

[image: Cover Page]

Data Science with Python and Dask

Jesse C. Daniel

[image: ManningBlackSized.png]

Manning

Shelter Island

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

	Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

ISBN 9781617295607

Printed in the United States of America

contents in brief

	
Part 1: The building blocks of scalable computing

	Chapter 1: Why scalable computing matters

	Chapter 2: Introducing Dask

	
Part 2: Working with structured data using Dask DataFrames

	Chapter 3: Introducing Dask DataFrames

	Chapter 4: Loading data into DataFrames

	Chapter 5: Cleaning and transforming DataFrames

	Chapter 6: Summarizing and analyzing DataFrames

	Chapter 7: Visualizing DataFrames with Seaborn

	Chapter 8: Visualizing location data with Datashader

	
Part 3: Extending and deploying Dask

	Chapter 9: Working with Bags and Arrays

	Chapter 10: Machine learning with Dask-ML

	Chapter 11: Scaling and deploying Dask

To Clementine

preface

The data science community is such an interesting, dynamic, and fast-paced place to work. While my journey as a data scientist so far has only been around five years long, it feels as though I’ve already seen a lifetime of tools, technologies, and trends come and go. One consistent effort has been a focus on continuing to make data science easier. Lowering barriers to entry and developing better libraries have made data science more accessible than ever. That there is such a bright, diverse, and dedicated community of software architects and developers working tirelessly to improve data science for everyone has made my experience writing Data Science with Python and Dask an incredibly humbling—and at times intimidating—experience. But, nonetheless, it is a great honor to be able to contribute to this vibrant community by showcasing the truly excellent work that the entire team of Dask maintainers and contributors have produced.

I stumbled across Dask in early 2016 when I encountered my first uncomfortably large dataset at work. After fumbling around for days with Hadoop, Spark, Ambari, ZooKeeper, and the menagerie of Apache “big data” technologies, I, in my exasperation, simply Googled “big data library python.” After tabbing through pages of results, I was left with two options: continue banging my head against PySpark or figure out how to use chunking in Pandas. Just about ready to call my search efforts futile, I spotted a StackOverflow question that mentioned a library called Dask. Once I found my way over to where Dask was hosted on GitHub, I started working my way through the documentation. DataFrames for big datasets? An API that mimics Pandas? It can be installed using pip? It seemed too good to be true. But it wasn’t. I was incensed—why hadn’t I heard of this library before? Why was something this powerful and easy to use flying under the radar at a time when the big data craze was reaching fever pitch?

After having great success using Dask for my work project, I was determined to become an evangelist. I was teaching a Python for Data Science class at the University of Denver at the time, and I immediately began looking for ways to incorporate Dask into the curriculum. I also presented several talks and workshops at my local PyData chapter’s meetups in Denver. Finally, when I was approached by the folks at Manning to write a book on Dask, I agreed without hesitation. As you read this book, I hope you also come to see how awesome and useful Dask is to have in your arsenal of data science tools!

acknowledgments

As a new author, one thing I learned very quickly is that there are many, many people involved in producing a book. I absolutely would not have survived without all the wonderful support, feedback, and encouragement I’ve received over the course of writing the book.

First, I’d like to thank Stephen Soehnlen at Manning for approaching me with the idea to write this book, and Marjan Bace for green-lighting it. They took a chance on me, a first-time author, and for that I am truly appreciative. Next, a huge thanks to my development editor, Dustin Archibald, for patiently guiding me through Manning’s writing and revising processes while also pushing me to become a better writer and teacher. Similarly, a big thanks to Mike Shepard, my technical editor, for sanity checking all my code and offering yet another channel of feedback. I’d also like to thank Tammy Coron and Toni Arritola for helping to point me in the right direction early on in the writing process.

Next, thank you to all the reviewers who provided excellent feedback throughout the course of writing this book: Al Krinker, Dan Russell, Francisco Sauceda, George Thomas, Gregory Matuszek, Guilherme Pereira de Freitas, Gustavo Patino, Jeremy Loscheider, Julien Pohie, Kanak Kshetri, Ken W. Alger, Lukasz Tracewski, Martin Czygan, Pauli Sutelainen, Philip Patterson, Raghavan Srinivasan, Rob Koch, Romain Jouin, Ruairi O'Reilly, Steve Atchue, and Suresh Rangarajulu.. Special thanks as well to Ivan Martinovic´ for coordinating the peer review process and organizing all the feedback, and to Karsten Strøbæk for giving my code another pass before handing off to production.

I’d also like to thank Bert Bates, Becky Rinehart, Nichole Beard, Matko Hrvatin and the entire graphics team at Manning, Chris Kaufmann, Ana Romac, Owen Roberts and the folks at Manning’s marketing department, Nicole Butterfield, Rejhana Markanovic, and Lori Kehrwald. A big thank-you also goes out to Francesco Bianchi, Mike Stephens, Deirdre Hiam, Michelle Melani, Melody Dolab, Tiffany Taylor, and the countless other individuals who worked behind the scenes to make Data Science with Python and Dask a great success!

Finally, I’d like to give a special thanks to my wife, Clementine, for her patient understanding on the many nights and weekends that I holed up in my office to work on the book. I couldn’t have done this without your infinite love and support. I also wouldn’t have had this opportunity without the inspiration of my dad to pursue a career in technology and the not-so-gentle nudging of my mom to do my English homework. I love you both!

about this book

Who should read this book

Data Science with Python and Dask takes you on a hands-on journey through a typical data science workflow—from data cleaning through deployment—using Dask. The book begins by presenting some foundational knowledge of scalable computing and explains how Dask takes advantage of those concepts to operate on datasets big and small. Building on that foundation, it then turns its focus to preparing, analyzing, visualizing, and modeling various real-world datasets to give you tangible examples of how to use Dask to perform common data science tasks. Finally, the book ends with a step-by-step walkthrough of deploying your very own Dask cluster on AWS to scale out your analysis code.

