

 [image: cover]

GWT in Action

 Adam Tacy, Robert Hanson, Jason Essington, and Anne Tökke

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	Development editor:
 	Jeff Bleiel

	Copyeditor:
 	Linda Recktenwald

	Technical proofreader:
 	Levi Bracken

	Proofreaders:
 	Tara Wlash, Tiffany Taylor

	Typesetter:
 	Marija Tudor

	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Dedication

 To my parents. Simply, thank you once again, for everything.

 A. Tacy

 To my father. Thank you for every computer and video game you bought me when I was a kid. Without them I would have never
 found my true passion in this world.

 R. Hanson

 To my wonderful husband Peter and daughter Elektra. Thank you for allowing me the time to do this. Love you both.

 A. Tökke

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of GWT in Action

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Basics

 Chapter 1. GWT

 Chapter 2. Building a GWT application: saying “Hello World!”

 Chapter 3. Building a GWT application: enhancing HelloWorld

 2. Next steps

 Chapter 4. Creating your own widgets

 Chapter 5. Using client bundles

 Chapter 6. Interface design with UiBinder

 Chapter 7. Communicating with GWT-RPC

 Chapter 8. Using RequestFactory

 Chapter 9. The Editor framework

 Chapter 10. Data-presentation (cell) widgets

 Chapter 11. Using JSNI—JavaScript Native Interface

 Chapter 12. Classic Ajax and HTML forms

 Chapter 13. Internationalization, localization, and accessibility

 3. Advanced

 Chapter 14. Advanced event handling and event busses

 Chapter 15. Building MVP-based applications

 Chapter 16. Dependency injection

 Chapter 17. Deferred binding

 Chapter 18. Generators

 Chapter 19. Metrics and code splitting

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of GWT in Action

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Basics

 Chapter 1. GWT

 1.1. Unplanned consequences (or the road to GWT)

 1.2. Exploring the toolkit

 1.2.1. Compiling and optimizing

 1.2.2. Powerful widgets and a template binding engine

 1.2.3. Event handling beyond JavaScript

 1.2.4. Client/server communication

 1.2.5. Simplified development and debugging

 1.2.6. Integration with JavaScript

 1.2.7. History support

 1.2.8. Internationalization—Sprechen sie Deutsch?

 1.3. Setting up your development environment

 1.3.1. Installing the JDK

 1.3.2. Installing Eclipse

 1.3.3. Installing the Google Plugin for Eclipse

 1.3.4. Installing the Development Mode Browser Plugin

 1.4. Summary

 Chapter 2. Building a GWT application: saying “Hello World!”

