

 [image: cover]

Reactive Applications with Akka .NET

 Anthony Brown

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Christina Taylor
Technical development editor: Joel Kotarski
Production editor: Janet Vail
Proofreaders: Katie Tennant and Toma Mulligan
Technical proofreader: Karsten Strobaek
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617292989

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. The road to reactive

 Chapter 1. Why reactive?

 Chapter 2. Reactive application design

 2. Digging in

 Chapter 3. Your first Akka.NET application

 Chapter 4. State, behavior, and actors

 Chapter 5. Configuration, dependency injection, and logging

 Chapter 6. Failure handling

 Chapter 7. Scaling in reactive systems

 Chapter 8. Composing actor systems

 3. Real-life usage

 Chapter 9. Testing Akka.NET actors

 Chapter 10. Integrating Akka.NET

 Chapter 11. Storing actor state with Akka.Persistence

 Chapter 12. Building clustered applications with Akka.Cluster

 Chapter 13. Akka.NET and reactive programming in production

 Index

 List of Figures

 List of Tables

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. The road to reactive

 Chapter 1. Why reactive?

 1.1. The heart of the Reactive Manifesto

 1.2. Reactive systems vs. reactive programming

 1.3. Applying Akka.NET

 1.3.1. Where to use Akka.NET

 1.3.2. Where not to use Akka.NET

 1.4. How does Akka.NET work?

 Summary

 Chapter 2. Reactive application design

 2.1. Basic reactive system design

 2.2. Reactive e-commerce application with actors

 2.2.1. A reactive shopping cart

 2.2.2. Changing states of actors

 2.2.3. Making the purchase

 2.2.4. Data transfer between services

 2.2.5. Scaling work with routers

 2.2.6. Wrapping up

 2.3. Building on reactive foundations

 2.3.1. Publishing the e-commerce application to the world

 2.3.2. Storing state within actors

 2.3.3. Scaling out across a cluster of machines

 2.3.4. Continuing to react to environmental changes

 2.3.5. Wrapping up

 Summary

 2. Digging in

 Chapter 3. Your first Akka.NET application

 3.1. Setting up an application

 3.2. Actors

 3.2.1. What does an actor embody?

 3.2.2. What can an actor do?

 3.2.3. Defining an actor

 3.2.4. Wrapping up

 3.3. Deploying an actor

 3.3.1. The actor system

 3.3.2. Spawning an actor

 3.3.3. Wrapping up

 3.4. Communicating with actors

 3.4.1. Actor addresses and references

 3.4.2. Sending a message

 3.4.3. Wrapping up

 3.5. Case study: Actors, concurrency, and phone billing

 Summary

 Chapter 4. State, behavior, and actors

 4.1. Preparing for the next message

 4.2. Setting appropriate runtime behaviors

 4.2.1. Switchable behaviors

 4.2.2. Become and unbecome

 4.2.3. Wrapping up

 4.3. Finite state machines

 4.3.1. Understanding finite state machines

 4.3.2. Using finite state machines in a concurrency model

 4.3.3. Converting a finite state machine into an actor

 4.3.4. Using the finite state machine actor

 4.3.5. Wrapping up

 4.4. Case study: State machines, states and events, marketing analytics campaign

 Summary

 Chapter 5. Configuration, dependency injection, and logging

 5.1. Why do you need configuration?

 5.2. Configuring an actor deployment

 5.2.1. Understanding Props

 5.2.2. Wrapping up

 5.3. Dependency injection (DI)

 5.3.1. Introducing dependency injection

 5.3.2. Configuring a DI container

 5.3.3. Wrapping up

 5.4. Configuring with HOCON

 5.4.1. What is HOCON?

 5.4.2. Loading configuration into an actor system

 5.4.3. Wrapping up

 5.5. Logging

 5.5.1. Why do you need logging?

 5.5.2. Writing to the log

 5.5.3. Customizing a logger deployment

 5.5.4. Wrapping up

 5.6. Case study: Configuration and distributed systems

 Summary

 Chapter 6. Failure handling

 6.1. Understanding failures

 6.2. Handling application-level failures

 6.2.1. Responding to application errors

 6.2.2. The Akka.NET supervision tree

 6.2.3. Failing fast

 6.2.4. The actor lifecycle

 6.2.5. Watching for the deaths of other actors

 6.2.6. Interface-level failures

 6.2.7. Wrapping up

 6.3. Understanding transport-level failures

 6.3.1. Writing applications that handle message loss

 6.3.2. Wrapping up

 6.4. Case study: Supervision, failure, chat bots

 Summary

 Chapter 7. Scaling in reactive systems

 7.1. Scaling up and scaling out