Data Science with Python and Dask was primarily written with beginner to intermediate data scientists, data engineers, and analysts in mind, specifically those who have not yet mastered working with datasets that push the limits of a single machine. While prior experience with other distributed frameworks (such as PySpark) is not necessary, readers who have such experience can also benefit from this book by being able to compare the capabilities and ergonomics of Dask. There are various articles and documentation available online, but none are focused specifically on using Dask for data science in such a comprehensive manner as this book.

How this book is organized: A roadmap

This book has three sections that cover 11 chapters.

Part 1 lays some foundational knowledge about scalable computing and provides a few simple examples of how Dask uses these concepts to scale out workloads.

	Chapter 1 introduces Dask by building a case for why it’s an important tool to have in your data science toolkit. It also introduces and explains directed acyclic graphs (DAGs), a core concept for scalable computing that’s central to Dask’s architecture.

	Chapter 2 ties what you learned conceptually about DAGs in chapter 1 to how Dask uses DAGs to distribute work across multiple CPU cores and even physical machines. It goes over how to visualize the DAGs automatically generated by the task scheduler, and how the task scheduler divides up resources to efficiently process data.

Part 2 covers common data cleaning, analysis, and visualization tasks with structured data using the Dask DataFrame construct.

	Chapter 3 describes the conceptual design of Dask DataFrames and how they abstract and parallelize Pandas DataFrames.

	Chapter 4 discusses how to create Dask DataFrames from various data sources and formats, such as text files, databases, S3, and Parquet files.

	Chapter 5 is a deep dive into using DataFrames to clean and transform datasets. It covers sorting, filtering, dealing with missing values, joining datasets, and writing DataFrames in several file formats.

	Chapter 6 covers using built-in aggregate functions (such as sum, mean, and so on), as well as writing your own aggregate and window functions. It also discusses how to produce basic descriptive statistics.

	Chapter 7 steps through creating basic visualizations, such as pairplots and heatmaps.

	Chapter 8 builds on chapter 7 and covers advanced visualizations with interactivity and geographic features.

Part 3 covers advanced topics in Dask, such as unstructured data, machine learning, and building scalable workloads.

	Chapter 9 demonstrates how to parse, clean, and analyze unstructured data using Dask Bags and Arrays.

	Chapter 10 shows how to build machine learning models from Dask data sources, as well as testing and persisting trained models.

	Chapter 11 completes the book by walking through how to set up a Dask cluster on AWS using Docker.

You can either opt to read the book sequentially if you prefer a step-by-step narrative or skip around if you are interested in learning how to perform specific tasks. Regardless, you should read chapters 1 and 2 to form a good understanding of how Dask is able to scale out workloads from multiple CPU cores to multiple machines. You should also reference the appendix for specific information on setting up Dask and some of the other packages used in the text.

About the code

A primary way this book teaches the material is by providing hands-on examples on real-world datasets. As such, there are many numbered code listings throughout the book. While there is no code in line with the rest of the text, at times a variable or method name that appears in a numbered code listing is referenced for explanation. These are differentiated by using this text style wherever references are made. Many code listings also contain annotations to further explain what the code means.

All the code is available in Jupyter Notebooks and can be downloaded at www.manning.com/books/data-science-at-scale-with-python-and-dask. Each notebook cell relates to one of the numbered code listings and is presented in order of how the listings appear in the book.

liveBook discussion forum

Purchase of Data Science with Python and Dask includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/data-science-with-python-and-dask. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

[image: fm_01.tif]

Jesse C. Daniel has five years’ experience writing applications in Python, including three years working within the PyData stack (Pandas, NumPy, SciPy, scikit-learn). He joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he taught a Python for Data Science course. He currently leads a team of data scientists at a Denver-based ad tech company.

about the cover illustration

The figure on the cover of Data Science with Python and Dask is captioned “La Bourbonnais.” The illustration is taken from a collection of works by many artists, edited by Louis Curmer and published in Paris in 1841. The title of the collection is Les Français peints par eux-mêmes, which translates as The French People Painted by Themselves. Each illustration is finely drawn and colored by hand and the rich variety of drawings in the collection reminds us vividly of how culturally apart the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by pictures from collections such as this one.

Part 1

The building blocks of scalable computing

This part of the book covers some fundamental concepts in scalable computing to give you a good basis for understanding what makes Dask different and how it works “under the hood.”

In chapter 1, you’ll learn what a directed acyclic graph (DAG)is and why it’s useful for scaling out workloads across many different workers.

Chapter 2 explains how Dask uses DAGs as an abstraction to enable you to analyze huge datasets and take advantage of scalability and parallelism whether you’re running your code on a laptop or a cluster of thousands of machines.

Once you’ve completed part 1, you’ll have a basic understanding of the internals of Dask, and you’ll be ready to get some hands-on experience with a real dataset.

1

Why scalable computing matters

This chapter covers

	Presenting what makes Dask a standout framework for scalable computing

	Demonstrating how to read and interpret directed acyclic graphs (DAGs) using a pasta recipe as a tangible example

	Discussing why DAGs are useful for distributed workloads and how Dask’s task scheduler uses DAGs to compose, control, and monitor computations

	Introducing the companion dataset

Welcome to Data Science with Python and Dask! Since you’ve decided to pick up this book, no doubt you are interested in data science and machine learning—perhaps you’re even a practicing data scientist, analyst, or machine learning engineer. However, I suspect that you’re either currently facing a significant challenge, or you’ve faced it at some point in your career. I’m talking, of course, about the notorious challenges that arise when working with large datasets. The symptoms are easy to spot: painfully long run times—even for the simplest of calculations—unstable code, and unwieldy workflows. But don’t despair! These challenges have become commonplace as both the expense and effort to collect and store vast quantities of data have declined significantly. In response, the computer science community has put a great deal of effort into creating better, more accessible programming frameworks to reduce the complexity of working with massive datasets. While many different technologies and frameworks aim to solve these problems, few are as powerful and flexible as Dask. This book aims to take your data science skills to the next level by giving you the tools and techniques you need to analyze and model large datasets using Dask.

