsupported language, for example, Akkadian, akk.

 	Add support for the language of your choice.

 This concludes the first project. We hope you enjoyed it and have already gained some practical insights into using Go.

 Summary

 	
go run allows you to quickly execute a Go program without creating a binary, making it useful during development.

 	Writing tests alongside your code, rather than after it, ensures the mental model of expected inputs and outputs is fresh and accurate, leading to better test coverage.

 	
go test is used to execute tests written for your code, following Go’s naming conventions for test files and functions.

 	The testing package provides everything you need to write and run tests, including support for assertions and benchmarks.

 	Table-driven tests are a Go best practice for testing functions across multiple inputs and outputs. By using slices of test cases, you can easily iterate through various scenarios in a structured way.

 	
Example functions are special tests used to check the output of a function by verifying what is written to the standard output. These are often used to demonstrate usage.

 	Each test generally follows four phases: preparation, where you set up inputs; execution, where you run the code being tested; decision, where you compare the result with expected output; and teardown, where you clean up resources.

 	The flag package allows for parsing command-line arguments, making your Go applications more flexible and interactive.

 	In Go, maps are powerful data structures for storing key-value pairs. Accessing a map returns both the value and a Boolean indicating if the key was found.

 	Define custom types when they provide meaningful context over built-in types. For example, a UserID type can be more descriptive than an int.

 	Use if statements for simple binary conditions. For more complex cases, prefer switch statements or maps to handle multiple conditions more cleanly.

3 A bookworm’s digest: Playing with loops and maps

 This chapter covers

 	
Ranging over slice and map

 	
Using a map to store unique values

 	Learning how to open and read a file

 	Decoding JSON files

 	
Sorting a slice with custom comparators

 Since the invention of writing, people have been using the tool to carve their thoughts through the centuries. Books were knowledge and became a hobby. We’ve been reading and collecting books on shelves for centuries. With technology, we’re now able to share information more than ever and give our opinion on everything, including books. In this chapter, we’ll join a group of bookworms who have been reading books faithfully. Fadi and Peggy have started registering the books they keep on their bookshelves, and they wonder if we can help them find books that they both have read and, maybe, suggest future reads.

 In this chapter, we’ll reinforce what we learned about command-line interfaces (CLIs) in chapter 2 by creating a book digest from the bookworms’ book collections. Step by step, by using a list of books from each reader, we’ll build a program that returns and prints the books that are located on more than one shelf. As a bonus, we’ll practice with map and slice, Go’s dynamic, flexible data structures similar to arrays, to create a tool that recommends new books for the bookworms to read. The input of our executable is a JSON file, and we can learn how to read a file in Go and parse a JSON file using the standard Go libraries. For simplicity, we’ll assume that each book has only one author (which is a bit ironic given the book you’re reading right now). This project requires the following:

 	Write a CLI tool that takes a list of bookworms and their book collections in the form of a JSON file.

 	Find the books the bookworms have in common on their shelves.

 	Print the books they have in common to the standard output.

 	As a bonus, recommend books for each bookworm based on their matching books with other bookworms.

 The project is limited in the following ways:

 	We assume each book has only one author.

 	The input JSON file won’t surpass a megabyte.

3.1 Loading the JSON data

 We’re in a new chapter, so that means a new project and a new folder. Let’s launch the command to initialize the module we’ll be working on and call it bookworms:

 > go mod init learngo-pockets/bookworms

 As a good practice and a standard first step, we recommend creating a new main.go file with a simple empty main function:

 package main

func main() {

 // will be completed along the way

}

 We’ll fill in the rest of the main.go file throughout the chapter. In this section, we’ll create the input JSON file and load the data it contains.

3.1.1 Defining a JSON example

 Let’s look at some examples of input data. Here, we have a list of people with their names and their books. Each book has one author and a title.

 A few words about the JSON format

 JavaScript Object Notation (JSON) is a file format that stores data using "key":value pairs. JSON keys are always strings, enclosed with straight double quotation marks, and JSON values can be any of the following:

 	
Decimal numbers (no enclosing character)—4, 3.1415, 1e12

 	
Strings (enclosed in double quotation marks)—"Hello", "1789"

 	
Arrays (enclosed in square brackets)—[1,2.5,-10]

 	
Boolean values (no enclosing character)—true, false

 	
Objects (enclosed in curly braces)—{"name":"Nergüi"}

 The fields for JSON objects aren’t specifically sorted; in listing 3.1, we could have the author appear before or after the title, and the payload would be the same. Arrays, on the other hand, are ordered; switching the first and the second element would change the payload.

 We can now write a sample bookworm file. The following listing provides the code for the file.

