

 [image: cover]

Windows PowerShell in Action, Third Edition

 Bruce Payette Richard Siddaway

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Tobias Weltner
Project editors: Kevin Sullivan, Janet Vail
Copyeditors: Linda Recktenwald, Jodie Allen
Proofreader: Elizabeth Martin
Technical proofreader: James Berkenbile
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781633430297

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 -- EBM -- 22 21 20 19 18 17

Dedication

 For my father.

 Bruce

 To Ann for everything. I couldn’t have done this without your help and support.

 Richard

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the Second Edition

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Welcome to PowerShell

 Chapter 2. Working with types

 Chapter 3. Operators and expressions

 Chapter 4. Advanced operators and variables

 Chapter 5. Flow control in scripts

 Chapter 6. PowerShell functions

 Chapter 7. Advanced functions and scripts

 Chapter 8. Using and authoring modules

 Chapter 9. Module manifests and metadata

 Chapter 10. Metaprogramming with scriptblocks and dynamic code

 Chapter 11. PowerShell remoting

 Chapter 12. PowerShell workflows

 Chapter 13. PowerShell Jobs

 Chapter 14. Errors and exceptions

 Chapter 15. Debugging

 Chapter 16. Working with providers, files, and CIM

 Chapter 17. Working with .NET and events

 Chapter 18. Desired State Configuration

 Chapter 19. Classes in PowerShell

 Chapter 20. The PowerShell and runspace APIs

 PowerShell 6.0 for Windows, Linux, and macOS

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the Second Edition

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Welcome to PowerShell

 1.1. What is PowerShell?

 1.1.1. Shells, command lines, and scripting languages

 1.2. PowerShell example code

 1.2.1. Navigation and basic operations

 1.2.2. Basic expressions and variables

 1.2.3. Processing data

 1.2.4. Flow-control statements

 1.2.5. Scripts and functions

 1.2.6. Remote administration

 1.3. Core concepts

 1.3.1. Command concepts and terminology

 1.3.2. Commands and cmdlets

 1.3.3. Command categories

 1.3.4. Aliases and elastic syntax

 1.4. Parsing the PowerShell language

 1.4.1. How PowerShell parses

 1.4.2. Quoting

 1.4.3. Expression-mode and command-mode parsing

 1.4.4. Statement termination

 1.4.5. Comment syntax in PowerShell

 1.5. How the pipeline works

 1.5.1. Pipelines and streaming behavior

 1.5.2. Parameters and parameter binding

 1.6. Formatting and output

 1.6.1. Formatting cmdlets

 1.6.2. Outputter cmdlets

 1.7. Summary

 Chapter 2. Working with types

 2.1. Type management in the wild, wild West

 2.1.1. Types and classes

 2.1.2. PowerShell: A type-promiscuous language

 2.1.3. Type system and type adaptation

 2.1.4. Finding the available types

 2.2. Basic types and literals

 2.2.1. String literals

 2.2.2. Numbers and numeric literals

 2.3. Collections: dictionaries and hashtables

 2.3.1. Creating and inspecting hashtables

 2.3.2. Ordered hashtables

 2.3.3. Modifying and manipulating hashtables

 2.3.4. Hashtables as reference types

 2.4. Collections: arrays and sequences

 2.4.1. Collecting pipeline output as an array

 2.4.2. Array indexing

 2.4.3. Polymorphism in arrays

 2.4.4. Arrays as reference types

 2.4.5. Singleton arrays and empty arrays

 2.5. Type literals

 2.5.1. Type name aliases

 2.5.2. Generic type literals

 2.5.3. Accessing static members with type literals

 2.6. Type conversions

 2.6.1. How type conversion works

 2.6.2. PowerShell’s type-conversion algorithm

 2.6.3. Special type conversions in parameter binding

 2.7. Summary

 Chapter 3. Operators and expressions

 3.1. Arithmetic operators

 3.1.1. Addition operator

 3.1.2. Multiplication operator

 3.1.3. Subtraction, division, and the modulus operators

 3.2. Assignment operators

 3.2.1. Multiple assignments

 3.2.2. Multiple assignments with type qualifiers

 3.2.3. Assignment operations as value expressions

 3.3. Comparison operators

 3.3.1. Scalar comparisons

 3.3.2. Comparisons and case sensitivity

 3.3.3. Using comparison operators with collections

 3.4. Pattern matching and text manipulation

 3.4.1. Wildcard patterns and the -like operator

 3.4.2. Regular expressions

 3.4.3. The -match operator

 3.4.4. The -replace operator

 3.4.5. The -join operator

 3.4.6. The -split operator

 3.5. Logical and bitwise operators

 3.6. Where() and ForEach() methods

 3.6.1. Where() method

 3.6.2. ForEach() method

 3.7. Summary

 Chapter 4. Advanced operators and variables

 4.1. Operators for working with types

 4.2. Unary operators

 4.3. Grouping and subexpressions

 4.3.1. Subexpressions $(...)

 4.3.2. Array subexpressions @(...)

 4.4. Array operators

 4.4.1. Comma operator

 4.4.2. Range operator

 4.4.3. Array indexing and slicing

 4.4.4. Using the range operator with arrays

 4.4.5. Working with multidimensional arrays

 4.5. Property and method operators

 4.5.1. Dot operator

 4.5.2. Static methods and the double-colon operator

 4.5.3. Indirect method invocation

 4.6. Format operator

 4.7. Redirection and redirection operators

 4.8. Working with variables

 4.8.1. Creating variables

 4.8.2. Variable name syntax

 4.8.3. Working with variable cmdlets

 4.8.4. Splatting a variable

 4.9. Summary

 Chapter 5. Flow control in scripts

 5.1. Conditional statement

 5.2. Looping statements

 5.2.1. while loop

 5.2.2. do-while loop

 5.2.3. for loop

 5.2.4. foreach loop

 5.3. Labels, break, and continue

 5.4. switch statement

 5.4.1. Basic use of the switch statement

 5.4.2. Using wildcard patterns with the switch statement

 5.4.3. Using regular expressions with the switch statement

 5.4.4. Processing files with the switch statement

 5.4.5. Using the $switch loop enumerator in the switch statement

 5.5. Flow control using cmdlets

 5.5.1. ForEach-Object cmdlet

 5.5.2. Where-Object cmdlet

 5.6. Statements as values

 5.7. A word about performance

 5.8. Summary

 Chapter 6. PowerShell functions

 6.1. Fundamentals of PowerShell functions

 6.1.1. Passing arguments using $args

 6.1.2. Example functions: ql and qs

 6.2. Declaring formal parameters for a function

 6.2.1. Mixing named and positional parameters

 6.2.2. Adding type constraints to parameters

 6.2.3. Handling variable numbers of arguments

 6.2.4. Initializing function parameters with default values

 6.2.5. Using switch parameters to define command switches

 6.2.6. Switch parameters vs. Boolean parameters

 6.3. Returning values from functions

 6.3.1. Debugging problems in function output

 6.3.2. The return statement

 6.4. Using simple functions in a pipeline

 6.4.1. Functions with begin, process, and end blocks

 6.5. Managing function definitions in a session

 6.6. Variable scoping in functions

 6.6.1. Declaring variables

 6.6.2. Using variable scope modifiers

 6.7. Summary

 Chapter 7. Advanced functions and scripts

 7.1. PowerShell scripts

 7.1.1. Script execution policy

 7.1.2. Passing arguments to scripts

 7.1.3. Exiting scripts and the exit statement

 7.1.4. Scopes and scripts

 7.1.5. Managing your scripts

 7.1.6. Running PowerShell scripts from other applications

 7.2. Writing advanced functions and scripts

 7.2.1. Specifying script and function attributes

 7.2.2. The CmdletBinding attribute

 7.2.3. The OutputType attribute

 7.2.4. Specifying parameter attributes

 7.2.5. Creating parameter aliases with the Alias attribute

 7.2.6. Parameter validation attributes

 7.3. Dynamic parameters and dynamicParam

 7.3.1. Steps for adding a dynamic parameter

 7.3.2. When should dynamic parameters be used?

 7.4. Cmdlet default parameter values

 7.4.1. Creating default values

 7.4.2. Modifying default values

 7.4.3. Using scriptblocks to determine default value

 7.5. Documenting functions and scripts

 7.5.1. Automatically generated help fields

 7.5.2. Creating manual help content

 7.5.3. Comment-based help

 7.5.4. Tags used in documentation comments

 7.6. Summary

 Chapter 8. Using and authoring modules

 8.1. The role of a module system

 8.1.1. Module roles in PowerShell

 8.1.2. Module mashups: composing an application

 8.2. Module basics

 8.2.1. Module terminology

 8.2.2. Modules are single-instance objects

 8.3. Working with modules

 8.3.1. Finding modules on the system

 8.3.2. Loading a module

 8.3.3. Removing a loaded module

 8.4. Writing script modules

 8.4.1. A quick review of scripts

 8.4.2. Turning a script into a module

 8.4.3. Controlling member visibility with Export-ModuleMember

 8.4.4. Installing a module

 8.4.5. How scopes work in script modules

 8.4.6. Nested modules

 8.5. Binary modules

 8.5.1. Creating a binary module

 8.5.2. Nesting binary modules in script modules

 8.6. Summary

 Chapter 9. Module manifests and metadata

 9.1. Module folder structure

 9.2. Module manifest structure

 9.3. Production manifest elements

 9.3.1. Module identity

 9.3.2. Runtime dependencies

 9.4. Construction manifest elements

 9.4.1. The loader manifest elements

 9.4.2. Module component load order

 9.5. Content manifest elements

 9.6. Advanced module operations

 9.6.1. The PSModuleInfo object

 9.6.2. Using the PSModuleInfo methods

 9.6.3. The defining module vs. the calling module

 9.6.4. Setting module properties from inside a script module

 9.6.5. Controlling when modules can be unloaded

 9.6.6. Running an action when a module is removed

 9.7. Publishing a module to a PowerShell Gallery

 9.7.1. A module to publish

 9.7.2. PSData Packaging elements

 9.7.3. Publishing a module

 9.7.4. Publishing module updates

 9.8. Summary

 Chapter 10. Metaprogramming with scriptblocks and dynamic code

 10.1. Scriptblock basics

 10.1.1. Invoking commands

 10.1.2. Getting CommandInfo objects

 10.1.3. The scriptblock literal

 10.1.4. Defining functions at runtime

 10.2. Building and manipulating objects

 10.2.1. Looking at members

 10.2.2. Defining synthetic members

 10.2.3. Using Add-Member to extend objects

 10.2.4. Adding note properties with New-Object

 10.3. Using the Select-Object cmdlet

 10.4. Dynamic modules

 10.4.1. Dynamic script modules

 10.4.2. Closures in PowerShell

 10.4.3. Creating custom objects from modules

 10.5. Steppable pipelines

 10.5.1. How steppable pipelines work

 10.5.2. Creating a proxy command with steppable pipelines

 10.6. A closer look at the type-system plumbing

 10.6.1. Adding a property

 10.6.2. Shadowing an existing property

 10.7. Extending the PowerShell language

 10.7.1. Little languages

 10.7.2. Type extension

 10.8. Building script code at runtime

 10.8.1. The Invoke-Expression cmdlet

 10.8.2. The ExecutionContext variable

 10.8.3. The ExpandString() method

 10.8.4. The InvokeScript() method

 10.8.5. Mechanisms for creating scriptblocks

 10.8.6. Creating functions using the function: drive

 10.9. Compiling code with Add-Type

 10.9.1. Defining a new .NET class: C#

 10.9.2. Defining a new enum at runtime

 10.9.3. Dynamic binary modules

 10.10. Summary

 Chapter 11. PowerShell remoting

 11.1. PowerShell remoting overview

 11.1.1. Commands with built-in remoting

 11.1.2. The PowerShell remoting subsystem

 11.1.3. Enabling remoting

 11.1.4. Additional setup steps for workgroup environments

 11.1.5. Authenticating the connecting user

 11.1.6. Enabling remoting in the enterprise

 11.2. Applying PowerShell remoting

 11.2.1. Basic remoting examples

 11.2.2. Adding concurrency to the examples

 11.2.3. Solving a real problem: multi-machine monitoring

 11.3. PowerShell remoting sessions and persistent connections

 11.3.1. Additional session attributes

 11.3.2. Using the New-PSSession cmdlet

 11.3.3. Interactive sessions

 11.3.4. Managing PowerShell sessions

 11.3.5. Copying files across a PowerShell remoting session

 11.4. Implicit remoting

 11.4.1. Using implicit remoting

 11.4.2. How implicit remoting works

 11.5. Considerations when running commands remotely

 11.5.1. Remote session startup directory

 11.5.2. Profiles and remoting

 11.5.3. Issues running executables remotely

 11.5.4. Using files and scripts

 11.5.5. Using local variables in remote sessions

 11.5.6. Reading and writing to the console

 11.5.7. Remote output vs. local output

 11.5.8. Processor architecture issues

 11.6. Building custom remoting services

 11.6.1. Working with custom configurations

 11.6.2. Creating a custom configuration

 11.6.3. Access controls and endpoints

 11.6.4. Constraining a PowerShell session

 11.7. PowerShell Direct

 11.8. Summary

 Chapter 12. PowerShell workflows

 12.1. Workflow overview

 12.1.1. Why use workflows

 12.1.2. Workflow architecture

 12.1.3. Your first workflow

 12.1.4. Running a workflow

 12.1.5. Cmdlets vs. activities

 12.1.6. Workflow restrictions

 12.2. Workflow keywords

 12.2.1. Parallel

 12.2.2. Sequence

 12.2.3. InlineScript

 12.2.4. Foreach -parallel

 12.3. Using workflows effectively

 12.3.1. Workflow parameters

 12.3.2. Variables in workflows

 12.3.3. Nested workflows

 12.4. Workflow cmdlets

 12.4.1. Workflow execution options

 12.4.2. Workflow sessions

 12.4.3. Invoking as workflow

 12.5. Summary

 Chapter 13. PowerShell Jobs

 13.1. Background jobs in PowerShell

 13.1.1. The job commands

 13.1.2. Working with the job cmdlets

 13.1.3. Working with multiple jobs

 13.1.4. Starting jobs on remote computers

 13.1.5. Running jobs in existing sessions

 13.1.6. Job types

 13.2. Workflows as jobs

 13.2.1. Checkpoints

 13.2.2. Suspending workflows

 13.2.3. Workflows and reboots

 13.3. Scheduled jobs

 13.3.1. Creating scheduled jobs

 13.3.2. Modifying a scheduled job

 13.3.3. Managing scheduled jobs

 13.4. Summary

 Chapter 14. Errors and exceptions

 14.1. Error handling

 14.1.1. ErrorRecords and the error stream

 14.1.2. The $error variable and –ErrorVariable parameter

 14.1.3. Determining whether a command had an error

 14.1.4. Controlling the actions taken on an error

 14.2. Dealing with errors that terminate execution

 14.2.1. The try/catch/finally statement

 14.2.2. The throw statement

 14.3. PowerShell and the event log

 14.3.1. The EventLog cmdlets

 14.3.2. Examining the PowerShell event log

 14.3.3. Get-WinEvent

 14.4. Summary

 Chapter 15. Debugging

 15.1. Script instrumentation

 15.1.1. The Write* cmdlets

 15.1.2. Writing events to the event Log

 15.1.3. Catching errors with strict mode

 15.1.4. Static analysis of scripts

 15.2. Capturing session output

 15.2.1. Starting the transcript

 15.2.2. What gets captured in the transcript

 15.3. PowerShell script debugging features

 15.3.1. The Set-PSDebug cmdlet

 15.3.2. Nested prompts and the Suspend operation

 15.4. Command-line debugging

 15.4.1. Working with breakpoint objects

 15.4.2. Setting breakpoints on commands

 15.4.3. Setting breakpoints on variable assignment

 15.4.4. Debugger limitations and issues

 15.5. Beyond scripts

 15.5.1. Debugging PowerShell jobs

 15.5.2. Debugging remote scripts

 15.5.3. Debugging PowerShell runspaces

 15.6. Summary

 Chapter 16. Working with providers, files, and CIM

 16.1. PowerShell providers

 16.1.1. PowerShell core cmdlets

 16.1.2. Working with PSDrives

 16.1.3. Working with paths

 16.1.4. The Registry provider

 16.2. Files, text, and XML

 16.2.1. File processing

 16.2.2. Unstructured text

 16.2.3. XML structured text processing

 16.2.4. Converting text output to objects

 16.3. Accessing COM objects

 Creating COM objects

 Identifying and locating COM classes

 Automating Windows with COM

 Using Microsoft Word for spell checking

 Issues with COM

 16.4. Using CIM

 16.4.1. The CIM cmdlets

 16.4.2. CIM sessions

 16.5. Summary

 Chapter 17. Working with .NET and events

 17.1. .NET and PowerShell

 17.1.1. Using .NET from PowerShell

 17.1.2. PowerShell and GUIs

 17.2. Real-time events

 17.2.1. Foundations of event handling

 17.2.2. Synchronous events

 17.2.3. Asynchronous events

 17.2.4. Working with asynchronous .NET events

 17.2.5. Asynchronous event handling with scriptblocks

 17.2.6. Automatic variables in the event handler

 17.2.7. Dynamic modules and event handler state

 17.2.8. Queued events and the Wait-Event cmdlet

 17.2.9. Working with CIM events

 17.2.10. Class-based CIM event registration

 17.2.11. Engine events

 17.2.12. Generating events in functions and scripts

 17.2.13. Remoting and event forwarding

 17.2.14. How eventing works

 17.3. Summary

 Chapter 18. Desired State Configuration

 18.1. DSC model and architecture

 18.1.1. The need for configuration management

 18.1.2. Desired State Configuration model

 18.1.3. DSC architecture

 18.2. Push mode to a single node

 18.2.1. Create configuration

 18.2.2. MOF file contents

 18.2.3. Applying the configuration

 18.2.4. Testing the configuration application

 18.2.5. Viewing the current configuration

 18.2.6. Removing a configuration

 18.3. Pushing to multiple nodes

 18.3.1. Parameterizing the computer name

 18.3.2. Using configuration data

 18.3.3. Configuration data and roles

 18.3.4. Issues with push mode

 18.4. DSC in pull mode

 18.4.1. Pull server architecture

 18.4.2. Creating a pull server

 18.4.3. Publishing a MOF file

 18.5. Configuring the Local Configuration Manager

 18.5.1. LCM settings

 18.5.2. Configuring LCM to use a pull server

 18.6. Partial configurations

 18.6.1. Partial configurations: yes or no

 18.6.2. Pushing partial configurations

 18.6.3. Pulling partial configurations

 18.7. Summary

 Chapter 19. Classes in PowerShell

 19.1. Writing classes in PowerShell

 19.1.1. Using properties in a PowerShell class

 19.1.2. Class member attributes

 19.1.3. PowerShell enumerations

 19.2. Methods in PowerShell classes

 19.2.1. Method basics

 19.2.2. Static methods

 19.2.3. Instance methods

 19.2.4. Method overloads

 19.2.5. Hidden methods

 19.2.6. Constructors in PowerShell classes

 19.3. Extending existing classes

 19.3.1. Creating a derived class

 19.3.2. Overriding members on the base class

 19.3.3. Extending .NET classes

 19.4. Classes, modules, using, and namespaces

 The using assembly pattern

 The using namespace pattern

 The using module pattern

 Using modules and namespaces

 19.5. Writing class-based DSC resources

 19.6. Summary

 Chapter 20. The PowerShell and runspace APIs

 20.1. PowerShell API basics

 20.1.1. Multi-command pipelines

 20.1.2. Building pipelines incrementally

 20.1.3. Handling execution errors