 2.1. What’s a GWT application?

 2.1.1. Seeing the user’s view

 2.1.2. Examining the developer’s view

 2.1.3. Understanding development vs. web mode

 2.2. Examining the options for building an application

 2.3. Creating the HelloWorld application with the GPE

 2.3.1. Creating a web application

 2.3.2. Defining a GWT module

 2.3.3. Adding an entry point

 2.3.4. Providing the web page

 2.3.5. Recapping the magic

 2.4. Running HelloWorld in development mode

 2.4.1. Starting development mode in Eclipse

 2.4.2. Passing parameters to development mode

 2.5. Finding out where it went wrong

 2.5.1. Checking the code in the IDE for errors

 2.5.2. Looking at development mode output

 2.5.3. Reading the console output

 2.5.4. Debugging in Eclipse

 2.5.5. Inspecting using browser development/inspection tools

 2.6. Compiling HelloWorld for web mode

 2.6.1. Running the GWT compiler from Eclipse

 2.6.2. Welcoming the user

 2.6.3. Passing parameters to the GWT compiler

 2.7. Understanding modules vs. packages

 2.7.1. What’s in a GWT module?

 2.7.2. What are the benefits of modules?

 2.7.3. How many modules should you have?

 2.8. Digging deeper into the uncompiled application

 2.8.1. Folder structure convention

 2.8.2. Package structure convention

 2.8.3. What parts of Java can you use in GWT?

 2.8.4. The server side

 2.9. Reviewing the deployable application part of a GWT application

 2.9.1. Harnessing different linkers

 2.10. Building on your understanding

 2.11. Summary

 Chapter 3. Building a GWT application: enhancing HelloWorld

 3.1. Reexamining the example application

 3.1.1. Enhancements

 3.2. Updating the HTML

 3.3. Enhancing the code

 3.4. Creating your user interface

 3.4.1. Presenting widgets

 3.4.2. Organizing layout with Panels

 3.5. Manipulating the page

 3.5.1. Using the RootPanel/RootLayoutPanel

 3.5.2. Manipulating the DOM directly

 3.6. Handling events

 3.6.1. What are events?

 3.6.2. Handling events

 3.6.3. Preventing the browser from handling events for you

 3.7. Managing history

 3.7.1. Handling history in GWT

 3.7.2. Implementing history management in your application

 3.8. Styling components

 3.8.1. Programmatic styling

 3.8.2. Low-level styling

 3.8.3. Cascading Style Sheets

 3.8.4. GWT themes

 3.9. Securing your application

 3.10. Building on your understanding

 3.11. Summary

 2. Next steps

 Chapter 4. Creating your own widgets

 4.1. What is a widget, again?

 4.2. Creating a new widget from the DOM

 4.2.1. Introducing the GWTiACanvas widget

 4.2.2. Indicating functionality

 4.2.3. Hooking up events

 4.2.4. Getting secure by using SafeHTML, SafeUri, and SafeStyles

 4.3. Extending an existing widget

 4.3.1. Introducing the ReportSizeLabel widget

 4.3.2. Indicating functionality

 4.4. Extending a panel

 4.5. Creating a composite

 4.5.1. Introducing the DataField question/answer widget

 4.5.2. Indicating functionality

 4.6. Using layout panels

 4.6.1. Types of layout panels

 4.6.2. Creating layout panels

 4.6.3. Animating layout panels

 4.7. Applying animation to widgets

 4.7.1. Widgets that animate

 4.7.2. Building your own animation

 4.8. Exploring the lifecycle of a widget

 4.8.1. Creating a widget

 4.8.2. Adding a widget

 4.8.3. Removing a widget

 4.8.4. Destroying a widget

 4.9. Getting Elemental, my dear Watson!

 4.9.1. Examining Elemental

 4.9.2. Understanding the challenge

 4.9.3. Noting the benefit

 4.10. Summary

 Chapter 5. Using client bundles

 5.1. Client bundle basics using DataResources

 5.1.1. DataResource

 5.1.2. A simple ClientBundle

 5.1.3. Creating ClientBundles using the Google Plugin for Eclipse

 5.1.4. Using ClientBundles in an application

 5.2. Text resource types

 5.2.1. TextResource

 5.2.2. ExternalTextResource

 5.3. ImageResource

 5.3.1. Internationalizing image resources

 5.3.2. Using ImageResource in an application

 5.3.3. Controlling ImageResource optimizations

 5.4. CssResource

 5.4.1. Optimizations

 5.4.2. Constants

 5.4.3. Runtime evaluation

 5.4.4. Nonstandard CSS values

 5.4.5. Conditional sections

 5.4.6. Using other resources in CSS

 5.5. Summary

 Chapter 6. Interface design with UiBinder

 6.1. Binding the designer’s HTML to Java code

 6.1.1. Creating the UiBinder XML template from HTML

 6.1.2. Working with panels

 6.1.3. Binding the UiBinder XML template to the Java code

 6.1.4. Binding XML template elements to Java variables

 6.1.5. Making sense of it all

 6.2. Handling events with UiBinder

 6.3. Introducing the UiBinder expression language

 6.4. Applying style with UiBinder

 6.4.1. Using <ui:style> to generate a CssResource

 6.4.2. Accessing a generated CssResource in your widget

 6.5. Using the Eclipse plug-in with UiBinder

 6.6. Summary

 Chapter 7. Communicating with GWT-RPC

 7.1. Surveying GWT-RPC

 7.1.1. Understanding asynchronous behavior

 7.1.2. Defining the GWT-RPC classes, interfaces, and annotations

 7.1.3. Understanding GWT-RPC package structure

 7.2. Learning GWT-RPC with Twitter

 7.3. Fetching data from Twitter the non-GWT way

 7.4. Defining a GWT-RPC-compatible model

 7.4.1. Using the Serializable and IsSerializable interfaces

 7.4.2. Special considerations when using JPA/JDO model objects as DTOs

 7.4.3. Developing custom serializers

 7.5. Building and deploying the server side

 7.5.1. Handling exceptions

 7.5.2. Defining the service interface

 7.5.3. Writing the servlet

 7.5.4. Deploying the servlet

 7.6. Writing the client

 7.6.1. Defining the asynchronous interface

 7.6.2. Making the call to the server

 7.7. Debugging GWT-RPC

 7.8. Securing GWT-RPC against XSRF attacks

 7.8.1. Understanding XSRF attacks

 7.8.2. Adding XSRF protection to your RPC calls

 7.9. Summary

 Chapter 8. Using RequestFactory

 8.1. Enabling annotation processing

 8.1.1. Enabling RequestFactory annotation processing with javac

 8.1.2. Enabling RequestFactory annotation processing in Eclipse

 8.1.3. Enabling RequestFactory annotation processing in Maven

 8.2. Understanding RequestFactory architecture

 8.2.1. Investigating the client-side architecture

 8.2.2. Investigating the server-side architecture

 8.3. Understanding the example project in this chapter

 8.3.1. Enabling RequestFactory the simple way

 8.3.2. Creating proxy interfaces for the domain classes

 8.3.3. Developing the factory interface

 8.3.4. Using the domain class as the service

 8.3.5. Adding the RequestFactory servlet to the web.xml

 8.4. Making calls to the server

 8.4.1. Initializing RequestFactory and making a simple call to the server

 8.4.2. Creating and persisting using instance methods

 8.4.3. Fetching persisted objects from the server

 8.4.4. Editing domain objects and updating them on the server

 8.4.5. Error handling and validation

 8.5. Using custom Locators and ServiceLocators (the “long way”)

 8.5.1. Creating a custom Locator

 8.5.2. Creating a custom ServiceLocator

 8.6. Summary

 Chapter 9. The Editor framework

 9.1. Framework and editor overview

 9.1.1. Local domain object

 9.1.2. Remote domain objects

 9.2. Examining the chapter’s examples

 9.3. Editor types

 9.4. Constructing your first editor

 9.4.1. Defining the local domain object

 9.4.2. Defining the editor

 9.5. Binding an editor with drivers

 9.5.1. EmployeeEditor with SimpleBeanEditorDriver

 9.5.2. EmployeeEditor with RequestFactoryEditorDriver

 9.6. Editor subinterfaces

 9.6.1. Accessing the backing framework services

 9.6.2. Editors with error handling

 9.6.3. Editing immutable objects or read-only editors

 9.6.4. Building customized editor behavior

 9.6.5. Handling subeditors of the same type

 9.7. Accessing the RequestContext

 9.8. Alternate way to construct an editor

 9.9. Adapters

 9.9.1. Editing a range of domain objects

 9.9.2. Adapting a list of objects with associated editors

 9.9.3. Adapters for single-domain objects

 9.10. Summary

 Chapter 10. Data-presentation (cell) widgets

 10.1. Understanding cells

 10.1.1. Looking at display cells

 10.1.2. Updating edit cells

 10.1.3. Reacting with action cells

 10.2. Creating custom cells

 10.2.1. Composite

 10.2.2. From first principles

 10.3. Reviewing GWT’s cell widgets

 10.4. Looking at a CellList

 10.4.1. Creating a CellList

 10.4.2. Populating data

 10.4.3. Paging

 10.4.4. Handling user updates

 10.4.5. Managing data selection with SelectionModels

 10.4.6. Managing the keyboard

 10.5. Walking through a CellTree

 10.5.1. Opening a new node (with an asynchronous data provider)

 10.5.2. Determining if you’re in the leaves

 10.6. Browsing a CellBrowser

 10.7. Constructing a CellTable

 10.7.1. Creating a table

 10.7.2. Applying headers and footers

 10.7.3. Sorting the view

 10.8. Building a DataGrid

 10.8.1. Custom CellTable building

 10.9. Summary

 Chapter 11. Using JSNI—JavaScript Native Interface

 11.1. What is JSNI?

 11.2. Should you use JavaScript Native Interface?

 11.2.1. No, JSNI can quickly limit the benefits of using GWT

 11.2.2. Yes, in these circumstances

 11.3. Benefiting from the Google Plugin for Eclipse

 11.4. Interacting with the browser

 11.4.1. Example: getting a browser element’s computed style

 11.4.2. Passing data in to a JSNI method

 11.4.3. Passing data out of a JSNI method

 11.5. Handling objects from JavaScript

 11.5.1. Example: using a JavaScriptObject

 11.5.2. Example: extending a JavaScriptObject (an overlay)

 11.5.3. Example: overlaying JSONP data

 11.6. Wrapping a third-party library

 11.6.1. Ensuring the library is loaded

 11.6.2. Accessing Java fields from JSNI

 11.6.3. Calling Java methods from JSNI

 11.6.4. Creating Java objects within JSNI

 11.6.5. Handling exceptions

 11.7. Exposing an API to JavaScript

 11.8. Summary

 Chapter 12. Classic Ajax and HTML forms

 12.1. Understanding the underlying technology

 12.1.1. Understanding how HTTP works

 12.1.2. Understanding Ajax and the XMLHttpRequest object

 12.1.3. Understanding JSON

 12.1.4. Solving same-site-origin policy issues with JSONP

 12.2. Using RequestBuilder

 12.3. Posting data with RequestBuilder

 12.4. Using the JSON API and JsonpRequestBuilder

 12.5. Using JSON with JS overlay

 12.6. Using the XML API and RequestBuilder

 12.6.1. Developing a server-side proxy

 12.6.2. Calling the proxy from GWT

 12.6.3. Parsing XML content

 12.7. Using FormPanel

 12.7.1. Designing a FormPanel registration form with UiBinder

 12.7.2. Adding behavior to the FormPanel

 12.8. Summary

 Chapter 13. Internationalization, localization, and accessibility

 13.1. Making a user feel comfortable

 13.1.1. What is a locale?

 13.1.2. Setting up to use internationalization

 13.1.3. The three types of GWT internationalization

 13.2. Using static string internationalization

 13.2.1. The basics

 13.2.2. The Localizable interface

 13.2.3. Localizable annotations

 13.2.4. Internationalizing constants

 13.2.5. Constants with lookup

 13.2.6. Messaging the user

 13.2.7. Dealing with plurals

 13.2.8. Selecting an alternate message based on a user-defined value

 13.2.9. Securing against hack attacks

 13.3. Using static-string i18n with UiBinder

 13.3.1. Constants with UiBinder

 13.3.2. Parameterized messages with UiBinder

 13.4. Determining the locale for static-string internationalization

 13.4.1. Where to find the locale

 13.4.2. Searching the URL

 13.4.3. Digesting a cookie

 13.4.4. Finding a HTML meta tag

 13.4.5. Letting the browser decide

 13.5. Internationalizing client bundles through static internationalization

 13.6. Dynamic string internationalization

 13.6.1. The basics

 13.6.2. Enhancing the standard approach

 13.6.3. Using with UiBinder

 13.7. Localization of dates, times, and currencies

 13.7.1. Displaying numbers and currency values

 13.7.2. Displaying times and dates

 13.8. Displaying the right direction

 13.9. Accessibility

 13.9.1. Using alternative text for images

 13.9.2. Setting up a tab index

 13.9.3. Establishing keyboard shortcuts