 7.2. Distributing work

 7.2.1. Routers

 7.2.2. Pools and groups

 7.2.3. Wrapping up

 7.3. Routing strategies

 7.3.1. Random routing

 7.3.2. Round-robin routing

 7.3.3. Smallest-mailbox router

 7.3.4. Consistent hashing

 7.3.5. Scatter-gather first-completed

 7.3.6. Tail-chopping router

 7.3.7. Wrapping up

 7.4. Case study: Scaling, throughput, advertising systems

 Summary

 Chapter 8. Composing actor systems

 8.1. Introducing Akka.NET remoting

 8.2. Preparing to use remoting

 8.2.1. Installing Akka.Remote

 8.2.2. Configuring remoting for a project

 8.3. Communicating with remote actors

 8.3.1. Sending messages to remote actors

 8.3.2. Remote deployment of actors

 8.3.3. Wrapping up

 8.4. Elastic scale across machines

 8.4.1. Configuring a router to use multiple machines

 8.4.2. Wrapping up

 8.5. Failure handling across machines

 8.5.1. Supervisor strategies across a network

 8.5.2. Remoting DeathWatch

 8.5.3. Wrapping up

 8.6. Akka.Remote security

 8.6.1. Limiting messages that can be sent over the network

 8.6.2. Restricting available remote actor targets

 8.6.3. Wrapping up

 8.7. Case study: Remoting, network applications, web server, and backend server

 Summary

 3. Real-life usage

 Chapter 9. Testing Akka.NET actors

 9.1. Introducing Akka.TestKit

 9.2. Unit testing actors

 9.2.1. Spawning test actors

 9.2.2. Validating internal data

 9.2.3. Testing FSMs

 9.2.4. Wrapping up

 9.3. Integration testing actors

 9.3.1. Creating test specifications

 9.3.2. Asserting message responses

 9.3.3. Time-based testing

 9.3.4. Test probes

 9.3.5. Wrapping up

 9.4. Testing distributed applications with MultiNode TestKit

 9.4.1. MultiNode specs

 9.4.2. Testing individual actor systems

 9.4.3. Barriers

 9.4.4. Testing for network failure

 9.4.5. Wrapping up

 9.5. Case study: Testing, test-driven development, unit testing

 Summary

 Chapter 10. Integrating Akka.NET

 10.1. Integrating with ASP.NET

 10.2. Integrating with SignalR

 10.2.1. Communicating through an actor

 10.2.2. Connecting to the user’s web browser

 10.2.3. Wrapping up

 10.3. Custom integrations with akka.io

 10.3.1. Creating a listening socket

 10.3.2. Sending data through akka.io

 10.3.3. Wrapping up

 10.4. Case study: IO, integration, IoT applications

 Summary

 Chapter 11. Storing actor state with Akka.Persistence

 11.1. Understanding event sourcing

 11.2. Using Akka.Persistence

 11.2.1. Writing persistent actors

 11.2.2. Configuring a journal

 11.2.3. Wrapping up

 11.3. Akka.Persistence performance tuning

 11.3.1. Snapshot stores

 11.3.2. Async write journals

 11.3.3. Wrapping up

 11.4. Akka.Persistence performance tuning

 11.4.1. At-least-once delivery

 11.4.2. Upgrade strategies for applications using event sourcing

 11.4.3. Wrapping up

 11.5. Case study: Persistence, storage, staged upgrades

 Summary

 Chapter 12. Building clustered applications with Akka.Cluster

 12.1. Introducing Akka.Cluster

 12.2. Cluster-aware routers

 12.2.1. Creating cluster-aware router groups

 12.2.2. Creating cluster-aware router pools

 12.2.3. Wrapping up

 12.3. Working with cluster gossip

 12.3.1. Retrieving cluster state

 12.3.2. Handling cluster gossip messages

 12.3.3. Wrapping up

 12.4. Cluster singleton

 12.4.1. Wrapping up

 12.5. Cluster sharding

 12.5.1. Creating a new shard

 12.5.2. Communicating with actors in a shard

 12.5.3. Handling passivation in shards

 12.5.4. Wrapping up

 12.6. Distributed publish-subscribe

 12.6.1. Topic messaging

 12.6.2. Point-to-point messaging

 12.6.3. Wrapping up

 12.7. Cluster client

 12.8. Case study: Clustering, scaling, cluster management

 Summary

 Chapter 13. Akka.NET and reactive programming in production

 13.1. Designing with actors

 13.2. Handling failure

 13.3. Designing for scale

 13.4. Handling configuration

 13.5. Ingesting data

 13.6. Testing

 13.7. Real-time integration

 13.8. Data persistence

 13.9. Cluster scale-out

 Conclusion

 Index

 List of Figures

 List of Tables

Preface

 Welcome, and thank you for purchasing Reactive Applications with Akka.NET! I hope that this book lays a solid foundation for you to create applications and services that are truly capable of standing
 the trials and tribulations of a wide audience, making the most of the Reactive Manifesto along your way.