 20.1.4. Adding scripts and statements

 20.2. Runspaces and the PowerShell API

 20.2.1. Existing runspaces and isolated execution

 20.2.2. Creating runspaces

 20.2.3. Using runspaces for concurrency

 20.3. Runspace pools

 20.4. Out-of-process runspaces

 20.5. Remote runspaces

 20.5.1. Sessions and runspaces

 20.5.2. Creating remote runspaces

 20.6. Managing runspaces

 20.7. Summary

 PowerShell 6.0 for Windows, Linux, and macOS

 The PowerShell open source project

 Terminology

 .NET Core

 Installing on Windows

 PowerShell on Linux and macOS

 Known issues

 Installation

 Using PowerShell v6 on Linux

 PowerShell remoting and Linux

 DSC and Linux

 Installing DSC for Linux

 Using DSC for Linux

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the Second Edition

 First he wrote the language, then he wrote the book.

 Jeffrey Snover, Microsoft

 Really understanding a scripting language means getting inside the heads of the designers and developers. Windows PowerShell
 in Action makes that possible in one really informative and entertaining book.

 Jason Zions, Microsoft

 Unleashes the power in PowerShell.

 Sam Abraham, SISCO

 Who better than the lead language designer to provide the definitive reference on the PowerShell language!

 Keith Hill, Agilent Technologies

 If you like to learn by example, there is no better example of examples than Payette’s incredible book.

 Oisin Grehan, .NET Solution Architect & Microsoft PowerShell MVP

Praise for the First Edition

 The book on PowerShell. It has all the secrets.

 James Truher, PowerShell Program Manager, Microsoft

 If all it had going for it was the authoritative pedigree of the writer, it might be worth it, but it’s also well-written,
 well-organized, and thorough, which I think makes it invaluable as both a learning tool and a reference.

 Slashdot.org

 ...an encyclopedic tome of PowerShell scripting bringing the reader through the basics with simple shell scripts through powerful
 and flexible scripts any Windows systems administrator will find immediately useful.

 ArsGeek.com

 [It gives you] inside information, excellent examples, and a colorful writing style.

 Marc van Orsouw (MOW), PowerShell MVP

Preface

 The second edition of this book was based on PowerShell v2. Since then we’ve seen a number of PowerShell releases—the current
 one is v5.1 with v6 in beta as we write. PowerShell use has grown astronomically to the extent that the PowerShell community
 is large enough to support independent conferences in North America, Europe, and Asia. User groups are available in all parts
 of the world.

 PowerShell v2 was a big release bringing modules, remoting, and jobs. Subsequent releases have been as big in terms of their
 impact—PowerShell v3 brought PowerShell workflows and the CIM cmdlets; PowerShell v4 brought Desired State Configuration;
 and PowerShell v5 brought the ability to write classes in PowerShell. Those are only the headline items—under the covers there
 are a host of other changes that extend and improve PowerShell. All of this change demands a new edition of the book.

 One big difference to the previous editions is that this book requires two authors. Between us we bring you the experience
 and knowledge of creating and developing PowerShell coupled with extensive practical experience using PowerShell to solve
 real-world problems. Even with two authors creating the third edition has been a mammoth task. We had to drastically prune
 the material in the second edition to make room for the new material we had to cover. At one point, we even discussed the
 book spanning two volumes! We settled on a single volume and even though we’ve had to put some topics as being out of scope
 we’ve covered all of the new functionality.

 So why write the book? The answer is the same now as it was then—we wanted the PowerShell community to have a way to see “inside
 the box” and have a more intimate insight into the goals and motivations behind PowerShell. Although PowerShell draws heavily
 from existing technologies, it combines them in novel ways. This leads to misunderstandings which then turn into urban myths,
 like PowerShell does X because its designers were kitten-eating aliens. (Trust us—they’re not.) We’ve also added material
 covering the practical use of PowerShell to solve your problems.

 Speaking at conferences, and answering questions on forums, shows that there were a number of questions that were being asked
 repeatedly. These questions would arise as a result of prior language experience that the user had or a lack of understanding
 of a new feature in PowerShell. Typically, a simple explanation was all it took to clear up the confusion. Unfortunately,
 we couldn’t keep answering these questions over and over on a one-to-one basis. That couldn’t scale. There needed to be a
 way to gather this information in one place. This third edition of Windows Powershell in Action is our attempt to continue to address that problem.

 It’s amazing how much power comes out of the synergy of all the technologies underlying PowerShell. We see this in the internal
 uses of PowerShell at Microsoft, the talks at conferences describing what people are doing in their organizations, and what
 the community has done with it. And so, a continuing goal of this edition was to try to foster that creativity by conveying
 just how capable PowerShell is.

 A final word from Bruce: This is the book I wanted to read. I love programming languages and the best books are the ones that
 explain not only what but also why. Look at the books that continue to sell year after year: Kernighan and Ritchie’s The C Programming Language, Stroustrup’s book on C++, and Ousterhout’s book on TCL. The TCL book in particular, which describes a very early version
 of the TCL language, has never been updated, and yet it continues to sell. Why? Because these books give the reader something
 more than technical detail. They convey a sense of the overall design and some element of the intent of the designer.

 Let us know if we succeeded in meeting our goals, okay?

Acknowledgments

 There wouldn’t be a PowerShell book without a PowerShell product in the first place and PowerShell wouldn’t exist without
 the vision of its chief architect Jeffrey Snover. His guidance and comments over the years have been invaluable.

 Thanks also to the PowerShell team for making Jeffrey’s vision into a reality and helping build the thriving community that
 exists today.

 To all the MEAP readers and reviewers, many thanks for your feedback. We’ve incorporated as much of it as possible. In particular,
 we’d like to thank the following who reviewed the manuscript at various stages: Benoît Benedetti, Braj Panda, Chris Frank,
 Craig Forrester, Edgar Knapp, Jan Vinterberg, Lincoln Bovee’, Michel Klomp, Mike Taylor, Nick Selpa, Zalán Somogyváry, Stephen
 Byrne, Thomas Burl, and Wayne Boaz. Thanks to all of you for your patience. This book took way, way too long to complete.

 Finally, special thanks to everyone at Manning who did their usual wonderful job to make this happen: Michael Stephens, Jenny
 Stout, Linda Recktenwald, Jodie Allen, Elizabeth Martin, Kevin Sullivan, Corbin Collins, Janet Vail, and all the others who
 worked behind the scenes. All we can say is thank you—this book wouldn’t have happened without you.

 And more super-special thanks to Tobias Weltner, our technical development editor, who started some very interesting conversations
 and our technical proofreader James Berkenbile who checked our code.

 From Bruce: Thanks to Richard for putting up with me and making this book a reality. It wouldn’t have been possible without
 him. I’d also like to thank Jason Shirk, Sergei Vorobev, and Jim Truher for their feedback and suggestions for the material
 on classes (chapter 19). Finally I’d like to thank my wife Tina for putting up with this madness called writing a book.

 From Richard: I’d also like to thank Bruce for the opportunity to work on this book. It’s been an interesting experience (eight
 time zones between authors makes for some odd communications) and an honor. I’ve learned a lot while working with Bruce and
 hope we’ve managed to bring that out in the book.

About this Book

 Windows PowerShell is the next-generation scripting environment created by Microsoft. It’s designed to provide a unified solution
 for Windows scripting and automation, able to access the wide range of technologies such as .NET, COM, and WMI through a single
 tool. Since its release in 2006, PowerShell has become the central component of any Windows management solution. In addition,
 due to PowerShell’s comprehensive support for .NET, it has broad application potential outside of the system administration
 space. PowerShell can be used for text processing, general scripting, build management, creating test frameworks, and so on.
 With PowerShell v6 being available on Linux and macOS as well as Windows, the benefits of PowerShell now extend cross-platform
 bringing a unified approach to system management.

 The authors have extensive experience with PowerShell. Bruce was one of the principal creators of PowerShell. Richard has
 been using PowerShell since it first became available to apply automation techniques to many organizations. Using many examples,
 both small and large, this book illustrates the features of the language and environment and shows how to compose those features
 into solutions, quickly and effectively.

 Note that, because of the broad scope of the PowerShell product, this book has a commensurately broad focus. It was not designed
 as a cookbook of pre-constructed management examples, like how to deal with Active Directory or how to script Exchange. Instead
 it provides information about the core of the PowerShell runtime and how to use it to compose solutions the “PowerShell Way.”
 After reading this book, the PowerShell user should be able to take any example written in other languages like C# or Visual
 Basic and leverage those examples to build solutions in PowerShell.

Who should read this book?

 This book is designed for anyone who wants to learn PowerShell and use it well. Rather than simply being a book of recipes
 to read and apply, this book tries to give the reader a deep knowledge about how PowerShell works and how to apply it. All
 users of PowerShell should read this book.

 So, if you’re a Windows sysadmin, this book is for you. If you’re a developer and you need to get things done in a hurry,
 if you’re interested in .NET, or just if you like to experiment with computers, PowerShell is for you and this book is for
 you.

Roadmap

 The book is divided into 20 chapters and an appendix. Our aim is to provide a comprehensive tour of the PowerShell language
 and runtime. The goal is to introduce new PowerShell users to the language as well as to provide experienced users with a
 deep insight into how and why things are the way they are.

 We look at all aspects of the PowerShell language including the syntax and the type system. Along the way, we present examples
 showing how each feature works. Because the goal of the book is to focus on the individual features of the environment, most
 examples are quite small and are intended to be entered in an interactive session. We do include some larger examples that
 bring the individual features together to build larger applications.

 Chapter 1 begins with the history and the rationale for why PowerShell was created. We then examine PowerShell’s elastic type system,
 including aliases, and how PowerShell parses commands. The way that PowerShell uses the pipeline is unique among scripting
 languages. We examine the pipeline in depth and explain how to get the most from it. The chapter closes with a review of the
 closely linked topics of formatting and output.

 Chapter 2 introduces the PowerShell type system and discusses its relationship to .NET. This chapter also presents the syntax for each
 of the PowerShell literal data types. PowerShell’s methods for working with collections are examined and show how type conversions
 can be handled.

 The discussion of operators and expressions (PowerShell has lots of these) begins in chapter 3 which covers the basic arithmetic, comparison, and assignment operators. It also covers the wildcard and regular expression
 pattern matching operators. The logical and bitwise operators close the chapter. Chapter 4 continues the discussion of operators with the advanced operations for working with types, arrays (indexing, slicing) and
 objects (properties and methods). It also covers output redirection and the formatting operator, and introduces PowerShell
 variables.

 Chapter 5 covers the PowerShell language constructs like if statements and loops.

 Chapter 6 introduces programming in PowerShell and covers basic functions, variable scoping, and other programming-related topics.
 Chapter 7 builds on the material in chapter 6, covering advanced function metadata, scripting, and how to create in-line documentation for scripts and functions.

 Chapter 8 covers the basics of how to use PowerShell modules and how to create your own basic modules. The PowerShell gallery, an online
 repository of community written modules is examined and we show how to discover and download modules. Chapter 9 looks at more advanced module features covering module manifests and how to use them to add information like a version number,
 dependences, and nested modules. We also examine publishing modules to a repository such as the PowerShell gallery.

 Chapter 10 builds on the material in chapters 7–9, introducing advanced programming techniques like object construction and extensions. It also covers first-class functions
 (scriptblocks) and shows how to extend the PowerShell language itself using these features.

 Chapter 11 introduces PowerShell remoting, starting with basic configuration and setup. It then covers the forms of remoting (interactive
 and non-interactive) and how to apply these techniques. Creation of custom remoting endpoints, including constrained endpoints,
 is included as well.

 Chapter 12 covers the PowerShell workflows—introduced with PowerShell v3. This coverage includes workflow overview and concepts—when
 to use them and when they aren’t appropriate. The workflow keywords are all explained with examples and we show how to parameterize
 your workflows as well as explaining the common workflow parameters. There’re a number of cmdlets available for working with
 workflows that we explain.

 PowerShell jobs were introduced with PowerShell v2 and their reach has been extended with each subsequent release. In chapter 13 we explain the issues with synchronous processing and show how PowerShell jobs enable you to work asynchronously. The way
 jobs work, and the various job types, is explained as we review the PowerShell cmdlets for managing jobs. PowerShell workflows
 can make extensive use of jobs especially when suspending a workflow because the machine on which the workflow is operating
 has been rebooted. The chapter closes with an examination of how PowerShell jobs can work with the Windows task scheduler
 through scheduled jobs.

 Chapter 14 introduces you to error handling concepts in PowerShell such as how to deal with terminating and non-terminating errors.
 We also examine how you can use event logs to record information as your script executes.

 Chapter 15 covers the features in PowerShell for debugging scripts. We start with script instrumentation and capturing session output.
 We then examine the PowerShell debugger including debugging workflows, jobs, and remote runspaces.

 In chapter 16 we shift focus slightly by looking at how PowerShell can be used to attack the kind of text processing tasks that have traditionally
 been the domain of languages like Perl. This chapter begins with basic string processing, then introduces file processing
 (including handling binary files), and finishes up with a section on working with XML documents. We look at how to work with
 COM objects. This includes using the application automation models to script applications like Microsoft Word with PowerShell.
 We close by looking at how to use CIM (WMI) from the command line and in scripts to inspect, update, and manage a Windows
 system.

 In chapter 17, we look at how we can explore and apply the vast capabilities of the .NET framework. We cover locating, exploring, and instantiating
 types in the .NET framework, including generic types. Then we look at numerous applications using these types, including network
 programming and graphical programming with WinForms and WPF. Chapter 17 also looks at the asynchronous eventing subsystem in PowerShell. Eventing allows PowerShell scripts to respond to external
 events in real time—an important characteristic in systems automation.

 Desired State Configuration (DSC) is a mechanism for managing the configuration of your servers in a declarative manner. Chapter 18 opens by reviewing the need for DSC and then covers the DSC theory and architecture. We introduce the DSC modes push and
 pull. We show how to create configurations and push them to a target server. Creating a pull server from which a machine can
 pull its configuration information is explained and we show how to prepare configurations to be pulled. We also examine the
 role of partial configurations and how to create and apply them.

 Chapter 19 discusses PowerShell classes. We examine how to create classes and enums in PowerShell and explain the differences from creating
 a class in C#. A detailed discussion of properties and methods in PowerShell classes is followed by a review of class initialization
 and construction. We close by explaining how to create DSC resources using PowerShell classes.

 Chapter 20, our final chapter, covers the PowerShell and runspace APIs. We discuss the PowerShell API and how to perform isolated and
 concurrent operations. Runspaces, runspace pools, and remote runspaces are covered, followed by runspace management techniques.

 The appendix introduces PowerShell v6 starting with the PowerShell open source project. We discuss .NET core and its implications
 for PowerShell. Installing PowerShell v6 on Windows and Linux is covered followed by an examination of the techniques required
 for PowerShell remoting between Windows and Linux machines. We close by showing how to manage the configuration of your Linux
 machines using DSC.

