

 [image: manning]

 Logs and Telemetry

 Using Fluent Bit, Kubernetes, streaming and more

 Phil Wilkins
Foreword by Eduardo Silva Pereira

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Katie Sposato Johnson
 Technical editor: Karthik Gaekwad
 Review editor: Dunja Nikitović
 Production editor: Kathy Rossland
 Copy editor: Keir Simpson
 Proofreader: Katie Tennant
 Technical proofreader: Braydon Kain
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633437470

 Printed in the United States of America

 dedication

 To my wife, Catherine, and our boys, Christopher and Aaron

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 From concepts to running Fluent Bit

 1 Introduction to Fluent Bit

 1.1 Why is Fluent Bit so important?

 1.1.1 The value of event distribution

 1.1.2 Fluent’s place in CNCF

 1.2 Core Fluent Bit concepts

 1.2.1 Payload structure

 1.2.2 Logical architecture

 1.3 Drivers of Fluent Bit adoption

 1.3.1 Small footprint, efficiency, and speed

 1.3.2 Effect of OpenTelemetry and how Fluent Bit relates to It

 1.3.3 Extending Fluent Bit with C, Go, WebAssembly, and Lua

 1.3.4 Fluent Bit and stream processing

 1.3.5 OTel vs. Fluent Bit and Fluentd

 1.4 Is Fluent Bit a child or a successor of Fluentd?

 1.5 How we’re going to discover Fluent Bit

 1.5.1 How much Kubernetes will this book involve?

 1.5.2 Logging in Action

 2 From zero to “Hello, World”

 2.1 Multiple ways to configure Fluent Bit

 2.1.1 Configuration formats

 2.1.2 CLI controls

 2.1.3 Defining a monitoring pipeline using the CLI

 2.1.4 Fluent Bit prebuilt Docker container

 2.2 Fluent Bit configuration in two forms

 2.2.1 Fluent Bit vs. Fluentd configuration comparison

 2.2.2 Comparing Classic and YAML configuration

 2.3 Checking configuration with a dry run

 2.3.1 Exercise: Using - -dry-run to help fix a conf file

 2.4 Configuring file inclusions

 2.4.1 Creating dynamic configuration by using inclusions

 2.4.2 Proving stub inclusions

 2.5 Environment variables in the configuration

 2.5.1 Applying environment variables

 2.5.2 Setting environment variables

 2.6 Monitoring Fluent Bit’s health

 Part 2 Digging deeper

 3 Capturing inputs

 3.1 Fluent Bit plugins

 3.2 OS and device sources

 3.2.1 Monitoring infrastructure with native executables

 3.2.2 Tuning monitoring sources

 3.2.3 Device sources

 3.3 Using stdout

 3.3.1 The twelve-factor app and Fluent Bit

 3.3.2 Running the containerized Log Simulator

 3.4 File-based log events

 3.5 Capturing log files

 3.5.1 Simple file consumption

 3.5.2 Supporting long-running processes

 3.5.3 Capturing logs from short-lived applications

 3.6 Network events and communication between Fluent Bit and Fluentd

 3.6.1 Network input sources

 3.6.2 HTTP source

 3.6.3 Securing communication with SSL/TLS

 3.6.4 forward source

 3.6.5 Beyond network ports

 3.6.6 Internode communication

 3.6.7 OpenTelemetry

 3.7 Fluent Bit buffers and chunks

 3.8 Other sources

 3.8.1 Container-related plugins

 3.8.2 Getting data from other processes

 3.8.3 Observing the observers

 4 Getting inputs from containers and Kubernetes

 4.1 Architectural context

 4.2 Fluent Bit capturing Docker events and metrics

 4.2.1 Docker Events

 4.2.2 Docker Metrics

 4.3 Using Podman as a Docker alternative

 4.4 Other containers

 4.5 Container logging drivers

 4.6 Application direct to Fluent Bit

 4.6.1 OpenTelemetry’s approach to containerized applications

 4.6.2 Deploying for application direct logging

 4.6.3 Enriching log events with Pod context by injection

 4.6.4 Enriching log events with Pod context by filter

 4.7 Kubernetes and observability

 4.7.1 Understanding Kubernetes’ position on logging

 4.7.2 Kubernetes auditing

 4.7.3 Kubernetes events input

 4.7.4 The many parts of the Kubernetes ecosystem

 4.7.5 Container Images

 4.7.6 Helm charts

 4.8 Kubernetes operator

 4.9 Observations on Fluent Bit with Kubernetes

 4.10 The next frontier of observability with Fluent Bit: eBPF

 5 Outputting events

 5.1 Architectural context

 5.2 Common characteristics of Fluent Bit output plugins

 5.2.1 Output resilience through retries

 5.2.2 Network controls

 5.2.3 Worker threads

 5.2.4 Considerations for using threads

 5.3 Null output

 5.3.1 Monitoring with Fluent Bit

 5.3.2 Configuring null output

 5.4 Sending log events to the console

 5.4.1 Formatting outputs

 5.4.2 Seeing matching at work

 5.5 Writing to files

 5.6 Prometheus outputs

 5.6.1 Prometheus Node Exporter

 5.6.2 Running our Prometheus configuration

 5.6.3 Prometheus Fluent Bit Exporter

 5.6.4 Prometheus remote writer

 5.7 PostgreSQL output

 5.8 HTTP output

 5.9 Forwarding to other Fluent nodes

 5.10 OpenTelemetry

 5.11 Hyperscaler native and SaaS observability

 6 Parsing to extract more meaning

 6.1 Architectural context

 6.2 The goal of parsing

 6.3 Relationship between parsers and filters

 6.4 Prebuilt parsers

 6.5 Parsing an Apache log file

 6.6 Multiline parsing

 6.7 Custom parsing

 6.8 Processing JSON

 6.8.1 Changing the log event timestamp

 6.8.2 Diagnosing the unhappy paths

 6.9 Other types of parsers

 6.9.1 logfmt

 6.9.2 LTSV

 6.10 Decoders

 6.11 Parsing shortcut for file inputs

 7 Filtering and transforming events

 7.1 Architectural context

 7.2 Integrating and enriching with filters

 7.2.1 Directing and securing logs with GeoIP

 7.2.2 Using the CheckList filter

 7.3 Extending and amending with filters

 7.3.1 Taking a brief look at the nest filter

 7.3.2 Illustrating the record_modifier filter

 7.3.3 Illustrating the modify filter

 7.3.4 Bringing it together

 7.3.5 Testing filters

 7.4 Routing and controlling

 7.4.1 Using the record accessor

 7.4.2 Rewriting the tag filter example

 7.4.3 Explicitly including and excluding events with grep

 7.5 Controlling events

 7.5.1 throttle

 7.5.2 log_to_metrics

 7.5.3 Advanced use of matching

 7.6 Custom filtering with Lua

 7.6.1 Background of Lua

 7.6.2 Implementing a Lua filter

 Part 3 Plugins and queries

 8 Stream processors for time series calculations and filtering

 8.1 Architectural context

 8.2 Key ideas

 8.3 Basic query

 8.4 Stream-processing windows

 8.4.1 Hopping windows

 8.4.2 Tumbling windows

 8.4.3 Setting window durations

 8.4.4 Deciding which window to use

 8.5 Selecting multiple attributes and naming

 8.6 Streams vs. tags

 8.7 Creating streams

 8.8 Chaining and creating new streams

 8.9 Typical use cases for streaming

 8.9.1 Forecasting

 8.9.2 Intermittent error tolerance

 8.9.3 Spurious data values

 8.9.4 Absence of events

 8.9.5 Cross-referencing streams

 9 Building processors and Fluent Bit extension options

 9.1 Architectural context

 9.2 Fluent Bit processor: Changing the behavior of existing plugins

 9.2.1 Processor with Lua for logs

 9.2.2 Content modifier processor

 9.2.3 Processor for traces

 9.2.4 Processor to metrics

 9.2.5 Processor using SQL

 9.3 Why we need to extend Fluent Bit

 9.4 C language

 9.4.1 Considerations

 9.4.2 Benefits

 9.4.3 Drawbacks

 9.4.4 Tools for the job

 9.5 Go language

 9.5.1 Benefits

 9.5.2 Drawbacks

 9.6 WebAssembly

 9.6.1 Benefits

 9.6.2 Drawbacks

 9.7 Selecting an extension strategy

 10 Building plugins

 10.1 Architectural context

 10.2 Why Go?

 10.3 Plugin objective

 10.4 Go plugin approach

 10.4.1 Simplifying our build process

 10.4.2 Code structure

 10.4.3 Fluent Bit feature switches

 10.4.4 The build process for plugins

 10.5 Understanding the plugin life cycle

 10.5.1 Input life cycle

 10.5.2 Output life cycle

 10.6 Implementing the plugin

 10.6.1 Setting up MySQL

 10.6.2 Input plugin

 10.6.3 Building the code

 10.6.4 Output plugin

 10.7 Deploying the custom plugin

 10.8 Configuring our scenario

 10.9 Executing the build

 10.10 Running the custom plugins

 11 Putting Fluent Bit into action: An enterprise use case

 11.1 Use case

 11.2 Deployment needs

 11.3 Customer dashboards

 11.3.1 Customer dashboards with Fluent Bit

 11.3.2 Customer dashboard containers

 11.3.3 Customer dashboard innovation

 11.4 Development pipelines

 11.5 Core services

 11.6 Central accounting needs

 11.7 Operational processes

 11.8 Tool choices

 11.9 Conclusion

 appendix A Installations

 A.1 Tool installation overview

 A.2 Downloading book resources

 A.3 Prepping Linux

 A.4 Fluent Bit

 A.4.1 Linux Installs

 A.4.2 macOS

 A.4.3 Windows installs

 A.5 Docker

 A.5.1 Windows

 A.5.2 Verifying the installation

 A.5.3 Linux (including macOS)