Who is this book for? Who is this book not for?

It’s worth noting right away that Dask is well suited to solving a wide variety of problems including structured data analysis, large-scale simulations used in scientific computing, and general-purpose distributed computing. Dask’s ability to generalize many classes of problems is unique, and if we attempted to cover every possible application in which we could use Dask, this would be quite a large book indeed! Instead, we will keep a narrow focus throughout the book on using Dask for data analysis and machine learning. While we will tangentially cover some of the more general-purpose aspects of Dask throughout the book (such as the Bag and Delayed APIs), they will not be our primary focus.

This book was primarily written with beginner to intermediate data scientists, data engineers, and analysts in mind, specifically those who have not yet mastered working with data sets that push the limits of a single machine. We will broadly cover all areas of a data science project from data preparation to analysis to model building with applications in Dask and take a deep dive into fundamentals of distributed computing.

While this book still has something to offer if you’ve worked with other distributed computing frameworks such as Spark, and you’ve already mastered the NumPy/SciPy/Pandas stack, you may find that this book is not at the appropriate altitude for you. Dask was designed to make scaling out NumPy and Pandas as simple and painless as possible, so you may be better served by other resources such as the API documentation.

While the majority of this book is centered around hands-on examples of typical tasks that you as a data scientist or data engineer will encounter on most projects, this chapter will cover some fundamental knowledge essential for understanding how Dask works “under the hood.” First, we’ll examine why a tool like Dask is even necessary to have in your data science toolkit and what makes it unique; then, we’ll cover directed acyclic graphs, a concept that Dask uses extensively to control parallel execution of code. With that knowledge, you should have a better understanding of how Dask works when you ask it to crunch through a big dataset; this knowledge will serve you well as you continue through your Dask journey, and we will come back to this knowledge in later chapters when we walk through how to build out your own cluster in the cloud. With that in mind, we’ll turn our focus to what makes Dask unique, and why it’s a valuable tool for data science.

1.1	Why Dask?

For many modern organizations, the promise of data science’s transformative powers is universally alluring—and for good reason. In the right hands, effective data science teams can transform mere ones and zeros into real competitive advantages. Making better decisions, optimizing business processes, and detecting strategic blind spots are all touted as benefits of investing in data science capabilities. However, what we call “data science” today isn’t really a new idea. For the past several decades, organizations all over the world have been trying to find better ways to make strategic and tactical decisions. Using names like decision support, business intelligence, analytics, or just plain old operations research, the goals of each have been the same: keep tabs on what’s happening and make better-informed decisions. What has changed in recent years, however, is that the barriers to learning and applying data science have been significantly lowered. Data science is no longer relegated to operations research journals or academic-like research and development arms of large consulting groups. A key enabler of bringing data science to the masses has been the rising popularity of the Python programming language and its powerful collection of libraries called the Python Open Data Science Stack. These libraries, which include NumPy, SciPy, Pandas, and scikit-learn, have become industry-standard tools that boast a large community of developers and plentiful learning materials. Other languages that have been historically favored for this kind of work, such as FORTRAN, MATLAB, and Octave, are more difficult to learn and don’t have nearly the same amount of community support. For these reasons, Python and its Open Data Science Stack has become one of the most popular platforms both for learning data science and for everyday practitioners.

Alongside these developments in data science accessibility, computers have continued to become ever more powerful. This makes it easy to produce, collect, store, and process far more data than before, all at a price that continues to march downward. But this deluge of data now has many organizations questioning the value of collecting and storing all that data—and rightfully so! Raw data has no intrinsic value; it must be cleaned, scrutinized, and interpreted to extract actionable information out of it. Obviously, this is where you—the data scientist—come into play. Working with the Python Open Data Science Stack, data scientists often turn to tools like Pandas for data cleaning and exploratory data analysis, SciPy and NumPy to run statistical tests on the data, and scikit-learn to build predictive models. This all works well for relatively small-sized datasets that can comfortably fit into RAM. But because of the shrinking expense of data collection and storage, data scientists are more frequently working on problems that involve analyzing enormous datasets. These tools have upper limits to their feasibility when working with datasets beyond a certain size. Once the threshold is crossed, the problems described in the beginning of the chapter start to appear. But where is that threshold? To avoid the ill-defined and oft-overused term big data, we’ll use a three-tiered definition throughout the book to describe different-sized datasets and the challenges that come with each. Table 1.1 describes the different criteria we’ll use to define the terms small dataset, medium dataset, and large dataset throughout the book.

Table 1.1 A tiered definition of data sizes

	Dataset type
	Size range
	Fits in RAM?
	Fits on local disk?

	Small dataset
	Less than 2–4 GB
	Yes
	Yes

	Medium dataset
	Less than 2 TB
	No
	Yes

	Large dataset
	Greater than 2 TB
	No
	No

Small datasets are datasets that fit comfortably in RAM, leaving memory to spare for manipulation and transformations. They are usually no more than 2–4 GB in size, and complex operations like sorting and aggregating can be done without paging. Paging, or spilling to disk, uses a computer’s persistent storage (such as a hard disk or solid-state drive) as an extra place to store intermediate results while processing. It can greatly slow down processing because persistent storage is less efficient than RAM at fast data access. These datasets are frequently encountered when learning data science, and tools like Pandas, NumPy, and scikit-learn are the best tools for the job. In fact, throwing more sophisticated tools at these problems is not only overkill, but can be counterproductive by adding unnecessary layers of complexity and management overhead that can reduce performance.

Medium datasets are datasets that cannot be held entirely in RAM but can fit comfortably in a single computer’s persistent storage. These datasets typically range in size from 10 GB to 2 TB. While it’s possible to use the same toolset to analyze both small datasets and medium datasets, a significant performance penalty is imposed because these tools must use paging in order to avoid out-of-memory errors. These datasets are also large enough that it can make sense to introduce parallelism to cut down processing time. Rather than limiting execution to a single CPU core, dividing the work across all available CPU cores can speed up computations substantially. However, Python was not designed to make sharing work between processes on multicore systems particularly easy. As a result, it can be difficult to take advantage of parallelism within Pandas.