Code conventions

 Because PowerShell is an interactive environment, we show a lot of example commands as the user would type them, followed
 by the responses the system generates. Before the command text there is a prompt string that looks like this: PS>. Following the prompt, the actual command is displayed. PowerShell’s responses follow on the next few lines. Because PowerShell
 doesn’t display anything in front of the output lines, you can distinguish output from commands by looking for the prompt
 string. These conventions are illustrated as follows:

 PS> Get-Date

12 July 2017 10:40:55

 Sometimes commands will span multiple lines. When you type or paste the code into PowerShell you’ll see >> on the second and subsequent lines. We’ve not shown the >> for ease of copying from the ebook. In the text of the book, we show:

 PS> 1..3 |
foreach {"+" * $_}
+
++
+++

 Whereas in the interactivePowerShell session you’ll see:

 PS> 1..3 |
>> foreach {"+" * $_}
>>
+
++
+++

 If we think there may be confusion between the code and output we’ve left a blank line to separate them. Note that the actual
 prompt sequence you see in your PowerShell session will be somewhat different than what is shown in the book. The prompt display
 is user-controllable by redefining the “prompt” function—for more information about prompts see:

 PS> Get-Help about_Prompts

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow the listing.

Source code downloads

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/books/windows-powershell-in-action-third-edition.

Book forum

 Purchase of Windows PowerShell in Action, Third Edition includes free access to a private web forum run by Manning Publications
 where you can make comments about the book, ask technical questions, and receive help from the author and from other users.
 To access the forum, go to https://forums.manning.com/forums/windows-powershell-in-action-third-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking challenging questions lest
 the authors’ interests stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 BRUCE PAYETTE is one of the founding members of the Windows PowerShell team. He is co-designer of the PowerShell language along with Jim
 Truher and the principal author of the language implementation. He joined Microsoft in 2001 working on Interix, the POSIX
 subsystem for Windows. Shortly after that, he moved to help found the PowerShell project. Prior to joining Microsoft, he worked
 at various companies including Softway (the creators of Interix) and MKS (producers of the MKS Toolkit) building UNIX tools
 for Windows. He lives in Bellevue, Washington, with his wife, many computers, and two extremely over-bonded codependent cats.

 RICHARD SIDDAWAY has been using PowerShell since the early beta versions of PowerShell v1. He has introduced PowerShell to many organizations
 while producing automation-based solutions to their problems. He has written, and co-authored, a number of PowerShell books
 for Manning including PowerShell in Practice, PowerShell and WMI, and PowerShell in Depth. His books on Hyper-V and Active Directory contain many practical PowerShell examples. An active blogger and speaker, Richard
 has also received Microsoft’s PowerShell MVP award for 10 years.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action
 book is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: Our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Windows PowerShell in Action, Third Edition is a “Mufti,” the chief of religion or the chief scholar who interpreted the religious law and whose pronouncements on matters
 both large and small were binding to the faithful. The illustration is taken from a collection of costumes of the Ottoman
 Empire published on Jan. 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection
 and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and
 French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to
 find their art gracing the front cover of a computer programming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago—brought back to life by the pictures from this collection.

Chapter 1. Welcome to PowerShell

 This chapter covers

 	Core concepts

 	Aliases and elastic systems

 	Parsing and PowerShell

 	Pipelines

 	Formatting and output

 Vizzini: Inconceivable!

 Inigo: You keep on using that word. I do not think it means what you think it means.

 William Goldman, The Princess Bride

 It may seem strange to start by welcoming you to PowerShell when PowerShell is ten years old (at the time of writing), is
 on its fifth version, and you’re reading the third edition of this book.

 	

 Note

 PowerShell v6 is under development as we write this. The appendix covers the changes that this new version will introduce.

 	

 In reality the adoption of PowerShell is only now achieving significant momentum, meaning that to many users PowerShell is
 a new technology and the three versions of PowerShell subsequent to this book’s second edition contain many new features. Welcome to PowerShell.

 	

 Note

 This book is written using PowerShell v5. It’ll be noted in the text where earlier versions are different, or work in a different
 manner. We’ll also document when various features were introduced to PowerShell or significantly modified between versions.
 We treat v5 and v5.1 together as v5 as the differences are relatively minor.

 	

 Windows PowerShell is the command and scripting language from Microsoft built into all versions of Windows since Windows Server
 2008. Although PowerShell is new and different (or has new features you haven’t yet explored), it’s been designed to make
 use of what you already know, making it easy to learn. It’s also designed to allow you to learn a bit at a time.

 	

 Running PowerShell commands

 You have two choices for running the examples provided in this book. First is to use the PowerShell console. This provides
 a command-line interface. It’s the tool of choice for interactive work.

 The second choice is the PowerShell Integrated Scripting Environment (ISE). The ISE supplies an editing pane plus a combined
 output and interactive pane. The ISE is the tool of choice when developing scripts, functions, and other advanced functionality.

 The examples in the book will be written in a way that allows pasting directly into either tool.

 Third-party tools exist, such as those supplied by Sapien, but we’ll only consider the native tools in this book.

 	

 Starting at the beginning, here’s the traditional “Hello world” program in PowerShell:

 'Hello world.'

 But “Hello world” itself isn’t interesting. Here’s something a bit more complicated:

 Get-ChildItem -Path $env:windir*.log |
Select-String -List error |
Format-Table Path,LineNumber –AutoSize

 Although this is more complex, you can probably still figure out what it does. It searches all the log files in the Windows
 directory, looking for the string “error”, and then prints the full name of the matching file and the matching line number.
 “Useful, but not special,” you might think, because you can easily do this using cmd.exe on Windows or bash on UNIX. What about the “big, really big” thing? Well, how about this example:

 ([xml] [System.Net.WebClient]::new().
 DownloadString('http://blogs.msdn.com/powershell/rss.aspx')).
 RSS.Channel.Item |
 Format-Table title,link

 Now we’re getting somewhere. This script downloads the RSS feed from the PowerShell team blog and then displays the title
 and a link for each blog entry. By the way, you weren’t expected to figure out this example yet. If you did, you can move
 to the head of the class!

 One last example:

 using assembly System.Windows.Forms
using namespace System.Windows.Forms
$form = [Form] @{
 Text = 'My First Form'
}
$button = [Button] @{
 Text = 'Push Me!'
 Dock = 'Fill'
}
$button.add_Click{
 $form.Close()
}
$form.Controls.Add($button)
$form.ShowDialog()

 This script uses the Windows Forms library (WinForms) to build a GUI that has a single button displaying the text “Push Me!”
 Figure 1.1 shows the window this script creates.

 Figure 1.1. When you run the code from the example, this window will be displayed.

 [image:]

 When you click the button, it closes the form and exits the script. With this you go from "Hello world" to a GUI application in less than two pages.

 Let’s come back down to Earth for a minute. The intent of chapter 1 is to set the stage for understanding PowerShell—what it is, what it isn’t, and, almost as important, why the PowerShell
 team made the decisions they made in designing the PowerShell language. Chapter 1 covers the goals of the project, along with some of the major issues the team faced in trying to achieve those goals. First,
 a philosophical digression: while under development, from 2002 until the first public release in 2006, the codename for this
 project was Monad. The name Monad comes from The Monadology by Gottfried Wilhelm Leibniz, one of the inventors of calculus. Here’s how Leibniz defined the Monad:

 The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By “simple” is meant
 “without parts.”

 Gottfried Wilhelm Leibniz, The Monadology (translated by Robert Latta)

 In The Monadology, Leibniz describes a world of irreducible components from which all things could be composed. This captures the spirit of
 the project: to create a toolkit of simple pieces you compose to create complex solutions.

1.1. What is PowerShell?

 What is PowerShell, and what can you do with it? Ask a group of PowerShell users and you’ll get different answers:

 	PowerShell is a command-line shell.

 	PowerShell is a scripting environment.

 	PowerShell is an automation engine.

 These are all part of the answer. We prefer to say PowerShell is a tool you can use to manage your Microsoft-based machines
 and applications that programs consistency into your management process. The tool is attractive to administrators and developers
 in that it can span the range of command line, simple and advanced scripts, to real programs.

 	

 Note

 If you take this to mean PowerShell is the ideal DevOps tool for the Microsoft platform, then congratulations—you’ve got it
 in one.

 	

 PowerShell draws heavily from existing command-line shell and scripting languages, but the language, runtime, and subsequent
 additions, such as PowerShell Workflows and Desired State Configuration, were designed from scratch to be an optimal environment
 for the modern Windows operating system.

 Most people are introduced to PowerShell through its interactive aspects. Let’s refine our definitions of shell and scripting.

 1.1.1. Shells, command lines, and scripting languages

 In the previous section we called PowerShell a command-line shell. You may be asking, what’s a shell? And how’s it different
 from a command interpreter? What about scripting languages? If you can script in a shell language, doesn’t that make it a
 scripting language? In answering these questions, let’s start with shells.

 Defining a shell can be tricky because pretty much everything at Microsoft has something called a shell. Windows Explorer is a shell. Visual Studio has a component called a shell. Heck, even the Xbox has something called a shell.

 Historically, the term shell describes the piece of software that sits over an operating system’s core functionality. This core functionality is known
 as the operating system kernel (shell ... kernel ... get it?). A shell is the piece of software that lets you access the functionality provided by the operating
 system. For our purposes, we’re more interested in the traditional text-based environment where the user types a command and
 receives a response. Put another way, a shell is a command-line interpreter. The two terms can be used for the most part interchangeably.

Scripting languages vs. shells

 If this is the case, what’s scripting and why are scripting languages not shells? To some extent, there’s no difference. Many
 scripting languages have a mode in which they take commands from the user and then execute those commands to return results.
 This mode of operation is called a read-evaluate-print loop, or REPL. In what way is a scripting language with a REPL not a shell? The difference is mainly in the user experience. A
 proper command-line shell is also a proper UI. As such, a command line has to provide a number of features to make the user’s
 experience pleasant and customizable, including aliases (shortcuts for hard-to-type commands), wildcard matching to avoid
 having to type out full names, and the ability to start other programs easily. Finally, commandline shells provide mechanisms
 for examining, editing, and re-executing previously typed commands. These mechanisms are called command history.

 If scripting languages can be shells, can shells be scripting languages? The answer is, emphatically, yes. With each generation,
 the UNIX shell languages have grown increasingly powerful. It’s possible to write substantial applications in a modern shell
 language, such as Bash or Zsh. Scripting languages characteristically have an advantage over shell languages in that they
 provide mechanisms to help you develop larger scripts by letting you break a script into components, or modules. Scripting languages typically provide more sophisticated features for debugging your scripts. Next, scripting language runtimes
 are implemented in a way that makes their code execution more efficient, and scripts written in these languages execute more
 quickly than they would in the corresponding shell script runtime. Finally, scripting language syntax is oriented more toward
 writing an application than toward interactively issuing commands.

 In the end, there’s no hard-and-fast distinction between a shell language and a scripting language. Because PowerShell’s goal
 is to be both a good scripting language and a good interactive shell, balancing the trade-offs between user experience and
 script authoring was one of the major language design challenges.

Managing Windows through objects

 Another factor that drove the need for a new shell model is, as Windows acquired more and more subsystems and features, the
 number of issues users had to think about when managing a system increased dramatically. To help users deal with this increase
 in complexity, the manageable elements were factored into structured data objects. This collection of management objects is known internally at Microsoft as the Windows Management Surface.

 	

 Note

 Microsoft wasn’t the only company running into issues caused by increased complexity. Most people in the industry were having
 this problem. This led to the Distributed Management Task Force (dmtf.org), an industry organization, creating a standard
 for management objects called the Common Information Model (CIM). Microsoft’s original implementation of this standard is called Windows Management Instrumentation (WMI).

 	

 Although this factoring addressed overall complexity and worked well for GUIs, it made it much harder to work with using a
 traditional text-based shell environment.

 Windows is an API-driven operating system, compared to UNIX and its derivatives, which are document (or text) driven. You
 can administer UNIX by changing configuration files. In Windows, you need to use the API, which means accessing properties
 and using methods on the appropriate object.

 Finally, as the power of the PC increased, Windows began to move off the desktop and into the corporate datacenter. In the
 corporate datacenter, there were a large number of servers to manage, and the graphical point-and-click management approach
 didn’t scale. All these elements combined to make it clear Microsoft could no longer ignore the command line.

 Now that you grasp the environmental forces that led to the creation of PowerShell—the need for command-line automation in
 a distributed object-based operating environment—let’s look at the form the solution took.

1.2. PowerShell example code

 We’ve said PowerShell is for solving problems that involve writing code. By now you’re probably asking “Dude! Where’s my code?”
 Enough talk, let’s see some example code! First, we’ll revisit the Get-ChildItem example. This time, instead of displaying the directory listing, you’ll save it into a file using output redirection like
 in other shell environments. In the following example, you’ll use Get-ChildItem to get information about a file named somefile.txt in the root of the C: drive. Using redirection, you’ll direct the output
 into a new file, c:\foo.txt, and then use the type command to display what was saved. Here’s what this looks like:

 PS> Get-ChildItem -Path C:\somefile.txt

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 29/05/2017 13:58 25424 somefile.txt

 	

 Note

 PowerShell has aliases for many cmdlets so dir C:\somefile.txt and ls C:\somefile.txt would both work. It is best practice to reserve aliases for interactive usage and not use them in scripts. We’ll usually
 use the full cmdlet name but may occasionally use aliases to save space.

 	

 Next, instead of displaying the directory listing, you’ll save it into a file using output redirection as in other shell environments.
 In the following example, you’ll get information about a file named somefile.txt in the root of the C: drive. Using redirection, you direct the output into a new
 file, c:\foo.txt, and then use the Get-Content (you can use the alias of cat or type if you prefer) command to display what was saved. Here’s what this looks like:

 PS> Get-ChildItem -Path C:\somefile.txt > c:\foo.txt
PS> Get-Content -Path C:\foo.txt

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 29/05/2017 13:58 25424 somefile.txt

 As you can see, commands work more or less as you’d expect. Let’s go over other things that should be familiar to you.

 	

 Note

 On your system choose any file that exists and the example will work fine, though obviously, the output will be different.

 	

 1.2.1. Navigation and basic operations

 The PowerShell commands for working with the file system should be pretty familiar to most users. You navigate around the
 file system with the cd (alias for Set-Location) command. Files are copied with the copy or cp (aliases for Copy-Item) commands, moved with the move and mv (aliases for Move-Item) commands, and removed with the del or rm (aliases for Remove-Item) commands. Why two of each command? One set of names is familiar to cmd.exe/DOS users and the other is familiar to UNIX users. In practice, they’re aliases for the same command, designed to make it
 easy for people to get going with PowerShell.

 	

 Note

 In PowerShell v6 Core on Linux or macOS these common aliases have been removed to prevent conflict with native commands on
 Linux and macOS. The aliases are present in the Windows versions of PowerShell v6 Core.

 	

 Keep in mind that, although the commands are similar, they’re not exactly the same as either of the other two systems. You
 can use the Get-Help command to get help about these commands. Here’s the output of Get-Help for the dir command:

 PS> Get-Help dir

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

SYNTAX
 Get-ChildItem [[-Filter] <String>] [-Attributes {ReadOnly |
 Hidden | System | Directory | Archive | Device | Normal |
 Temporary | SparseFile | ReparsePoint | Compressed | Offline | NotContentIndexed | Encrypted |IntegrityStream | NoScrubData}]

[-Depth <UInt32>] [-Directory] [-Exclude <String[]>] [-File]
[-Force] [-Hidden][-Include <String[]>] -LiteralPath <String[]>
[-Name] [-ReadOnly] [-Recurse] [-System] [-UseTransaction] [<CommonParameters>]

 Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>]
[-Attributes {ReadOnly | Hidden | System | Directory |
Archive | Device | Normal | Temporary | SparseFile |
ReparsePoint | Compressed | Offline | NotContentIndexed |
Encrypted | IntegrityStream | NoScrubData}] [-Depth <UInt32>]
[-Directory] [-Exclude <String[]>] [-File] [-Force]
[-Hidden] [-Include <String[]>] [-Name] [-ReadOnly] [-Recurse]
[-System] [-UseTransaction] [<CommonParameters>]

DESCRIPTION
 The Get-ChildItem cmdlet gets the items in one or more specified
 locations. If the item is a container, it gets the items inside the
 container, known as child items. You can use the Recurse parameter to get
 items in all child containers.

 A location can be a file system location, such as a directory, or a
 location exposed by a different Windows PowerShell provider, such as a
 registry hive or a certificate store.

RELATED LINKS
 Online Version: http://go.microsoft.com/fwlink/?LinkId=821580
 Get-Item
 Get-Location
 Get-Process
 Get-PSProvider

REMARKS
 To see the examples, type: "get-help Get-ChildItem -examples".
 For more information, type: "get-help Get-ChildItem -detailed".
 For technical information, type: "get-help Get-ChildItem -full".
For online help, type "get-help Get-ChildItem -online"PowerShell help system

 	

 PowerShell help system

 The PowerShell help subsystem contains information about all the commands provided with the system and is a great way to explore
 what’s available.

 In PowerShell v3 and later, help files aren’t installed by default. Help has become updatable and you need to install the
 latest versions yourself. See Get-Help about_Updatable_Help.

 You can even use wildcard characters to search through the help topics (v2 and later). This is the simple text output. The
 PowerShell ISE also includes help in the richer Windows format and will let you choose an item and then press F1 to view the
 help for the item. By using the –Online option to Get-Help, you can view the help text for a command or topic using a web browser.