 13.9.4. Providing alternative styling

 13.9.5. Using ARIA

 13.10. Summary

 3. Advanced

 Chapter 14. Advanced event handling and event busses

 14.1. Understanding events

 14.1.1. Native events

 14.1.2. Logical events

 14.2. How GWT manages events

 14.2.1. Dealing with browser differences

 14.2.2. Preventing event propagation

 14.2.3. Sinking events

 14.2.4. Event-handling efficiency

 14.3. Previewing and canceling events

 14.4. Preventing default actions

 14.5. Programmatically firing events

 14.6. Creating your own events

 14.6.1. Defining your own event

 14.6.2. Providing the related interfaces

 14.7. Event busses

 14.7.1. What is an event bus?

 14.7.2. Types of event busses

 14.7.3. Using SimpleEventBus

 14.8. Summary

 Chapter 15. Building MVP-based applications

 15.1. What is MVP?

 15.1.1. The two-way presenter/view relationship

 15.1.2. Benefits of MVP

 15.2. Looking at the PhotoApp’s MVP foundations

 15.2.1. From the user’s perspective

 15.2.2. From the MVP perspective

 15.3. Building MVP yourself

 15.3.1. Creating views

 15.3.2. Presenters

 15.3.3. Controlling the application

 15.4. Altering an MVP application

 15.4.1. Swapping out layers

 15.4.2. Optimizing with code splitting

 15.5. Activity and Place (GWT’s reference MVP approach)

 15.5.1. How objects plug together

 15.5.2. Activity

 15.5.3. Places

 15.5.4. Place tokenizers

 15.5.5. PlaceHistoryMapper

 15.5.6. ActivityMapper

 15.5.7. Managing the activities

 15.5.8. Controlling the place

 15.5.9. Views

 15.5.10. Code splitting with activities and places

 15.6. Fitting editors/data-presentation widgets into MVP

 15.7. Summary

 Chapter 16. Dependency injection

 16.1. Dependency injection—the fundamentals

 16.1.1. At the beginning of time

 16.1.2. Straight from the factory

 16.1.3. Automatically injecting dependencies

 16.2. Guice—a Java dependency injection framework

 16.2.1. Defining the dependencies

 16.2.2. Types of injection

 16.3. GIN—how DI differs in a GWT application

 16.3.1. Setting up for GIN

 16.3.2. Defining the dependencies

 16.3.3. Bootstrapping the injection

 16.3.4. Types of injection

 16.3.5. Swapping components

 16.4. When to avoid DI

 16.5. Summary

 Chapter 17. Deferred binding

 17.1. What is deferred binding?

 17.1.1. Storing implementation differences in a Java class hierarchy

 17.1.2. Identifying differences via deferred-binding properties

 17.1.3. Informing the GWT compiler which class to pick

 17.1.4. Telling the GWT compiler to make a choice

 17.1.5. Selecting the right difference (permutation) at runtime

 17.2. Pulling it all together

 17.3. Using GWT properties to drive deferred binding

 17.3.1. Defining properties

 17.3.2. Extending properties

 17.3.3. Setting properties

 17.3.4. Conditionally setting a property

 17.4. Managing explosive permutation numbers

 17.4.1. Using conditional properties

 17.4.2. Using soft permutations

 17.5. Determining a property value

 17.5.1. Directly setting a property value in a module file

 17.5.2. Understanding property providers

 17.5.3. Generating a property provider

 17.5.4. Defining your own property provider

 17.5.5. Handling failure to get a property value

 17.6. Coping when deferred binding isn’t enough

 17.7. Summary

 Chapter 18. Generators

 18.1. What does a generator do?

 18.2. What can a generator do?

 18.2.1. Accessing code

 18.2.2. Reading annotations

 18.2.3. Accessing properties

 18.2.4. Using resources

 18.2.5. Manipulating resources

 18.3. Indicating what generator to use and when

 18.4. Configuration properties

 18.4.1. Defining a configuration property

 18.4.2. Setting the value of a configuration property

 18.4.3. Extending the value of a configuration property

 18.5. Pulling it all together

 18.6. Preparing to write a generator

 18.7. Creating your own generator

 18.7.1. The generator skeleton

 18.7.2. Creating a new type

 18.7.3. Writing the new content

 18.7.4. Accessing types through the TypeOracle

 18.7.5. Accessing properties through the PropertyOracle

 18.7.6. Accessing resources through the ResourceOracle

 18.7.7. Logging in the generator

 18.8. Using your new generator

 18.9. Summary

 Chapter 19. Metrics and code splitting

 19.1. Using the lightweight metrics tool

 19.1.1. Defining lightweight metrics

 19.1.2. Writing the global collector

 19.1.3. Sending events to the global collector

 19.2. Using the Compile Report

 19.2.1. Turning on the Compile Report

 19.2.2. Understanding the permutation list

 19.2.3. Digging into the Split Point report

 19.3. Making use of code splitting

 19.3.1. Understanding code-splitting basics

 19.3.2. Using the Async Package pattern

 19.3.3. Reducing leftover code by specifying load order

 19.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition of GWT in Action

 “The thoroughness with which the authors designed examples to illustrate every concept dealt with in the book, and the scope
 of the topics addressed in it, make GWT in Action a valuable addition to any web developer’s library.”

 JavaLobby.com

 “...GWT in Action is packed with practical information on a wide range of GWT topics.”

 Michael J. Ross, Slashdot.org

 “How to ‘think in GWT.’ The code: concise, efficient, thorough, and plentiful.”

 Scott Stirling, AT&T

 “Impressive quality and thoroughness. Wonderful!”

 Bernard Farrell, Kronos, Inc.

 “Perfect for Java developers struggling with JavaScript.”

 Carlo Bottiglieri, Sytel-Reply

 “A real nitty-gritty tutorial on the rich features of GWT.”

 Andrew Grothe, Eliptic Webwise, Inc.

 “I was very impressed with the quality of the writing as well as the depth of coverage. The authors explain the examples well
 and it is easy to follow them.”

 YongSung Kim, Amazon reader

Preface

 Since the first edition of this book, the Google Web Toolkit (GWT) has grown, transformed, and emerged from a promising toolkit
 for web applications into a toolkit that truly supports 1) developers and managers in delivering web applications that can
 push the boundaries of the possible and 2) the application of well-tread engineering principles (deliver better user experience
 while reducing your development/maintenance costs).

 This second edition of GWT in Action builds on our view of the first edition. It’s fully updated to look at the latest version, 2.5, of GWT, covering all the
 new techniques and tools—we even take a sneak look at the experimental items (such as super dev mode and the Elemental library).
 Perhaps the largest change between editions is that each technique is demonstrated with individual examples, rather than the
 monolithic example from the first edition. We hope this allows more focused examination and offers a simpler Ctrl+C/V mechanism
 to get those techniques into your own applications.

 We said back in 2005 that we had noticed the web was reinventing itself with terms such as Ajax and Web 2.0 being created
 to help define the new technologies and ideas. As time has gone by, snippets of those techniques are on most modern websites—few
 websites require a page refresh to the server when updating information nowadays. Some sites have even harnessed the techniques
 in more depth and become full web applications, for example, Google Docs.

 Now, in 2012, we stand at the beginning of the next reinvention, one that will further push the complexity of web applications.
 As we move toward the “cloud,” users will begin to expect web applications to be equivalent to the desktop ones they’ll be
 replacing. As more people gain access to smartphones, tablets, and related devices, there are opportunities to harness HTML
 5 to provide web applications giving the same functionality as native apps, but you only have to write once rather than per
 device. These applications must be more robust than ever and will need the stability, speed, and responsiveness that at least
 matches native applications, if they’re to be taken seriously.

 To reach that point, we’ll see a maturing from ad hoc web development that includes a sprinkling of Ajax toward the use of
 solid, well-tread, and proven engineering techniques that are commonly available in desktop development—such as applying architectural
 patterns such as MVP as well as harnessing dependency injection. At the same time, the flexibility of design, so well established
 in the web with separation of functionality from styling, needs to be maintained and harnessed.

 But there are still the same challenges in the development world that we saw seven years ago around how to effectively manage
 a project using JavaScript—where we’re missing the ease of development that comes with typed languages, testing, and powerful
 IDEs with debugging capabilities. As we said in the first edition, it’s possible to manage a successful JavaScript project,
 but the need to develop and maintain several different versions of code for differing browsers is a headache, even with the
 use of modern libraries such as JQuery and the like. We can add to that the additional headaches we’ve experienced when trying
 to maintain all those versions over the lifecycle of the project, especially in the maintenance phases.

 It also remains, in our experience, a challenge to find enough JavaScript developers who are aware of the necessary browser
 issues and nuances and who are also at a sufficient comfort level with production-quality development processes to deliver
 a large project (compared to the number of Java programmers).

 Step forward the latest versions of the Google Web Toolkit. GWT provides the support necessary for industry-grade techniques—event
 busses, the model-view-presenter (MVP) pattern, together with a reference implementation that can be built on activities and
 places, as well as the ability to harness dependency injection through Guice/GIN.

 We get access to efficient paging through large datasets with cell-based data presentation widgets and can harness Editors
 to ensure that updates in UI items are automatically reflected in the model—and if that model is stored on a server, we can
 batch together updates to increase efficiency. Generators can be employed to minimize the amount of boilerplate code a developer
 needs to write and get it generated automatically at runtime.

 GWT handles browser differences for us, and the compiler is aggressive about code removal to ensure the download is as small
 as possible for the user. Using GWT’s code-splitting approach together with bundling resources further increases the speed
 of downloads and efficiency—smaller and more efficient downloads all increase the user’s experience.

 The toolkit allows us to separate the user interface from functionality by using the declarative UiBinder approach. CSS styling
 can be applied to all widgets to give the style needed, and it’s also possible to have some primitive themes, three of which
 are built in; beyond that your designer is free to apply the look you’ve agreed upon.

 Because we’re developing in Java, we get access to all the Java tooling that’s available as well as robust IDEs in which to
 develop and debug. We can harness Ant and/or Maven to build the application and use Hudson to perform continuous builds and
 drive automated JUnit testing, ensuring team development quality is measurable and actionable. GWT’s development modes (original
 and super) enable us to user test in our browser of choice while debugging live in the IDE. There’s much more to say about
 that in this preface!

 Let’s be clear: GWT won’t solve every problem you have when it comes to creating rich web applications. But GWT takes massive
 steps toward maturing the process of developing and maintaining Ajax applications. Couple that with a strong architect and
 development processes, and you can push those web application boundaries while being sure to excite and engage the user—just
 look at Rovio’s very popular Angry Birds version on Chrome, which is written in GWT (http://mng.bz/xbYP).