 As software developers, we find ourselves in an interesting time. The significant growth in popularity of computers of all
 shapes and sizes—whether they’re in traditional devices like laptops and desktops, smart entertainment devices such as TVs,
 or in the booming Internet of Things market—is leading to a wide demand for new and innovative solutions that can handle high
 rates of data and scalability.

 As the demand on internet-capable computers and devices increases, so does the pressure on software developers to create applications
 that can withstand growth. We need applications that not only stand up to the demands of users, but are also flexible enough
 to be rapidly adapted and modified in order to change with market trends and needs.

 Reactive systems offer applications that can respond to changes in their environment nearly instantly, making you and your
 applications essential in the software development landscape. I hope this book helps you on your journey to a thorough understanding
 of reactive applications and how using Akka.NET can alleviate some of the difficulties you’ve experienced in the past.

Acknowledgments

 I’d like to thank Manning Publications for giving me the opportunity to write this book. Thanks, too, to Christina Taylor,
 my development editor, and to Karsten Strøbaek, my technical proofreader. This book would not have been possible without their
 help.

 I am also indebted to the many people who read this book in various stages and provided feedback, including Aaron Watson,
 Adnan Masood, Adrian Bilauca, Alex Jacinto, Bachir Chihani, Chris Allan, Dror Helper, Jeff Smith, Kevin Partusch, Lucian Enache,
 Nick McGinness, Ping Xiang, Riccardo Moschetti, and Shobha Iyer.

About this book

 As you work through the book, you’ll see how the Reactive Manifesto and reactive concepts fit into this new era of software
 development. In part 1 of the book, you’ll see an overview of the reactive approach and why it’s needed in the coming years, as well as a more in-depth
 look at how you can design systems with reactive traits in mind. From there, you’ll get acquainted with Akka.NET, an actor
 model implementation in .NET that allows you to write applications in the reactive style. Following this, you’ll build an
 understanding of the fundamentals of writing applications using Akka.NET before you look at how to apply these principles
 in the applications you write, thanks to the Akka.NET ecosystem.

Who should read this book?

 Reactive Applications with Akka.NET is written for those with little-to-no experience with Akka.NET, the actor model, or reactive systems, who have encountered
 difficulties in creating applications that are resilient and scalable. Readers should be comfortable with C# or F# and the
 .NET framework, but no previous reactive experience is needed.

How is this book organized?

 This book has three parts spanning 13 chapters. Part 1 sets the stage for moving into a reactive mindset:

 	
Chapter 1 outlines what it means to be reactive and when you want to apply Akka.NET.

 	
Chapter 2 focuses on the tenets for designing a reactive e-commerce application, and will teach you how to effectively design such
 an application with many of the features that Akka.NET makes available.

 Part 2 focuses on digging into the details that you need to create fully functional reactive systems in Akka.NET:

 	
Chapter 3 presents your first Akka.NET application, and will acquaint you with the design patterns typically used when designing reactive
 systems in Akka.NET.

 	
Chapter 4 teaches how to selectively receive messages into an actor with switchable behaviors, and will also teach you the basics of
 finite state machines, including how to model them using Akka.NET.

 	
Chapter 5 takes a deep look into how you can instrument and operationalize an Akka.NET application through the configuration of individual
 actors and actor systems as a whole.

 	
Chapter 6 focuses on how to respond to service failures within an Akka.NET application, delivering an in-depth look from the original
 source of the failure to typical failure models.

 	
Chapter 7 looks at the difficulties involved with traditional scaling approaches, and how the Akka.NET approach is different.

 	
Chapter 8 looks at actor systems and how to link, scale, and create applications that can handle machine-level failure.

 Part 3 wraps up the book by offering real-world case studies and implementations:

 	
Chapter 9 is focused on testing, from designing unit tests for functionality to verifying the functionality of distributed actor systems
 through multinode tests.

 	
Chapter 10 helps you integrate Akka.NET with custom protocols, focusing on sending and receiving data, integrating real-time connection
 mechanisms, and adding web APIs to allow communication with actor systems.

 	
Chapter 11 teaches how to add a persistent backing data store to an actor to save its state, with a focus on developing evolvable applications
 using Akka .-Persistence and event sourcing.