 PS> Get-Help Get-ChildItem

 displays the information in the help file stored locally.

 PS> Get-Help Get-ChildItem -Online

 displays the online version of the help file.

 Using the -Online option is the best way to get help because the online documentation is constantly being updated and corrected, whereas the
 local copies aren’t.

 	

 1.2.2. Basic expressions and variables

 In addition to running commands, PowerShell can evaluate expressions. In effect, it operates as a kind of calculator. Let’s
 evaluate a simple expression:

 PS> 2+2
4

 Notice as soon as you typed the expression, the result was calculated and displayed. It wasn’t necessary to use any kind of
 print statement to display the result. It’s important to remember whenever an expression is evaluated, the result of the expression
 is output, not discarded. PowerShell supports most of the basic arithmetic operations you’d expect, including floating point.

 You can save the output of an expression to a file by using the redirection operator:

 PS> (2+2)*3/7 > c:\foo.txt
PS> Get-Content c:\foo.txt
1.71428571428571

 Saving expressions into files is useful; saving them in variables is more useful:

 PS> $n = (2+2)*3
PS> $n
12

PS> $n / 7
1.71428571428571

 Variables can also be used to store the output of commands:

 PS> $files = Get-ChildItem
PS> $files[1]

 Directory: C:\Users\Richard\Documents

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 16/02/2017 18:36 Custom Office Templates

 In this example, you extracted the second element of the collection of file information objects returned by the Get-ChildItem command. You were able to do this because you saved the output of the Get-ChildItem command as an array of objects in the $files variable.

 	

 Note

 Collections in PowerShell start at 0, not 1. This is a characteristic we’ve inherited from .NET. This is why $files[1] extracts the second element, not the first.

 	

 Given PowerShell is all about objects, the basic operators need to work on more than numbers. Chapters 3 and 4 cover these features in detail.

 1.2.3. Processing data

 As you’ve seen, you can run commands to get information, perform some basic operations on this information using the PowerShell
 operators, and then store the results in files and variables. Let’s look at additional ways you can process this data. First,
 you’ll see how to sort objects and how to extract properties from those objects. Then we’ll look at using the PowerShell flow-control
 statements to write scripts that use conditionals and loops to do more sophisticated processing.

Sorting objects

 First, sort the list of file information objects returned by Get-ChildItem. Because you’re sorting objects, the command you’ll use is Sort-Object. For convenience, you’ll use the shorter alias sort in these examples. Start by looking at the default output, which shows the files sorted by filename:

 PS> cd c:\files
PS> Get-ChildItem

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt

 The output shows the basic properties on the file system objects, sorted by filename. Now sort by filename in descending order:

 PS> Get-ChildItem | sort -Descending

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 1.txt

 There you have it—files sorted by filename in reverse order. Now you’ll sort by something other than the filename: file length.

 	

 Note

 Many examples in this book use aliases (shortcuts) rather than the full cmdlet name. This is for brevity and to ensure the
 code fits neatly in the page.

 	

 In PowerShell, when you use the Sort-Object cmdlet (alias sort), you don’t have to tell it to sort numerically—it already knows the type of the field, and you can specify the sort key
 by property name instead of a numeric field offset. The result looks like this:

 PS> Get-ChildItem | sort -Property length

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt

 This illustrates what working with pipelines of objects gives you:

 	You have the ability to access data elements by name instead of using substring indexes or field numbers.

 	By having the original type of the element preserved, operations execute correctly without you having to provide additional
 information.

 Now let’s look at other things you can do with objects.

Selecting properties from an object

 In this section we’ll introduce another cmdlet for working with objects: Select-Object. This cmdlet allows you to select a subrange of the objects piped into it and specify a subset of the properties on those
 objects.

 Say you want to get the largest file in a directory and put it into a variable:

 PS> $a = Get-ChildItem | sort -Property length -Descending |
Select-Object -First 1
PS> $a
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/07/2015 15:14 15986 File 2.txt

 	

 Note

 You’ll notice the secondary prompt >> when you copy the previous example into a PowerShell console. The first line of the command ended in a pipe symbol. The PowerShell
 interpreter noticed this, saw the command was incomplete, and prompted for additional text to complete the command. Once the
 command is complete, you type a second blank line to send the command to the interpreter. If you want to cancel the command,
 you can press Ctrl-C at any time to return to the normal prompt. The code examples in the book won’t include the >> to make copying
 from the electronic version simpler for the reader.

 	

 Now say you want only the name of the directory containing the file and not all the other properties of the object. You can
 also do this with Select-Object (alias select). As with the Sort-Object cmdlet, Select-Object takes a -Property parameter (you’ll see this frequently in the PowerShell environment—commands are consistent in their use of parameters):

 PS> $a = Get-ChildItem| sort -Property length -Descending |
Select-Object -First 1 -Property Directory
PS> $a

Directory

C:\files

 You now have an object with a single property.

Processing with the ForEach-Object cmdlet

 The final simplification is to get the value itself. We’ll introduce a new cmdlet that lets you do arbitrary processing on
 each object in a pipeline. The ForEach-Object cmdlet executes a block of statements for each object in the pipeline. You can get an arbitrary property out of an object
 and then do arbitrary processing on that information using the ForEach-Object command. Here’s an example that adds up the lengths of all the objects in a directory:

 PS> $total = 0
PS> Get-ChildItem | ForEach-Object {$total += $_.length }
PS> $total
16013

 In this example you initialize the variable $total to 0, then add to it the length of each file returned by the Get-ChildItem command, and display the total (you’ll get a different total on your system).

Processing other kinds of data

 One of the great strengths of the PowerShell approach is once you learn a pattern for solving a problem, you can use this
 same pattern over and over again. Say you want to find the largest three files in a directory. The command line might look
 like this:

 PS> Get-ChildItem | sort -Descending length | select -First 3

 Here, the Get-ChildItem command retrieved the list of file information objects, PowerShell then sorted them in descending order by length, and then
 selected the first three results to get the three largest files.

 Now let’s tackle a different problem. You want to find the three processes on the system with the largest working set size.
 Here’s what this command line looks like:

 PS> Get-Process | sort -Descending ws | select -First 3
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1337 1916 235360 287852 1048 63.23 2440 WWAHost
 962 55 94460 176008 692 340.25 6632 WINWORD
 635 40 136040 140088 783 6.42 2564 powershell

 This time you run Get-Process to get data about the processes on this computer, and sort on the working set instead of the file size. Otherwise, the pattern
 is identical to the previous example. This command pattern can be applied over and over.

 	

 Note

 Because of the ability to apply a command pattern repeatedly, most of the examples in this book are deliberately generic.
 The intent is to highlight the pattern of the solution rather than show a specific example. Once you understand the basic
 patterns, you can effectively adapt them to solve a multitude of other problems.

 	

 1.2.4. Flow-control statements

 Pipelines are great, but sometimes you need more control over the flow of your script. PowerShell has the usual flow-control
 statements found in most programming languages. These include the basic if statements, a powerful switch statement, and loops like while, for and foreach, and so on. Here’s an example showing the while and if statements:

 PS> $i=0
PS> while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd

 This example uses the while loop to count through a range of numbers, printing only the odd numbers. In the body of the while loop is an if statement that tests to see whether the current number is odd, and then writes a message if it is. You can do the same thing
 using the foreach statement and the range operator (..), but much more succinctly:

 PS> foreach ($i in 1..10) { if ($i % 2) {"$i is odd"}}

 The foreach statement iterates over a collection of objects, and the range operator is a way to generate a sequence of numbers. The two
 combine to make looping over a sequence of numbers a very clean operation.

 Because the range operator generates a sequence of numbers, and numbers are objects like everything else in PowerShell, you
 can implement this using pipelines and the ForEach-Object (alias foreach) cmdlet:

 PS> 1..10 | foreach { if ($_ % 2) {"$_ is odd"}}

 These examples only scratch the surface of what you can do with the PowerShell flow-control statements. (Wait until you see
 the switch statement!) The complete set of control structures is covered in detail in chapter 5 with lots of examples.

 1.2.5. Scripts and functions

 What good is a scripting language if you can’t package commands into scripts? PowerShell lets you do this by putting your
 commands into a text file with a .ps1 extension and then running that command. You can even have parameters in your scripts.
 Put the following text into a file called hello.ps1:

 param($name = 'bub')
"Hello $name, how are you?"

 Notice the param keyword is used to define a parameter called $name. The parameter is given a default value of 'bub'. Now you can run this script from the PowerShell prompt by typing the name as .\hello. You need the .\ to tell PowerShell to get the command from the current directory.

 	

 Note

 Before you can run scripts on a machine in the default configuration, you’ll have to change the PowerShell execution policy
 to allow scripts to run. Use Get-Help about_execution_policies to view detailed instructions on execution policies. The default settings change between Windows versions, so be careful
 to check the execution policy setting.

 	

 The first time you run this script, you won’t specify any arguments:

 PS> .\hello
Hello bub, how are you?

 You see the default value was used in the response. Run it again, but this time specify an argument:

 PS> .\hello Bruce
Hello Bruce, how are you?

 Now the argument is in the output instead of the default value. Sometimes you want to have subroutines in your code. PowerShell
 addresses this need through functions. Let’s turn the hello script into a function. Here’s what it looks like:

 function hello {
param($name = "bub")
"Hello $name, how are you"
}

 The body of the function is exactly the same as the script. The only thing added is the function keyword, the name of the function, and braces around the body of the function. Now run it, first with no arguments as you
 did with the script

 PS> hello
Hello bub, how are you

 and then with an argument:

 PS> hello Bruce
Hello Bruce, how are you

 Obviously, the function operates in the same way as the script, except PowerShell didn’t have to load it from a disk file,
 making it a bit faster to call. Scripts and functions are covered in detail in chapter 6.

 1.2.6. Remote administration

 In the previous sections, you’ve seen the kinds of things you can do with PowerShell on a single computer, but the computing
 industry has long since moved beyond a one-computer world. Being able to manage groups of computers, without having to physically
 visit each one, is critical in the modern cloud-orientated IT world where your server may easily be on another continent.
 To address this, PowerShell has built-in remote execution capabilities (remoting) and an execution model that ensures if a
 command works locally it should also work remotely.

 	

 Note

 Remoting was introduced in PowerShell v2. It isn’t available in PowerShell v1.

 	

 The core of PowerShell remoting is Invoke-Command (aliased to icm). This command allows you to invoke a block of PowerShell script on the current computer, on a remote computer, or on a thousand
 remote computers. Let’s see some of this in action. Microsoft releases patches for Windows on a regular basis. Some of those
 patches are critical, in that they resolve security-related issues, and as an administrator you need to be able to test if
 the patch has been applied to the machines for which you’re responsible. Checking a single machine is relatively easy—you
 can use the Windows update option in the control panel and view the installed updates as shown in figure 1.2.

 Figure 1.2. Viewing the installed updates on the local (Windows Server 2012 R2) machine

 [image:]

 Alternatively, you can use the Get-HotFix cmdlet:

 PS> Get-HotFix -Id KB3213986

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------

W510W16 Security Update KB3213986 NT AUTHORITY\SYSTEM 12/01/2017 00:00:00

 This shows you the hotfix is installed on the local machine.

 	

 Note

 Updates for Windows 10 and Windows Server 2016 tend to be cumulative so your machine may not have KB3213986 installed.

 	

 But what about all your other machines? Connecting to each one individually and using the control panel or running the Get-HotFix cmdlet is tedious. You need a method of running the cmdlet on remote machines and having the results returned to your local
 machine.

 Invoke-Command is used to wrap the previous command:

 PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `
-ComputerName W16DSC01

Description : Security Update
HotFixID : KB3213986
InstalledBy : NT AUTHORITY\SYSTEM
InstalledOn : 11/01/2017 00:00:00
PSComputerName : W16DSC01

 	

 Note

 Get-HotFix has a –ComputerName parameter, and, like many cmdlets, is capable of working directly with remote machines. Cmdlet-based remoting often uses
 protocols other than WS-MAN. Using Invoke-Command, as in a PowerShell remoting session, is more efficient, as you’ll see in chapter 11.

 	

 You have many machines that need testing. Typing in the computer names one at a time is still too tedious. You can create
 a list of computers, either from a text file or in your code, and test them all:

 PS> $computers = 'W16DSC01', 'W16DSC02'
PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `
-ComputerName $computers |
Format-Table HotFixId, InstalledOn, PSComputerName -AutoSize

HotFixID InstalledOn PSComputerName
-------- ----------- --------------
KB3213986 11/01/2017 00:00:00 W16DSC02
KB3213986 11/01/2017 00:00:00 W16DSC01

 An error is generated on a computer that doesn’t have the patch installed, and results appear on the computers that do.

 	

 Note

 In a production script you’d put error handling in place to catch the error and report that the patch wasn’t installed. This
 will be covered in chapter 14.

 	

 Invoke-Command is the way to programmatically execute PowerShell commands on a remote machine. When you want to connect to a machine to
 interact with it on a one-to-one basis, you use the Enter-PSSession command. This command allows you to start an interactive one-to-one session with a remote computer. Running Enter-PSSession looks like this:

 PS> Enter-PSSession -ComputerName W16DSC01
[W16DSC01]: PS C:\Users\Richard\Documents> Get-HotFix -Id KB3213986 | Format-Table -AutoSize

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
W16DSC01 Security Update KB3213986 NT AUTHORITY\SYSTEM 11/01/2017 00:00:00

[W16DSC01]: PS C:\Users\Richard\Documents> Get-Date

05 March 2017 15:35:07

[W16DSC01]: PS C:\Users\Richard\Documents> Exit-PSSession
PS>

 When you connect to the remote computer, your prompt changes to indicate you’re working remotely. Once connected, you can
 interact with the remote computer the same way you would a local machine. When you’re done, exit the remote session with the
 Exit-PSSession command, which returns you to the local session. This brief introduction covers some powerful techniques, but we’ve only
 begun to cover all the things remoting lets you do.

 At this point, we’ll end our “cook’s tour” of PowerShell. We’ve only breezed over the features and capabilities of the environment.
 In upcoming chapters, we’ll explore each of the elements discussed here in detail and a whole lot more.

1.3. Core concepts

 The core PowerShell language is based on the mature IEEE standard POSIX 1003.2 grammar for the Korn shell, which has a long
 history as a successful basis for modern shells like Bash and Zsh. The language design team (Jim Truher and Bruce Payette)
 deviated from this standard where necessary to address the specific needs of an object-based shell and to make it easier to
 write sophisticated scripts.

 PowerShell syntax is aligned with C#. The major value this brings is PowerShell code can be migrated to C# when necessary
 for performance improvements, and, more importantly, C# examples can be easily converted to PowerShell—the more examples you
 have in a language, the better off you are.

 1.3.1. Command concepts and terminology

 Much of the terminology used in PowerShell will be familiar if you’ve used other shells in the Linux or Windows world. Because
 PowerShell is a new kind of shell, there are a number of terms that are different and a few new terms to learn. In this section,
 we’ll go over the PowerShell-specific concepts and terminology for command types and command syntax.

 1.3.2. Commands and cmdlets

 Commands are the fundamental part of any shell language; they’re what you type to get things done. A simple command looks
 like this:

 command –parameter1 –parameter2 argument1 argument2

 A more detailed illustration of the anatomy of this command is shown in figure 1.3. This figure calls out all the individual elements of the command.

 Figure 1.3. The anatomy of a basic command. It begins with the name of the command, followed by parameters. These may be switch parameters
 that take no arguments, regular parameters that take arguments, or positional parameters where the matching parameter is inferred
 by the argument’s position on the command line.

 [image:]

 All commands are broken down into the command name, the parameters specified to the command, and the arguments to those parameters.
 You can think of a parameter as the receiver of a piece of information and the argument as the information itself.

 	

 Note

 The distinction between parameter and argument may seem a bit strange from a programmer’s perspective. If you’re used to languages such as Python and Visual Basic, which
 allow for keyword parameters, PowerShell parameters correspond to the keywords, and arguments correspond to the values.

 	

 The first element in the command is the name of the command to be executed. The PowerShell interpreter looks at this name
 and determines which command to run, and which kind of command to run. In PowerShell there are a number of categories of commands: cmdlets, shell function commands, script commands,
 workflow commands, and native Windows commands. Following the command name come zero or more parameters and/or arguments. A parameter starts with a dash followed by the name of the parameter. An argument, conversely,
 is the value that will be associated with, or bound to, a specific parameter. Let’s look at an example:

 PS> Write-Output -InputObject Hello
Hello

 Here, the command is Write-Output, the parameter is -InputObject, and the argument is Hello.

 What about the positional parameters? When a PowerShell command is created, the author of that command specifies information
 that allows PowerShell to determine which parameter to bind an argument to, even if the parameter name itself is missing.
 For example, the Write-Output command has been defined such that the first parameter is -InputObject. This lets you write:

 PS> Write-Output Hello
Hello

 The piece of the PowerShell interpreter that figures all this out is called the parameter binder. The parameter binder is smart—it doesn’t require you to specify the full name of a parameter as long as you specify enough
 for it to uniquely distinguish what you mean.

 	

 Note

 PowerShell isn’t case-sensitive but we use the correct casing on commands and parameters to aid reading. It’s also a good
 practice when scripting, as it’s easier to understand the code when you revisit it many months later.