 The first version of this book summed up by saying, “We don’t even want to think about the amount of effort that would be
 required to program, let alone debug, any issues or perform maintenance across six different browsers for an application such
 as Dashboard [the monolithic application in the first edition] directly in JavaScript.” That view hasn’t changed, except to
 say there are more browser combinations, and the latest version of GWT brings more industry-grade techniques to the table
 to help us.

 GWT has proven to be a viable alternative to pure JavaScript development. Each major release of GWT brings new features and
 bug fixes yet leaves relative stability to legacy code. Because it’s open source, you can contribute your own patches or see
 if patches in future releases are going to be helpful with any issue you might be having. With a wide user community it’s
 also easy to get answers to problems.

 We hope that through this book we can share our enthusiasm for GWT and make it easier for you to get the most out of this
 technology.

Acknowledgments

 There are four names on the cover as authors, but, as ever, writing and producing this book has been a tremendous undertaking
 by a large cast.

 We’d like to begin our thanks with Michael Stephens from Manning for getting this project started and for his continuing support
 and honesty about the amount of work the book would take, even though at least two of us should have known better!

 Our thanks also to publisher Marjan Bace for greenlighting the project and heading up a great team at Manning. That team included
 some familiar faces and some new ones, but always of the same outstanding quality and helpfulness. This includes the fantastic
 work from Jeff Bleiel, Mary Piergies, Linda Recktenwald, Tara Walsh, Tiffany Taylor, and Marija Tudor. Thanks to all of you
 for being part of this team and seeing yet another edition of GWT in Action smoothly through the publication process.

 We also want to thank Levi Bracken for being our technical proofreader. We’ll never underestimate the work that a technical
 review takes in terms of time and effort, and we also acknowledge the invaluable improvements the output required us to make!

 As reviewers ourselves we know the effort required to review manuscripts, so special thanks go to the following: A.O. Van
 Emmenis, Christian Goudreau, Dale Gregory, Ernesto Cullen, James Hatheway, Jeffrey Chimene, Jeroen Benckhuijsen, Jérôme Baton,
 John Pedersen, Michael Glenn Williams, Michael Moossen, Mike Bailey, Nathan Workman, Olivier Nouguier, Olivier Turpin, Orhan
 Alkan, Patrick Steger, Peter Hannaway, Ramnivas Laddad, Rick Wagner, and Bradley Jones.

 Thank you all for the free time that you gave up to review our chapters and the very useful comments and questions you provided.

 We feel it’s also important to thank our readers of the MEAP (Manning Early Access Program) versions of the book for their
 comments and questions and for their patience in reading chapters that had not gone through the final editing and proofreading
 processes at the time that they were reading them. Your comments and insights were most helpful.

About This Book

 Google Web Toolkit, or GWT, works on a simple but powerful idea. You write a web application in Java, and GWT cross-compiles
 it into JavaScript. This free, open source collection of tools is both supported and used by Google.

 The latest version, GWT 2.5, includes a library of high-quality interface components, an easy-to-use UI designer, and a set
 of productivity tools that make using GWT a snap, and it supports industry-grade development techniques such as MVP, dependency
 injection, and event busses. And yes, the JavaScript it produces is really, really good, especially if you turn on the optional
 Closure compiler!

 GWT in Action, Second Edition is a completely revised edition of the best-selling GWT book. It covers all the new features introduced in GWT 2.5, as well
 as the best development practices that have emerged in the GWT community. It begins with a rapid-fire introduction to GWT
 and Ajax to get you up to speed with GWT concepts and tools. Then, you’ll explore key concepts like managing events, interacting
 with the server, creating UI components, building your user interface declaratively using UiBinder, and more.

 As you move through the engaging examples, you’ll pick up the skills you need to stay ahead of the pack. You’ll absorb the
 latest thinking in application design and industry-grade best practices, such as these:

	Writing code that handles internationalization and localization; you can make your applications usable by as many people as
 possible while keeping the download size as small as it can be (and small download sizes mean quicker starts and better user
 experience).

 	Driving out browser differences in your coding; why worry that IE does things differently than other browsers requiring you
 to pepper your code with if/then/else statements? GWT does away with those concerns for you in the majority of cases, and when you implement your own functionality
 you can harness the same approaches to minimize your final application code size as well as have an easily maintainable code
 base (cutting your maintenance costs).

 	Implementing the MVP pattern becomes easy in GWT with the arrival of Activitys and Places, though you’re not forced to implement MVP or forced to use Activitys and Places to do so.

 	Using dependency injection to manage dependencies between various aspects of your application; you’ll see how to use the GIN
 library, which is based on the popular Guice library, to do dependency injection within GWT client-side code.

 	Harnessing event busses to further loosely couple your application.

 	Presenting large data sets in the new lightweight cell-based widgets, which support paging, sorting, and data retrieval while
 giving the best GUI performance possible.

 	Editing data by using Editors, allowing the GWT compiler to take the strain of ensuring that code is produced to keep presentation
 and models in sync.

 	Optimizing your code by implementing code splitting; even though GWT produces fantastically compact JavaScript code, it also
 supports you in pushing the complexity boundaries of your functionality. That probably will increase your code size, and so
 you can split up your application so that only necessary code segments are downloaded when appropriate. GWT also comes with
 a lightweight metrics mechanism and compiler reports to allow you to further tweak and optimize your code.

Any substantial application requires server-side components, and many books can tell you about all the server-side development
 techniques (Java, PHP, and so on) for which GWT is highly flexible and which it can plug into. Our approach in GWT in Action is to concentrate several chapters on ensuring you get a thorough understanding of GWT’s client/server communication techniques.
 For example:

	JSON processing

 	GWT-RPC

 	Form handling

 	Traditional Ajax communication

 	RequestFactory

Although we don’t have a dedicated section on security, we do highlight GWT techniques as and where appropriate, for example,
 using SafeHtml when creating new widgets, manipulating the DOM, or using i18n; using SafeHtmlTemplates in Cell widgets; and
 protecting against cross-site forgery requests in GWT-RPC.

 We’ve substantially updated and rewritten the examples from the first edition, splitting them into examples that focus purely
 on the topic of the chapter. Our hope is that these new examples give you a much more focused view of how to use GWT as well
 as show off what GWT can do. By breaking out into examples per chapter, it should be much easier to see the techniques in
 use and then employ them directly in your applications as needed.

Who should read this book

 The book is aimed at anyone with an interest in

	Understanding GWT initially and in more detail

 	Pushing the boundaries of web application functionality in a controlled manner

 	Reducing the headache of maintaining web applications

 	Reducing the lifecycle costs of web applications that continuously excite your users

We appreciate that the readership will come from varied backgrounds—JavaScript programmers looking to see what the fuss is
 about or wanting, just as we did, to give better structure to their web applications; Java programmers learning that they
 can now program Ajax applications simply; server-side developers interested in understanding how GWT would affect them (it
 doesn’t have to); web designers looking to see how this useful development approach fits in with their approach (and to see
 how to guide programmers to use GWT’s built-in approaches to ensure their life is easier); managers/technicians looking to
 see how to get the web application beast under control; and many others.

 In the first edition we spent a lot of time selling GWT itself. In this edition we no longer feel a need for that; rather
 we can spend the time on the exciting array of techniques and tools in GWT and get going more quickly.

 Readers looking for an introduction to GWT concepts and components should find it in chapters 2 and 3. Here we go through using the tools to create a simple GWT HelloWorld application and show how to run in various modes (developer and super dev) as well as how to compile and debug problems.
 We then look at a more complex GWT application to show how to use concepts such as widgets, panels, history management, and
 styling. By the end of these two chapters, you should be familiar with creating a basic application, enhancing it to give
 some real complexity, as well as running/ debugging the application in development mode and compiling it for web mode.

 The middle part of the book covers techniques you’d use in everyday applications: building your own widgets, using client
 bundles, separating design from coding with UiBinder, communicating with the server in various ways, using widgets as editors,
 efficiently displaying/sorting/paging through large data sets, and interfacing with JavaScript (JSNI/fast JSON parsing with
 overlay objects).

 More advanced readers will find that the book addresses the industry-grade approaches GWT supports that you may well have
 thought of but perhaps haven’t yet implemented—and we hope a few things you haven’t thought of yet! We cover MVP, dependency
 injection, deferred binding, generators, and using metrics and code splitting to squeeze out the most performant code possible.

 You should be familiar with the concept of Java classes and packages, although we feel this is something you can pick up as
 you read the book, follow the code examples, and use an IDE, such as Eclipse. A lot of GWT (and Java) issues revolve around
 class-paths and GWT’s package structure, so we recommend a good read of chapter 2 if you get stuck.