 	
Chapter 12 utilizes Akka.Cluster to create elastic and scalable actor systems that span multiple machines.

 	
Chapter 13 is an end-to-end case study that will allow you to implement everything you’ve learned while programming one real-world production
 problem.

About the code

 This book contains many examples of source code in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. Additionally, comments in the source code have often been removed from the listings
 when the code is described in the text.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/reactive-applications-with-akka-net.

liveBook discussion forum

 Purchase of Reactive Applications with Akka.NET includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/reactive-applications-with-akka-net/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest
 his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as
 long as the book is in print.

About the author

 Anthony Brown has been developing software for several years now, predominantly using the .Net framework. Anthony has worked
 in a number of different industries working as a developer helping to build better telecom systems, mobile apps and games,
 as well as enterprise systems. He is a regular speaker at user groups and conferences on the latest and greatest tools and
 techniques to rapidly build systems that work.

About the cover illustration

 The figure on the cover of Reactive Appplications with Akka.NET is captioned “Habit of Moorish Woman in 1695.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading
 map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of
 commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs
 of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and
 travel for pleasure were relatively new phenomena in the late eighteenth century, and collections such as this one were popular,
 introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
 and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
 to life by Jefferys’ pictures.

Part 1. The road to reactive

 This part of the book sets the stage for your journey throughout the book. In chapter 1, you’ll learn what it means to be reactive and when you want to apply Akka.NET. Chapter 2 focuses on the tenets for designing a reactive e-commerce application, and teaches how to effectively design such an application
 with many of the features that Akka.NET makes available.

Chapter 1. Why reactive?

 	

 This chapter covers

 	
Understanding the Reactive Manifesto’s principles of reactive design

 	Using messaging, resilience, elasticity, and responsiveness

 	Building reactive systems with Akka.NET

 	

 Over the past several decades, computers and the internet have moved from a position of relative obscurity to being central
 to many aspects of modern life. We now rely on the internet for all manner of day-to-day tasks, including shopping and keeping
 in contact with friends and family. The proliferation of computers and devices capable of accessing the internet has increased
 pressure on software developers to create applications that are able to withstand this near-exponential growth: we must develop
 applications that can meet the demands of a modern populace dependent on technology. Demands range in scope from providing
 instantly available information to users, to services that are resilient to issues they might encounter from increased usage
 or an increased likelihood of failure, which may be caused by factors entirely outside of our control. When this is twinned
 with the demands of a rapidly evolving company trying to beat the competition to find gaps in an ever-changing marketplace,
 applications must not only satisfy demands imposed by users but also be sufficiently malleable that they can be rapidly adapted and modified to fill those gaps.

 In response to this, technology companies working across a broad range of different domains began to notice common design
 patterns that were able to fulfill these new requirements. Trends began to emerge, which were clearly visible to companies
 building the next generation of modern applications with a strong focus on huge datasets, up to the petabyte scale in some
 instances, which needed to be analyzed and understood in record time, with results being delivered to users at near-instantaneous
 speeds. Systems following these patterns were seen to be robust, resilient, and open to change. These principles were collected
 together and form the outcomes you can expect when you develop applications by implementing the Reactive Manifesto: a set
 of shared principles that exemplify a system design capable of standing up to the challenges of today’s demands.

1.1. The heart of the Reactive Manifesto

 At the core of the Reactive Manifesto is an understanding that applications designed to be responsive, resilient, elastic,
 and message-driven can respond to changes in their environment quickly (see figure 1.1). A change in the environment could include any number of variables, whether it’s a change in the data of another component
 in the system, an increase in the error rate when attempting to process data or communicate with an external system, or an
 increase in the amount of data flowing through the system across component boundaries.

 Figure 1.1. Reactive systems: responsive, resilient, elastic, message-driven

 [image:]

 The implication is that the most important property of a modern application is its responsiveness: it should quickly respond
 to requests from users. For example, in the context of a web application, the user should expect to see changes as soon as
 data is input, whether this is by the application pushing data changes to the user’s web browser, or ensuring that such changes
 can be retrieved quickly when the user next requests the change. The term responsive is broad, and its definition in one domain may be vastly different than in another context, so some consideration should
 be applied to what responsive means when applied to your applications. Many of the examples in this book apply to either web applications or real-time
 data solutions. These two cases themselves include a number of potential interpretations of what responsive means. For example, a web application should be responsive by quickly responding to an HTTP request, whereas a data-streaming
 solution should ensure that data flows at a constant rate in order to prevent a stalled stream, which might have knock-on effects for other components earlier in the
 stream.