 	

 What else does the parameter binder do? It’s in charge of determining how to match the types of arguments to the types of
 parameters. Remember PowerShell is an object-based shell. Everything in PowerShell has a type. PowerShell uses a fairly complex
 type-conversion system to correctly put things together. When you type a command at the command line, you’re typing strings.
 What happens if the command requires a different type of object? The parameter binder uses the type converter to try to convert
 that string into the correct type for the parameter. If you use a value that can’t be converted to the correct type you get
 an error message explaining the type conversion failed. We discuss this in more detail in chapter 2 when we talk about types.

 What happens if the argument you want to pass to the command starts with a dash? This is where the quotes come in. Let’s use
 Write-Output to print out the string “-InputObject”:

 PS> Write-Output -InputObject "-InputObject"
-InputObject

 And it works as desired. Alternatively, you could type this:

 PS> Write-Output "-InputObject"
-InputObject

 The quotes keep the parameter binder from treating the quoted string as a parameter.

 Another, less frequently used way of doing this is by using the special “end-of-parameters” parameter, which is two hyphens
 back to back (--). Everything after this sequence will be treated as an argument, even if it looks like a parameter. For example, using -- you can also write out the string “-InputObject” without using quotes:

 PS> Write-Output -- -InputObject
-InputObject

 This is a convention standardized in the POSIX Shell and Utilities specification.

 The final element of the basic command pattern is the switch parameter. These are parameters that don’t require an argument. They’re usually either present or absent (obviously they can’t be positional).
 A good example is the -Recurse parameter on the Get-ChildItem command. This switch tells the Get-ChildItem command to display files from a specified directory as well as all its subdirectories:

 PS> Get-ChildItem -Recurse -Filter c*d.exe C:\Windows

 Directory: C:\Windows\System32

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/11/2016 09:56 187520 CloudStorageWizard.exe
-a---- 16/07/2016 12:42 232960 cmd.exe

 As you can see, the -Recurse switch takes no arguments. We’ve only shown the first folder’s worth of results for brevity.

 	

 Note

 Although it’s almost always the case that switch parameters don’t take arguments, it’s possible to specify arguments to them.
 We’ll save our discussion of when and why you might do this for chapter 7, which focuses on scripts (shell functions and scripts are the only time you need this particular feature, and we’ll keep
 you in suspense for the time being).

 	

 Now that we’ve covered the basic anatomy of the command line, let’s go over the types of commands that PowerShell supports.

 1.3.3. Command categories

 As we mentioned earlier, there are four categories of commands in PowerShell: cmdlets, functions, scripts, and native Win32
 executables. PowerShell v4, and later, also has configurations (see chapter 18).

Cmdlets

 The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is a term that’s specific to the PowerShell environment. A cmdlet is implemented by a .NET class that derives from the Cmdlet base class in the PowerShell Software Developers Kit (SDK).

 	

 Note

 Building cmdlets is a developer task and requires the PowerShell SDK. This SDK is freely available for download from Microsoft
 and includes extensive documentation along with many code samples. Our goal is to coach you to effectively use and script
 in the PowerShell environment, so we’re not going to do much more than mention the SDK in this book.

 	

 This category of command is compiled into a dynamic link library (DLL) and then loaded into the PowerShell process, usually
 when the shell starts up. Because the compiled code is loaded into the process, it’s the most efficient category of command
 to execute.

 Cmdlets always have names of the form Verb-Noun, where the verb specifies the action and the noun specifies the object on which to operate. In traditional shells, cmdlets
 correspond most closely to what’s usually called a built-in command. In PowerShell, though, anybody can add a cmdlet to the runtime, and there isn’t any special class of built-in commands.

Functions

 The next type of command is a function. This is a named piece of PowerShell script code that lives in memory as the interpreter is running, and is discarded on
 exit. Functions consist of user-defined code that’s parsed when defined. This parsed representation is preserved so it doesn’t
 have to be reparsed every time it’s used.

 Functions in PowerShell v1 could have named parameters like cmdlets but were otherwise fairly limited. In v2 and later, this
 was fixed, and scripts and functions now have the full parameter specification capabilities of cmdlets. The same basic structure
 is followed for both types of commands. Functions and cmdlets have the same streaming behavior.

 PowerShell workflows were introduced in PowerShell v3. Their syntax is similar to that of a function. When the workflow is
 first loaded in memory a PowerShell function is created that can be viewed through the function: PowerShell drive. Workflows
 are covered in chapter 12.

Scripts

 A script command is a piece of PowerShell code that lives in a text file with a .ps1 extension. These script files are loaded and parsed every
 time they’re run, making them somewhat slower than functions to start (although once started, they run at the same speed).
 In terms of parameter capabilities, shell function commands and script commands are identical.

Native commands (applications)

 The last type of command is called a native command. These are external programs (typically executables) that can be executed by the operating system. Because running a native
 command involves creating a whole new process for the command, native commands are the slowest of the command types. Also,
 native commands do their own parameter processing and don’t necessarily match the syntax of the other types of commands.

 Native commands cover anything that can be run on a Windows computer, so you get a wide variety of behaviors. One of the biggest
 issues is when PowerShell waits for a command to finish but it keeps on going. Say you’re opening a text document at the command
 line:

 PS> .\foo.txt

 You get the prompt back more or less immediately, and your default text editor will pop up (probably notepad.exe because that’s the default). The program to launch is determined by the file associations that are defined as part of the
 Windows environment.

 	

 Note

 In PowerShell, unlike in cmd.exe, you have to prefix a command with ./ or .\ if you want to run it out of the current directory. This is part of PowerShell’s “Secure by Design” philosophy. This particular
 security feature was adopted to prevent Trojan horse attacks where the user is lured into a directory and then told to run
 an innocuous command such as notepad.exe. Instead of running the system notepad.exe, they end up running a hostile program that the attacker has placed in that directory and named notepad.exe.

 	

 What if you specify the editor explicitly?

 PS> notepad foo.txt

 The same thing happens—the command returns immediately. What if you run the command in the middle of a pipeline?

 PS> notepad foo.txt | sort-object
<exit notepad>

 This time PowerShell waits for the command to exit before giving you the prompt. This can be handy when you want to insert
 something such as a graphical form editor in the middle of a script to do processing. This is also the easiest way to make
 PowerShell wait for a process to exit (you can also use Wait-Process). As you can see, the behavior of native commands depends on the type of native command, as well as where it appears in the
 pipeline.

 A useful thing to remember is the PowerShell interpreter itself is a native command: powershell.exe. This means you can call PowerShell from within PowerShell. When you do this, a second PowerShell process is created. In
 practice, there’s nothing unusual about this—that’s how all shells work. PowerShell doesn’t have to do it often, making it
 much faster than conventional shell languages.

 The ability to run a child PowerShell process is particularly useful if you want to have isolation in portions of your script.
 A separate process means the child script can’t impact the caller’s environment. This feature is useful enough that PowerShell
 has special handling for this case, allowing you to embed the script to run inline. If you want to run a fragment of script
 in a child process, you can by passing the block of script to the child process delimited by braces. Here’s an example:

 PS> powershell { Get-Process *ss } | Format-Table name, handles

Name Handles
---- -------
csrss 386
csrss 385
lsass 1778
smss 51

 Two things should be noted in this example: the script code in the braces can be any PowerShell code, and it will be passed
 through to the new PowerShell process. The special handling takes care of encoding the script in such a way that it’s passed
 properly to the child process. The other thing to note is, when PowerShell is executed this way, the output of the process
 is serialized objects—the basic structure of the output is preserved—and can be passed into other commands. We’ll look at this serialization in
 detail when we cover remoting—the ability to run PowerShell scripts on a remote computer—in chapter 11.

Desired State Configuration

 Desired State Configuration (DSC) is a configuration management platform in Windows PowerShell. It enables the deployment
 and management of configuration data for software services and the environment on which these services run. A configuration
 is created using PowerShell-like syntax. The configuration is used to create a Managed Object Format (MOF) file that’s passed
 to the remote machine on which the configuration will be applied. DSC is covered in chapter 18.

 Now that we’ve covered the PowerShell command types, let’s get back to looking at the PowerShell syntax. Notice that a lot
 of what we’ve examined this far is a bit verbose. This makes it easy to read, which is great for script maintenance, but it
 looks like it would be a pain to type on the command line. PowerShell addresses these two conflicting goals—readability and
 writeability—with the concept of elastic syntax. Elastic syntax allows you to expand and collapse how much you need to type to suit your purpose. We’ll cover how this works
 in the next section.

 1.3.4. Aliases and elastic syntax

 We haven’t talked about aliases yet or how they’re used to achieve an elastic syntax in PowerShell. Because this concept is
 important in the PowerShell environment, we need to spend some time on it.

 The cmdlet Verb-Noun syntax, although regular, is, as we noted, also verbose. You may have noticed that in some of the examples we’re using commands
 like dir and type. The trick behind all this is aliases. The dir command is an alias for Get-ChildItem, and the type command is an alias for Get-Content. You can see this by using Get-Command:

 PS> Get-Command dir

CommandType Name
----------- ----
Alias dir -> Get-ChildItem

 This tells you the command is an alias for Get-ChildItem. To get information about the Get-ChildItem command, you then do this:

 PS> Get-Command Get-ChildItem

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-ChildItem 3.1.0.0 Microsoft.PowerShell.Management

 To see all the information, pipe the output of Get-Command into fl. This shows you the full detailed information about this cmdlet. But wait—what’s the fl command? Again, you can use Get-Command to find out:

 PS> Get-Command fl

CommandType Name
----------- ----
Alias fl -> Format-List

 PowerShell comes with a large set of predefined aliases. Two basic categories of aliases exist: transitional and convenience. By transitional aliases, we mean a set of aliases that map PowerShell commands to commands that people are accustomed to using in other shells, specifically
 cmd.exe and the UNIX shells. For the cmd.exe user, PowerShell defines dir, type, copy, and so on. For the UNIX user, PowerShell defines ls, cat, cp, and so forth. These aliases allow a basic level of functionality for new users right away.

 	

 Note

 PowerShell v6 for Linux and macOS removes these aliases to avoid confusion with native commands.

 	

 Convenience aliases are derived from the names of the cmdlets they map to. Get-Command becomes gcm, Get-ChildItem becomes gci, Invoke-Item becomes ii, and so on. For a list of the defined aliases, type Get-Alias at the command line. You can use the Set-Alias command (the alias of which is sal, by the way) to define your own aliases—many experienced PowerShell users create a set of one-letter aliases to cover the
 cmdlets they most often use at the command prompt.

 	

 Note

 Aliases in PowerShell are limited to aliasing the command name only. Unlike in other systems such as Ksh, Bash, and Zsh, PowerShell
 aliases can’t include parameters. If you need to do something more sophisticated than simple command-name translations, you’ll
 have to use shell functions or scripts.

 	

 This is all well and good, but what does it have to do with elastics? Glad you asked! The idea is PowerShell can be terse
 when needed and descriptive when appropriate. The syntax is concise for simple cases and can be stretched like an elastic
 band for larger problems. This is important in a language that’s both a command-line tool and a scripting language. Many scripts
 that you’ll write in PowerShell will be no more than a few lines long. They will be a string of commands that you’ll type
 on the command line and then never use again. To be effective in this environment, the syntax needs to be concise. This is where aliases like fl come in—they allow you to write concise command lines. When you’re scripting, though, it’s best to use the long name of the
 command. Sooner or later, you’ll have to read the script you wrote (or worse, someone else will). Would you rather read something
 that looks like this?

 gcm|?{$_.parametersets.Count -gt 3}|fl name

 or this?

 Get-Command |
 Where-Object {$_.parametersets.count -gt 3} |
 Format-List name

 We’d certainly rather read the latter. (As always, we’ll cover the details of these examples later in the book.)

 There’s a second type of alias used in PowerShell: parameter. Unlike command aliases, which can be created by end users, parameter aliases are created by the author of a cmdlet, script,
 or function. (You’ll see how to do this when we look at advanced function creation in chapter 7.)

 A parameter alias is a shorter name for a parameter. Wait a second, earlier we said you needed enough of the parameter name
 to distinguish it from other command parameters. Isn’t this enough for convenience and elasticity? Why do you need parameter
 aliases? The reason you need these aliases has to do with script versioning. The easiest way to understand versioning is to look at an example.

 Say you have a script that calls a cmdlet Process-Message. This cmdlet has a parameter -Reply. You write your script specifying

 Process-Message -Re

 Run the script, and it works fine. A few months later, you install an enhanced version of the Process-Message command. This new version introduces a new parameter: -Receive. Only specifying -Re is no longer sufficient. If you run the old script with the new cmdlet, it will fail with an ambiguous parameter message;
 the script is broken.

 How do you fix this with parameter aliases? The first thing to know is PowerShell always picks the parameter that exactly
 matches a parameter name or alias over a partial match. By providing parameter aliases, you can achieve pithiness without
 also making scripts subject to versioning issues. We recommend always using the full parameter name for production scripts
 or scripts you want to share. Readability is always more important in that scenario.

 Now that we’ve covered the core concepts of how commands are processed, let’s step back and look at PowerShell language processing
 overall. PowerShell has a small number of important syntactic rules you should learn. When you understand these rules, your
 ability to read, write, and debug PowerShell scripts will increase tremendously.

1.4. Parsing the PowerShell language

 In this section we’ll cover the details of how PowerShell scripts are parsed. Before the PowerShell interpreter can execute
 the commands you type, it first has to parse the command text and turn it into something the computer can execute, as shown
 in figure 1.4.

 Figure 1.4. Flow of processing in the PowerShell interpreter, where an expression is transformed and then executed to produce a result

 [image:]

 More formally, parsing is the process of turning human-readable source code into a form the computer understands. A piece
 of script text is broken up into tokens by the tokenizer (or lexical analyzer, if you want to be more technical). A token is a particular type of symbol in the programming language, such as a number,
 a keyword, or a variable. Once the raw text has been broken into a stream of tokens, these tokens are processed into structures
 in the language through syntactic analysis.

 In syntactic analysis, the stream of tokens is processed according to the grammatical rules of the language. In normal programming
 languages, this process is straightforward—a token always has the same meaning. A sequence of digits is always a number; an
 expression is always an expression, and so on. For example, the sequence

 3 + 2

 would always be an addition expression, and “Hello world” would always be a constant string. Unfortunately, this isn’t the
 case in shell languages. Sometimes you can’t tell what a token is except through its context. In the next section, we go into
 more detail on why this is, and how the PowerShell interpreter parses a script.

 	

 Note

 More information on this and the inner workings of PowerShell is available in the PowerShell language specification at www.microsoft.com/en-us/download/details.aspx?id=36389. The specification is currently only available up to PowerShell v3.

 	

 1.4.1. How PowerShell parses

 For PowerShell to be successful as a shell, it can’t require that everything be quoted. PowerShell would fail if it required
 people to continually type

 cd ".."

 or

 copy "foo.txt" "bar.txt"

 On the other hand, people have a strong idea of how expressions should work:

 2

 This is the number 2, not a string “2”. Consequently, PowerShell has some rather complicated parsing rules, covered in the
 next three sections. We’ll discuss how quoting is handled, the two major parsing modes, and the special rules for newlines
 and statement termination.

 1.4.2. Quoting

 Quoting is the mechanism used to turn a token that has special meaning to the PowerShell interpreter into a simple string value.
 For example, the Write-Output cmdlet has a parameter -InputObject. But what if you want to use the string “-InputObject” as an argument? To do this, you have to quote it by surrounding it
 with single or double quotes:

 PS> Write-Output '-InputObject'
-inputobject

 If you hadn’t put the argument in quotes an error message would be produced indicating an argument to the parameter -InputObject is required.

 PowerShell supports several forms of quoting, each with somewhat different meanings (or semantics). Putting single quotes
 around an entire sequence of characters causes them to be treated like a single string. This is how you deal with file paths
 that have spaces in them, for example. If you want to change to a directory the path of which contains spaces, you type this:

 PS> Set-Location 'c:\program files'
PS> Get-Location
Path

C:\Program Files

 When you don’t use the quotes, you receive an error complaining about an unexpected parameter in the command because c:\program and files are treated as two separate tokens.

 	

 Note

 Notice the error message reports the name of the cmdlet, not the alias used. This way you know what’s being executed. The
 position message shows you the text that was entered so you can see an alias was used.

 	

 One problem with using matching quotes as shown in the previous examples is you have to remember to start the token with an
 opening quote. This raises an issue when you want to quote a single character. You can use the backquote (`) character to do this (the backquote is usually the upper-leftmost key, below Esc):

 PS> Set-Location c:\program` files
PS> Get-Location
Path

C:\Program Files

 The backquote, or backtick, as it tends to be called, has other uses that we’ll explore later in this section. Now let’s look at the other form of matching
 quote: double quotes. You’d think it works pretty much like the example with single quotes; what’s the difference? In double
 quotes, variables are expanded. If the string contains a variable reference starting with a $, it will be replaced by the string representation of the value stored in the variable. Let’s look at an example. First assign
 the string “files” to the variable $v:

 PS> $v = 'files'

 Now reference that variable in a string with double quotes:

 PS> Set-Location "c:\program $v"
PS> Get-Location

Path

C:\Program Files

 The directory change succeeded and the current directory was set as you expected.

 	

 Note

 Variable expansion only occurs with double quotes. A common beginner error is to use single quotes and expect variable expansion
 to work.