 A.5.4 macOS

 A.6 Kubernetes

 A.7 LogSimulator

 A.7.1 Running as a downloaded image

 A.7.2 Running as a locally built Docker image

 A.7.3 Java and Groovy

 A.7.4 Post-LogSimulator use

 A.8 WireMock

 A.9 Postman

 A.10 Postgres

 A.11 MySQL

 A.12 Prometheus

 A.13 jq

 appendix B Useful resources

 B.1 Standard plugins based on platform

 B.1.1 Input plugins

 B.1.2 Output plugins

 B.1.3 Filter plugins

 B.1.4 Processors

 B.2 Predefined parsers

 B.2.1 parser.conf file

 B.2.2 parsers_ambassador file

 B.2.3 parsers_cinder file

 B.2.4 parsers_extra

 B.2.5 parsers_java file

 B.2.6 parsers_kafka file

 B.2.7 parsers_openstack file

 B.3 Multiline parsers

 B.4 Sources of predefined regular expressions

 B.5 Plugins supporting record accessor

 B.6 Stream processor functions

 B.7 Reserved attribute names

 B.8 Expressing time

 B.9 Expressing data sizes

 B.10 Fluent Bit formatters

 B.11 Useful third-party tools

 B.12 Observability

 B.13 Helpful logging practices and resources

 B.14 Additional reading

 B.15 Web resources

 B.15.1 Formal and de facto standards

 B.15.2 Additional web resources

 B.16 Fluent Bit resources

 B.17 Lua

 B.18 WASM and WASI

 B.19 C development resources

 B.20 Logging format definitions

 appendix C Comparing Fluent Bit and Fluentd

 C.1 Technology differences

 C.2 Configuration capabilities

 C.3 Inputs and outputs

 C.3.1 Support for logging frameworks

 C.3.2 Plugin choice

 C.3.3 Secondary/fallback output options

 C.3.4 OpenTelemetry

 C.3.5 Customization with embedded code

 C.4 Routing

 C.5 Buffering and internal data structure

 C.6 Streaming processing

 C.7 Conclusion

 index

 foreword

 The art of translating signals from applications and system services to insights on performance and system health is a difficult task, especially when the data comes from different sources and in different formats. Although the industry is trying to evolve and create standards to solve this problem for the long term, the short-term result is that we have to deal with several protocols and data structures to enable end users to perform meaningful analysis. In parallel, data volume is a constant challenge for companies as they see year-over-year data growth. The growth in data volume directly affects user experience. The more data there is to process, the slower the analysis gets.

 When I started Fluent Bit in early 2015, little did I know that this lightweight agent, created for Embedded Linux at that time, would rule the logging world in what we now call cloud-native environments. Its ability to adapt to different protocols, pluggable architecture, and continuous focus for almost 10 years on performance (low memory, low CPU, and high throughput) has positioned it as the default solution for cloud providers such as Amazon, Google, Microsoft, and Oracle.

 Fluent Bit started as a sibling of the Fluentd project. But with the industry’s intensive migration to microservices and new ways of deploying workloads in orchestrated containers, the need arose for a more performant solution than Fluentd. Fluent Bit was built to enable companies building for Kubernetes and containers to scale and manage high volumes of data, making it the new preferred choice of the ecosystem. At this writing, Fluent Bit has been deployed more than 14 billion times from public repositories, not counting the number of cloud providers, which exceeds that.

 Behind the project scenes, Fluent Bit isn’t a one-person job. Hundreds of individuals and companies continuously contribute to improving it by writing code and documentation, maintaining distribution channels, and speaking at events. Phil Wilkins, the author of this book, is an active member of the Fluent community who has been at the center of the evolution of telemetry, data pipelines, and observability in general.

 In this book, Phil concentrates on the Fluent concepts in a way that’s easy to consume and learn for those who want to migrate from Fluentd. He walks the reader through the steps to implement Fluent Bit, from simple telemetry pipelines to advanced use cases. Readers will find great insights about the internals, such as buffering, routing, and threading, as well as the capability to handle other signal types, such as metrics and traces. He also provides details on using the upcoming industry protocol standards, such as OpenTelemetry.

 In summary, this book distills nearly a decade’s worth of innovation and development in Fluent Bit technology. It provides practical guidance on addressing modern challenges in observability, particularly in distributed systems like Kubernetes. I hope you enjoy this content as much as I did.

 May the telemetry force be with you.

 —Eduardo Silva Pereira

 Fluent Bit creator and maintainer

 preface

 The idea of writing about Fluent Bit first came up around 2021. At the time, I was writing a book on Fluentd for Manning (Logging in Action), and I’d talked with Eduardo Silva Pereira, the creator of Fluent Bit, and Anurag Gupta, the leader of Fluentd. Extending Logging in Action wasn’t a practical option, and I wasn’t sure I could make the case for a dedicated book. I could see the trend toward OpenTelemetry and its influence on technology direction, but the standards weren’t yet stable, and I assumed that Fluentd would lead the charge in engaging with the OpenTelemetry Protocol (OTLP) standard. But Eduardo and Anurag had already picked up on the trends accelerating the adoption of Fluent Bit. They saw the continued adoption of native binaries in the Kubernetes space getting more compact and providing faster performance. (After all, at scale, saving even 5% of your compute effort yields dividends.)

 By early 2023, I’d forgotten how much time writing a book takes and could see clearly that Fluent Bit was gaining a lot of momentum. I also understood better how a new book could differ from and complement Logging in Action.

 Now that the book is written, it’s related to what came before but entirely freestanding and independent, like Fluentd and Fluent Bit—independent and complementary. I think that the book’s timing is working out well. Fluent Bit v3 is out without breaking changes from v2. In many respects, v1.9 and v2 introduced the key foundation to support users’ needs as OpenTelemetry matured, the standards became stable, and Fluent Bit is now in the mainstream. Innovations in observability are coming in the form of eBPF (extended Berkeley Packet Filter), which Fluent Bit will be more than capable of handling.

 The book starts with the basics and addresses all the important features of v2 and v3. Features that are only available in v3 are identified. But Fluent Bit’s configuration doesn’t have any breaking changes, so while not all features and configuration options will be available, the principles explained in this book will still hold true for versions before v2. Therefore, if you work in an organization that’s very cautious about moving up to recent releases, this book will still help. If you’re new to the Fluent projects, this book is the place to start your learning journey.

 acknowledgments

 This book is my second with Manning and with some of the same team. The writing process took longer than we expected. But I hope you’ll agree that the Manning editorial team’s prodding and encouragement means this book will deliver for you. I want to thank everyone at Manning, particularly development editor Katie Sposato Johnson, acquisitions editor Andrew Waldron, and technical editor Karthik Gaekwad, who have been with me throughout this adventure.

 Anurag Gupta and Eduardo Silva Pereira, the founders of Calyptia, who have been at the forefront of Fluentd and Fluent Bit for many years, took time to share their insights and support. Eduardo, who started the Fluent Bit project, also kindly gave his time to write the foreword, for which I’m very grateful. Calyptia employs many Fluent Bit committers, and I’d like to particularly acknowledge fellow Brit Patrick Stephens at Chronosphere, who helped hugely and with whom I’ve collaborated on conference presentations about Fluent Bit.

 In writing this book, I had the support of volunteer reviewers and MEAP readers, some of whom come from the active Fluent Bit community. Their feedback provided great help and insight. Not every suggestion made it into the book, but I’m thinking about building on them in other ways, such as blog posts and DZone articles. I’d like to single out Braydon Kains for his contributions as a reviewer; he took the time to share his insights into the OpenTelemetry community and offered ideas on how to make running all the book’s scenarios as easy as possible.

 To all the reviewers—Abhay Paroha, Ajay Lotan Thakur, Amar Mani, Andres Sacco, Arpit Singh, Arun Pandiyan Perumal, Atul S. Khot, Ayisha Tabbassum, Braydon Kains, Conor Redmond, Curtis Bates, Eduardo Silva Pereira, Frans Oilinki, Glen Yu, Harsha Patil, Harshavardhan Nerella, James Liu, Jerome Meyer, John Guthrie, Jonathan Blair, José Lecaros Cisterna, Kerry E. Koitzsch, Kosmas Chatzimichalis, Leonardo Taccari, Magnus Therning, Mario-Leander Reimer, Monojit Banerjee, Narayanan Seshan, Nico de Wet, Nikhil Kumar, Patrick Stephens, Pradeep Chintale, Prashant Dwivedi, Raymond Cheung, Samson Hailu, Sau Fai Fong, Simeon Leyzerzon, Sudeep Batra, Victor Declerk, and Vladislav Bilay—thank you, your suggestions helped make this book better.