 In order to achieve this level of responsiveness, the systems you design must able to handle greater scale. Let’s consider
 the example of a web application again. If it receives more web requests than the server is capable of handling, then it’s
 inevitable that the incoming requests will start to queue up until resources are available to service them. Queuing leads
 to an increase in response time for users, making the application less responsive. Similarly, in the case of a streaming-data
 solution, if more events start to flow through the stream, your system must be able to process them within a fixed amount
 of time; otherwise, subsequent events may be delayed. But it’s not enough to constantly provide more computing power; although
 computing power has dropped in price significantly in recent years, it’s still far from cheap. As such, your system should
 be able to respond to periods of inactivity or reduced throughput by negatively adjusting provisioned compute resources so
 that you don’t have to maintain or pay for unnecessary resources. This scenario relates to designing systems with elasticity:
 having the ability to expand resources when needed, but otherwise shrinking down to a minimum set of operational resources.

 In parallel with elasticity, it’s important that systems are equally resilient: they’re able to react to a failure, whether
 it’s a failure that originates from within the system, over which you have some degree of control, or from other systems external
 to yours and over which you have no control. In a streaming-data solution, this might translate into the ability of your stream-processing
 system to handle receiving bad or invalid data from an incoming data source. For example, with an Internet of Things (IoT)
 device sending sensor data, your stream-processing solution should be able to handle incoming data that may contain invalid
 sensor readings caused by a faulty sensor. If your application starts to fail, then this will likely cause knock-on failures
 in other components within your system. Therefore, a resilient application focuses on the containment of errors in the smallest
 possible area of the application. Following this containment, it should recover from these failures automatically, without
 the need for manual intervention. This notion of resilience ensures that the client doesn’t end up being burdened with the
 responsibility for handling failures that may occur in the system.

 Finally, driving the concepts you’ve seen thus far, message-driven systems are the core component that links everything together.
 By using messaging as the basis of communication between components, the system can perform work asynchronously and in a completely
 non-blocking manner. It can perform more work in parallel, leading to an increase in overall responsiveness. By using message
 passing as the basis of communication, you’re also able to redirect and divert messages at runtime as appropriate, thus allowing
 you to reroute a message from a failing component to one that can service the request. For example, if you have two servers,
 each of which can service a request, then by using message passing, you can change which server receives the request if one
 server becomes unavailable to service it. Similarly, if you notice one server has become a bottleneck, you can divert a message
 to another server that’s able to service the request. This means that you can dynamically add or remove new instances and automatically redirect messages
 to the target instance.

 You can see how these concepts work together, with messaging being the core building block that powers the resilience, elasticity,
 and responsiveness of the application. You can also see that elasticity and resilience are shared concerns: when you have
 the infrastructure in place for resilience, it provides the necessary logic for elasticity. When all of these concepts are
 linked together, you have applications that are responsive.

1.2. Reactive systems vs. reactive programming

 The concepts embodied in the Reactive Manifesto are far from new, having evolved over several decades. The Manifesto is itself
 a formalization of a significant amount of domain knowledge from varying organizations. Due to the relatively broad concepts
 covered in the Reactive Manifesto, there’s some overlap between two related programming concepts: reactive programming and
 reactive systems.

 Reactive programming, like the programming model offered by Reactive Extensions (Rx; a library for developing in .NET), offers
 a small-scale overview of reactive systems, tailored to how data flows in a single application. Typical applications are driven
 by a threaded execution model in which operations are performed sequentially in an order that you’ve defined, leaving you
 to deal with many of the underlying flow-control primitives needed to synchronize data. In contrast, reactive programming
 is driven by the execution of code only when new data is available; typically, this is in the form of events arising from
 a data source. One example is a timer that ticks once every 5 minutes. Using typical programming patterns, you’d have to set
 up a loop that continuously polls until the minimum time period has elapsed before you progress through your application flow.
 But with reactive programming, you create handlers that receive an event and are executed whenever a new event is received.

 Reactive systems, however, focus on applying the same concepts on a much larger scale involving the integration of multiple
 distinct components. Many of the applications built today are no longer basic programs, taking in an input and producing an
 output; instead, they’re complex systems made up of arrays of components, where each component could itself be an entire system.
 This level of interconnectedness brings with it complexities. Systems may not be running on the same physical hardware and
 may not even be collocated, with one system existing thousands of miles from another. This means you need to consider what
 happens in the event of failure, or how other system components will respond in the event of a sudden flood of information
 passing through the system. You saw when we discussed the Reactive Manifesto that these are requirements for a system to remain
 responsive, and you saw the way to achieve these aims is through the use of a higher-level message-passing-based API.