 	

 What if you want to show the value of $v? To do this, you need to have expansion in one place but not in the other. This is one of those other uses we had for the
 backtick. It can be used to quote or escape the dollar sign in a double-quoted string to suppress expansion. Let’s try it:

 PS> Write-Output "`$v is $v"
$v is files

 Here’s one final tweak to this example—if $v contained spaces, you’d want to make clear what part of the output was the value. Because single quotes can contain double
 quotes and double quotes can contain single quotes, this is straightforward:

 PS> Write-Output "`$v is '$v'"
$v is 'files'

 Now, suppose you want to display the value of $v on another line instead of in quotes. Here’s another situation where you can use the backtick as an escape character. The
 sequence `n in a double-quoted string will be replaced by a newline character. You can write the example with the value of $v on a separate line:

 PS> "The value of `$v is:`n$v"
The value of $v is:
files

 The list of special characters that can be generated using backtick (also called escape) sequences can be found using Get-Help about_Escape_Characters. Note that escape sequence processing, like variable expansion, is only done in double-quoted strings. In single-quoted strings,
 what you see is what you get. This is particularly important when writing a string to pass to a subsystem that does additional
 levels of quote processing.

 1.4.3. Expression-mode and command-mode parsing

 As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing issues not found in other languages.
 PowerShell simplifies parsing considerably, trimming the number of modes down to two: expression and command.

 In expression mode, the parsing is conventional: strings must be quoted, numbers are always numbers, and so on. In command
 mode, numbers are treated as numbers, but all other arguments are treated as strings unless they start with $, @, ', ", or (. When an argument begins with one of these special characters, the rest of the argument is parsed as a value expression.
 (There’s also special treatment for leading variable references in a string, which we’ll discuss later.) Table 1.1 shows examples that illustrate how items are parsed in each mode.

 Table 1.1. Parsing mode examples

 	
 Example command line

 	
 Parsing mode and explanation

 	2+2
 	Expression mode; results in 4.

 	Write-Output 2+2
 	Command mode; results in 2+2.

 	$a=2+2
 	Expression mode; the variable $a is assigned the value 4.

 	Write-Output (2+2)
 	Expression mode; because of the parentheses, 2+2 is evaluated as an expression producing 4. This result is then passed as
 an argument to the Write-Output cmdlet.

 	
Write-Output $a

 	Expression mode; produces 4. This is ambiguous—evaluating it in either mode produces the same result. The next example shows
 why the default is expression mode if the argument starts with a variable.

 	Write-Output $a.Equals(4)
 	Expression mode; $a.Equals(4) evaluates to true and Write-Output writes the Boolean value True. This is why a variable is
 evaluated in expression mode by default. You want simple method and property expressions to work without parentheses.

 	Write-Output $a/foo.txt
 	Command mode; $a/foo.txt expands to 4/foo.txt. This is the opposite of the previous example. Here you want it to be evaluated
 as a string in command mode. The interpreter first parses in expression mode and sees it’s not a valid property expression,
 so it backs up and rescans the argument in command mode. As a result, it’s treated as an expandable string.

 Notice in the Write-Output (2+2) case, the opening parenthesis causes the interpreter to enter a new level of interpretation where the parsing mode is once
 again established by the first token. This means the sequence 2+2 is parsed in expression mode, not command mode, and the result of the expression (4) is emitted. Also, the last example in
 the table illustrates the exception mentioned previously for a leading variable reference in a string. A variable itself is
 treated as an expression, but a variable followed by arbitrary text is treated as though the whole thing were in double quotes.
 This allows you to write

 PS> cd $HOME/scripts

 instead of

 PS> cd "$HOME/scripts"

 As mentioned earlier, quoted and unquoted strings are recognized as different tokens by the parser. This is why

 PS> Invoke-MyCmdlet -Parm arg

 treats -Parm as a parameter and

 PS> Invoke-MyCmdlet "-Parm" arg

 treats "-Parm" as an argument. There’s an additional wrinkle in the parameter binding. If an unquoted parameter like -NotAparameter isn’t a parameter on Invoke-MyCmdlet, it will be treated as an argument. This lets you say

 PS> Write-Host -this -is -a parameter

 without requiring quoting.

 This finishes our coverage of the basics of parsing modes, quoting, and commands. Commands can take arbitrary lists of arguments,
 so knowing when the statement ends is important. We’ll cover this in the next section.

 1.4.4. Statement termination

 In PowerShell, there are two statement terminator characters: the semicolon (;) and (sometimes) the newline. Why is a newline a statement separator only sometimes? The rule is that if the previous text is a syntactically complete statement, a newline is considered to be a statement termination.
 If it isn’t complete, the newline is treated like any other whitespace. This is how the interpreter can determine when a command
 or expression crosses multiple lines. For example, in the following

 PS> 2 +
>> 2
>>
4

 the sequence 2 + is incomplete, so the interpreter prompts you to enter more text. (This is indicated by the nest prompt characters, >>.) But in the next sequence

 PS> 2
2
PS> + 2
2

 the number 2 by itself is a complete expression, so the interpreter goes ahead and evaluates it. Likewise, + 2 is a complete expression and is also evaluated (+ in this case is treated as the unary plus operator). From this, you can see that if the newline comes after the + operator, the interpreter will treat the two lines as a single expression. If the newline comes before the + operator, it will treat the two lines as two individual expressions.

 Most of the time, this mechanism works the way you expect, but sometimes you can receive some unanticipated results. Take
 a look at the following example:

 PS> $b = (2
>> + 2)
>>
At line:1 char:9
+ $b = (2
+ ~
Missing closing ')' in expression.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : MissingEndParenthesisInExpression

 	

 Note

 The example code applies to the PowerShell console. If you use ISE you’ll get the error immediately after pressing the Enter
 key after typing the first line.

 	

 This behavior was questioned by one of the PowerShell v1 beta testers who was surprised by this result and thought there was
 something wrong with the interpreter, but in fact, this isn’t a bug. Here’s what’s happening.

 Consider this text:

 PS> $b = (2 +
>> 2)

 It’s parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a binary operator expression. The sequence $b = (2 + can’t be a syntactically complete statement, and the newline is treated as whitespace. On the other hand, consider this text:

 PS> $b = (2
>> + 2)

 In this case, 2 is a syntactically complete statement, so the newline is now treated as a line terminator. In effect, the sequence is parsed
 like $b = (2 ; + 2)—two complete statements. Because the syntax for a parenthetical expression is

 (<expr>)

 you get a syntax error—the interpreter is looking for a closing parenthesis as soon as it has a complete expression. Contrast
 this with using a subexpression instead of the parentheses alone:

 PS> $b = $(
>> 2
>> +2
>>)
PS> $b
2
2

 Here the expression is valid because the syntax for subexpressions is

 $(<statementList>)

 How do you extend a line that isn’t extensible by itself? This is another situation where you can use the backtick escape
 character. If the last character in the line is a backtick, then the newline will be treated as a simple breaking space instead
 of a newline:

 PS> Write-Output `
>> -InputObject `
>> "Hello world"
>>
Hello world

 Finally, one thing that surprises some people is strings aren’t terminated by a newline character. Strings can carry over
 multiple lines until a matching, closing quote is encountered:

 PS> Write-Output "Hello
>> there
>> how are
>> you?"
>>
Hello
there
how are
you?

 In this example, you see a string that extended across multiple lines. When that string was displayed, the newlines were preserved
 in the string.

 The handling of end-of-line characters in PowerShell is another of the trade-offs that keeps PowerShell useful as a shell.
 Although the handling of end-of-line characters is a bit strange compared to non-shell languages, the overall result is easy
 for most people to get used to.

 1.4.5. Comment syntax in PowerShell

 Every computer language has some mechanism for annotating code with expository comments. Like many other shells and scripting
 languages, PowerShell comments begin with a number sign (#) and continue to the end of the line. The # character must be at the beginning of a token for it to start a comment. Here’s an example that illustrates what this means
 (echo is an alias of Write-Output):

 PS> echo hi#there
hi#there

 In this example, the number sign is in the middle of the token hi#there and isn’t treated as the starting of a comment. In the next example, there’s a space before the number sign:

 PS> echo hi #there
hi

 Now # is treated as starting a comment and the following text isn’t displayed. It can be preceded by characters other than a space
 and still start a comment. It can be preceded by any statement-terminating or expression-terminating character like a bracket,
 brace, or semicolon, as shown in the next couple of examples:

 PS> (echo hi)#there
Hi

PS> echo hi;#there
hi

 In both examples, the # symbol indicates the start of a comment.

 Finally, you need to take into account whether you’re in expression mode or command mode. In command mode, as shown in the
 next example, the + symbol is included in the token hi+#there:

 PS> echo hi+#there
hi+#there

 In expression mode, it’s parsed as its own token. Now # indicates the start of a comment, and the overall expression results in an error:

 PS> "hi"+#there
>>
At line:1 char:6
+ "hi"+#there
+ ~
You must provide a value expression following the '+' operator.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : ExpectedValueExpression

 The # symbol is also allowed in function names:

 PS> function hi#there { "Hi there" }
PS> hi#there
Hi there

 The reason for allowing # in the middle of tokens was to make it easy to accommodate path providers that used # as part of their path names. People conventionally include a space before the beginning of a comment, and this doesn’t appear
 to cause any difficulties.

Multiline Comments

 In PowerShell v2, multiline comments were introduced, primarily to allow you to embed inline help text in scripts and functions. A multiline comment
 begins with <# and ends with #>. Here’s an example:

 <#
 This is a comment
 that spans
 multiple lines
#>

 This type of comment need not span multiple lines; you can use this notation to add a comment preceding some code:

 PS> <# a comment #> "Some code"
Some code

 In this example, the line is parsed, the comment is read and ignored, and the code after the comment is executed.

 One of the things this type of comment allows you to do is easily embed chunks of preformatted text in functions and scripts.
 The PowerShell help system takes advantage of this feature to allow functions and scripts to contain inline documentation in the form of special comments. These comments are automatically extracted by the help system to generate documentation
 for the function or script. You’ll learn how the comments are used by the help subsystem in chapter 7.

 Now that you have a good understanding of the basic PowerShell syntax, let’s look at how commands are executed by the PowerShell
 execution engine. We’ll start with the pipeline.

1.5. How the pipeline works

 A pipeline is a series of commands separated by the pipe operator (|), as shown in figure 1.5. In some ways, the term production line better describes pipelines in PowerShell. Each command in the pipeline receives an object from the previous command, performs
 some operation on it, and then passes it along to the next command in the pipeline.

 Figure 1.5. Anatomy of a pipeline

 [image:]

 	

 Note

 This, by the way, is the great PowerShell heresy. All previous shells passed strings only through the pipeline. Many people
 had difficulty with the notion of doing anything else. Like the character in The Princess Bride, they’d cry, “Inconceivable!” And we’d respond, “I do not think that word means what you think it means.”

 	

 All the command categories take parameters and arguments. In

 Get-ChildItem -Filter *.dll -Path c:\windows -Recurse

 -Filter is a parameter that takes one argument, *.dll. The string “c:\windows” is the argument to the positional parameter -Path.

 Next, we’ll discuss the signature characteristic of pipelines: streaming behavior.

 1.5.1. Pipelines and streaming behavior

 Streaming behavior occurs when objects are processed one at a time in a pipeline. This is one of the characteristic behaviors
 of shell languages. In stream processing, objects are output from the pipeline as soon as they become available. In more traditional
 programming environments the results are returned only when the entire result set has been generated—the first and last results
 are returned at the same time. In a pipelined shell, the first result is returned as soon as it’s available and subsequent
 results return as they also become available. This flow is illustrated in figure 1.6.

 Figure 1.6. How objects flow through a pipeline one at a time. A common parser constructs each of the command objects and then starts
 the pipeline processor, stepping each object through all stages of the pipeline.

 [image:]

 At the top of figure 1.6 you see a PowerShell command pipeline containing four commands. This command pipeline is passed to the PowerShell parser,
 which figures out what the commands are, what the arguments and parameters are, and how they should be bound for each command.
 When the parsing is complete, the pipeline processor begins to sequence the commands. First it runs the begin clause of each of the commands once, in sequence from first to last. After all the begin clauses have been run, it runs the process clause in the first command. If the command generates one or more objects, the pipeline processor passes these objects one
 at a time to the second command. If the second command also emits an object, this object is passed to the third command, and
 so on.

 When processing reaches the end of the pipeline, any objects emitted are passed back to the PowerShell host. The host is then
 responsible for any further processing.

 This aspect of streaming is important in an interactive shell environment, because you want to see objects as soon as they’re
 available. The next example shows a simple pipeline that traverses through C:\Windows looking for all the DLLs with names
 that start with the word “system”:

 PS> Get-ChildItem -Path C:\Windows\ -recurse -filter *.dll |
where Name -match "system.*dll"
 Directory: C:\Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.0.0__31bf3856ad364e35

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 12:43 3010560 System.Management.Automation.dll

 Directory: C:\Windows\assembly\GAC_MSIL\System.Management.Automation.Resources\1.0.0.0_en_31bf3856ad364e35

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 23:51 253952 System.Management.Automation.Resources.dll

 Directory: C:\Windows\assembly\NativeImages_v4.0.30319_32\System\08da6b6698b412866e6910ae9b84f363

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 12:44 10281640 System.ni.dll

 With streaming behavior, as soon as the first file is found, it’s displayed. Without streaming, you’d have to wait until the
 entire directory structure has been searched before you’d see any results.

 In most shell environments streaming is accomplished by using separate processes for each element in the pipeline. In PowerShell,
 which only uses a single process (and a single thread as well by default), streaming is accomplished by splitting cmdlets
 into three clauses: BeginProcessing, ProcessRecord, and EndProcessing. In a pipeline, the BeginProcessing clause is run for all cmdlets in the pipeline. Then the ProcessRecord clause is run for the first cmdlet. If this clause produces an object, that object is passed to the ProcessRecord clause of the next cmdlet in the pipeline, and so on. Finally, the EndProcessing clauses are all run. (We cover this sequencing again in more detail in chapter 5, which is about scripts and functions, because they can also have these clauses.)

 1.5.2. Parameters and parameter binding

 Now let’s talk about more of the details involved in binding parameters for commands. Parameter binding is the process in which values are bound to the parameters on a command. These values can come from either the command line
 or the pipeline. Here’s an example of a parameter argument being bound from the command line:

 PS> Write-Output 123
123

 And here’s the same example where the parameter is taken from the input object stream:

 PS> 123 | Write-Output
123

 The binding process is controlled by declaration information on the command itself. Parameters can have the following characteristics:
 they’re either mandatory or optional, they have a type to which the formal argument must be convertible, and they can have
 attributes that allow the parameters to be bound from the pipeline. Table 1.2 describes the steps in the binding process.

 Table 1.2. Steps in the parameter binding process

 	
 Binding step

 	
 Description

 	1. Bind all named parameters.
 	Find all unquoted tokens on the command line that start with a dash. If the token ends with a colon, an argument is required.
 If there’s no colon, look at the type of the parameter and see if an argument is required. Convert the type of argument to
 the type required by the parameter, and bind the parameter.

 	2. Bind all positional parameters.
 	If there are any arguments on the command line that haven’t been used, look for unbound parameters that take positional parameters
 and try to bind them.

 	3. Bind from the pipeline by value with exact match.
 	If the command isn’t the first command in the pipeline and there are still unbound parameters that take pipeline input, try
 to bind to a parameter that matches the type exactly.

 	4. If not bound, then bind from the pipe by value with conversion.
 	If the previous step failed, try to bind using a type conversion.

 	5. If not bound, then bind from the pipeline by name with exact match.
 	If the previous step failed, look for a property on the input object that matches the name of the parameter. If the types
 exactly match, bind the parameter.

 	6. If not bound, then bind from the pipeline by name with conversion.
 	If the input object has a property with a name that matches the name of a parameter, and the type of the property is convertible
 to the type of the parameter, bind the parameter.

 As you can see, this binding process is quite involved. In practice, the parameter binder almost always does what you want—that’s
 why a sophisticated algorithm is used. Sometimes you’ll need to understand the binding algorithm to get a particular behavior.
 PowerShell has built-in facilities for debugging the parameter-binding process that can be accessed through the Trace-Command cmdlet. Here’s an example showing how to use this cmdlet:

 PS> Trace-Command -Name ParameterBinding -Option All `
-Expression { 123 | Write-Output } -PSHost

 In this example, you’re tracing the expression in the braces—that’s the expression:

 123 | Write-Output

 This expression pipes the number 123 to the cmdlet Write-Output. The Write-Output cmdlet takes a single mandatory parameter, -InputObject, which allows pipeline input by value. The tracing output is long but fairly self-explanatory, so we haven’t included it here. This is something you should
 experiment with to see how it can help you figure out what’s going on in the parameter-binding process.

 And now for the final topic in this chapter: formatting and output. The formatting and output subsystem provides the magic
 that lets PowerShell figure out how to display the output of the commands you type.

1.6. Formatting and output

 One of the issues people new to PowerShell face is the formatting system. As a general rule, we run commands and depend on
 the system to figure out how to display the results. We’ll use commands such as Format-Table and Format-List to give general guidance on the shape of the display, but no specific details. Let’s dig in now and see how this all works.