Large datasets are datasets that can neither fit in RAM nor fit in a single computer’s persistent storage. These datasets are typically above 2 TB in size, and depending on the problem, can reach into petabytes and beyond. Pandas, NumPy, and scikit-learn are not suitable at all for datasets of this size, because they were not inherently built to operate on distributed datasets.

Naturally, the boundaries between these thresholds are a bit fuzzy and depend on how powerful your computer is. The significance lies more in the different orders of magnitude rather than hard size limits. For example, on a very powerful computer, small data might be on the order of 10s of gigabytes, but not on the order of terabytes. Medium data might be on the order of 10s of terabytes, but not on the order of petabytes. Regardless, the most important takeaway is that there are advantages (and often necessities) of looking for alternative analysis tools when your dataset is pushing the limits of our definition of small data. However, choosing the right tool for the job can be equally challenging. Oftentimes, this can lead data scientists to get stuck with evaluating unfamiliar technologies, rewriting code in different languages, and generally slowing down the projects they are working on.

Dask was launched in late 2014 by Matthew Rocklin with aims to bring native scalability to the Python Open Data Science Stack and overcome its single-machine restrictions. Over time, the project has grown into arguably one of the best scalable computing frameworks available for Python developers. Dask consists of several different components and APIs, which can be categorized into three layers: the scheduler, low-level APIs, and high-level APIs. An overview of these components can be seen in figure 1.1.

[image: c01_01.eps]
Figure 1.1 The components and layers than make up Dask

What makes Dask so powerful is how these components and layers are built on top of one another. At the core is the task scheduler, which coordinates and monitors execution of computations across CPU cores and machines. These computations are represented in code as either Dask Delayed objects or Dask Futures objects (the key difference is the former are evaluated lazily —meaning they are evaluated just in time when the values are needed, while the latter are evaluated eagerly —meaning they are evaluated in real time regardless if the value is needed immediately or not). Dask’s high-level APIs offer a layer of abstraction over Delayed and Futures objects. Operations on these high-level objects result in many parallel low-level operations managed by the task schedulers, which provides a seamless experience for the user. Because of this design, Dask brings four key advantages to the table:

	Dask is fully implemented in Python and natively scales NumPy, Pandas, and scikit-learn.

	Dask can be used effectively to work with both medium datasets on a single machine and large datasets on a cluster.

	Dask can be used as a general framework for parallelizing most Python objects.

	Dask has a very low configuration and maintenance overhead.

The first thing that sets Dask apart from the competition is that it is written and implemented entirely in Python, and its collection APIs natively scale NumPy, Pandas, and scikit-learn. This doesn’t mean that Dask merely mirrors common operations and patterns that NumPy and Pandas users will find familiar; it means that the underlying objects used by Dask are corresponding objects from each respective library. A Dask DataFrame is made up of many smaller Pandas DataFrames, a Dask Array is made up of many smaller NumPy Arrays, and so forth. Each of the smaller underlying objects, called chunks or partitions, can be shipped from machine to machine within a cluster, or queued up and worked on one piece at a time locally. We will cover this process much more in depth later, but the approach of breaking up medium and large datasets into smaller pieces and managing the parallel execution of functions over those pieces is fundamentally how Dask is able to gracefully handle datasets that would be too large to work with otherwise. The practical result of using these objects to underpin Dask’s distributed collections is that many of the functions, attributes, and methods that Pandas and NumPy users will already be familiar with are syntactically equivalent in Dask. This design choice makes transitioning from working with small datasets to medium and large datasets very easy for experienced Pandas, NumPy, and scikit-learn users. Rather than learning new syntax, transitioning data scientists can focus on the most important aspect of learning about scalable computing: writing code that’s robust, performant, and optimized for parallelism. Fortunately, Dask does a lot of the heavy lifting for common use cases, but throughout the book we’ll examine some best practices and pitfalls that will enable you to use Dask to its fullest extent.

Next, Dask is just as useful for working with medium datasets on a single machine as it is for working with large datasets on a cluster. Scaling Dask up or down is not at all complicated. This makes it easy for users to prototype tasks on their local machines and seamlessly submit those tasks to a cluster when needed. This can all be done without having to refactor existing code or write additional code to handle cluster-specific issues like resource management, recovery, and data movement. It also gives users a lot of flexibility to choose the best way to deploy and run their code. Oftentimes, using a cluster to work with medium datasets is entirely unnecessary, and can occasionally be slower due to the overhead involved with coordinating many machines to work together. Dask is optimized to minimize its memory footprint, so it can gracefully handle medium datasets even on relatively low-powered machines. This transparent scalability is thanks to Dask’s well-designed built-in task schedulers. The local task scheduler can be used when Dask is running on a single machine, and the distributed task scheduler can be used for both local execution and execution across a cluster. Dask also supports interfacing with popular cluster resource managers such as YARN, Mesos, and Kubernetes, allowing you to use an existing cluster with the distributed task scheduler. Configuring the task scheduler and using resource managers to deploy Dask across any number of systems takes a minimal amount of effort. Throughout the book, we’ll look at running Dask in different configurations: locally with the local task scheduler, and clustered in the cloud using the distributed task scheduler with Docker and Amazon Elastic Container Service.

One of the most unusual aspects of Dask is its inherent ability to scale most Python objects. Dask’s low-level APIs, Dask Delayed and Dask Futures, are the common basis for scaling NumPy arrays used in Dask Array, Pandas DataFrames used in Dask DataFrame, and Python lists used in Dask Bag. Rather than building distributed applications from scratch, Dask’s low-level APIs can be used directly to apply all of Dask’s scalability, fault tolerance, and remote execution capabilities to any problem.

Finally, Dask is very lightweight and is easy to set up, tear down, and maintain. All its dependencies can be installed using the pip or conda package manager. It’s very easy to build and deploy cluster worker images using Docker, which we will do later in the book, and Dask requires very little configuration out of the box. Because of this, Dask not only does well for handling recurring jobs, but is also a great tool for building proofs of concept and performing ad hoc data analysis.