Roadmap

 Part 1 “Basics” consists of chapters 1 through 3. It aims to get you going in GWT and producing a first real-world example. We would suggest reading it in the order it is
 presented:

	
Chapter 1 provides an introduction to GWT. We begin by defining what GWT is and how it fits into this new ecosphere of rich-client
 web development. Then for readers new to GWT we provide an overview of what GWT means and some explanation of the more popular
 components of the toolkit. The chapter then explains how to set up your development environment so that you can begin writing
 applications using GWT.

 	
Chapter 2 starts our journey with GWT. We look at how to use the Google Plugin for Eclipse to create a basic GWT application and then
 examine its structure and what we can do with it. It’s a hands-on chapter where you can create the application yourself as
 we reinforce the points (or you can just download the result). We also show how to run the application in development mode
 (and touch on the new experimental super dev mode), how to use standard debug tools to hunt problems, and how to compile the
 application for web mode, as well as clarify a number of GWT concepts such as modules and client- and server-side code.

 	
Chapter 3 takes the next step in building a real application. Typically you perform the steps in chapter 2 to get a base structure and then build your application on that result. In this chapter we look at an application that has
 been through those steps and examine the concepts of widgets, panels, event handling, managing history, and styling components
 to get from a mockup introduced at the start of the chapter to the actual implementation at the end.

Part 2 we have called “Next Steps” and covers chapters 4 through 13. Here we discuss the usual technologies that you will often use when taking your application to the next level. You can read
 this part in order or jump directly to the topics that you are interested in:

	
Chapter 4 is where we really start to dig into GWT. We look at widgets (which include panels) in detail, covering their lifecycle and
 three ways to create new widgets should GWT not contain something you need (including creating composite widgets). We also
 spend a moment looking at the GWT 2.5 Elemental library and examine Layout panels because they’re the future of GWT panels.

 	
Chapter 5 introduces you to client bundles, a unique tool that allows you to create bundles of images, binary documents, stylesheets,
 and more and have them optimized by the GWT compiler. In this chapter you’ll also learn about GWT’s extension to CSS, which
 allows you to include runtime-evaluated expressions in your styles including constants and conditional statements.

 	
Chapter 6 is where we dive into UiBinder, one of the defining features of GWT. In this chapter we provide a superior method of creating
 complex composite widgets. We begin the chapter by showing you how to transform HTML into a UiBinder template and bind that
 template to a Java class. Next, we explain how to bind events to methods in the Java class and then how to apply CSS styles
 to the template elements.

 	
Chapter 7 introduces you to GWT-RPC, the first of several methods of communicating with the server. In this chapter we explain how
 you can send Java objects between the client and server, as opposed to using some other message format like JSON or XML. We
 then look at how you can debug client/server communications and how to protect your users from cross-site request forgery
 attacks.

 	
Chapter 8 examines RequestFactory, an alternate method of client/server communication. Whereas GWT-RPC is more general purpose, RequestFactory
 specifically targets the communication of domain objects that will ultimately be persisted in a database. In this chapter
 we provide an overview of the architecture and show you how to build the interfaces and objects required to use this tool
 and how to integrate it with Java’s Bean Validation specification (JSR-303).

 	
Chapter 9 The Editor framework supports editing of any bean-like object holding a bunch of properties using widgets. It reduces the
 amount of code needed to glue bean objects to widgets. Values are moved back and forth between the widget and the bean object
 with ready-to-use controllers called drivers. There are two types of drivers: the RequestFactoryEditorDriver that is used to edit remote objects and the SimpleBeanEditorDriver used for editing beans residing on the client. In this chapter you start by learning how to construct editors to support
 both remote and local beans. You’ll find out how the framework can be used in both simple and complex situations. The chapter
 ends by presenting generic logic provided by the framework for even more effective ways to use the framework.

 	
Chapter 10’s data-presentation (aka Cell) widgets allow efficient display of large datasets and support paging and sorting through that data both locally and from
 the server. In this chapter we look at the provided underlying cells and how to create them, including via the GWT 2.5 UiBinder
 approach. Then we explore the six built-in widgets—including Lists, Tables, and Trees—and how they can be used, finishing off by writing your own builders to create more complex table layouts.

 	
Chapter 11 looks under the hood at GWT as we examine how to interface to JavaScript to interact with the browser (if you can’t do it
 another way in GWT), how to wrap an existing JavaScript library, how to handle JSONP return objects, and how to expose your
 application as an API.

 	
Chapter 12 covers a collection of communication and data-parsing tools. In this chapter we look at how to create and parse JSON and
 XML messages and how to pass these messages between the client and the server. In addition we explore GWT’s FormPanel widget, which can be used to transmit traditional form data to the server in a slightly less traditional way.

 	
Chapter 13 covers all the aspects you need to know to internationalize your application with different messages/constants, to manage
 plurals and user-defined changes in messages, and to drive localization (date, time, and currency formats). We also cover
 GWT 2.5’s approach to accessibility to make sure your application is as widely usable as possible.

Part 3 is “Advanced Topics.” In chapters 14 through 19 we cover topics that are more involved or complicated. As with the previous part, you can read in the order presented or
 dive into the chapters as you want.

	
Chapter 14 moves us into the advanced part of the book, and we start off by looking at advanced event handling—creating your own events,
 preventing event propagation, and how GWT avoids browser differences. The second half of the chapter looks at how event busses
 can be used to loosely couple your application and shows a user-defined event in action.

 	
Chapter 15 considers how the MVP pattern can be applied to GWT applications in two ways: building the pattern yourself or by using GWT’s
 Activitys and Places.

 	
Chapter 16 examines how dependency injection (DI) can be used in GWT applications to manage dependencies. We look more at how DI is
 supported on the client side using the Guice library but build on an examination of the GIN library that can be used server
 side (and we discuss why it’s different on the client and server sides).

 	
Chapter 17 is the first of two chapters that look at manipulating code at compile time. Here we consider the deferred-binding approach
 to use different defined code implementations depending on particular values of properties. You create your own property and
 see how to generate the property provider that determines the property value.

 	
Chapter 18 finishes our look at compile-time code manipulation started in the previous chapter by showing how generators can create
 new code that’s then used in the compilation.

 	
Chapter 19 introduces you to several tools related to finding and fixing performance-related issues. The chapter starts with a discussion
 of lightweight metrics, a tool that will allow you to capture performance information about your application, and then moves
 on to the compile report so that you can better understand the size of the JavaScript files generated by the GWT compiler.
 The chapter then explains how you can use code splitting to break your application into smaller parts, leading to improved
 performance for your users.

Code conventions and downloads

 The following typographical conventions are used throughout the book:

	
Courier typeface is used in all code listings.

 	
Courier typeface is used within text for certain code words.

 	
Italics are used for emphasis and to introduce new terms.

 	Code annotations are used in place of inline comments in the code. These highlight important concepts or areas of the code.
 Some annotations appear with numbered bullets like this [image:] that are referenced later in the text.

Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/GWTinActionSecondEdition.

Author Online

 The purchase of GWT in Action, Second Edition includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/GWTinActionSecondEdition. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent, it must pass
 through stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember
 new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part
 of an In Action book is that it is example driven. It encourages the reader to try things out, to play with new code, and to explore new
 ideas.

 There is another, more mundane reason for the title of this book: Our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want, just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the authors

 ADAM TACY is a digital channels client service manager for CGI based out of the Nordics with over 14 years experience in IT. He coauthored
 the first edition of GWT in Action with Robert Hanson in 2007 and has particular interest in how GWT 2.5 reduces the costs (development, maintenance, and management)
 of complex web projects while allowing the complexity boundaries of such applications to be aggressively challenged.

 ROBERT HANSON is the applications development manager for Quality Technology Services and has spent over 15 years developing high-performance
 web applications. He released the first open source library of GWT tools and widgets in 2006 and coauthored the first edition
 of GWT in Action. Robert is also a member of the planning committee for the Philadelphia ETE conference, where he is a frequent speaker on
 GWT and other topics.

 ANNA TÖKKE is a consultant for CGI Sweden with over 20 years of experience in IT development, the last 13 years as a lead programmer
 and solution architect. She educates developers in good programming practices and in object-oriented analysis and design.
 In recent years she has worked with GWT on a daily basis.

 JASON ESSINGTON is a Java software engineer for Calypso Technology with over 12 years of experience in treasury and financial industries.
 He has been an advocate of GWT since its public release and is an active member of the GWT community, contributing to both
 the mailing list and the GWT IRC channel.