 PowerShell is a type-based system. Types are used to determine how things are displayed, but normal objects don’t usually
 know how to display themselves. PowerShell deals with this by including formatting information for various types of objects
 as part of the extended type system. This extended type system allows PowerShell to add new behaviors to existing .NET objects
 or extend the formatting system to cope with new types you’ve created. The default formatting database is stored in the PowerShell
 install directory, which you can get to by using the $PSHOME shell variable. Here’s a list of the files that were included as of this writing:

 PS> Get-ChildItem $PSHOME/*format* | Format-Table name

Name

Certificate.format.ps1xml
Diagnostics.Format.ps1xml
DotNetTypes.format.ps1xml
Event.Format.ps1xml
FileSystem.format.ps1xml
Help.format.ps1xml
HelpV3.format.ps1xml
PowerShellCore.format.ps1xml
PowerShellTrace.format.ps1xml
Registry.format.ps1xml
WSMan.Format.ps1xml

 The naming convention helps users figure out the purpose of files. (The others should become clear after reading the rest
 of this book.) These files are XML documents that contain descriptions of how each type of object should be displayed.

 	

 Tip

 These files are digitally signed by Microsoft. Do not alter them under any circumstances. You’ll break things if you do.

 	

 These descriptions are fairly complex and somewhat difficult to write. It’s possible for end users to add their own type descriptions,
 but that’s beyond the scope of this chapter. The important thing to understand is how the formatting and outputting commands work together.

 1.6.1. Formatting cmdlets

 Display of information is controlled by the type of the objects being displayed, but the user can choose the “shape” of the
 display by using the Format-* commands:

 PS> Get-Command Format-* | Format-Table name

Name

Format-Hex
Format-Volume
Format-Custom
Format-List
Format-SecureBootUEFI
Format-Table
Format-Wide

 By shape, we mean things such as a table or a list.

 	

 Note

 Format-Hex is a PowerShell v5 cmdlet that is used to create displays in hexadecimal. The Format-SecureBootUEFI cmdlet receives certificates or hashes as input and formats the input into a content object that is returned. The Set-SecureBootUEFI cmdlet uses this object to update the variable. These two cmdlets are outside the scope of this section.

 	

 Here’s how they work. The Format-Table cmdlet formats output as a series of columns displayed across your screen:

 PS> Get-Item c:\ | Format-Table

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs- 06/06/2017 09:06 C:\

 PowerShell v5 automatically derives the on–screen positioning from the first few objects through the pipeline—effectively
 an automatic –Autosize parameter. This change was introduced because –Autosize is a blocking parameter that caused huge amounts of data to be stored in memory until all objects were available.

 	

 Format-Table -Autosize parameter

 In PowerShell v1 through v4 Format-Table tries to use the maximum width of the display and guesses at how wide a particular field should be. This allows you to start
 seeing data as quickly as possible (streaming behavior) but doesn’t always produce optimal results. You can achieve a better
 display by using the -AutoSize switch, but this requires the formatter to process every element before displaying any of them, and this prevents streaming. PowerShell has to do this to figure out the best width to use for each field. The result in this
 example looks like this:

 PS> Get-Item c:\ | Format-Table -AutoSize

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs- 06/06/2017 09:06 C:\

 In practice, the default layout when streaming is good and you don’t need to use -Autosize, but sometimes it can help make things more readable.

 	

 The Format-List command displays the elements of the objects as a list, one after the other:

 PS> Get-Item c:\ | Format-List

 Directory:

Name : C:\
CreationTime : 22/08/2013 14:31:02
LastWriteTime : 06/06/2017 09:06:56
LastAccessTime : 06/06/2017 09:06:56

 If there’s more than one object to display, they’ll appear as a series of lists. This is usually the best way to display a
 large collection of fields that won’t fit well across the screen.

 The Format-Wide cmdlet is used when you want to display a single object property in a concise way. It will treat the screen as a series of
 columns for displaying the same information:

 PS> Get-Process –Name s* | Format-Wide -Column 8 id

1372 640 516 1328 400 532 560 828
876 984 1060 1124 4

 In this example, you want to display the process IDs of all processes with names that start with “s” in eight columns. This
 formatter allows for a dense display of information.

 The final formatter is Format-Custom, which displays objects while preserving the basic structure of the object. Because most objects have a structure that contains
 other objects, which in turn contain other objects, this can produce extremely verbose output. Here’s a small part of the
 output from the Get-Item cmdlet, displayed using Format-Custom:

 PS> Get-Item c:\ | Format-Custom -Depth 1

class DirectoryInfo
{

 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSParentPath =
 PSChildName = C:\
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = C_Drive
 Credential = System.Management.Automation.PSCredential
 }

 The full output is considerably longer, and notice we’ve told it to stop walking the object structure at a depth of 1. You
 can imagine how verbose this output can be! Why have this cmdlet? Mostly because it’s a useful debugging tool, either when
 you’re creating your own objects or for exploring the existing objects in the .NET class libraries.

 1.6.2. Outputter cmdlets

 Now that you know how to format something, how do you output it? You don’t have to worry because, by default, things are automatically
 sent to (can you guess?) Out-Default.

 Note the following three examples do exactly the same thing:

 dir | Out-Default
dir | Format-Table
dir | Format-Table | Out-Default

 This is because the formatter knows how to get the default outputter, the default outputter knows how to find the default
 formatter, and the system in general knows how to find the defaults for both. The Möbius strip of subsystems!

 As with the formatters, there are several outputter cmdlets available in PowerShell out of the box. You can use the Get-Command command to find them:

 PS> Get-Command Out-* | Format-Wide -Column 3

Out-Default Out-File Out-GridView
Out-Host Out-Null Out-Printer
Out-String

 Here there’s a somewhat broader range of choices. We’ve already talked about Out-Default. The next one we’ll talk about is Out-Null. This is a simple outputter; anything sent to Out-Null is discarded. This is useful when you don’t care about the output for a command; you want the side effect of running the
 command.

 	

 Note

 Piping to Out-Null is the equivalent to redirecting to $null but invokes the pipeline and can be up to forty times slower than redirecting to $null.

 	

 Next, we have Out-File. Instead of sending the output to the screen, this command sends it to a file. (This command is also used by I/O redirection
 when doing output to a file.) In addition to writing the formatted output, Out-File has several flags that control how the output is written. The flags include the ability to append to a file instead of replacing
 it, to force writing to read-only files, and to choose the output encodings for the file. This last item is the trickiest.
 You can choose from a number of text encodings supported by Windows. Here’s a trick—enter the command with an encoding you
 know doesn’t exist:

 PS> Out-File -encoding blah
Out-File : Cannot validate argument on parameter 'Encoding'. The argument
"blah" does not belong to the set "unknown,string,unicode,bigendianunicode,ut
f8,utf7,utf32,ascii,default,oem" specified by the ValidateSet attribute.
Supply an argument that is in the set and then try the command again.
At line:1 char:20
+ Out-File -encoding blah
+ ~~~~
 + CategoryInfo : InvalidData: (:) [Out-File], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Microsoft.PowerShell.Commands.OutFileCommand

 You can see in the error message that all the valid encoding names are displayed.

 	

 Note

 Tab completion can be used to cycle through the valid encodings. Type Out-File -Encoding and then keep pressing the tab key to view the options. Tab completion works with cmdlet names, parameters, and values where
 there’s a predefined set of acceptable values.

 	

 If you don’t understand what these encodings are, don’t worry about it, and let the system use its default value.

 	

 Note

 Where you’re likely to run into problems with output encoding (or input encoding for that matter) is when you’re creating
 files that are going to be read by another program. These programs may have limitations on what encodings they can handle,
 particularly older programs. To find out more about file encodings, search for “file encodings” on http://msdn.microsoft.com. Microsoft Developer’s Network (MSDN) contains a wealth of information on this topic. Chapter 5 also contains additional information about working with file encodings in PowerShell.

 	

 The Out-Printer cmdlet doesn’t need much additional explanation; it routes its text-only output to the default printer instead of to a file
 or to the screen.

 The Out-Host cmdlet is a bit more interesting—it sends its output back to the host. This has to do with the separation in PowerShell between
 the interpreter or engine, and the application that hosts that engine. The host application has to implement a special set
 of interfaces to allow Out-Host to render its output properly. (We see this used in PowerShell v2 to v5, which include two hosts: the console host and the
 Integrated Scripting Environment (ISE).)

 	

 Note

 Out-Default delegates the work of outputting to the screen to Out-Host.

 	

 The last output cmdlet to discuss is Out-String. This one’s a bit different. All the other cmdlets terminate the pipeline. The Out-String cmdlet formats its input and sends it as a string to the next cmdlet in the pipeline. Note we said string, not strings. By default, it sends the entire output as a single string. This isn’t always the most desirable behavior—a collection of
 lines is usually more useful—but at least once you have the string, you can manipulate it into the form you want. If you do
 want the output as a series of strings, use the -Stream switch parameter. When you specify this parameter, the output will be broken into lines and streamed one at a time.

 Note this cmdlet runs somewhat counter to the philosophy of PowerShell; once you’ve rendered the object to a string, you’ve
 lost its structure. The main reason for including this cmdlet is for interoperation with existing APIs and external commands
 that expect to deal with strings. If you find yourself using Out-String a lot in your scripts, stop and think if it’s the best way to attack the problem.

 PowerShell v2 introduced one additional output command: Out-GridView. As you might guess from the name, this command displays the output in a grid, but rather than rendering the output in the
 current console window, a new window is opened with the output displayed using a sophisticated grid control (see figure 1.7).

 Figure 1.7. Displaying output with Out-GridView

 [image:]

 The underlying grid control used by Out-GridView has all the features you’d expect from a modern Windows interface: columns can be reordered by dragging and dropping them,
 and the output can be sorted by clicking a column head. This control also introduces sophisticated filtering capabilities.
 This filtering allows you to drill into a dataset without having to rerun the command.

 That’s it for the basics: commands, parameters, pipelines, parsing, and presentation. You should now have a sufficient foundation
 to start moving on to more advanced topics in PowerShell.

1.7. Summary

 	PowerShell is Microsoft’s command-line/scripting environment that’s at the center of Microsoft server and application management
 technologies. Microsoft’s most important server products, including Exchange, Active Directory, and SQL Server, now use PowerShell
 as their management layer.

 	PowerShell incorporates object-oriented concepts into a command-line shell using the .NET object model as the base for its
 type system, but can also access other object types like WMI.

 	Shell operations like navigation and file manipulation in PowerShell are similar to what you’re used to in other shells.

 	Use the Get-Help command to get help when working with PowerShell.

 	PowerShell has a full range of calculation, scripting, and text-processing capabilities.

 	PowerShell supports a comprehensive set of remoting features to allow you to do scripted automation of large collections of
 computers.

 	PowerShell has a number of command types, including cmdlets, functions, script commands, and native commands, each with slightly
 different characteristics.

 	PowerShell supports an elastic syntax—concise on the command line and complete in scripts. Aliases are used to facilitate
 elastic syntax.

 	PowerShell parses scripts in two modes—expression mode and command mode—which is a critical point to appreciate when using
 PowerShell.

 	The PowerShell escape character is a backtick (`), not a backslash.

 	PowerShell supports both double quotes and single quotes; variable and expression expansion is done in double quotes, not
 in single quotes.

 	Line termination is handled specially in PowerShell because it’s a command language.

 	PowerShell has two types of comments: line comments that begin with # and block comments that start with <# and end with #>. The block comment notation was introduced in PowerShell v2 with the intent of supporting inline documentation for scripts
 and functions.

 	PowerShell uses a sophisticated formatting and outputting system to determine how to render objects without requiring detailed
 input from the user.

 Now that you have the basics, we’ll start digging into the details starting in the next chapter with how PowerShell works
 with types.

Chapter 2. Working with types

 This chapter covers

 	Type management

 	Types and literals

 	Collections

 	Type conversion

 “When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose it to mean—neither more nor
 less.”

 Lewis Carroll, Through the Looking Glass

 Most shell environments can only deal with strings, so the ability to use objects makes PowerShell profoundly different. And
 where you have objects, you also have object types. Much of PowerShell’s power comes from the innovative way it uses types. In this chapter, we’ll look at the PowerShell type
 system, show how to take advantage of it, and examine some of the things you can accomplish with types in PowerShell. One
 of the biggest impacts of an object’s type is how it’s displayed.

2.1. Type management in the wild, wild West

 Shell languages are frequently, though inaccurately, called typeless languages. In practice, you can’t have a typeless language because programming in any form is all about working with types
 and typed objects like numbers, strings, dates, and so on. For any given programming language, one of the most important characteristics
 is how it deals with types and how much work the language expects from you up front versus at runtime. Languages that require
 you to provide a lot of up front explicit guidance are called statically typed, because all the types of objects they can deal with must be known up front. Languages that don’t require much (if any) up
 front guidance are called dynamically typed, where the set of types can change dynamically throughout the program’s run. PowerShell falls into the latter dynamic camp.

 In statically typed languages, the initial guidance you provide allows the language processor to do a lot of work for you, but only if you stick
 to the types you initially planned for. At runtime, if your program encounters types you didn’t plan for, the rigid nature
 of a static language can make it difficult to accommodate these new types. By analogy, if your program only handles square
 pegs, encountering a round peg is going to be a big problem.

 In contrast, with dynamically typed languages, the user provides little type information up front. Instead, their programs deal with the types as encountered.
 If all the program is interested in is things that are blue, the shape of the object doesn’t matter. Round, square, or triangular—the
 program doesn’t care. Even if the object doesn’t have a color property, it doesn’t matter to the program—it’s not blue so
 it’s ignored.

 These days, it’s rare to see a purely static language (reality has a nasty habit of intruding upon academic notions of purity)
 and so most languages have some level of support for dynamic data types. The amount of support largely depends on the domain
 of application. For example, there isn’t much that’s dynamic in an accounting program. But in the area of IT systems management,
 PowerShell’s domain of application, there’s something of an excess of riches regarding dynamic types.

 2.1.1. Types and classes

 If we’re going to talk about types, it’s useful to have a common understanding of what a type is. There are many thick books in the fields of philosophy, science, and mathematics that try to address this question. We’ll
 ignore them all. Why? Because you already know what a type is! You look at an object and say “that’s a bird.” Well, what type of bird is it? It’s a robin. What properties do robins have? A red breast. What about its “parent class,” birds? What properties
 do birds have? Wings, feathers, a beak, and so on. What do birds do? They fly, eat worms, poop on your car. Now you’re an
 expert in object orientation along with everyone else on the planet. Computer people always like to make things more formal,
 so we’ll use specific words when we talk about types, as noted in table 2.1.

 Table 2.1. Classes, types, and members defined

 	
 Term

 	
 Example

 	
 Notes

 	Type
 	Robin, Bird
 	A type is a description of an object—what it looks like and what it can do. That description is associated with the type name.
 The relationship between an object and its type is called an is-a relationship (though the PowerShell operator for this is
 -is, not is-a). Some examples of this relationship are Robin is-a bird or Mickey is-a mouse. In PowerShell the code would
 be Robin -is bird and Mickey -is mouse respectively.

 	Class
 	Robin, Bird
 	Class is the keyword used in PowerShell v5 and later to define a new type. You’ll see the words “type” and “class” frequently
 used interchangeably but when we define a type we use the class keyword. See chapter 19.

 	Property
 	BreastColor, Size, Weight
 	A property of an object is some piece of data describing the object. The property is defined on a class but only has value
 on an instance; for example, the class Bird defines a property Color but only an individual bird has a color. All Bird classes
 have the property Color. A crow has the property Color == black.

 	Method
 	StartFlying(), EatWorm(),
 	Methods define behaviors on a class. In some object-oriented languages methods are called messages, because, for example,
 calling the StartFlying() method effectively sends a message to the bird to start flying.

 	Member
 	Size, EatWorm()
 	Member is a general term that includes all aspects of a type, both methods and properties.

 	Event
 	OnButtonDown, PoopOnCar
 	Events are a special kind of method except you don’t call them directly. The object invokes them as a consequence of some
 other action on the object. If you tell a bird to fly by calling the StartFlying() method, this might trigger the event PoopOnCar().

 	Generic type
 	List<integer>, Dictionary<string, integer>
 	A generic type contains instances of other types such as a List of Integers or a dictionary mapping a name to a number. See
 section 2.5.2 for more information about generics.

 Table 2.1 covers all the major concepts used by PowerShell when dealing with objects and object-oriented programming. In later chapters,
 we’ll discuss additional variations on these terms, but what we’ve covered so far is sufficient for now. Before we move on,
 here’s a brief note on terminology.

Schema and classes and types, oh my!

 In table 2.1, you see the words “class” and “type” can be used interchangeably. In practice, there are a few more synonyms for “type”
 that you might run into, especially the term schema, which is used a lot with XML and databases. In the databases case, schema defines the set of tables a database uses and
 the structure of the rows in each table. The definition of schema in the Oxford dictionary is “a representation of a plan
 or theory in the form of an outline or model.” Look—this definition defines yet another term, model.

 Again, these terms are all equivalent though the representations may differ significantly. Some of this is due to the fact
 that object-oriented terminology grew out of languages designed to help programmers deal with complexity by “modeling” the
 real world. When modeling something, it’s important to remember the model is a simplification of the thing you’re trying to
 model. A model Tyrannosaurs Rex isn’t 30 feet high and rarely eats lawyers.

 The model should only include the information necessary to solve the problem at hand. This may sound easy, but designing a
 model, especially in a fluid medium like software and IT, requires thought. Whatever you design initially will have to grow
 and evolve as requirements change. Fortunately, there are guiding patterns and principles that will help you write flexible
 models. We’ll discuss these principles in chapter 19 when we look at writing classes in PowerShell. We’ll also look at modeling in more detail when we look at Desired State Configuration
 (DSC) management in chapter 18.

 Whew—that was abstract, so let’s return from our intellectual clouds and focus on how all of this stuff works in PowerShell.

 2.1.2. PowerShell: A type-promiscuous language

 Using the definitions for static and dynamic typing we looked at in the beginning of section 2.1, it’s pretty clear we should characterize PowerShell as a dynamically typed language. But an even better description is PowerShell
 is a type-promiscuous language (sounds salacious, doesn’t it?). By type-promiscuous, we mean PowerShell will expend a tremendous amount of effort,
 much more than a typical dynamic language, trying to turn what you have into what you need with as little work on your part
 as it can manage. When you ask for a property Y, PowerShell doesn’t care if the object foo is a member of class X. It only cares whether foo has a property Y.

 People who are used to strongly typed environments find this approach, well, disturbing. It sounds too much like “wild, wild,
 West” management. In practice, the Power-Shell runtime is careful about making sure its transformations are reasonable and
 no information is unexpectedly lost. This is particularly important when dealing with numeric calculations. In PowerShell,
 you can freely mix and match different types of numbers in expressions. You can even include strings in this mix. PowerShell
 converts everything as needed without specific guidance from the user, as long as there’s no loss in precision. Table 2.2 presents some example conversion scenarios. It includes both examples of successful conversions and of conversions the runtime
 fails because they could result in an unintended loss of information.

 Table 2.2. Examples of PowerShell type management

 	
 Example

 	
 Result Type

 	
 Comment

 	PS> 2 + 3.0 + '4'
9

 	System.Double
 	Everything widened to double-precision floating-point number.

 	PS> 2 + '3.0' + 4
9

 	System.Double
 	Everything widened to double-precision floating-point number.

 	PS> (3 + 4)
7

 	System.Int32
 	Integer as expected because all elements are integers.

 	PS> 6/3
2

 	System.Int32
 	Integer as expected because all elements are integers and 3 is a factor of 6.

 	PS> 6/4
1.5

 	System.Double
 	System switch to double to avoid loss of precision.

 	PS> 1e300 + 12
1E+300

 	System.Double
 	In effect, adding an integer to a number of this magnitude means the integer is ignored. This sort of loss is considered acceptable
 by the system.

 	PS> 1e300 + 12d
Value was either too large or too small for a Decimal.
At line:1 char:1
+ 1e300 + 12d
+ ~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (:) [], OverflowException
+ FullyQualifiedErrorId : System.OverflowException

 	
 	This results in an error because when one of the operands involved is a decimal value, all operands are converted to decimal
 first and then the operation is performed. Because 1e300 is too large to be represented as a decimal, the operation will fail
 with an exception rather than lose precision.

 The .NET GetType() method, or Get-Member, is used to look at the base type of the results of the various expressions as shown in figure 2.1. You can also pipe the results from a cmdlet (or pipeline) to Get-Member to discover its output type.

 Figure 2.1. Discovering the type of an expression

 [image:]

 From these examples, you can see that although the PowerShell type-conversion system is aggressive in the types of conversions
 it performs, it’s also careful about how it does things.

 Now that you have a sense of the importance of types in PowerShell, let’s look at how it all works.

 2.1.3. Type system and type adaptation

 In the previous section we said that when looking for a Color property, PowerShell doesn’t care what type the underlying object is as long as it has a Color property on it. That’s an oversimplification. The PowerShell code the user writes doesn’t have to care. But the PowerShell
 runtime cares deeply as it does all the hard work of finding that property for you. A main goal of the type system is to allow
 the user to work with a wide variety of data types and sources like .NET, XML, WMI, and other ingredients in the alphabet
 soup that makes up computer science.

 Let’s talk about the member resolution algorithm. Member resolution is done through a set of layers. In PowerShell v1 and
 v2, there are two layers: synthetic members and native members. In PowerShell v3 a new layer was added providing for fallback
 members.

 There are three phases of member resolution: synthetic, native, and fallback. The PowerShell member resolver code goes through
 each of these phases and stops as soon as it finds an appropriate match. Let’s look at what happens in each layer.

Synthetic members

 In section 2.1.1, we said that the members on an object are determined by that object’s type or class. BWAHAHAHA—we lied to you. PowerShell has an extra layer it checks first, called the PSObject wrapper. This wrapper allows the end user, who didn’t define the type, to change the set of members on that type (sort of).
 For any given instance of an object, you can add new properties or methods at runtime. You can even overshadow existing members
 possibly changing their behavior to something more appropriate to the task at hand. But doing this only affects the current
 instance. The class itself isn’t changed. For this reason, these members are sometimes called singletons as they’re only defined for a single instance of the object. PowerShell includes ways to add these members to every object
 of a class but they’re still singletons—each one is unique to the object it’s attached to. It’s even possible to build an
 object purely out of synthetic members with no “native” properties at all. You’ll see more about this in chapter 10 when we discuss metaprogramming.

 	

 PowerShell versions and synthetic members

 There was one significant change in implementation in this area between PowerShell v2 and PowerShell v3. In PowerShell v1
 and v2, every object was wrapped in a PSObject container that also held its synthetic members. This caused a number of obscure bugs, because storing an object with synthetic
 members in a strongly typed variable would result in the wrapper getting “lost” along with the values of the synthetic members.

 In PowerShell v3 and later, to fix these bugs, the implementation was changed to use a “look-aside” mechanism. Instead of
 wrapping the object, the extensions are kept in a separate table and are looked up when needed. This fixed all the data-loss
 problems resulting from using wrappers but introduced a new even more obscure problem.

 Certain types of objects like numbers are constant so there’s only ever one instance for any value of that type. For example,
 there’s only ever one instance of the number 1. If you add a synthetic member to the number 1 using look-aside, then that
 member will be the same everywhere that 1 is used. This caused a real bug where a v2 programmer was using the different instances
 of a number (different wrappers) to carry around extra information. In v3, that information was always the same because there
 was only ever one look-aside object for the number. By using what was considered a bug in v2, the code was broken in v3 when
 the bug was fixed. It was an extremely obscure situation, but it does provide an object lesson in that no matter how benign
 or obscure a change, it can break people’s programs.

 	

Native members

 Native members are what we talked about in section 2.1—they’re the members defined by the object’s type. If you know the type, then you know all the native members of that object.
 In the PowerShell environment, there are multiple native types—.NET being the primary, but also WMI and COM, where the type defines its members. These members can be discovered by using the Get-Member cmdlet as follows:

 PS> Get-Date | Get-Member
 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Add Method datetime Add(timespan value)
AddDays Method datetime AddDays(double value)
AddHours Method datetime AddHours(double value)
:
DisplayHint NoteProperty DisplayHintType DisplayHint=DateTime
:
Date Property datetime Date {get;}
Day Property int Day {get;}
DayOfWeek Property System.DayOfWeek DayOfWeek {get;}
DateTime ScriptProperty System.Object DateTime {get=if ((& {...

 The output from this example has been trimmed significantly (there are about 59 members on a DateTime object) to show examples of each type of property. The first thing you see is the type of the object followed by a list of
 its members. Notice this list also includes information about any synthetic members attached to the instance such as DisplayHint and DateTime along with the native properties like Day and methods like AddDays().

Fallback members

 Fallback members are a final phase of member resolution. Unlike synthetic members, which are added by the end user on native
 members defined in the class, fallback methods are defined by the PowerShell runtime itself. Presently, there’s no way for
 the end user to add any new ones. Fallback members resolve last—if something isn’t found, then the member resolver falls back
 (duh!) to this type of member. Fallback members were first introduced in PowerShell v3 to solve an interoperation problem
 with PowerShell Workflow.

 Then in PowerShell v4, new ones were added as part of the DSC management feature. In both cases, the members were designed
 to make it simpler for the script author to work with collections. You’ll see examples of this in chapter 4.

 Now, at last, what you’ve been waiting for: what you can do with PowerShell, or at least what the basic types of objects are
 that you can represent and manipulate in a script.

 2.1.4. Finding the available types

 One thing you’ll have noticed is that there appear to be a lot of types available by default. This is correct—the PowerShell
 runtime loads and uses many .NET (native) types. Unfortunately, there’s no out-of-the-box way to find all of those types—there’s
 no Find-Type cmdlet. Let’s jump ahead a bit and write one. First you need to know how .NET arranges its types. Within the host process,
 the .NET runtime creates an Application Domain, or AppDomain. PowerShell is an application that, not too surprisingly, runs inside an AppDomain. That’s the first step. You can find your AppDomain using the .NET AppDomain class:

 [System.AppDomain]::CurrentDomain

 	

 Note

 The AppDomain class isn’t available in .NET core which means this technique can’t be used on Linux or Mac machines running PowerShell v6.

 	

 Next you need to find the types in the AppDomain. Individual types (or classes as they’re sometimes called in this context)
 are organized into assemblies—modules similar to the PowerShell modules you’ll see in chapters 8 and 9. To get a list of assemblies, you use the GetAssemblies() method:

 [System.AppDomain]::CurrentDomain.GetAssemblies()

 Once you have all the assemblies, you need to get a list of all the types in each assembly. You call the—wait for it—GetTypes() method. You have to do this once for each assembly returned by GetAssemblies(). You could use a foreach statement (see chapter 5) but instead here you’ll use one of the fallback methods. The type of fallback method you’re going to use is a bit unusual
 because it isn’t a specific method. One of the things the fallback method resolver does is, if the method isn’t found on the
 object but the object is a collection, it tries to see if the method exists on the members of the collection. It’s exactly
 what you need to call a method: GetTypes() on each member of the collection returned by GetAssemblies(). And so you get:

 [System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes()

 The result is a pretty powerful one-liner. But there’s one last thing you need to do. What you have now will return all the
 types available. In fact with

 [System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes().Count

 the result will be in the tens of thousands depending on which modules you’ve loaded. You want to filter the result but now
 you can go back to PowerShell and use the Select-String cmdlet. Let’s see all the types that mention DateTime:

 [System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes() |
Select-String datetime

 Note this will still produce a lot of output. You can use more sophisticated regular expressions (see section 3.4 for more information on regular expressions).

 The last step is to turn this into a function that looks like the following:

 function Find-Type {
 param
 (
 [regex]$Pattern
)

 [System.AppDomain]::CurrentDomain.
 GetAssemblies().GetTypes() |
 Select-String $Pattern
}

 You now have a tool to find which types you’ve loaded. But you can also do the opposite. Suppose you want to find out which
 assemblies contain a type? Well, this is a property on the [type] object. You can see where the [PowerShell] type comes from using

 [PowerShell].Assembly

 This will give you lots of information about the assembly. If you want the location of the filename, then

 [PowerShell].Assembly.Location

 will do the trick. And, if you’re a developer, it can be useful to know when the assembly was modified. Again, you can mix
 the type expression with PowerShell:

 PS> [PowerShell].Assembly.Location |
Get-ChildItem |
foreach LastWriteTime

28 April 2017 01:32:49

 Now you have a couple of tools that will make discovering types and assemblies much easier.

 PowerShell comes pretty much “batteries included” with respect to the set of types you can use. In the next section, we’ll
 cover the basic set of types you’ll likely use most often and how to express them in PowerShell.

2.2. Basic types and literals

 All programming languages have a set of basic or primitive types from which everything else is built. These primitive types
 usually have some form of corresponding syntactic literal. Literal tokens in the language are used to represent literal data objects in the program. In PowerShell, there are the usual literals—strings,
 numbers, and arrays—but there are other literals that aren’t typically found outside of dynamic languages: dictionaries and
 hashtables. PowerShell also makes heavy use of type literals that correspond to type objects in the system. In this section, we’ll go through each of the literals, illustrate how they’re
 represented in script text, and explore the details of how they’re implemented in the PowerShell runtime.

 2.2.1. String literals

 There are four kinds of string literals in PowerShell: single-quoted strings, double-quoted strings, single-quoted here-strings,
 and double-quoted here-strings, shown in this order in figure 2.2. Each string type will be discussed in detail later in this section. The underlying representation for all these strings is the same, an object of type System.String.

 Figure 2.2. String types in PowerShell

 [image:]

 	

 Note

 It’s recommended to use single-quoted strings and here-strings, unless you’re explicitly using variable expansion in the strings.

 	

String representation in PowerShell

 In PowerShell, a string is a sequence of 16-bit Unicode characters and is directly implemented using the .NET System.String type. Because PowerShell strings use Unicode, they can effectively contain characters from every language in the world.

 	

 Encoding matters

 The encoding used in strings is obviously important in international environments. If you’re interested in the nitty-gritty
 details of the encoding used in System.String, here’s what the MSDN documentation has to say:

 	Each Unicode character in a string is defined by a Unicode scalar value, also called a Unicode code point or the ordinal (numeric)
 value of the Unicode character. Each code point is encoded using UTF-16 encoding, and the numeric value of each element of
 the encoding is represented by a Char. The resulting collection of Char objects constitutes the String.

 	A single Char usually represents a single code point (the numeric value of the Char equals the code point). However, a code
 point might require more than one encoded element. For example, a Unicode supplementary code point (a surrogate pair) is encoded
 with two Char objects.

 Refer to the MSDN documentation for additional details.

 	

 There are a couple of other characteristics that strings in PowerShell inherit from the underlying .NET strings. They can
 also be arbitrarily long and they’re immutable—the contents of a string can be copied but can’t be changed without creating an entirely new string.

 	

 Note

 In almost all modern languages, strings are immutable. The biggest exception to this we’re aware of is Apple’s new language
 Swift. Probably due to the need for backward compatibility with Objective-C, Swift’s strings are mutable. It will be interesting
 to see how that works out.

 	

Single- and double-quoted strings

 Because of the expression-mode/command-mode parsing dichotomy described in section 1.5.3, strings can be represented in several
 ways. In expression mode, a string is denoted by a sequence of characters surrounded by matching quotes, as shown in the following
 examples:

 PS> "This is a string in double quotes"
This is a string in double quotes

PS> 'This is a string in single quotes'
This is a string in single quotes

 Literal strings can contain any character, including newlines, with the exception of an unquoted closing quote character.
 Embedding closing quotes in a string is achieved in the following manner:

 PS> "Embed double quote like this "" or this `" "
Embed double quote like this " or this "

PS> 'Embed single quote like this '' '
Embed single quote like this '

 	

 Note

 In single-quoted strings, the backtick isn’t special. This means it can’t be used for embedding special characters such as
 newlines or escaping quotes.

 	

 Double-quoted strings (sometimes called expandable strings) support variable substitution.

 	

 Note

 Arguments to commands without explicit quotes are treated as though they were in double quotes, so variables will be expanded
 in that situation as well. You’ll see examples of this later on.

 	

 Let’s look at an example of string expansion:

 PS> $foo = "FOO"
PS> "This is a string in double quotes: $foo"
This is a string in double quotes: FOO

PS> 'This is a string in single quotes: $foo'
This is a string in single quotes: $foo

 In the preceding lines, you can see $foo in the double-quoted string was replaced by the contents of the variable—namely, FOO—but not in the single-quoted case.

 Expandable strings can also include arbitrary expressions by using the subexpression notation. A subexpression is a fragment of PowerShell script code, including statement lists, that’s replaced by the value
 resulting from the evaluation of that code. Here’s an example where the subexpression contains three simple statements:

 PS> "Expanding three statements in a string: $(1; 2; 3)"
Expanding three statements in a string: 1 2 3

 The result shows the output of the three statements concatenated together, space separated, and inserted into the result string.
 Using a subexpression in a string is one way to quickly generate formatted results when presenting data.

 	

 String expansion considerations

 PowerShell expands strings when an assignment is executed. It doesn’t reevaluate those strings when the variable is used later.

 There’s a way to force a string to be expanded if you need to do it—by calling $ExecutionContext.InvokeCommand.ExpandString('a is $a'). This method will return a new string with all the variables expanded.

 	

Here-string literals

 Getting back to the discussion of literal string notation, there’s one more form of string literal, called a here-string. A here-string is used to embed large chunks of text inline in a script as illustrated in figure 2.2. This can be powerful when you’re generating output for another program. Here’s an example that assigns a here-string to
 the variable $a:

 PS> $a = @"
One is "1"
Two is '2'
Three is $(2+1)
The date is "$(Get-Date)"
"@
PS> $a
One is "1"
Two is '2'
Three is 3
The date is "06/09/2017 14:54:10"

 On line 1, the here-string is assigned to the variable $a. The contents of the here-string start on line 2, which has a string containing double quotes. Line 3 has a string with single
 quotes. Line 4 has an embedded expression, and line 5 calls the Get-Date cmdlet in a subexpression to embed the current date into the string. When you look at the output of the variable shown in
 lines 9–12, you see the quotes are all preserved and the expansions are shown in place.

 	

 Note

 Here’s a note for C# users. There’s a lexical element in C# that looks a lot like PowerShell here-strings. In practice, the
 C# feature is most like PowerShell’s single-quoted strings. In PowerShell, a here-string begins at the end of the line and
 the terminating sequence must be at the beginning of the line that terminates the here-string. In C#, the string terminates
 at the first closing quote that isn’t doubled up.

 	

 Here-strings start with @<quote><newline>