A common question in the minds of data scientists discovering Dask for the first time is how it compares to other superficially similar technologies like Apache Spark. Spark has certainly become a very popular framework for analyzing large datasets and does quite well in this area. However, although Spark supports several different languages including Python, its legacy as a Java library can pose a few challenges to users who lack Java expertise. Spark was launched in 2010 as an in-memory alternative to the MapReduce processing engine for Apache Hadoop and is heavily reliant on the Java Virtual Machine (JVM) for its core functionality. Support for Python came along a few release cycles later, with an API called PySpark, but this API simply enables you to interact with a Spark cluster using Python. Any Python code that gets submitted to Spark must pass through the JVM using the Py4J library. This can make it quite difficult to fine-tune and debug PySpark code because some execution occurs outside of the Python context.

PySpark users may eventually determine that they need to migrate their codebase to Scala or Java anyway to get the most out of Spark. New features and enhancements to Spark are added to the Java and Scala APIs first, and it typically takes a few release cycles for that functionality to be exposed to PySpark. Furthermore, PySpark’s learning curve isn’t trivial. Its DataFrame API, while conceptually similar to Pandas, has substantial differences in syntax and structure. This means that new PySpark users must relearn how to do things “the Spark way” rather than draw from existing experience and knowledge of working with Pandas and scikit-learn. Spark is highly optimized to apply computations over collection objects, such as adding a constant to each item in an array or calculating the sum of an array. But this optimization comes at the price of flexibility. Spark is not equipped to handle code that can’t be expressed as a map or reduce type operation over a collection. Therefore, you can’t use Spark to scale out custom algorithms with the same elegance that you can with Dask. Spark is also notorious for its difficulty to set up and configure, requiring many dependencies such as Apache ZooKeeper and Apache Ambari, which can also be difficult to install and configure in their own right. It’s not unusual for organizations that use Spark and Hadoop to have dedicated IT resources whose sole responsibility is to configure, monitor, and maintain the cluster.

This comparison is not intended to be unfair to Spark. Spark is very good at what it does and is certainly a viable solution for analyzing and processing large datasets. However, Dask’s short learning curve, flexibility, and familiar APIs make Dask a more attractive solution for data scientists with a background in the Python Open Data Science Stack.

I hope that by now you’re starting to see why Dask is such a powerful and versatile toolset. And, if my earlier suspicions were correct—that you decided to pick up this book because you’re currently struggling with a large dataset—I hope you feel both encouraged to give Dask a try and excited to learn more about using Dask to analyze a real-world dataset. Before we look at some Dask code, however, it’ll be good to review a few core concepts that will help you understand how Dask’s task schedulers “divide and conquer” computations. This will be especially helpful if you’re new to the idea of distributed computing because understanding the mechanics of task scheduling will give you a good idea of what happens when a computation is executed and where potential bottlenecks may lie.

1.2	Cooking with DAGs

Dask’s task schedulers use the concept of directed acyclic graphs (or DAGs for short) to compose, control, and express computations. DAGs come from a larger body of mathematics known as graph theory. Unlike what you may expect from the name, graph theory doesn’t have anything to do with pie charts or bar graphs. Instead, graph theory describes a graph as a representation of a set of objects that have a relationship with one another. While this definition is quite vague and abstract, it means graphs are useful for representing a very wide variety of information. Directed acyclic graphs have some special properties that give them a slightly narrower definition. But rather than continuing to talk about graphs in the abstract, let’s have a look at an example of using a DAG to model a real process.

When I’m not busy writing, teaching, or analyzing data, I love cooking. To me, few things in this world can compare to a piping hot plate of pasta. And right up at the top of my all-time-favorite pasta dishes is bucatini all’Amatriciana. If you enjoy Italian cuisine, you’ll love the bite of thick bucatini noodles, the sharp saltiness of Pecorino Romano cheese, and the peppery richness of the tomato sauce cooked with guanciale and onion. But I digress! My intent here is not for you to drop the book and run to your kitchen. Rather, I want to explain how making a delicious plate of bucatini all’Amatriciana can be modeled using a directed acyclic graph. First, let’s take a quick overview of the recipe, which can be seen in figure 1.2.

[image: c01_02.eps]
Figure 1.2 My favorite recipe for bucatini all’Amatriciana

Cooking a recipe consists of following a series of sequential steps where raw ingredients are transformed into intermediate states until all the ingredients are ultimately combined into a single complete dish. For example, when you dice an onion, you start with a whole onion and cut it into pieces, and then you’re left with some amount of diced onion. In software engineering parlance, we would describe the process of dicing onions as a function.

Dicing onions, while important, is only a very small part of the whole recipe. To complete the entire recipe, we must define many more steps (or functions). Each of these functions is called a node in a graph. Since most steps in a recipe follow a logical order (for example, you wouldn’t plate the noodles before cooking them), each node can take on dependencies, which means that a prior step (or steps) must be complete before starting the next node’s operation. Another step of the recipe is to sauté the diced onions in olive oil, which is represented by another node. Of course, it’s not possible to sauté diced onions if you haven’t diced any onions yet! Because sautéing the diced onion is directly dependent on and related to dicing the onion, these two nodes are connected by a line.

[image: c01_03.eps]
Figure 1.3 A graph displaying nodes with dependencies

Figure 1.3 represents a graph of the process described so far. Notice that the Sauté Ingredients node has three direct dependencies: the onion and garlic must be diced and the guanciale must be sautéed before the three ingredients can be sautéed together. Conversely, the Dice Onion, Mince Garlic, and Heat Olive Oil nodes do not have any dependencies. The order in which you complete those steps does not matter, but you must complete all of them before proceeding to the final sauté step. Also notice that the lines connecting the nodes have arrows as endpoints. This implies that there is only one possible way to traverse the graph. It makes sense neither to sauté the onion before it’s diced, nor to attempt to sauté the onion without a hot, oiled pan ready. This is what’s meant by a directed acyclic graph: there’s a logical, one-way traversal through the graph from nodes with no dependencies to a single terminal node.