 Publishing a book involves more than engineering and writing. Often, help of other kinds is needed. That help has come from Manning, of course, but also from Calyptia and its parent organization, Chronosphere. Thank you all.

 My journey as an author wouldn’t have started without support and encouragement over the years. Those involved in my journey to becoming an Oracle Ace Director (think Java Rock Star or Microsoft MVP for Oracle Integration and Cloud) have been central to this journey. Many thanks to my friends and colleagues, past and present, at Oracle.

 Last and most important, this book would never have happened without the support and understanding of my wife, Catherine, and our two sons, Christopher and Aaron, when I’ve spent evenings and weekends at the computer rather than in their company. All my love to you.

 about this book

 Logs and Telemetry is for anyone involved in the practical tasks of developing, configuring, and running IT solutions. One of the most dominant uses of Fluent Bit is in the Kubernetes ecosystem, so the book gives a great deal of consideration to Kubernetes and containers. But don’t be fooled; like many cloud-native technologies, it applies to traditional IT environments, so the book looks at features that support them. Modern monitoring doesn’t separate infrastructure monitoring, application logging, and operational performance metrics. We have a technology that could be used in a DevOps or platform engineering context, as well as old-school organizations that separate infrastructure and application responsibilities.

 Within the world of Kubernetes, there are probably as many opinions on what is involved in Kubernetes monitoring as there are flavors of Kubernetes. This book looks at all the major Kubernetes features available at this writing, but don’t expect it to be a comprehensive guide on, say, building Helm charts for Fluent Bit. (For that, read a book about Helm first and then read this book. This will give you an understanding of how to package Fluent Bit, which is no different from any other application.) More of us work with prepackaged Kubernetes stacks than build Kubernetes environments from scratch. These configurations are opinionated, so if you know how they’re configured, this book will equip you with the understanding to capture those metrics, logs, and traces. In its most basic form, Kubernetes is a clever and highly configurable application process running on a configurable OS. Keeping this in mind and seeing a lot of Fluent Bit’s standard features will help you. Much of the book runs things locally to make it easy to see what’s going on. We don’t want the Kubernetes experience to be an impediment to grasping what you can do with Fluent Bit.

 Developers and operationally involved people will benefit from the book, but so will architects. We’ll reveal the art of the possible and show how Fluent Bit can simplify the IT landscape to make the most of the latest thinking on observability.

 How this book is organized: A road map

 This book was written to partner with Logging in Action, but as with all the best sequels, you don’t have to have read the first book to enjoy and benefit from the second. Logging in Action addresses some architectural and design considerations that apply equally to Fluent Bit and Fluentd, and the products are interoperable.

 This book is made up of 3 parts in 11 chapters. Part 1 sets out the big ideas:

 	 Chapter 1 introduces Fluent Bit’s ideas and background and addresses its relationship with the wider observability and application ecosystem. We explore the industry trends accelerating and driving the growth in Fluent Bit adoption.

 	 Chapter 2 takes us through configuring and running Fluent Bit. We run a simple configuration that every developer implements: “Hello, World.”

 Part 2 takes us from “Hello, World” to seeing and using Fluent Bit’s core capabilities, which enable us to solve many of our needs:

 	 Chapter 3 is our first deep look at Fluent Bit and the features we’ll need in the real world. To do anything, we need data in the form of logs, traces, and metrics, so chapter 3 examines the most common sources.

 	 Containers and Kubernetes are, first and foremost, sources of events and enrichment data for Fluent Bit, so chapter 4 covers both. In addition, the chapter touches on filters, which chapter 7 revisits in depth.

 	 We need to put event data (logs, metrics, and traces) somewhere. Chapter 5 looks at how to output metrics, traces, and logs.

 	 Events may be partially or completely unstructured, but without structure, it is difficult to get any meaning from them. In chapter 6, we parse events. We can use parsers in several ways, from formatting to converting strings and handling encoded characters.

 	 Chapter 7 takes us from parsers to filters. Now that we can extract meaning from our events, we need to impose order and structure on them, enrich them with additional context, and manipulate them so that they’re routed or excluded correctly.

 Part 3 takes on advanced options:

 	 Chapter 8 tackles stream processing with Fluent Bit. We use stream processors to derive meaningful new data using SQL-based syntax and work with multiple events in a time series.

 	 Chapter 9 looks at Fluent Bit’s processor capability to incorporate custom logic within input and output plugin configuration. Eventually, we’ll encounter a situation where we must build a proper plugin. To prepare, we need to examine the different options for building custom plugins.

 	 Chapter 10 turns the concept of custom plugins into reality and examines how plugins interact with Fluent Bit’s core as we walk through building our own input and output plugins.

 	 Chapter 11 shows how Fluent Bit can be applied to an enterprise use case. We will explore how Fluent Bit could help an organization without undue disruption.

 Appendixes have been provided to cover the setup of third-party building blocks we need to allow us to exercise Fluent Bit. They also provide details of additional reference information and insights:

 	 Appendix A provides details on setting up the tools and services needed to run the exercises in this book.

 	 Appendix B lists many additional resources and reference tables.

 	 Appendix C provides an overview of the differences between Fluent Bit and Fluentd.

 About the code

 This book contains many examples of Fluent Bit’s configuration and source code, both in numbered listings and inline with standard text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text.

 The book shows only the relevant sections of a configuration file in most cases. The configurations are annotated to illustrate the configurations. In some cases, even this is not enough, and listings include line-continuation markers (↪).

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/logs-and-telemetry. Source code for the examples in this book is available for download from the publisher’s website at https://www.manning.com/books/logs-and-telemetry or the GitHub repository at https://github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit.

 liveBook discussion forum

 Purchase of Logs and Telemetry includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/logs-and-telemetry/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

 about the author

 Phil Wilkins has spent more than 30 years in the software industry, with broad experience in businesses and environments from multinationals to software startups and consumer organizations to consultancy. He has worked with household names and has been part of award-winning teams. He started as a developer on real-time, mission-critical solutions and worked his way up through technical and development leadership roles, primarily in Java-based environments. Along the way, Phil became TOGAF-certified. Phil now works for Oracle as a cloud architect and evangelist specializing in cloud-native development, APIs, and integration technologies and is involved with the development of a new generation of SaaS products.

 [image: figure]

 Phil was a peer reviewer of books for several publishers before coauthoring several titles on API and integration, as well as Logging in Action, which is the partner to this book. Outside his daily commitments, Phil is an active blogger and contributor to websites such as Software Daily, DZone, and InfoQ. He has made presentations physically and virtually at conferences in the United Kingdom and around the world.

 about the cover illustration

 The figure on the cover of Logs and Telemetry is “Cephalonien,” or “Man from Cephalonia,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. This illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and their trade or station in life by their dress alone. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 From concepts to running Fluent Bit

 Any good thriller starts by introducing its protagonists, along with their motivations, backgrounds, and strengths and weaknesses. The environment(s) in which the key players operate is shown in the first 20 minutes.

 This is what the first part of the book is about. The first chapter introduces our hero, Fluent Bit; it sets the scene by presenting the context, the use cases, and so on. If we are in the process of discovering Fluent Bit or thinking about the things that will help us make a case to colleagues for adopting it, this chapter gives us plenty of fuel for thought.

 If chapter 1 is about our principal player, chapter 2 is about the environments in which Fluent Bit can operate. We will start by taking our first practical steps with Fluent Bit and follow the time-honored tradition established by Brian Kernighan, in which the first solution is “Hello, World.”

1 Introduction to Fluent Bit

 This chapter covers

 	Examining the drivers behind the rapid growth of Fluent Bit

 	Identifying the essential parts of Fluent Bit

 	Reviewing the technologies used with Fluent Bit

 	Understanding the relationship and differences between Fluentd and Fluent Bit

 Lewis Carroll wrote in Alice in Wonderland that you should “begin at the beginning,” so that’s what we’ll do in this chapter. Before we get down to the details, let’s take a moment to understand what Fluent Bit is and answer some important questions about it, such as why it is so important and worthy of a book and how it fits into the IT ecosystem. We’ll also address the elephant in the room: the relationship between Fluentd and Fluent Bit.

1.1 Why is Fluent Bit so important?

 Fluent Bit is, at its heart, a specialized event capture and distribution tool. Let’s break that statement down a bit. Why is it specialized? Fluent Bit focuses on log events, metrics, and traces (sometimes called signals):

 	 Log —Can be seen as each output message or line in a log file or, put another way, a string of text that provides some information about what has happened. The message can range from completely unstructured to a fully structured and self-describing message.

 	 Metrics —Measurements, usually numeric values with a descriptive label, generated by our IT hardware and software. Examples are the use of each CPU core on a computer or the number of transactions processed in an application per minute.

 	 Traces —A trace is a linked set of values recorded at important waypoints in the execution of our software, often aligning with transactions. Traces have a lot in common with log events. The key difference is that trace events have a relationship with each other, and sometimes, a trace is not shared until a transaction ends or an error occurs. It’s important to note that trace identifiers are carried through the different parts of the application. Traces have become more significant with Kubernetes and the adoption of microservice strategies because, when used properly, they can make following what is happening across distributed solutions far easier.

 We’ll explore types of event data in greater depth as we progress through the book. The ability to handle various events within a single tool isn’t unique, but it does distinguish Fluent Bit from technologies it’s sometimes compared with, such as Logstash (https://www.elastic.co/logstash).