About the Cover Illustration

 The figure on the cover of GWT in Action, Second Edition is captioned a “Janissary in Ceremonial Dress.” Janissaries were an elite corps of soldiers in the service of the Ottoman
 Empire, loyal only to the Sultan. The illustration is taken from a collection of costumes of the Ottoman Empire published
 on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we have
 been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and
 each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their
 art gracing the front cover of a computer programming book ... 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase,
 and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with
 the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds
 the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that
 might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then, and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Basics

 In part 1 we introduce you to the Google Web Toolkit, providing an overview of the toolkit’s contents. We then explore the typical
 two-step process you’d use to create a GWT application: using the tools to create a base application and then expanding it
 to create a real-world-complexity application. Along the way we’ll look at development mode, where you’ll spend a lot of time
 during production cycles, as well as how to compile for web mode, harnessing Google’s built-in Closure compiler if you wish.

 We suggest reading this part in chronological order, and if you’re new to GWT, spend some time playing with the code download
 to get a better under-standing—there’s nothing that helps you gain knowledge more than making changes and resolving errors.
 We also include some suggestions at the end of chapters 2 and 3 on what you might want to do to the code, but you can easily invent your own enhancements.

Chapter 1. GWT

	

 This chapter covers

	Understanding GWT’s place in the world

 	Introducing some of GWT’s more notable features

 	Preparing your development environment

	

This book is about empowerment. If you’re like 99% of us, you’re sinking in the relentless waves of new tooling in what has
 become a vast ocean of web development. What you seek is a way to escape the churning waters and land on solid ground.

 As the cover says, this is a book about the Google Web Toolkit, pronounced “gwit” by the cool kids at Google, and although
 GWT might not put you on the perfect tropical island it will get you out of the water and give you a dry place to rest your
 head for awhile.

 But what is GWT? GWT isn’t a “way,” or a framework, or a language. It’s a toolkit. It’s a set of tools that provide the means to easily
 write sophisticated and reliable Ajax applications using Java. It’s not meant to take advantage of the Java runtime, but instead
 it makes use of the Java language and existing Java tooling.

 So what does this mean? Oversimplifying a bit, it means that you’ll write your code in Java and then compile it to JavaScript.
 The obvious question is, why would you want to do that? The answers are numerous. One possible answer might be that the world
 contains many more skilled Java developers than seasoned JavaScript developers, but that isn’t why GWT came to be. GWT was
 created in order to facilitate the development of large client-side browser applications with a focus on providing a great
 user experience, and its creators felt that the Java universe was a good fit to accomplish that goal.

 But the ability to write your code in Java isn’t the only reason to adopt GWT; it also comes with a lot of bling: things like
 a full widget set, flexible RPC support, built-in internationalization, a template language, obfuscation, minification, image
 bundling, integration with server-side persistence, and more. And beyond the bling GWT comes with all of the freebies, too.
 We aren’t talking about T-shirts; we’re talking about open source libraries like PlayN (http://code.google.com/p/playn/). PlayN is a gaming engine, the same one that Angry Birds Chrome uses.[1]

 1 Angry Birds Chrome is found at http://chrome.angrybirds.com/.

 Many alternatives to GWT exist, so let’s add one more reason to use it: maturity. GWT has been publicly available since 2006,
 and during the intervening years it has grown and stabilized. You might think this means GWT has become the old fart of web
 tooling, but that isn’t the case. The latest version of GWT includes a lot of the HTML5 goodies, like client-side storage,
 canvas, audio, and video.[2] And for mobile developers GWT also supports touch events.

 2 GWT’s HTML5 support is documented at https://developers.google.com/web-toolkit/doc/latest/DevGuideHtml5.

 But enough talk; let’s get into it and see what GWT can do for you. In this chapter we’ll provide a high-level overview of
 all that is GWT and help you set up your development environment. Our overview will provide a glimpse into each tool in the
 toolkit and include references to sections or chapters in the book where we cover each tool in detail.

 Our purpose in this chapter is to give you a better understanding of what GWT provides to have you ready to start coding in
 the next chapter. But let’s begin with a brief history of browser application development to give you an understanding of
 where GWT fits in.

1.1. Unplanned consequences (or the road to GWT)

 If you have kids, you know that sometimes things happen. But sometimes you need to roll with the changes because not even
 Google with its massive amounts of processing power can predict the future (yet?). And the web, as with most other things
 in our lives, evolved over time into what it is today. But how did we get here? Let’s take a moment to reflect on the lineage
 of the modern web.

 What we call “the web” got its start in the mid-1990s, but in computing time (and dog years) that’s ancient history. What
 we need to do is look at more recent history. We’ll fly our time machine past the invention of HTML, past the beginnings of
 CSS, beyond the browser wars,[3] and land at a place known as Mountain View on April Fools’ Day 2004. That was the day Gmail was released to the public.[4]

 3 History of the browser wars on Wikipedia: http://en.wikipedia.org/wiki/Browser_wars.

 4 Many people thought Gmail was an April Fools’ Day joke because it provided 1 gigabyte of storage for free, which was completely
 unheard of at that time.

 Gmail developers didn’t invent anything new; they used what was already available. In Gmail the development team made use
 of what’s now referred to as XHR or XMLHttpRequest. XHR is an API created by Microsoft that allows JavaScript to run in the
 browser to initiate direct communication with the server. Gmail was designed to use this tool, which was available in all
 major browsers, to change the paradigm of how we interact with websites in a visual and forceful way.

 In Gmail you could list the emails in your inbox, as you could with all email web clients, and then click an email to load
 it into the browser. But what would happen, which was different from traditional web applications, was that the contents of
 the email were loaded into the page without having to load an entirely new page. Gmail did this by using XHR to load the contents
 of the email in the background and then using Dynamic HTML (DHTML) to alter the contents of the page and insert the email’s
 contents.

 Gmail content still had to be loaded from the server, but this new paradigm did speed up things like page loading, because
 only new content had to be loaded, not the entire page. In addition, with some smart caching on the client side, you could
 cache already viewed content so you didn’t need to reload it if you went back to that same email. If you haven’t used Gmail,
 take a look at the current version, a full-featured email client on the web, as shown in figure 1.1.

 Figure 1.1. Gmail was launched on April 1, 2004, and was one of the early web applications to influence the new paradigm of web applications
 that work like a traditional desktop application.

 [image:]

 These advancements were super innovative, but they were still hard for the average developer to wrangle, because each browser
 on the market implemented things a little differently, and using XHR wasn’t exactly trivial.

 But like all difficult development problems, the solution was to build an API and abstract away the hard parts. Lots of libraries
 hit the scene, like Prototype, jQuery, DWR, and others. These libraries all provided diversity to the process and allowed
 web developers to create some interesting web applications.

 For example, take a look at table 1.1, where we compare using only JavaScript (on the left) to using jQuery (on the right). The jQuery example shows a substantial
 amount of code reduction.

 Table 1.1. Comparing the use of plain-old JavaScript versus jQuery to make a call to the server using XHR. Which one do you think looks
 easier to read?

	
 Using XHR with JavaScript only

 	
 Using XHR with jQuery

	
 var xhr;
if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}
else if (window.ActiveXObject) {
 xhr =
 new ActiveXObject("Microsoft.XMLHTTP");
}
xhr.onreadystatechange = function()
{
 if(xhr.readyState == 4) {
 if (xhr.status == 200)
 alert(msg);
 else
 alert("error!");
 }
};
xhr.open("POST", "register.jsp", true);
xhr.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
xhr.send("title=Dr.&name=Blackwood&"
 + "profession=surgeon");

 	
 $.ajax({
 type: "POST",
 url: "register.jsp",
 data: {
 title: "Dr.",
 name: "Blackwood",
 profession: "surgeon"
}})
.done(function(msg) {
 alert(msg);
})
.fail(function() {
 alert("error");
});

So all is well, right? Not completely. The libraries that were developed helped in their own way, but all of them still required
 that you develop using JavaScript. That might not sound like a problem, but understand that only recently have there been
 halfway decent development tools for JavaScript, both for editing and testing. And even though we currently have some good
 tooling available, it can’t compare to what the average Java developer has available to them.

 No doubt you can see where we’re going, but let’s dig a little deeper. When GWT was first released, the JavaScript community
 created a lot of backlash. In general it seemed that the amount of hate developers had for GWT was inversely proportional
 to their love of JavaScript. At the time, both GWT’s lovers and haters generated considerable public debate.

 But that was then. As time passed, the web continued to evolve. Today many other tools like GWT exist, which allow you to
 use alternate languages for developing client-side applications: Pyjamas, Vaadin, ZK, Dart, CoffeeScript, Echo3, ClojureJS,
 and Script#, to name a few. Some of them run most of the code on the server (thin client), typically with lots of client and
 server communication, whereas others compile everything to be run in the browser (thick client). As you can see, GWT has plenty
 of company.

 So why use GWT? As we mentioned in the beginning of this chapter, GWT is a toolkit that allows you to write code in Java,
 compiling everything to JavaScript to be run in the browser, without assistance from the server (a thick client). The toolkit
 includes a widget set and lots of tools to ease the development of massively rich and interactive applications. This last
 statement leads us into the next section, where we start to look at some of the details of these tools.