Another thing you may notice about the graph in figure 1.3 is that no lines connect later nodes back to earlier nodes. Once a node is complete, it is never repeated or revisited. This is what makes the graph an acyclic graph. If the graph contained a feedback loop or some kind of continuous process, it would instead be a cyclic graph. This, of course, would not be an appropriate representation of cooking, since recipes have a finite number of steps, have a finite state (finished or unfinished), and deterministically resolve to a completed state, barring any kitchen catastrophes. Figure 1.4 demonstrates what a cyclic graph might look like.

[image: c01_04.eps]
Figure 1.4 An example of a cyclic graph demonstrating an infinite feedback loop

From a programming perspective, this might sound like directed acyclic graphs would not allow looping operations. But this is not necessarily the case: a directed acyclic graph can be constructed from deterministic loops (such as for loops) by copying the nodes to be repeated and connecting them sequentially. In figure 1.3, the guanciale was sautéed in two different steps—first alone, then together with the onions. If the ingredients needed to be sautéed a non-deterministic number of times, the process could not be expressed as an acyclic graph.

The final thing to note about the graph in figure 1.3 is that it’s in a special form known as a transitive reduction. This means that any lines that express transitive dependencies are eliminated. A transitive dependency simply means a dependency that is met indirectly through completion of another node. Figure 1.5 shows figure 1.3 redrawn without transitive reduction.

[image: c01_05.eps]
Figure 1.5 The graph represented in figure 1.3 redrawn without transitive reduction

Notice that a line is drawn between the nodes containing the operation Heat Olive Oil and Sauté Ingredients (8 minutes). Heating the olive oil is a transitive dependency of sautéing the onion, garlic, and guanciale because the guanciale must be sautéed alone before adding the onion and garlic. In order to sauté the guanciale, you must heat up a pan with olive oil first, so by the time you’re ready to sauté all three ingredients together, you already have a hot pan with oil—the dependency is already met!

Figure 1.6 represents the full directed acyclic graph for the complete recipe. As you can see, the graph fully represents the process from start to finish. You can start at any of the red nodes (medium gray in the print version of this book) since they do not have dependencies, and you will eventually reach the terminal node labeled “Buon appetito!” While looking at this graph, it might be easy to spot some bottlenecks, and potentially reorder some nodes to produce a more optimal or time-efficient way of preparing the dish. For instance, if the pasta water takes 20 minutes to come to a rolling boil, perhaps you could draw a graph with a single starting node of putting the water on to boil. Then you wouldn’t have to wait for the water to heat up after already preparing the rest of the dish. These are great examples of optimizations that either an intelligent task scheduler or you, the designer of the workload, may come up with. And now that you have the foundational understanding of how directed acyclic graphs work, you should be able to read and understand any arbitrary graph—from cooking pasta to calculating descriptive statistics on a big data set. Next, we’ll look at why DAGs are so useful for scalable computing.

[image: c01_06.eps]
Figure 1.6 The full directed acyclic graph representation of the bucatini all’Amatriciana recipe

1.3	Scaling out, concurrency, and recovery

Up to this point, our example of cooking bucatini all’Amatriciana assumed that you were the sole cook in the kitchen. This might be fine if you’re only cooking dinner for your family or a small get-together with friends, but if you needed to cook hundreds of servings for a busy dinner service in midtown Manhattan, you would likely reach the limits of your abilities very quickly. It’s now time to search for some help!

First, you must decide how you will handle the resource problem: should you upgrade your equipment to help you be more efficient in the kitchen, or should you hire more cooks to help share the workload? In computing, these two approaches are called scaling up and scaling out, respectively. Just like in our hypothetical kitchen, neither approach is as simple as it may sound. In section 1.3.1, I’ll discuss the limitations of scale-up solutions and how scale-out solutions overcome those limitations. Since a key use case of Dask is scaling out complex problems, we’ll assume that the best course of action for our hypothetical kitchen is to hire more workers and scale out. Given that assumption, it’ll be important to understand some of the challenges that come with orchestrating complex tasks across many different workers. I’ll discuss how workers share resources in section 1.3.2, and how worker failures are handled in section 1.3.3.

1.3.1	Scaling up vs. scaling out

[image: c01_07.eps]
Figure 1.7 Scaling up replaces existing equipment with larger/faster/more efficient equipment, while scaling out divides the work between many workers in parallel.

Back in our hypothetical kitchen, you’re faced with the question of what to do now that you’re expected to feed a horde of hungry customers at dinner rush. The first thing you might notice is that as the volume of pasta you need to make increases, the amount of time that each step takes also increases. For example, the original recipe makes four servings and calls for ¾ cup of diced onions. This amount roughly equates to a single medium-sized yellow onion. If you were to make 400 servings of the dish, you would need to dice 100 onions. Assuming you can dice an onion in around two minutes, and it takes you 30 seconds to clear the cutting board and grab another onion, you would be chopping onions for roughly five hours! Forget the time it would take to prepare the rest of the recipe. By the time you merely finish dicing the onions, your angry customers would already have taken their business elsewhere. And to add insult to injury, you’d have cried your eyes dry from spending the last five hours cutting onions! The two potential solutions to this problem are to replace your existing kitchen equipment with faster, more efficient equipment (scale up) or to hire more workers to work in parallel (scale out). Figure 1.7 shows what these two methods would look like.