 This is the core difference between reactive programming and a reactive system. Reactive programming involves the notion of
 events: data that is broadcast to everybody who’s listening to that event. Reactive systems are message-driven, with individually
 addressable components supporting targeted messages. Akka.NET is one example of a tool that simplifies the building of large-scale reactive systems, which you’ll see throughout this book, whereas Reactive
 Extensions is an example of reactive programming, which we won’t be considering in this book. The two concepts can be combined,
 with reactive programming being built on top of a reactive system, or reactive programming existing within a single component
 of a reactive system. But the combination of these concepts won’t be addressed in this book.

1.3. Applying Akka.NET

 Akka.NET is a platform on which reactive systems can be built. This opens the door to using it across multiple distinct domains.
 It has been used in IoT applications, e-commerce, finance, and many other domains. The internal requirements of these applications
 determine whether Akka.NET is an ideal fit. One concern common to these types of applications is the requirement to update
 components based on the results of operations of other components. Akka.NET is a powerful tool when you need immediate responses
 from multiple components all integrated together.

 1.3.1. Where to use Akka.NET

 One example of where Akka.NET is an ideal fit is in the world of commercial air travel. Here, multiple distinct components
 produce data at an incredible rate: data that must be processed and delivered to the user as soon as possible. For example,
 a passenger in the terminal waiting to board a flight needs to know which gate their flight will depart from. Up-to-date information
 is particularly important in large airports, where it might take 20 or 30 minutes to walk between gates. But a vast number
 of integrated systems dictate where a flight travels. National air traffic control, which reroutes flights in the event of
 an emergency and to prevent in-air collisions between planes in a congested airspace, is a factor. The airport’s air traffic
 control, responsible for directing planes to the correct runway, is also a factor; in the case of a large airport, landing
 on a different runway could direct the plane to a different gate. Other airport operations may divert a flight to a different
 gate due to a scheduling issue between airlines that prevents a plane from arriving at its planned gate. Similarly, data from
 the airline’s internal systems might force a gate change due to internal scheduling problems. A vast array of data sources
 publish data that needs to be processed quickly to keep passengers immediately updated regarding any changes that occur as
 part of the effort to ensure that aircraft are able to turn around and take off again after landing.

 Although not all systems are this complex or rely on as many distinct data sources, you can see the pattern of integrating
 multiple components together into a larger system while accommodating difficulties that might be encountered in the process.
 An airline, for instance, needs to immediately respond to changes when they’re published, to protect the safety and security
 of passengers and staff.

 1.3.2. Where not to use Akka.NET

 Although Akka.NET makes it easier to build large reactive systems, it brings with it some difficulties. You’ve seen how complex
 systems force you to consider their complexities. For example, you must think about partial failures of system components
 that might impact other components, consider data consistency and how that should be handled in the case of partial failures,
 and deal with plenty of other issues. Akka.NET brings these difficulties and complexities to the surface as first-class principles,
 which means that you have to address them. When dealing with them, you’ll also unearth a number of other complexities: notably,
 debugging is more difficult, and you have to think about concurrency. Therefore, for fairly simple web applications that have
 basic requirements, Akka.NET is unlikely to provide any significant benefits. These include relatively basic CRUD (create,
 read, update, delete) applications that are backed by a basic database model.

 At its core, Akka.NET provides a concurrency model designed to allow multiple components to operate simultaneously. This means
 that when developing systems with Akka.NET, you need to think carefully about the data in your system. Although Akka.NET removes
 the possibility of concurrent access to shared data, there’s still the opportunity for data races to occur, as well as the
 potential for deadlocks. For a system that doesn’t need to operate concurrently, Akka.NET is likely to complicate matters
 rather than simplify them.

1.4. How does Akka.NET work?

 Although Akka.NET itself and how it works might be new to many developers, its underlying principles have been in development
 for decades, in the form of the actor model. As part of the actor model, independent entities, known as actors, are responsible for performing work. You can have multiple different types of actors within a system, and each of these
 types can have multiple instances running in the system. Every actor runs independently of every other actor in the system,
 meaning that two running actors can’t directly interfere or interact with each other. Instead, each actor is supplied with
 a mailbox, which receives messages, and an address, which can be used to receive messages from other actors in the system.
 An actor sits idle and doesn’t do anything until a new message is received in the actor’s mailbox; at this point, the actor
 can process the message using its internal behavior. Its behavior is the brain of the actor and defines how it should respond
 to each message it receives. If an actor receives more than one message, the messages are queued up in the order in which
 they were received, and the actor processes each message sequentially. Each actor will only process a single message at a
 time, although multiple actors can process their respective messages at the same time. This allows you to create highly concurrent
 applications without having to concern yourself with the underlying multithreading infrastructure and code that’s typically
 required when developing concurrent applications. It’s important to note also that actors are completely isolated, meaning
 that any internal information or data owned by one actor isn’t accessible by anything other than that actor.