1.2. Exploring the toolkit

 In this section we’ll explore from the top down, starting with the GWT compiler, which is the most important and exciting
 part of what GWT has to offer. From there we’ll introduce a few other key pieces that make the toolkit hum, including templates,
 events, remote server calls, internationalization, and more.

 1.2.1. Compiling and optimizing

 At the heart of the toolkit is the compiler, which takes your Java code and compiles it into JavaScript. During the process
 it will analyze your code in order to optimize it and remove any code that isn’t reachable by your application. It then generates
 JavaScript code that’s minified so that the file size is as small as possible. And this is only part of what the compiler
 does.

 The compiler is a busy bee, and throughout this book we’ll show you some of its secrets. One of these is a code generator, which generates Java source code for you in certain cases. The compiler may kick off one or more code generators based on
 what it finds in your code. This could be the generator that produces the code to serialize Java objects and send them to
 the server (chapter 7, “Communicating with GWT-RPC”), or it could be the generator that converts your templates into working code (chapter 6, “Interface design with UiBinder”). It could also be the generator that takes external files like CSS or images and optimizes
 them in a way that allows the browser to load them more quickly (chapter 5, “Using client bundles”). Or perhaps you’ll create your own custom generator to fill a specific need (chapter 18, “Generators”).

 Figure 1.2 shows the work performed by the compiler, where the generators are kicked off near the beginning of the compilation process.

 Figure 1.2. This is an artist’s rendering of what the GWT compiler is responsible for. This figure doesn’t cover everything the compiler
 does, but it does provide a high-level overview of how Java code (on the left) is compiled into JavaScript code.

 [image:]

 Another cool feature of the compiler is the ability to weave your Java code with existing JavaScript code. The compiler does
 this via the use of the JavaScript Native Interface (JSNI), which allows you to embed JavaScript code within your Java classes
 in order to facilitate Java-to-JavaScript communication (chapter 11, “Using JSNI—JavaScript Native Interface”). It all ends up as JavaScript when the compiler weaves everything together.

 But using JavaScript can be tricky because each browser has its own idiosyncrasies. That’s where deferred binding comes in. Deferred binding allows you to create multiple implementations of the same functionality, perhaps one for Internet
 Explorer and one for all others. The compiler will generate multiple JavaScript output files, one for each browser (chapter 17, “Deferred binding”).

 With multiple JavaScript files for different browsers, the compilation process also generates a bootstrap loader. This loader
 is a JavaScript file that will run in your browser and load the correct application code file for that browser type.

 As you can see, the compiler is the key to everything in GWT. But when someone looks at your application, they don’t care
 about how you wrote the code; they care about what it looks like.

 1.2.2. Powerful widgets and a template binding engine

 In GWT the fundamental building block of the user interface is the Widget, and its subclasses come in all shapes and sizes. To group these widgets you use a specialized type of widget called a Panel, which is a widget that has the ability to contain other widgets, including other panels. Next is the Composite, which is a specialized widget that can hide its internal implementation from outside callers. These widgets will be covered
 throughout this book.

 Together, widgets, panels, and composites allow you to piece together your user interface. GWT also provides a special class
 of widgets called data-presentation widgets (or Cell widgets) that are designed to make it easy to display data to the user in a series of pages, like a search result listing
 (chapter 10, “Data presentation (Cell) widgets”). These are designed to be fast, to conserve memory in the browser, and to make it easy
 for you as the developer to provide access to extremely large data sets.

 But not all widgets are as full featured as the data-presentation widgets. Some are building blocks that you can use to build
 more complex widgets, like the Image, Button, and Hyperlink widgets. When you use GWT to build your interface, you’ll combine basic widgets into complex composites and then reuse them
 (chapter 4, “Creating your own widgets”). Figure 1.3 shows a “simple” Address Book dialog box, but as you can see, it’s far from simple and contains dozens of widget instances.

 Figure 1.3. An example of a user-built AddressBook widget. It’s made up of at least eight different types of widgets and dozens of instances. Some of the widgets are used for
 layout, like the VerticalPanel, and others will react based on user events, like the Button.

 [image:]

 If you find that your custom-built composites are useful, you may even bundle them in a JAR file and share them with other
 GWT developers. Or perhaps you’ll want to take advantage of the work of others and use third-party widget libraries in your
 own project. One popular library is the Google API Libraries for GWT,[5] which provides APIs for communicating with Google+, Google Calendar, Google Latitude, and other Google services. In addition
 you’ll also find third-party libraries for drag and drop,[6] Google APIs (maps, search, and so on), dependency injection containers, additional widget libraries, and much more. If you
 want to see what else is available, you can go to code.google.com and search for “label:GWT.”

 5 The Google API Libraries for GWT are located at http://code.google.com/p/gwt-google-apis/.

 6 The GWT Drag-and-Drop Libraries can be found at http://code.google.com/p/gwt-dnd/.

	

 A word or two on drag and drop
 Back in 2007 a smart guy named Fred Sauer created the gwt-dnd project (http://code.google.com/p/gwt-dnd/), making it trivial to add drag and drop to your GWT application. But since that time many browsers have included built-in
 support for drag and drop. As of version 2.5, GWT provides some built-in support for this, but at the time of this writing
 it isn’t a replacement for the gwt-dnd library. First of all, it doesn’t support all browsers (such as IE9 and Opera), and
 even when it does, issues have been reported. Because of this we’ve decided to not cover it in this book.

 The bottom line is that if you do use the built-in support, you need to be cautious and thoroughly test the feature on all
 browsers that you need to support.

	

Returning to the example layout, one thing that initial versions of GWT taught the early adopters was that it’s hard to build
 large interfaces with dozens and dozens of widgets. The amount of code required made it time-consuming to build an interface.
 This changed when a new tool was added to the toolkit called UiBinder (chapter 6), which allows you to define your interface in XML code that looks a lot like HTML. This is more compact than Java code,
 allowing you to define complex interfaces using markup instead of code.

 Developing what your user sees is only part of the work involved in developing an interface; you need to handle user-driven
 events as well.

 1.2.3. Event handling beyond JavaScript

 At one end of the spectrum, GWT allows you to register for plain-old JavaScript events. This includes clicks on a button,
 focusing on a check box, and mouse movements over a widget. In GWT these are called native events.

 On the other end are events that are specific to a particular widget. For example, when a user clicks a date in the DatePicker widget, it fires a ValueChangeEvent. These events are called logical events. As you develop more advanced widgets you’ll create your own logical events (chapter 14, “Advanced event handling and event busses”).

 In addition, GWT provides a tool called the HandlerManager, which you can use as an event bus. An event bus is a messaging channel where an event producer sends an event, and any number of event listeners can receive the event and
 act on it. The important distinction between an event bus and basic event handling is that with an event bus the event producer
 and recipient don’t know about each other; they only know about the message channel. This is a popular pattern that allows
 you to develop an architecture where components are loosely coupled.

 An event bus works similarly to Internet Relay Chat (IRC), where you send a message to the channel and everyone else connected
 to the channel will see your message. Figure 1.4 shows how the event bus works using the paradigm of pipes to illustrate how producers and recipients know about the pipe
 (message bus), but not each other.

 Figure 1.4. An event bus is like a messaging channel or a pipe. A producer puts an event onto the bus, and any number of recipients can
 handle it. Producers and recipients are decoupled from each other because they connect to the message bus and not to each
 other.

 [image:]

 Speaking of communication, one type of communication that’s vital to most GWT applications is the ability to pass data to
 and from the web server.

 1.2.4. Client/server communication

 In a perfect Java-centric world you’d be able to use Java on the server, use Java to write your GWT-based application, and
 pass Java objects between the browser and the server. This is where GWT-RPC fits in (chapter 7). It provides the tooling required to handle the serialization and transmission of Java objects to and from the server, even
 though the client-side code in this is JavaScript.

 This can be a relatively difficult problem given the mismatch in languages. On the server this isn’t so hard because of Java’s
 reflection capabilities. On the server the application can inspect the Java object to determine its field types and values.
 In the browser this isn’t possible; reflection won’t work.

 In order to solve this problem, GWT-RPC uses a code generator, as mentioned in section 1.2.1. This allows GWT to generate all of the serialization and communication code at compile time. But still, it isn’t a magical
 process, and you’ll need to use some annotations to help the code generator determine what to do. We’ll cover all of that
 in great detail in chapter 7.

 But for those of you interested in communicating with the server Ajax style, GWT can do that, too. The tool for that job is
 RequestBuilder, and it allows you to send GET and POST requests to the server (chapter 12, “Classic Ajax and HTML forms”).