 Listing 3.1 testdata/bookworms.json: Example of input file

 [

 {

 "name": "Fadi",

 "books": [

 {

 "author": "Margaret Atwood",

 "title": "The Handmaid's Tale"

 },

 {

 "author": "Sylvia Plath",

 "title": "The Bell Jar"

 }

]

 },

 {

 "name": "Peggy",

 "books": [

 {

 "author": "Margaret Atwood",

 "title": "Oryx and Crake"

 },

 {

 "author": "Margaret Atwood",

 "title": "The Handmaid's Tale"

 },

 {

 "author": "Charlotte Brontë",

 "title": "Jane Eyre"

 }

]

 }

]

 That’s simple enough for now. There is a convention in Go by which any folder named testdata should contain—you guessed it—data for testing. To quote the go tool documentation, “the go tool will ignore a directory named "testdata", making it available to hold ancillary data needed by the tests.” Linters and other static code analysis tools should also ignore it.

 Create a file named bookworms.json within a testdata folder with some data like ours, and pick your favorite books. Alternatively, you can go to our repository and copy our version.

 The first step for reading this data is to open the file and load its contents as a file. The second is to parse the JSON.

3.1.2 Opening a file

 Because we don’t like getting lost in overly long files, we chose to cut the logic of the project into two files: first, main.go knows that it runs in a terminal and can display text; second, bookworm.go has the business logic and could be copied and reused in a different setup. Don’t overthink it yet. At this point, your file tree should look like this:

 > tree

.

├── bookworm.go

├── go.mod

├── main.go

└── testdata

 └── bookworms.json

 Loading the data will be the job of a new function, which we’ll call loadBookworms. It takes the file path as a parameter filePath and returns the slice of Bookworms represented by the JSON document, as shown in listing 3.2. If something goes wrong (file not found, invalid JSON, etc.), it can also return an error. Don’t forget to give it a docstring—in other words, a comment explaining what the function does.

 Listing 3.2 bookworm.go: The loadBookworms signature

 package main

// loadBookworms reads the file and returns the list of bookworms,

// and their beloved books, found therein.

func loadBookworms(filePath string) ([]Bookworm, error) {

 return nil, nil #1

}

 #1

 Returns empty

 values for now

 We talked about zero values previously in chapter 2, section 2.3.1, and you can refer to appendix C for specific information. In our case, the zero value of the slice of bookworms is nil, as is the zero value of the error interface. That’s why loadBookworms returns nil and nil for the moment.

 Go offers the platform-independent os package to operate system functionality. According to the documentation, “The design is Unix-like, although the error handling is Go-like; failing calls return values of type error rather than error numbers.”

 Inside the os package, there is an os.File type providing ways to open a file for reading or writing, changing rights of a file, creating a new file, and many other system operations you can perform on a file. The whole list can be retrieved with go doc os.File. The simplest function to open our file is os.Open. We’ll give os.Open the path to our file as the filePath parameter, and it will return a pointer to a File, which is a file descriptor, or an error. The documentation is kind enough to let us know that the descriptor is in read-only mode and that the returned error is of type *PathError.

 Differences between os.Create, os.Open, and os.OpenFile

 As we can see in the documentation of the os package, several functions return a file descriptor, and each one has its best usage. Let’s consider when os.OpenFile should be used to open a file instead of os.Create or os.Open:

 	
Create creates a file with both read and write (but not execute) rights for all users (0666). If the file already exists, Create truncates it, sending its contents to oblivion. When Create succeeds, the returned file descriptor can be used to write data to the file.

 	
Open opens the named file for reading only.

 	
OpenFile is a more generic approach that lets the user decide whether they want to open a file for writing or reading. Most of the time, you won’t need it—a call to Open or Create should do the trick. However, there are two very specific cases in which it’s useful. The first case is when you want to append data to a file, without discarding its contents. Using Open here wouldn’t work (the *File would be in read-only), nor would Create (the file’s contents would be erased). The second parameter of the OpenFile function is a flag controlling how we open the file. The full list can be found with go doc os.O_APPEND. These flags are constants and should be combined to your taste. When creating or appending, use os.O_APPEND|os.O_CREATE|os.O_WRONLY.

 	The second case is when we want to create a file for which the rights aren’t the Create default rights. OpenFile is the only one that enables you to set specific access rights to the file via its last parameter.

 If there is an error for any of the three methods, it will be of type *os.PathError. Most of the time, we’ll use Open and Create.

 The constants in the os package are capitalized because they are part of the operating system standards. Otherwise, Go prefers constants to be defined in PascalCase, like everything else.

 defer

 When you’ve finished I/O operations with a *File

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH01_F01_Latour.png
| write the following in Go:
(Select all that apply.)

e — 1
U ————————————=
Wotstoshveb senvoes ehrone I <=
HTML)
Libraries or rameworks | 4<%
Automation/scripts (e.g., deployment, _ 39%
configuration management)
e s,
aggregation)
Agents and daemons (e.g., montoring) NI ==+
Desktop/GUI appications [10%
Embedded devicesiinternet of things [l 7
Games [Ja%
Machine learning/artificial
intelligence | B
Mobile apps I‘ %
Other lﬁ‘%
0% 50%
Percent of respondents

74%

100%

n=5,768

OEBPS/Images/cover.jpg
Alignor Latour
Donia Chaiehloudj
Pascal Bertrand
Foreword by Ron fians

/'I MANNING

OEBPS/Images/AU-photos.png