 Because Fluent Bit reacts to and processes events, typically in near real time as they’re received or tracked from sources such as a file, it’s described as event-driven. Why do we need Fluent Bit to be event-driven? After all, we look at the data when something isn’t right. Although we may adopt the traditional approach of looking at logs when someone has declared there to be an issue, people still like to see stats and metrics closer to real time. We should also remember that we can derive meaningful time-sensitive metrics from log events. In our code, we are interested in the events when our software has done something that may be of interest to confirm that all is well, understand which decision branch was taken, or find the answer to a calculation applied to data. Even when a scheduler triggers the monitored solution, we want the logs, events, and traces to be provided when they are still meaningful.

 Clever words, then, for something mundane? It would be easy to think that. Unfortunately, this thinking can lead us to miss a wealth of possibilities and opportunities that Fluent Bit offers to make our lives a lot easier. If we consider a log event as just a block of text from our code, for example, we may overlook that we can derive meaning from it and determine whether something else needs to occur there and then. If the event is a health check indicating everything is fine, we could send the data to the operations dashboards and do no more. But if the event reports the receipt of a large, malformed payload, it could indicate a more serious problem that needs immediate intervention before users start calling to complain.

1.1.1 The value of event distribution

 Tackling the pain of identifying (and possibly needing to resolve) an issue with a system benefits us all individually, whether we’re part of a team working within an environment practicing some variation of DevOps, part of a tiered support system on the operational front line, or the developer last in an escalation chain for a testing issue.

 When an issue reaches us, we need to know what happened or, better, be able to engage with it as it is happening. The issue might be a serious system failure or a question about how something or someone was or is interacting with our system(s). To address the issue, we must have this information available and a tool that fits our needs.

 The information we need could be as simple as the complete log message. Often, we need to understand what happened before, during, and after the event of concern to establish cause and effect. (For example, a database may be producing errors because we’ve run out of storage. Did we run out of storage because the housekeeping process failed, or did we overlook the need to monitor our storage capacity?) We need to capture and aggregate data from many different sources. Logs, metrics, and traces are the building blocks of observability, and monitoring data (logs, events, and traces) is generally transient. Using Fluent Bit and tools like it enables us to gather data from all sources and put it somewhere secure. It’s been my experience that when things go seriously wrong, people aren’t worrying about preserving state information, logs, and the like. Their concern is returning to an operational status, which can mean that logs and stored metrics in the production environment may easily be trashed.

 Aggregating log events doesn’t just mitigate the risk of data loss but also helps us see the complete picture. COBOL solutions, for example, usually were made up of multiple programs run in sequence. Processes were sequential, but distribution processes were already possible. As technology advanced, we adopted two- or three-tier solutions running concurrently (application and database servers, usually with separate UIs). Even if we’re operating monolithic application servers, work can be spread across multiple virtualized load-balanced servers, and microservices have led to a further explosion of distribution. To make sense of what is happening, we need to bring together all the events spread across all these distribution points to get an accurate picture of what is happening.

 Aside from being able to preserve information that can help us diagnose an issue, we can easily overlook one challenge: the more time we take to get from issue to diagnosis, the more damage can occur, and therefore, the more painful the recovery process becomes. Whether we’re fixing failed transactions or working out the scale of a security breach, by processing the metrics and logs as they occur, we can automate the evaluation of whether they indicate an issue occurring now or, better, an imminent problem. Thus, we can reduce the amount of pain because we’ve avoided or kept the effect of the issue as small as possible.

 The ability to distribute data easily also allows us to adopt different tools for different tasks. If the data is difficult to distribute, we end up with the lowest common denominator or with tools that support the most vocal team using the data rather than ones that address different needs. PagerDuty (https://www.pagerduty.com), for example, is ideal for notifying the right person depending on the identified system and the time and day of the week.

1.1.2 Fluent’s place in CNCF

 The Fluent tools, Fluentd and Fluent Bit, are key players in the Cloud Native Computing Foundation (CNCF; https://www.cncf.io) ecosystem, helping us gather, secure, and, ideally, analyze logs and metrics. These solutions allow us to get the observability data (logs, traces, and metrics) in a form that another tool can render in an easily digestible format. Fluent Bit is having a greater effect than Fluentd in terms of adoption and support for the latest observability standards and tools, as we’ll see.

 Within the CNCF, projects are classified to reflect their process, quality, maturity, support, and adoption. Graduated projects such as Fluentd and Fluent Bit need contributors from multiple organizations with processes that demonstrate good project governance and development processes. Most important, these projects need several public adopters so the wider community can be confident that it will not likely adopt something that could be abandoned overnight.

1.2 Core Fluent Bit concepts

 We’ve looked at why Fluent Bit is important. Now, let’s address some core concepts that influence almost every aspect of Fluent Bit. The most critical thing that we’ve encountered is the event. We should also consider what Fluent Bit does and doesn’t do to make events useful.

 The other key concept in Fluent Bit is plugins. As we progress through the book, we’ll dig deeper into plugins, but at this stage, I’ll describe them as the building blocks of Fluent Bit’s functional capabilities.

1.2.1 Payload structure

 To interact with Fluent Bit’s events (whether they represent log events, traces, or metrics), we need to understand how each event is represented within Fluent Bit, which is the same way Fluentd does, with three mandatory elements. As figure 1.1 illustrates, Fluent Bit has three core elements with some additional elements that are opaque to us right now:

 	 Metadata —Metadata is a list of key-value pairs with a mandatory key called Tag and related value. The Tag is a logical name associated with the events. We use the Tag to route events to the correct operation(s). As we progress through the book, we’ll introduce strategies that allow us to manipulate a Tag and use intelligent naming conventions to help us. In Fluent Bit v1 and Fluentd, the metadata was only the Tag. To increase flexibility and allow Fluent Bit to carry other types of events (and traces), Fluent Bit v1.9 changed the metadata to hold additional key-value pairs about the nature of the record content, such as the type of event. As we’ll see later in the book, we can access the Tag value without referring to the fact that it’s part of the metadata, as Fluent Bit v1 and Fluentd have.

 	 Timestamp —Events without a timestamp are of limited value. Without the timestamp, we can’t determine whether an issue is current or new because we have no sense of when the event occurred. We can’t determine whether the event is a cause or an effect because we don’t know the order in which things occurred. As a result, many input plugins offer a means to locate where in the event the correct timestamp to use or apply the moment when the input is received as the timestamp.

 	 Record —A record contains the event data (log, metric, or trace). The ability to access and manipulate the record within various plugins depends on the plugin type and the metadata describing the record. When the record contains a log, Fluent Bit (depending on the input and parsing) treats the record’s value as a list of key-value pairs or a single block of text. We can extract content and convert the payload to JSON, among other things. When we’re not processing an event, the record is held efficiently by serializing the record using the MessagePack (https://msgpack.org) library. (Appendix B has additional details on MessagePack.)

 	
The metadata can also denote that the record represents metrics or traces. In this case, the record takes on the following characteristics:

 	 Metrics —When we send and receive metrics, the data is in line with the Prometheus format (a non-JSON structure). But Fluent Bit gives us the means to retrieve and manipulate metrics data. Internally, metrics are handled by a library called CMetric, which other projects are starting to use.

 	 Traces —Traces are also handled as a special record payload and can be made into a record and interacted with.

 We’ll explore these aspects in greater detail as we explore these data sources. Although the movement of the content between the visible record and the opaque structure is not completely free today, it is this author’s opinion that handling this movement will become easier over time.

 Figure 1.1 shows the data structure of Fluent Bit v1.9 and later, alongside the equivalent Fluent Bit v1 and Fluentd structure. Although the difference is subtle, it is noticeable when handling non-log events. It is worth noting that in the exceptional situation of caching log events in a file with a pre-1.9 version of Fluent Bit, trying to get a post-1.9 version of Fluent Bit to read those cached files will result in errors.

 [image: figure]

Figure 1.1 Log event structure for Fluent Bit v1.x and Fluentd (left) and Fluent Bit from v1.9 (right)

1.2.2 Logical architecture

 Figure 1.2 shows Fluent Bit’s architecture. We’ll use this diagram throughout the book to help orient us to the capabilities we’re exploring within Fluent Bit. The figure shows these logical components:

 	 Input plugin (listener), input plugin (pulled) —Many representations of Fluent Bit don’t differentiate the types of input plugins. Although the contract between the plugin and the core of Fluent Bit (the pipeline processing) is unaltered, there are differences in how the plugin is implemented that affect configuration and tuning considerations. Network-centric inputs can be described as listeners; we connect to the network, and when data is received, we must process it. Large, sudden spikes here can cause backpressure; the source system invoking Fluent Bit can’t continue until we consume the event.

 The pulled events, such as those that capture log events from a file as they’re written, require us to poll the file periodically to determine whether any new content has been added. The implementation of the input plugin can dictate the system’s throughput.

 	 Custom input plugin —This capability can be characterized as a pulled or listener plugin. As we have support for network sources with HTTP, unless we have specialist encoding that is best handled by an input plugin rather than a decoder (a specialist feature available to parsers), this feature is likely to adopt a pulled model. A custom plugin differentiates itself from other plugins because it is not part of the standard Fluent Bit release—any plugin built directly into the binary by a third party or through the extension options, which we’ll discuss in section 1.3.3.