The decision to scale up or scale out isn’t an easy one because there are advantages and trade-offs to both. You might want to consider scaling up, because you would still ultimately oversee the whole process from start to finish. You wouldn’t have to deal with others’ potential unreliability or variation in skills, and you wouldn’t have to worry about bumping into other people in the kitchen. Perhaps you can trade in your trusty knife and cutting board for a food processor that can chop onions in one-tenth the time that it takes you to do it manually. This will suit your needs until you start scaling again. As your business expands and you start serving 800, 1,600, and 3,200 plates of pasta per day, you will start running into the same capacity problems you had before, and you’ll eventually outgrow your food processor. There will come a time you will need to buy a new, faster machine. Taking this example to an extreme, you’ll eventually hit the limit of current kitchen technology and have to go to great lengths and expense to develop and build better and better food processors. Eventually, your simple food processor will become highly specialized for chopping an extraordinarily large amount of onions and require incredible feats of engineering to build and maintain. Even then, you will reach a point when further innovation is simply not tenable (at some point, the blades will have to rotate so quickly that the onion will just turn to mush!). But hold on a second, let’s not get carried away. For most chefs, opening a small checkered-tablecloth joint in the city doesn’t entail formulating a plan to become a worldwide pasta magnate and a food processor R&D powerhouse—meaning simply choosing to get the food processor (scaling up) is likely the best option. Likewise, most of the time, upgrading a cheap, low-end workstation to a high-end server will be easier and cheaper than buying a bunch of hardware and setting up a cluster. This is especially true if the size of the problem you’re facing sits at the high end of medium datasets or the low end of large datasets. This also becomes an easier choice to make if you’re working in the cloud, because it’s much easier to scale up a process from one instance type to another instead of paying to acquire hardware that might not end up meeting your needs. That said, scaling out can be the better option if you can take advantage of a lot of parallelism or if you’re working with large datasets. Let’s look at what scaling out will yield in the kitchen.

Rather than attempt to improve on your own skills and abilities, you hire nine additional cooks to help share the workload. If all 10 of you focused 100% of your time and attention to the process of chopping onions, that five hours of work now comes down to a mere 30 minutes, assuming you have equal skill levels. Of course, you would need to buy additional knives, cutting boards, and other tools, and you would need to provide adequate facilities and pay for your additional cooks, but in the long run this will be a more cost-effective solution if your other alternative is pouring money into development of specialized equipment. Not only can the additional cooks help you with reducing the time it takes to prepare the onions, but because they are non-specialized workers, they can also be trained to do all the other necessary tasks. A food processor, on the other hand, cannot be trained to boil pasta no matter how hard you may try! The trade-offs are that your other cooks can get sick, might need to miss work, or otherwise do things that are unexpected and hinder the process. Getting your team of cooks to work together toward a single goal does not come for free. At first you might be able to supervise if only three or four other cooks are in the kitchen, but eventually you might need to hire a sous chef as the kitchen grows out. Likewise, real costs are associated with maintaining a cluster, and these should be honestly evaluated when considering whether to scale up or scale out.

Pressing on with your new team of cooks, you now must figure out how to relay instructions to each cook and make sure the recipe comes out as intended. Directed acyclic graphs are a great tool for planning and orchestrating complex tasks across a pool of workers. Most importantly, dependencies between nodes help ensure that the work will follow a certain order (remember that a node cannot begin work until all its dependencies have completed), but there are no restrictions on how individual nodes are completed—whether by a single entity or many entities working in parallel. A node is a standalone unit of work, so it’s possible to subdivide the work and share it among many workers. This means that you could assign four cooks to chop the onions, while four other cooks sauté the guanciale, and the remaining two cooks mince the garlic. Dividing and supervising the work in the kitchen is the job of the sous chef, which represents Dask’s task scheduler. As each cook completes their task, the sous chef can assign them the next available task. To keep food moving through the kitchen in an efficient manner, the sous chef should constantly evaluate what work needs to be done and aim to start tasks closest to the terminal node as soon as possible. For example, rather than waiting for all 100 onions to be chopped, if enough onions, garlic, and guanciale have been prepared to begin making a complete batch of sauce, the sous chef should tell the next available cook to begin preparing a batch of sauce. This strategy allows some customers to be served sooner, rather than keeping all customers waiting until everyone can be served at the same time. It’s also more efficient to avoid having all the onions in a chopped state at once, because it can take up a large amount of cutting board space. Likewise, Dask’s task scheduler aims to cycle workers between many tasks in order to reduce memory load and emit finished results quickly. It distributes units of work to machines in an efficient manner and aims to minimize the worker pool’s idle time. Organizing execution of the graph between workers and assigning an appropriate number of workers to each task is crucial for minimizing the time it takes to complete the graph. Figure 1.8 depicts a possible way the original graph can be distributed to multiple workers.

[image: c01_08.eps]
Figure 1.8 A graph with nodes distributed to many workers depicting dynamic redistribution of work as tasks complete at different times

1.3.2	Concurrency and resource management

More often than not, you have to consider more constraints than just the number of available workers. In scalable computing, these are called issues of concurrency. For example, if you hire more cooks to dice onions, but you only have five knives in the kitchen, only five operations that require a knife can be carried out simultaneously. Some other tasks may require sharing resources, such as the step that calls for minced garlic. Therefore, if all five knives are in use by cooks dicing onions, the garlic can’t be minced until at least one knife becomes available. Even if the remaining five cooks have completed all other possible nodes, the garlic-mincing step becomes delayed due to resource starvation. Figure 1.9 demonstrates an example of resource starvation in our hypothetical kitchen.

[image: c01_09.eps]
Figure 1.9 An example of resource starvation

The other cooks are forced to remain idle until the onion-dicing step is complete. When a shared resource is in use, a resource lock is placed on it, meaning other workers can’t “steal” the resource until the worker who locked the resource is finished using it. It would be quite rude (and dangerous) for one of your cooks to wrestle the knife out of the hands of another cook. If your cooks are constantly fighting over who gets to use the knife next, those disagreements consume time that could be spent working on completing the recipe. The sous chef is responsible for defusing these confrontations by laying the ground rules about who can use certain resources and what happens when a resource becomes available. Similarly, the task scheduler in a scalable computing framework must decide how to deal with resource contention and locking. If not handled properly, resource contention can be very detrimental to performance. But fortunately, most frameworks (including Dask) are pretty good at efficient task scheduling and don’t normally need to be hand-tuned.