 You can think of actors as being similar to people with mobile phones (see figure 1.2). Each person has an address through which they can be contacted; in this case, the address is the person’s phone number.
 The person initiating the phone call also has a unique address; again, this is a phone number. By means of those addresses,
 communication takes place between two people, for example, by sending an SMS with some data in it. The data you might include
 in an SMS is typically a question, if you want to acquire information, or a statement, if you want to pass information. The
 SMS you send goes to the other person’s mailbox, where they can asynchronously deal with it when they have the resources and
 bandwidth available. Like actors, every person is an independent, isolated entity with no ability to directly access information
 belonging to another person. If you want to find out what plans a friend has for the weekend, you don’t have direct access
 to that information; instead, you send them an SMS asking for the information. This is the same pattern you use when sending
 data between actors: rather than directly accessing an actor’s data, you send the actor a message asking for it, and await
 the response.

 Figure 1.2. Actors communicate much like people with mobile phones do.

 [image:]

 Similar to humans, actors can perform a number of operations upon receiving a new message. The simplest operation for a receiving
 actor is to ignore a message; if it’s particularly important, the requesting actor will resend the message and attempt a second
 time to retrieve a response. Alternatively, upon receiving a message, the receiving actor may choose to send a message elsewhere.
 This actor might not have all the information available to create a complete response, but it can contact other actors in
 the system, who might have the information available, after which the receiving actor can act on the message and send a response to the requesting actor. For a particularly intense or long-running task, an actor
 can spawn another actor that’s solely responsible for performing that task. This is similar to how people delegate work to
 other people if they lack the time needed to perform the task, or if they have other pressing matters to attend to. An actor
 can also choose how to respond to the next message it receives by modifying its own internal state. This is analogous to hearing
 new information from a third party that influences your answers to the questions you receive from other people.

 The main takeaway when considering the actor model is that its core design principle is to form an abstraction over the top
 of low-level multithreading concepts to simplify the process of developing concurrent applications. Understanding this, combined
 with the isolated nature of individual actors, ensures that the systems you build on top of Akka.NET are able to fulfill the
 criteria in the Reactive Manifesto.

 This chapter has shown the core principles that make up the Reactive Manifesto; in later chapters, you’ll see how you can
 apply concepts from Akka.NET to closely align your systems with the aims of the Manifesto.

Summary

 In this chapter, you learned

 	The driving force behind the move to reactive systems has been the need for systems that are responsive, resilient, elastic,
 and message-driven, and that can respond to changes in their environment quickly.

 	Akka.NET’s underlying programming principles are based on the actor model.

Chapter 2. Reactive application design

 	

 This chapter covers

 	Designing reactive systems with Akka.NET design patterns

 	Exploring application design concepts

 	Reactive design trade-offs

 	

 In chapter 1, you saw many reasons why you might want to design an application using the principles laid out in the Reactive Manifesto—reasons
 primarily driven by the changing face of technology over the past several decades. Whereas computers were once rarities, used
 primarily by researchers or organizations with sufficient funds, they have since been transformed into the commonplace, with
 the vast majority of households now having at least one computer, smartphone, or tablet. This number is set to grow with the
 introduction of the Internet of Things, which is transforming many of the mundane tasks we perform on a daily basis by harnessing
 the power of an interconnected network of smart devices. This transformation is likely to replicate many of the changes we’ve
 already seen in industry over the past few decades, as companies adapt to provide their services in the internet age.

 For example, in the world of e-commerce, more and more retailers are providing products and services through online stores.
 Online shopping has grown, with more consumers opting to use the internet for the majority of their shopping. This has led to a situation in which online retailers are in direct competition with each other. Although this level of competition
 benefits consumers who can access readily available products with competitive pricing, it puts a huge amount of pressure on
 retailers to ensure that their online user experience (UX) is near-perfect; otherwise, customers can easily transfer their
 business to competitors. Research indicates that when consumers encounter errors and excessive page-loading times, they move
 to competitors with friendlier websites.

2.1. Basic reactive system design

 Given that the overall aim of the Reactive Manifesto is to provide a responsive experience to the end user, it’s apparent
 that the principles of reactive application design could have significant benefits for the world of e-commerce. You saw the
 four tenets of a reactive application in chapter 1: it’s responsive, fault tolerant, elastically scalable, and message-driven. Of these four, three are directly relevant to
 an e-commerce website’s UX.