 	 Parser —This provides the means to transform the received content into meaningful data, such as extracting the important values from the record or transforming it to JSON. A range of prebuilt parsers is available; many of these parsers are specializations of regular expressions. Parsers are typically used in conjunction with filters, but some input plugins can also use them.

 	 Buffer —Depending on the plugin, buffering can be used in several places. Logically, it fits well here, as the primary objective of buffering is to allow us to flex to input and output performance differences that might occur, such as spikes in outputs from our sources or a slowdown in the consumption of our outputs. The buffer, therefore, prevents Fluent Bit from being a potential throughput constraint or point of data loss. If you’re sensitive about the risk of data loss, you can switch the buffer to use file storage, which can be read when the Fluent Bit process restarts. This approach does have a performance cost. The buffer has a storage interface layer that manages the data going into and out of the buffer and its physical implementation (file or memory); it also interacts with any relevant stream processors.

 	 Filter, custom filter —Filters are the pipeline’s heavy lifters, providing the means to interact and manipulate events that have been received. Filters fetch and return the events that they process to the buffer. Normal filters are completely configuration-driven, but custom filters can be implemented in two ways:

 	 The typical approach is to invoke Lua scripts.

 	 We can implement more demanding or complex filters with C, Go, and WebAssembly, following the approach used by custom input and output plugins.

 	 Stream processing —Stream processing represents how we configure the new, advanced analytics capabilities. We can loop data from this analytical process back as an input so we can use the analytical values to enrich processing, such as creating time series data based on received events.

 	 Output plugin, custom output plugin —As with the inputs, we’ve separated these types of plugins to draw attention to extensibility. The output plugin’s role is to retrieve events from a buffer and then store them or pass them to a third-party solution for onward processing (this may be data storage, but we may output to other Fluentd or Fluent Bit instances to delegate or aggregate work), depending on the plugin’s implementation.

 We have defined the logical components more granularly than the official documentation does to help you understand their behavioral characteristics. The official documentation focuses principally on input, filter, and output—three of the four horizontal groups in figure 1.2.

 [image: figure]

Figure 1.2 Logical Fluent Bit architecture, with the blocks representing logical features and the lines representing the possible flow of events. The standard Fluent Bit groupings are overlaid, but I’ve separated and illustrated the buffers slightly differently, as their positions are more logical than how they fit into the code base.

1.3 Drivers of Fluent Bit adoption

 The drivers that make Fluent Bit a significant player come down to a few key factors:

 	 The way Fluent Bit is implemented perfectly addresses the cloud and cloud-native industry drive for small size, efficiency, and quick startup, making it easier to exploit the elasticity of containerized environments.

 	 Fluent Bit is equipped to meet the rapid acceleration and adoption of OpenTelemetry (often referred to as OTel), bringing together log processing, metrics, and tracing to harmonize the different aspects of observing our applications. As a result, tasks such as tracking individual transactions across multiple services and servers can be standardized.

 	 Fluent Bit provides out-of-the-box support for other dominant cloud-native technologies, particularly those used to support monitoring and observability, such as Prometheus and Grafana’s Loki.

 There are a couple of additional factors that we think are in play, but the trends are harder to isolate:

 	 Support for ideas and approaches to streaming and stream analytics have been seen with technologies such as Apache Kafka, Spark, and Beam. Fluent Bit’s capability to support stream-processing ideas may not be influencing adoption currently, but it is likely to make a difference in the future. Streaming is more notable in the cloud and cloud-native domains, but depending on how it is addressed, it can deliver dividends for monitoring and observability across all industries and technology domains, new and old. Fluent Bit’s streaming capabilities allow it to become more dynamic and adapt to what happens—an idea we’ll explore further when we look at stream processing in chapter 8.

 	 One of the most dominant players in the monitoring space is Fluent Bit’s older sibling, Fluentd. We could attribute its dominance to several things, such as being early in the market and part of CNCF or the ease with which new sources and targets can be plugged into their custom integrations. Fluent Bit has all these benefits. In addition, Fluent Bit can communicate transparently with Fluentd deployments, removing or minimizing disruption in transitions between Fluentd and Fluent Bit and blending deployments of both across an organization as needed.

1.3.1 Small footprint, efficiency, and speed

 Fluent Bit may have started by supporting Internet of Things (IoT) use cases, but the characteristics that IoT requires fit nicely with cloud-native, particularly containers and Kubernetes. First, maximizing the dynamic scaling of containers through orchestration engines such as Kubernetes makes the ability to go from a standstill to running quickly exceptionally easy to do when an application is designed to run with a small footprint (typically needed on IoT devices). Further, with the overhead of the container itself, anything we can do to reduce the amount of CPU and memory consumed is desirable. One way is to employ precompiled native binaries (sometimes called ahead-of-time [AoT] compilation). This approach eliminates the overhead of running an interpreter layer (such as the time to start the interpreter before any application logic is loaded and the additional memory needs of the interpreter). Using a just-in-time (JIT) compiler helps with performance but still has a compilation overhead that we see with language virtual machines such as the JVM. As Fluent Bit has been written with C, it has always compiled into a binary and, therefore, has no overhead. The value of scaling exceptionally quickly and being resource efficient and high performing means that Fluent Bit has been adopted by cloud providers such as Amazon Web Services (AWS), Azure, Google, and Oracle, as well as cloud service providers such as LinkedIn and Lyft because these characteristics translate into tens of thousands of dollars in savings.

 Although Fluent Bit is very compact, it can scale to handle workloads with controls that allow inputs and outputs to run in separate threads. Separating input and output operations reduces the chance that backpressure will affect multiple inputs. Threading control options in Fluent Bit also have the potential to increase throughput. Still, when we’re working within a containerized environment, we need to use threading with care; we no longer have an assured allocation of CPU cores, and more threads could make the real CPU perform more context switching than is optimal.

1.3.2 Effect of OpenTelemetry and how Fluent Bit relates to It

 Before OpenTelemetry (OTel), the primary specifications that informed the observability of metrics, traces, and logs came from several standardization efforts within CNCF in the form of OpenTracing (https://opentracing.io), OpenCensus (https://opencensus.io), and implicitly, given its dominance, Fluentd and, by association, Fluent Bit for the structure of logging. Different standards often required different tooling to capture such data. Fluent Bit has always caught some metrics data; the IoT ecosystem needs to keep software footprints small, so one service capturing both logs and metrics is preferable. As a result, it made sense for Fluent Bit to capture not only logs but also local metrics such as CPU, memory, and storage use. Bringing all these data sources together has driven the simplification of operational monitoring, resulting in rapid uptake and shown to be disruptive.

 Fluent Bit’s support of the OpenTelemetry standards and its ability to work within the OTel ecosystem hasn’t required any radical changes, although it has driven some upgrades of parts of its implementation. In some respects, the upgrades have formalized what Fluent Bit was already doing. With this alignment, Fluent Bit is well-equipped to support the adoption of OpenTelemetry standards without imposing them, allowing its adoption to be more incremental.

 When we start digging into the input and output capabilities of Fluent Bit, we’ll look further into the relationship with OpenTelemetry and leading products in the observability space, such as Prometheus (https://prometheus.io), which has helped propel OTel further forward, and Grafana (https://grafana.com/grafana). We’ll also look at commercial vendors that have worked to support OTel’s standards, creating a rapidly growing ecosystem of connectable monitoring tools.

 Note  If you need a quick reference on the acronyms and terminology, you can find a handy glossary at https://opentelemetry.io/docs/concepts/glossary. Also, appendix B lists several excellent resources.

 The heart of OTel is the OpenTelemetry Protocol (OTLP), which details the data structures, encoding, and transmission of the telemetry data. Currently, OTLP supports transmission using gRPC (Remote Procedure Call) with HTTP/2 using Protocol Buffer (Protobuf) and JSON with HTTP synchronously. OTLP promotes the use of gRPC as the first-choice approach to communication and JSON as a step-down or fallback.

 OTel, as a project, goes far beyond defining OTLP. It also provides implementations of the functionality described in the standard (sometimes described as a reference implementation), along with tools and libraries. The tools and libraries are implemented in multiple languages; we can use them to help inject logic into applications and quickly get data applications producing traces. OTel also has functionality such as log appenders that allow logging frameworks to send the logs using the OTLP specification.

 To understand how Fluent Bit could fit into an open telemetry solution, let’s look at what Fluent Bit can do using OTel terminology (https://opentelemetry.io/docs/concepts/components). Given its ability to gather monitoring and observability data from different sources and transform it into the OTLP structure, Fluent Bit can fill the role of an OpenTelemetry Collector. Because Fluent Bit was built to work in a distributed environment and can pass data in OTLP format to any other OpenTelemetry compliant collector (which could be a Fluent Bit node or another product), we can describe Fluent Bit as being able to perform as an OTLP Exporter.

 Figure 1.3 shows how Fluent Bit can fit into an OpenTelemetry environment with its ability to handle logs (L), metrics (M), and traces (T) generated by an application with or without the help of OTel libraries or tools, along with its ability to interact with an OpenTelemetry Collector.