1.3.3	Recovering from failures

Finally, no discussion of scalable computing would be complete without mentioning recovery strategies. Just like it’s difficult for a sous chef to closely supervise all her cooks at once, it gets increasingly difficult to orchestrate distribution of processing tasks as the number of machines in a cluster increases. Since the final result consists of the aggregate of all the individual operations, it’s important to ensure that all the pieces find their way to where they need to go. But machines, like people, are imperfect and fail at times. Two types of failures must be accounted for: worker failure and data loss. For example, if you’ve assigned one of your cooks to dice the onions and going into the third hour straight of chopping he decided he can’t take the monotony anymore, he might put down his knife, take off his coat, and walk out the door. You’re now down a worker! One of your other cooks will need to take up his place in order to finish dicing the onions, but thankfully you can still use the onions that the previous cook diced before he left. This is worker failure without data loss. The work that the failed worker completed does not need to be reproduced, so the impact to performance is not as severe.

When data loss occurs, a significant impact to performance is much more likely. For example, your kitchen staff has completed all the initial prep steps and the sauce is simmering away on the stove. Unfortunately, the pot is accidentally knocked over and spills all over the floor. Knowing that scraping the sauce off the floor and attempting to recover would violate all the health codes in the book, you’re forced to remake the sauce. This means going back to dicing more onions, sautéing more guanciale, and so on. The dependencies for the Simmer Sauce node are no longer met, meaning you have to step all the way back to the first dependency-free node and work your way back from there. Although this is a fairly catastrophic example, the important thing to remember is that at any point in the graph, the complete lineage of operations up to a given node can be “replayed” in the event of a failure. The task scheduler is ultimately responsible for stopping work and redistributing the work to be replayed. And because the task scheduler can dynamically redistribute tasks away from failed workers, the specific workers that completed the tasks before don’t need to be present to redo the tasks. For example, if the cook who decided to quit earlier had taken some diced onions with him, you would not need to stop the whole kitchen and redo everything from the beginning. You would just need to determine how many additional onions need to be diced and assign a new cook to do that work.

OEBPS/image_fi/295607c01/c01_04.png
Task 2 and Task 3 are connected to each
other in an infinite feedback loop. There is
no logical termination point in this graph.

OEBPS/image_fi/295607c01/c01_09.png
Shared resources

,%—\vailable

Mincing garlic

0/5

This cook must wait and remain idle until either
a knife becomes available or a new task that
doesn’t require a knife is available. This is an

example of a resource-starved worker.

OEBPS/image_fi/295607c01/c01_08.png
Initial work distribution

Redistribution of work

x4

B

x2

B

x4

B

Dice onion

Sauté
ingredients
(8 minutes)

Mince garlic

Sauté

Heat olive oil .
guanciale

Dice onion

Sauté

ingredients
(8 minutes)

The Dice Onions node is taking considerably
longer to complete than the other nodes. As cooks
finish with their other tasks, they begin to help out

with dicing onions. They cannot proceed to the next
step until all of the onions are diced.

OEBPS/image_fi/295607c01/c01_01.png
High-level APIs

Dask Array
Parallel NumPy

Dask Bag
Parallel lists

Dask DataFrame
Parallel Pandas

Dask ML
Parallel scikit-learn

OEBPS/image_fi/book_art/ManningBlackSized.png

OEBPS/image_fi/295607c01/c01_05.png
Dice onion

Mince garlic

Sauté

Heat olive oil .
guanciale

The dashed line demonstrates a transitive dependency.
The Sauté Ingredients node is indirectly dependent on the Heat Olive Oil
node because it is directly dependent on the Sauté Guanciale node,
which is directly dependent on the Heat Olive Oil node.

OEBPS/image_fi/295607c01/c01_02.png
BUCATINI ALL’AMATRICIANA

Ingredients
(Serves 4)

2 Tbsp. olive oil

3/4 cup diced onion

2 cloves garlic, minced

4 oz. guanciale, sliced into small pieces

1 28-0z. can San Marzano tomatoes, crushed
Kosher salt

1/2 tsp. red chili flakes

1/2 tsp. freshly ground black pepper

1 Ib dried bucatini

1 oz pecorino romano, grated

Instructions

1. Heat oil in a large heavy skillet over medium heat. Add guanciale and fry until crispy
(approximately 4 minutes). Add chili flakes, pepper, onion, and garlic. Cook until
the onions have softened (approximately 8 minutes). Stir often to avoid burning.
Add tomatoes and simmer on low heat until sauce thickens (approximately 15-20
minutes).

2. While the sauce is simmering, bring a large pot of salted water to the boil. Add the
pasta and cook for 1-2 minutes less than the cooking time listed on the package.
When finished, retain some pasta water (about 1 cup) and drain the pasta into a
colander.

3. When the sauce has thickened, add the cooked pasta to the skillet and toss to
combine the sauce and noodles. Add half of the retained pasta water and cook
until the pasta is al dente (approximately 2 minutes). Stir in grated cheese and
serve. Buon appetito!

OEBPS/image_fi/295607f07/fm_01.png

OEBPS/image_fi/295607c01/c01_06.png
Heat olive oil

Measure
chili flakes
and pepper

Dice onion Sauté
guanciale

Sauté
Mince garlic ingredients
(8 minutes)

Add
tomatoes

Reserve 1c

Drain bucatini
pasta water

Boil pasta Cook bucatini
water (7 minutes)

Simmer
sauce
(20 minutes)

Combine
sauce,
noodles, 1/2c
pasta water

. Intermediate nodes

O Terminal node

Grate
pecorino
romano

Cook

Stir in chi
@ minutes) ir in cheese

Buon
appetito!

OEBPS/image_fi/295607c01/c01_03.png
Dice onion

Mince garlic

Sauté

Heat olive oil)
guanciale

No dependencies. These tasks can only be
These tasks can be started started when all nodes
in any order. connected to them have been

completed.

OEBPS/image_fi/book_art/cover.png
Jesse (. Daniel

/ll MANNING

OEBPS/image_fi/295607c01/c01_07.png
3333333