 If you want to increase the likelihood that customers remain on the website, then you need to ensure that pages load quickly
 and other actions are performed promptly. If a customer wants to spend money on an e-commerce website, that website should
 provide a fluid UX; otherwise, the website runs the risk of alienating the user and sending them to a competitor.

 An e-commerce website should also be elastically scalable, especially during sharp spikes in numbers of visitors during peak
 periods of traffic. When you analyze common shopping habits, you see many users accessing websites during a given period,
 driven by gift-giving holidays such as Christmas, key shopping-discount events such as Black Friday, and so on. In these cases,
 you want your service to handle the most requests possible. If you have a user spike of an order of magnitude more than normal,
 you need to accommodate it; otherwise, you run the risk of customers flocking en masse to competing websites.

 Similarly, when designing for failure, you want to ensure that even if a non-essential component of an e-commerce website
 fails, it can still accept the user’s payment. For example, if a customer navigates to the checkout page, they shouldn’t be
 faced with errors caused by non-essential features, such as recommendation services or advertising features intended to sell
 additional products or services. If such components fail, the customer should still be able to complete the purchase.

 This combination of requirements suggests that designing an e-commerce application using the principles specified in the Reactive
 Manifesto may provide substantial benefits. But effectively designing an application using the concepts of the Manifesto can
 mean significant changes, in terms of both the developer’s thought process and the application architecture. In order to better
 understand reactive application design, in this chapter we’ll look at how to design a traditionally CRUD-based application
 using actors with Akka.NET and the principles from the Manifesto. We’ll consider some of the challenges and design decisions
 you’re likely to encounter as you design such applications, as well as how you can effectively design an application using features made available by Akka.NET.

2.2. Reactive e-commerce application with actors

 As we’ve already considered, the way we use computers has rapidly changed over the past several decades, and they’re now seen
 as a commodity that exists in the majority of households, along with internet connection. But users have also become more
 demanding, requiring more features to enhance their shopping experience. These features include recommendation engines that
 suggest alternative products, trend calculations to predict which products are due to be the most popular, and integrations
 with external third-party services that provide additional features and benefits. And e-commerce businesses are interested
 in gaining insights into how customers are shopping and better positioning themselves to respond to customer demands. This
 produces high demands on the scalability of both the traffic-handling and application architectures.

 Let’s consider how you can effectively design a reactive system with an actor-based approach, representing the system entities
 with actors, in the familiar context of an e-commerce application. If you haven’t had the experience of writing e-commerce
 websites, you’ve likely used one to make purchases. You saw in the previous section why the world of e-commerce is a strong
 candidate for reactive application design, where the goal is to create applications that are responsive.

 Given that an average e-commerce website is quite large, we won’t examine every component within the system; instead, we’ll
 focus on one key aspect of the application: the final purchasing experience. This is the part of the website the user will
 navigate to once they’ve finished browsing and are ready to purchase their selected items. This component will have a number
 of requirements such as providing a shopping cart where users can store items as they browse the site, a checkout where users
 enter their shipping address, and a payment gateway where users enter payment card details.

 Chapter 1 addressed what an actor is and how actors allow you to design applications with concurrency handled transparently for you.
 It also addressed the requirements of a reactive application and the principles you should adhere to for success. In the rest
 of this chapter, we’ll consider how to incorporate these ways of thinking into a real-life application. We’ll also consider
 how these components would fit into the context of an application designed using Akka.NET, by linking these design ideas to
 the functionality and features provided as core components of the Akka.NET distribution.

 2.2.1. A reactive shopping cart

 The first component that a potential customer is likely to encounter is the shopping cart, analogous to the shopping cart
 in a physical store, which they can use when browsing to collect the items they intend to purchase. Thousands of users may
 browse the site at once, so your application must support the simultaneous use of thousands of shopping carts. To design this, you’ll create a shopping cart, which is nothing more than a list of items and the quantity
 of items. Each shopping cart is accessed through a unique identifier, which is stored in the user’s session. One of the core
 attributes of actors is the ability to store state, which varies per type of actor. In the case of the shopping cart, you
 could store a dictionary of the user’s session identifier, along with a list of items and quantities. This is how you might
 model the component if you were to use a database. But actors serialize all incoming messages; only one message is processed
 at any one time, in order. This means that if lots of users are trying to access their shopping carts at the same time, then
 they’ll have to sit through long queues. This defeats the aim of providing a responsive UX.