 [image: figure]

Figure 1.3 Fluent Bit’s relationship with OpenTelemetry with apps generating OTel logs, metrics, and traces and Fluent Bit facilitating their transmission to an OTel-compliant point of aggregation or processing. Applications can send OTLP data directly or via an OTel component, and we can route data to other OTel services or analysis tools.

 Because OTel provides implementations of collector and exporter capabilities, calling Fluent Bit an OpenTelemetry Collector or OpenTelemetry Exporter can be a source of confusion. The standard itself is called OTLP, so referring to Fluent Bit as being OTLP-compliant is clearer, even if less obvious about the task we might deploy Fluent Bit to perform. In addition, there is some sensitivity within the OpenTelemetry community about the difference between the project’s own implementation of a collector (called OpenTelemetry Collector) and other implementations of that capability. We are erring on the side of describing Fluent Bit as an OTLP Collector (after all, protocol compliance is key to the collector’s function) and reducing ambiguity among CNCF projects.

 Protocol Buffers (Protobuf)

 Protocol Buffers are a key technology for gRPC, which OTel uses. Protocol Buffers have a concisely defined schema, which is used with the Protobuf tooling to generate the code for sending and receiving payloads. A well-defined schema allows the tooling to create the code that creates a compressed binary payload representation. This schema is both a strength and a potential constraint. The strength comes from the efficient payload transmission. The downside is that a schema change affects both the provider and consumer and makes realizing the tolerant reader integration pattern more challenging. Also, given that the Protobuf-generated payload is a compressed binary format, it is a lot harder to inject into any communication middleware that can accommodate transformation. Links to OTel, Protobuf, and related technologies are in appendix B.

 As we progress through the book, we’ll examine more closely how Fluent Bit and OpenTelemetry perform different functions. Note that OpenTelemetry protocol support before Fluent Bit v3 was restricted to HTTP and JSON. Version 3 brought enhancements that support HTTP/2, enabling Fluent Bit to use gRPC. This, in turn, means that Fluent Bit can provide a fully compliant OTLP implementation without needing to take advantage of the step down to HTTP and JSON.

1.3.3 Extending Fluent Bit with C, Go, WebAssembly, and Lua

 The ability to extend Fluent Bit’s core capability is important. The number of third-party plugins built for Fluentd clearly demonstrates this need. In addition to source and targets, small pieces of custom logic for actions such as filtering are also needed. For inputs, outputs, and filters, we can connect precompiled solutions using C, Go (also referred to as Golang), and WebAssembly (WASM), which we can use to further increase our choice of languages for implementation and elevate decoupling.

 As Filters often need a quicker, easier way to define small pieces of logic, using Lua as a scripting language makes sense. We’ll explore these technologies and the pros and cons of the different approaches in chapter 9.

1.3.4 Fluent Bit and stream processing

 The goal of implementing processing logic as events flow through a pipeline is not new. As software frameworks developed to support that goal, we saw what we now know as stream processing or stream analytics as Complex Event Processing (CEP). You could argue that we’ve had basic stream processing in the form of service bus (https://www.devx.com/terms/enterprise-service-bus) products for a long time; stream processing is less about the technology and more about how the technology is applied. If you accept the argument about service buses, it is reasonable to assert that Fluentd and Fluent Bit also provide basic streaming capabilities. What has evolved is how we look at stream processing and stream analytics. Today, we can identify a couple of distinctive characteristics of stream processing and analytics:

 	 The large volume of data we’re trying to push through the pipeline is a key characteristic of stream processing. Fluent Bit is no stranger to these data volumes, but the volumes we want to process demand an enormous scale for service buses to meet such demands. Also, service buses need to address a level of complexity, such as data integrity across multiple systems—something that is typically not an issue for stream processing.

 	 As we focus on data, using SQL is the nearly universal way to work with data. If we can express the examination of the log events by using SQL, we make the data a lot more accessible.

1.3.5 OTel vs. Fluent Bit and Fluentd

 We should emphasize that when considering whether to use Fluentd or Fluent Bit and even Fluent Bit or OTel, the answer need not be one or the other. From the outset, Fluent Bit and Fluentd have been built to communicate easily and seamlessly. Because of the way that the Fluent Bit and Fluentd solutions structure their payloads internally, we can take an OTel payload, wrap it inside the Fluent model, and unpack it again. The key to answering the question about Fluentd lies with the adoption of OTel for more than microservice use cases and the speed at which additional adaptors are developed.

 In my opinion, new developments will become Fluent Bit–based over the next couple of years because developers who may have considered Logstash will look to Elastic APM agents (https://mng.bz/x6n6). However, solutions in production will see a slower rate of change with Fluent Bit replacing Fluentd. The most likely driver of change in existing software will be the adoption of OpenTelemetry. Highly scaled OTel solutions with even small footprint savings will create measurable cost savings or a solution that reaches the point of replacement or significant overhaul.

 With the data captured within Fluent Bit, we can parse semistructured content to extract more meaning from the event, allowing more informed actions to be performed downstream. This process can be as simple as extracting a value from some text, such as whether the log entry contains an error or extracting a numeric value for Prometheus to use or to influence the routing of the event. The process can also be as complex as converting a custom format to a JSON representation.

 The natural next step is filtering events, perhaps to discard them when they are insignificant or to route them to one or more outputs. We could send the data to a central log repository and pass the event’s numeric elements to Prometheus as a metric.

 Transferring data in groups of events is more efficient than transferring one event at a time. The start and end of each conversation have some small overhead, such as opening and closing network connections or opening and locating the end of a file and then closing the file handle. Buffering or grouping events helps us make tradeoffs in these activities, which is one of the roles of buffers regardless of where they are. Because a buffer may not be a simple in-memory structure, it’s better to perform buffering after filtering, so if the buffer involves more than managing the data we already have in memory, we’re minimizing the effort.

 The final step is putting the events somewhere. That might well be another Fluent Bit (acting as an OpenTelemetry node or a simple log event processor) or Fluentd (taking advantage of its larger collection of plugin options or existing deployed monitoring infrastructure), or it could be one of the supported data stores or custom outputs that have been plugged in.

 In figure 1.4, we have taken our architecture view and add some example sources, destinations, and technologies that allow us to enhance Fluent Bit. This figure underlines the flexibility and compatibility of Fluentd and OpenTelemetry-compliant tools in addition to a diverse range of other applications and technologies.

 [image: figure]

Figure 1.4 Fluent Bit logical architecture with some of the available plugins

 You’ll probably have noticed that Fluent Bit doesn’t do anything about data presentation or visualization. This comes down to the philosophy that an application has a single responsibility: do one thing and do it well. For Fluent Bit, that one thing is getting observability data from what needs to be observed to the tools that allow us to visualize and analyze the data.

 If you’re familiar with the architecture of Fluentd, you’ll recognize that the architecture, although implemented with different technologies, is reasonably similar at this level of abstraction. This similarity reflects the relationship between the two solutions and is a simple truism of event processing.

1.4 Is Fluent Bit a child or a successor of Fluentd?

 Although Fluent Bit started as a sibling of Fluentd (https://www.fluentd.org), with support for OTel and other features arriving in the late 1.x versions and as part of v2.0, it is fair to say that it has grown up to be Fluentd’s equal. This fact spawns a couple of questions:

 	 Do I need to learn Fluentd to learn Fluent Bit?

 	 Is Fluentd a legacy solution now?

 To come to grips with Fluent Bit, you don’t need to know anything about Fluentd. But if you understand Fluentd at a high level, you’ll find that getting to grips with Fluent Bit is easy. There is no dependency between the products. In many respects, although the two products have a lot of overlap, they are complementary.

 Whether Fluentd is a legacy technology is an architectural question. The answer is always, “It depends.” The drivers and capabilities incorporated into Fluent Bit mean that it fits neatly into the modern Kubernetes-centered, cloud-native ecosystem, with the means to address all the demands of that ecosystem, although some features currently are not available in Fluentd. As previously discussed, Fluent Bit has a smaller, lighter footprint, making it suitable for containerized use cases. Another factor is OpenTelemetry support. At the time of this writing, we have not seen a road map to equip Fluentd with support for OTel, which makes Fluent Bit by far the better choice for deploying into container-orchestrated environments such as Kubernetes and working with services such as Istio. Nothing stops us from deploying Fluent Bit in non-cloud-native environments, which typically have a wider portfolio of technologies with which to work. This scenario lends itself more to Fluentd for the foreseeable future, given the number of adapters it has available. The skills required to create custom plugins are also more readily available; you simply need to grasp Ruby or another object-oriented language with built-in memory management, as listed in the TIOBE Index (https://www.tiobe.com/tiobe-index). Although WASM can enable extensions to Fluent Bit in languages such as Java and Ruby, it demands additional skills for a technology that is still proving itself to the mainstream.

 As to whether Fluentd is history, the answer is no. Major vendors have invested in and used Fluentd for a long time, and that sort of investment is not one to walk away from. Furthermore, Fluentd and Fluent Bit have different technologies, and although they have some common ideas, they execute those ideas differently. Many of the key contributors to the development of Fluentd are also working on Fluent Bit. Both solutions are being propelled forward to meet the demands and innovation needed by the CNCF ecosystem. Cloud-native ideas and CNCF influence the world of software; not all cloud software deployments are as tightly bound to Kubernetes as others. Put simply, Fluent Bit can do a lot and be applied to many use cases, but today, Fluentd fits some use cases better than Fluent Bit, and vice versa.

 Note  The way that Fluent Bit’s name is written has fluctuated, at times being Fluentbit. The two ways of writing the name are interchangeable. The spellings fluent-bit and Fluentbit have also been used for code and executable artifacts. But the official, correct spelling is Fluent Bit.

1.5 How we’re going to discover Fluent Bit

 This book sequences chapters to get you started quickly, focusing on sources and destinations. Then it adds advanced capabilities, such as filtering and creating plugins. We want this book to be both a tour guide for those who are new to Fluent Bit and a resource for reference for both new and experienced users. Like a good tour guide, we will reflect on Fluent Bit’s history and how it affects today as we travel through Fluent Bit’s capabilities. We’ll look at the most common configuration scenarios with real-world applications. The scenarios don’t simply involve clicking this and typing that and seeing something happen; we’ll explain what is going on and why. After all, the better you understand how things work, the easier it is to derive new configurations and other use cases.

 Every scenario has a working solution in a GitHub repository (https://mng.bz/vJKa) and in Manning’s book-download pack (https://www.manning.com/downloads/2686), and we’ll describe how to run those scenarios in the book. As the examples get more advanced, we may not include every bit of the configuration in the book—only the bits that are relevant to the subject at hand. The complete configuration is available in the files referenced in the GitHub repository.

 Just as a tour guide doesn’t explain every detail of every exhibit as they guide you along, we’re not going to look at every edge case of Fluent Bit. Like a guide, we will give you the means to go back and explore different aspects more deeply on your own time. We’ve included several appendices for that purpose. The appendices include setup instructions for the tools used in the book and references to further supportive reading, tools, lookup information, and examples that will help.

 The scenarios in each chapter sometimes develop logically from the preceding ones as we build sophistication and illustrate different possibilities. But don’t worry—if you need to jump back to a chapter, you won’t need to return to the beginning. Each scenario configuration is independent of the others. We’ll also give you some additional challenges; the solutions are in the downloadable content. These challenges allow you to try different ways of configuring Fluent Bit without having the answer in front of you.

 The biggest possible challenge is creating realistic log behavior. We’ll solve that issue by using a LogGenerator/LogSimulator that can create different log events. To learn more about this utility, see appendix A.

1.5.1 How much Kubernetes will this book involve?

 The way the industry references Kubernetes can confuse those who are new to the technology. To be precise, Kubernetes is the orchestrator for a set of technologies that are compliant with its APIs. We often talk about Docker when referring to containers, but we actually mean Open Container Initiative (OCI)–compliant containers and the associated container engines. Product names like Kubernetes are shorthand for the broader ecosystem rather than detailed specifics of container orchestration. Within this book, we have worked to use Kubernetes in the broader use, and when we’re talking about specific parts of Kubernetes, we’ve tried to use the specific component names.

 The objective for many people is to understand Fluent Bit in the context of building and operating containerized applications. Using Fluent Bit to monitor containerized applications requires only a basic understanding of how containers can be orchestrated. Likewise, 10 years ago, only a basic understanding of VMs was needed to monitor applications that ran in environments managed by VMWare. Few people need to know how VMWare moves VMs or Kubernetes moves containers within a server cluster, for example. Applications shouldn’t be aware of the world outside their container or VM unless you’re producing a Kubernetes controller.

 For a detailed look at the Kubernetes log and observability, we would recommend checking out a Kubernetes-specific book to understand its administration (several resources are mentioned in appendix B). Most of us will start with a prepared Kubernetes cluster, and these Kubernetes environments are opinionated; compare OpenShift, Tanzu, K3s, Minikube, and the cloud-provider setups, and you’ll see. Many prepared Kubernetes deployments tell you how they have configured things, so it’s worthwhile to look at their documentation; sometimes, there are preconfigured Fluent Bit settings to monitor Kubernetes at the lowest level, so the question is how to build on this feature. When you’ve considered this question, come back to this book to see how you can use the events generated by Kubernetes and apply Fluent Bit.

 We use containers in this book, but to keep things simple and to emphasize that Fluent Bit is not just a tool for Kubernetes, we will focus on running Fluent Bit locally. This approach means we don’t have to worry about container configuration when trying to master Fluent Bit configuration. It also helps us see that Fluent Bit can work with more traditional application deployments.

1.5.2 Logging in Action

 The final question in this chapter is how this book relates to Logging in Action (https://www.manning.com/books/logging-in-action). That book touches on Fluent Bit but just enough to provide context. Like the two technologies, that book and this one can be used together, but neither is beholden to the other. Don’t dismiss Logging in Action, however. That book has content relevant to Fluent Bit, particularly a deeper look at the theory of observability and monitoring, such as deployment strategies and ways to mix the two technologies.

 Summary

 	 We have taken a whirlwind tour of what has made Fluent Bit so popular and how it is particularly good in a microservices context, such as its small footprint and operability with other technologies, particularly Fluentd.

 	 We looked at the high-level ideas, architecture, and components of Fluent Bit, so we are in a better position to understand the application of Fluent Bit, which we’ll explore in the coming chapters.

 	 We also examined the relationship between Fluent Bit and OpenTelemetry and saw that they can coexist and complement each other.

 	 We reviewed the high-level ideas and elements of Fluent Bit, enabling you to be able to start asking questions about Fluent Bit and getting a sense of the elements we’ll explore in the coming chapters, starting by looking at the different ways we can run Fluent Bit and implement a “Hello, World” configuration.

2 From zero to “Hello, World”

 This chapter covers

 	Learning ways to configure Fluent Bit

 	Examining the Fluent Bit command-line interface (CLI)

 	Creating a Fluent Bit version of “Hello, World”

 	Looking at classic and YAML Fluent Bit configurations

 	Working with dynamic configuration features

 When it comes to getting Fluent Bit up and running with a scenario, we’ll be quicker than Nic Cage in Gone in 60 Seconds. Although the chapter will take you a little longer to read than others, we’ll certainly have the Fluent Bit equivalent to the developer’s “Hello, World” going with minimal effort. Understanding different configuration approaches and the ways they can be dynamic means you can decide which approach best fits your deployment needs.

 For this chapter, all we need are Fluent Bit and a tool of our choice to edit configuration files, such as Visual Studio Code. If the tool can understand YAML (YAML Ain’t Markup Language), that’s a bonus. All the instructions for installing Fluent Bit are provided in appendix A.

 The content relating only to v3 has been explicitly called out. The core capabilities described will work all the way back to Fluent Bit v1, but the console output differs slightly.

 Note  The book focuses on Fluent Bit v2 and v3. Despite the major version change, the configuration files are backward compatible.

2.1 Multiple ways to configure Fluent Bit

 Fluent Bit allows us to provide configurations in multiple ways—through the command line or several different file formats. Before examining how to configure Fluent Bit, we need to take a moment to understand the various options and how we will address them in the book.

2.1.1 Configuration formats

 Using the command-line interface (CLI) can be a powerful way to configure Fluent Bit. This approach also has limitations and becomes difficult to work with when implementing anything more than basic use cases, such as retrieving log events or standard environment metrics and outputting them to a file.

 The command-line capability is one way to simplify a container configuration. A configuration tweak affects only a single layer in the container and does not require a container to be rebuilt from scratch as a result of needing to copy configuration files into the image. We could also bypass this with smarter container management that mounts volumes to retrieve a configuration file(s), or have the container startup perform a configuration pull from somewhere like a Git repository every time a container is started. If the Fluent Bit container is being used with Kubernetes, it is common practice to insert configuration files into a container by using a ConfigMap—the approach we’ll use with Kubernetes in chapter 4.

 To understand the possibilities, we’ll walk through the process of using the CLI to define a simple Fluent Bit configuration. The rest of the book focuses on using a configuration file.

2.1.2 CLI controls

 The Fluent Bit command line can be used to provide parameters that tell Fluent Bit how to execute, as well as set several status and control behaviors. As with most applications, the CLI uses a hyphen and a single letter or double hyphen with a full name for each parameter value. The short parameters are case sensitive. Fluent Bit supports the near-universal shortcut -h (--help) to display command-line help. Let’s start with the parameters we’re likely to use regularly, particularly during the development of Fluent Bit configurations (table 2.1).

Table 2.1 Fluent Bit execution CLI controls

 	

 Short parameter

 	

 Long parameter

 	

 Description

 	 -h

 	 --help

 	 This parameter displays detailed CLI help on the console.

 	 -b

 	 --storage_path

 	 When buffering uses the filesystem, the files are stored in this location.

 	 -c

 	 --config

 	 As with Fluentd, this parameter directs Fluent Bit to work with a specific configuration file identified by the path to the file provided.

 	 -d

 	 --daemon

 	 This parameter tells Fluent Bit to run as a daemon process, so it will be executed as an OS process.

 	 -D

 	 --dry-run

 	 The --dry-run option directs Fluent Bit to evaluate the configuration to ensure that it is correct without running the pipelines and generating output.

 	 -q

 	 --quiet

 	 The --quiet parameter reduces output to warnings and errors, and -qq makes things very quiet, with only errors being output.

 	 -S

 	 --sosreport

 	 This parameter builds a detailed summary of the Fluent Bit deployment, including flags used to build the binary, which helps anyone better understand any operational issues.

 	 -v

 	 --verbose

 	 The --verbose and --quiet controls work in the same manner . -v enables Fluent Bit to log to the debug level, and -vv goes to the trace level.

 	 -V

 	 --version

 	 This parameter gets Fluent Bit to provide information on the version number and related details.

 Using parameters, we can validate the version of Fluent Bit we have deployed. When we run the command fluent-bit -V, we should see a message confirming that our Fluent Bit deployment is v2 or later. If not, revisit appendix A’s deployment guidance, as we will be doing things in the book that can’t be run. Try generating an SOS report with the -S parameter. We’ll use other options, such as --dry-run and --config (-c), later in the book.

 Let’s look at more advanced configuration options that allow us to control Fluent Bit behavior in a more operational context, such as directing where Fluent Bit writes its log files, and where it can write temporary files, such as when file buffers are used (table 2.2).

Table 2.2 Log operation CLI controls

 	

 Short parameter

 	

 Long parameter

 	

 Description

 	 -C

 	 --custom

 	 Enables the use of custom sources (inputs) or sinks (outputs).

 	 -e

 	 --plugin

 	 Identifies where an external plugin should be loaded from.

 	 -f

 	 --flush

 	 Allows us to change the flush frequency by providing an integer representing a number of seconds. (No value means that flush defaults to every second.) The flush represents the frequency at which the log events are processed downstream, regardless of how full the buffering capacity is.

 	 -l

 	 --log_file

 	 Allows us to direct the log events to a log file rather than the console. The console still gets a brief startup configuration summary.

 	 -w

 	 --workdir

 	 Defines where Fluent Bit puts any temporary files.

 	 -H

 	 --http

 	 Enables the HTTP server, which can be used to address HTTP GET REST calls that can be used to retrieve information about the Fluent Bit node, such as health, metrics, and build details. Except for the response to the root URL, the other endpoints start with /api/v1/.

 	 -P

 	 --port

 	 Allows a different port from the default 2020 to be defined for the HTTP server.

 	 -s

 	 --coro_stack_size

 	 Sets the stack size for coroutines (defaults to 24 KB).

 Using the parameters in table 2.2, run Fluent Bit so that it logs to a file called fb.log, run the command, and terminate the process after about 10 seconds. The command you should arrive at is fluent-bit -l fb.log. When you’ve stopped Fluent Bit, you should see a local file called fb.log. The file will contain text showing Fluent Bit log information reflecting the startup, like this:

 [2024/04/14 16:57:29] [info] [fluent bit] version=2.2.2,

↪ commit=eeea396e88, pid=30060

[2024/04/14 16:57:29] [info] [storage] ver=1.5.1, type=memory,

↪ sync=normal, checksum=off, max_chunks_up=128

[2024/04/14 16:57:29] [info] [cmetrics] version=0.6.6

[2024/04/14 16:57:29] [info] [ctraces] version=0.4.0

[2024/04/14 16:57:29] [info] [sp] stream processor started

[2024/04/14 16:57:34] [warn] [engine] service will shutdown

↪ in max 5 seconds

[2024/04/14 16:57:35] [info] [engine] service has stopped

↪ (0 pending tasks)

 Table 2.3 shows the key controls for defining a pipeline from the command line. We’ll put these controls to use soon. We previously saw the architecture of Fluent Bit, so it shouldn’t surprise you that it heavily informs how the CLI and the configuration files are structured.

Table 2.3 Log event–processing CLI controls

 	

 Short parameter

 	

 Long parameter

 	

 Description

 	 -i

 	 --input

 	 Identifies the input plugin and must be followed by the plugin name.

 	 -o

 	 --output

 	 Identifies the settings for the output. -o needs to be followed by the name of the output, such as stdout.

 	 -F

 	 --filter

 	 Starts the definition of a filter.

 	 -m

 	 --match

 	 Controls the events that an output can process.

 	 -p

 	 --prop

 	 Identifies the following value provided to define the name and value for a configuration property for the plugin, filter, etc. The property is provided as a name-value pair, such as name=value.

 	 -R

 	 --parser

 	 Allows us to define the data in the log event’s record that can be manipulated.

 	 -t

 	 --tag

 	 Allows us to define the tag to be applied to the input event.

 	 -T

 	 --sp-task

 	 Allows us to define a stream processor.

 We can also retrieve a help summary for specific inputs, outputs, and filters by specifying the input, output, or filter followed by -h or --help. For example, we can retrieve details about the dummy input plugin using the command fluent-bit -i dummy -h. Try formulating a command line to get the configuration details for the stdout output plugin.

 What does plugin mean?

 We’ve encountered references to plugins. The term is key to Fluent Bit but can be a source of misunderstanding because plugin can be used to describe features compiled directly into the core of Fluent Bit. This term comes from Fluent Bit’s older sibling, Fluentd, which is built with Ruby and takes advantage of Ruby’s modularity and dynamic class loading. Different parts of Fluentd are exposed by defined interfaces that could be easily built on with Ruby’s language features. These interfaces are provided to help ensure that the code is implemented with good software engineering practices, regardless of whether the code is part of the core product or used by others to implement their own inputs, outputs, and filters. There are other interfaces, but they are far less frequently used. As functionality that uses these interfaces typically comes in separately deployable files and could be visualized as being plugged into the core, they’ve become known as plugins.

 Fluent Bit defines interfaces to manage coupling and extensibility as sound software engineering practices. As a result, the term has continued in Fluent Bit even though many of the plugins are compiled into the executable for the Fluent Bit file. In this book, we will continue using the language of plugins, whether they are compiled into the core of Fluent Bit or custom developed using WebAssembly or Go.

2.1.3 Defining a monitoring pipeline using the CLI

 As we’ve seen from the command-line options, we can use the CLI to define a monitoring pipeline. This capability makes it possible to configure containerized Fluent Bit and embody the behavior in a Kubernetes Pod declaration, including the command declaration. Let’s put it to the test by creating a simple Fluent Bit command that works with a dummy input and pushing it to the console.

 Input

 Within the command line, we can define one or more inputs by repeating the input delimiter, followed by the input plugin name. For our “Hello, World” example, we’ll use the simplest possible option: a plugin called dummy. dummy doesn’t source any log events; it creates them internally with a JSON payload, which we can define or allow to have defaulted values. With each input, we need to define the tag associated with that source. Let’s use the value dummy1, which means that after the input, we need to provide the -t parameter with the value dummy1.

OEBPS/Images/Manning_M_small.png

OEBPS/Images/1-1.png
Fluent Bit v0-v1.8.x and Fluentd

O —

« Straightforward
Tag text value

I
i Y

« Numeric time
Timestamp from epoch

- r—
) ———

« Textas
name-value
pair or JSON

I

Record

)

[Metadata]

-
SR

Timestamp

-
SR

Record

—

e
Fluent Bit v1.9, v2.0, and later

« Alist of values that includes the attribute
Tag

« Contains type information for the record.
Internally, the record can be differentiated
as metrics, trace, or log data.

« Such as 1362050500.000000000

« Defined as the time received by Fluent Bit
unless mapped from the received event

« Time from epoch as seconds.nanoseconds

« The record structure can depend on the
metadata, but for logs, this is treated as a
name-value pair if received as a text input.

* Logs can be converted to a JSON structure
for easier processing.

OEBPS/Images/1-2.png
Fluent Bit input(s)

Custom input Input plugin Input plugin
plugin (pulled) (listener)

Fluent Bit filter(s)

Custom filter Filter

Fluent Bit data management

A
< Buffers

Stream

processing

Fluent Bit output(s)
Y

Custom output

Output plugin plugin

OEBPS/Images/1-4.png
Fluent Bit input(s)

N

GO Custom input Input plugin Input plugin 9
M plugin (pulled) (listener)
c <‘%\
Fluent Bit filter(s)
-
Y v
s
m Custom filter Filter g
&)
"¢ T T
Fluent Bit data management
1 1
Buffers
Stream
processing
Fluent Bit output(s)
Y Y

Output plugin

plugin

Custom output m

c

Plugin and custom logic

C Gt Fivent Bit core binary

@® Lua scripts, invoked through
® i

Go language-built static
bind to C interface

WASM + WASI binary

interface

C-coded plugins, typically part

(30 objects as custom extensions;

containers, working via defined

Example prebuilt plugins

Fluent Bit and Fluentd
y able to communicate

Prometheus as an
exporter o remote
writer

Dacker and other
container engine
data sources

0S and hardware
metric and logs

i

=) Data storage sources

such as DBs

@

Application logs directly
wou or via files (such as via
Apache Log4j2)

&\ OpenTelemetry as a
4% collector or agent

Messaging services
such as Apache Kafka

OEBPS/Images/1-3.png
Host
(Bare metal, device, VM, container)

Q‘%\

OTel
Collector
agent

OTel library

(Bare metal, device, VM, container)

Key
metrics 0095 °races

oee{
7> 060

60
¢
OpenTelemetry
tool(s) or

OTLP-compliant
solutions

OEBPS/Images/cover0001.jpg
Using Fluent Bit, Kubemetes, streaming and more

Logs

and

Tele

Phil Wilkins

Foreword by Eduardo Silva Pereira

/“ MANNING

OEBPS/Images/Wilkins.png

OEBPS/Images/manning_m.jpg