 RequestBuilder alone isn’t particularly useful when you consider that most remote services send either JSON,[7] JSON with Padding (JSONP), or XML[8] data. To allow the use of these formats, GWT provides an API for reading and writing JSON data and an XML parser for reading
 XML. We’ll cover both of these APIs in the RequestBuilder chapter and provide an example of using JSONP with Picasa in chapter 11, where we discuss the JavaScript Native Interface.

 7 The JavaScript Object Notation (JSON) specification can be found at www.json.org/.

 8 The Extensible Markup Language (XML) introduction and specification can be found at www.w3.org/XML/.

 Figure 1.5 shows a graphical representation of the separation of the client application, the various languages that you might use on
 the server, and the various types of communication for which GWT provides support.

 Figure 1.5. GWT provides a number of tools for passing data between the server and browser. This includes Ajax-style communication for
 passing XML and JSON data, HTML forms for form data, and GWT-RPC for passing serialized Java objects.

 [image:]

 GWT also has support for the original client/server communication tool that the browser uses, the HTML form (chapter 12). But we should highlight some differences on how GWT handles form submissions. For example, in a standard form submission
 the page in the browser changes. In GWT we don’t usually want to load another page into the browser, and GWT provides a way
 to do this. We’ll cover all of this when we discuss forms.

 At this point we hope you’ll agree that GWT provides some serious tools for developing a rich user interface. But there’s
 more to it than that. GWT also provides you, the developer, with the tools you need to develop your application rapidly.

 1.2.5. Simplified development and debugging

 When you’re doing traditional Java development, some things are less than optimal. When you modify the code for a servlet
 (Spring Controller, Struts Action, and the like) you need to recompile your code, deploy it to a server, and then start the
 server. That can take a lot of time, depending on what you’re doing.

 Now think about how you might test a change in GWT. You need to compile your client-side code to JavaScript, compile your
 server-side Java code, deploy all of it to a server, and start the server.

 Besides testing being a slow prospect, how might you handle debugging an application that lives as Java on the server and
 as JavaScript in the browser? How do you debug clicks to the user interface and remote calls to the server?

 To solve this problem, GWT has a closely related project named the Google Plugin for Eclipse. This tool provides support for
 GWT as well as support for the Google App Engine.[9] For GWT the plug-in provides wizards, single-click compiling, autocompletion support, and one-click access to development mode, where you can test your application without deploying it
 to an external server.

 9 Google App Engine can be found at http://code.google.com/appengine/.

 If you’re a fan of an Integrated Development Environment (IDE) that competes with Eclipse, we understand how you might not
 be excited by this news. And although you can develop GWT code using any IDE (or no IDE at all), we strongly recommend that,
 until you get your feet wet with GWT, you use Eclipse. In section 1.3 we’ll cover installing both Eclipse and the Google Plugin for Eclipse, and in chapter 2 (“Building a GWT application: saying “Hello World!”), we’ll show you how to use it.

 We mentioned that the Google Plugin for Eclipse provides autocompletion support. One area where it provides that support is
 when you’re writing code to bridge the gap between Java and JavaScript.

 1.2.6. Integration with JavaScript

 For the most part you can write your GWT applications using only Java, but you’ll always have exceptions to the rule. One
 example would be when you’re starting the move to GWT and you have hundreds or thousands of lines of JavaScript code that
 you want to reuse. Or perhaps you need to access some new JavaScript API that GWT doesn’t directly support yet. Or maybe you
 need to use a third-party JavaScript API. GWT supports all of these use cases with the JavaScript Native Interface, also known
 as JSNI (chapter 11).

 JSNI works by allowing you to embed JavaScript code right inside your Java code through the use of a Java comment block, along
 with the native Java keyword. The purpose of the native keyword in Java is to denote that a method is implemented in another language like C, C++, or even assembly. And although
 GWT isn’t using the keyword in the way that its creators envisioned, it’s a creative solution to our needs.

 Even without any background knowledge of JSNI, this example should be easy to follow. It prints a specified message a precise
 number of times in the browser.

 Listing 1.1. An example of a JSNI method

 [image:]

 If you look closely, you can see that in the previous code the method is inside a Java comment block. And to prove that it’s
 JavaScript, the example code fails to declare the variable x, uses var to declare the variable prefix, and uses single quotes around string constants. The only thing that isn’t standard JavaScript
 is the $doc variable, which is an alias GWT uses to represent the JavaScript document object.

 In the Java IDE this code is ignored because the code has been hidden in a Java comment, and by declaring the method as native
 the IDE doesn’t expect a method body. But although this code may be hidden to the standard Java compiler, the GWT compiler will extract this JavaScript code
 and weave it into the final output.

 But this is only part of what you’ll want to know about JSNI. Besides being able to call JavaScript code from Java, you can
 also call your Java code from JavaScript. In addition, GWT has a feature called JavaScript Overlay Types, which allows you
 to wrap a JavaScript object in a Java class. Because JSNI is a complex topic, we’ve dedicated a whole chapter to explaining
 it all.

 At this point you can see that GWT isn’t about only widgets and provides a full solution to building rich user interfaces.
 One such feature GWT provides is a solution to the broken Back button.

 1.2.7. History support

 When Ajax was conceived in 2005,[10] one thing it did was to break the Back button. What this means is that typical browser users are accustomed to the idea of
 using the Back button in the browser to go back to the last page they were viewing. Ajax has the convention of not changing
 the page you’re looking at, and instead it manipulates the page with JavaScript to alter its contents.

 10 Ajax is an acronym for Asynchronous JavaScript and XML, coined by Jesse James Garret in his essay “Ajax: A New Approach to
 Web Applications”; www.adaptivepath.com/ideas/essays/archives/000385.php.

 When typical browser users employed one of these Ajax applications and clicked the Back button, because that was the natural
 thing for them to do, they were surprised to not be directed to the last thing they were looking at within the Ajax application.
 Instead they were directed to what they were looking at before they came to the Ajax application.

 This isn’t a new problem, but it became noticeable in 2005 when many developers rushed to deploy Ajax applications. That’s
 why, with its release in 2006, GWT came with history support built in (chapter 3, “Building a GWT application: enhancing Hello World”).

 GWT’s solution isn’t new and is simple when you think about it. GWT uses a hidden HTML iFrame, and each time you go to another
 “page” in your application, it changes the URL of the hidden frame. Your browser considers this URL change as you going to
 another page and adds it to your browsing history. So when you click the Back button in your browser, all you’re doing is
 changing the URL of the hidden frame to the last URL it had in the history. This in turn triggers an event in your application
 that you can handle.

 It’s far from automatic, but with proper deployment you can allow your users to use the browser’s Forward and Back buttons
 to navigate through your GWT application. In chapter 3 we provide everything you need to know to use this feature.

 Another feature that makes GWT a complete solution is its support for internationalization.

 1.2.8. Internationalization—Sprechen sie Deutsch?

 GWT doesn’t provide any translation capabilities, but it does provide a framework where you can deploy your application in
 any number of languages (chapter 13, “Internationalization, localization, and accessibility”). In Java the typical way this is handled in a web application is
 to have the web framework you’re using detect the language requested by the browser and use a properties file with messages
 specific to that language.

 This works great on the server but has some failings when you try to do this for a browser application. For example, if you
 want to support 10 languages, your application now needs to hold 10 translations of every phrase used in the application.
 This means a larger download and slower application startup for the user.

 GWT’s approach is to handle this the same way it handles the multiple browser-specific implementations of the same Java code,
 which we discussed in section 1.2.1. And that is to generate a separate JavaScript file for each language. Doing this allows you to support 1 language, or 100,
 with no output file size penalty.

 In figure 1.6 you can see the DatePicker widget, which makes use of GWT’s internationalization tooling to provide different views for the same month based on the
 locale. This not only includes the month and weekday names but also extends to the day the week starts on (for example, Sunday
 versus Monday).

 Figure 1.6. GWT’s DatePicker widget, using three different locale settings. From left to right are calendars for Northern Sami, Russia, and Japan.

 [image:]

 And you mustn’t forget that supporting different locales is more than simply translating text. You must accommodate the fact
 that not all languages are written left to right and are instead written right to left, like Arabic. Many of GWT’s widgets
 and panels provide built-in support for this, like the TextBox and HorizontalPanel. So regardless of your internationalization (i18n) needs, GWT should be able to provide it out of the box.

	

Definition

 The word internationalization is long, weighing in at 20 letters. Imagine getting in trouble at school and having to write that on the board 100 times.
 At some point someone decided that it needed to be shortened a bit. The term i18n is a numeronym, or a number-based word. The term i18n literally means the letter i, plus 18 other letters, plus n.

	

With that we wrap up the whirlwind tour of GWT. As you can see, GWT is a robust toolkit, and new features will be added over
 time. Let’s switch gears now and prepare to do some coding (which you’ll begin to do in the next chapter). In order to do
 that you first need to set up your development environment.

1.3. Setting up your development environment

 We understand that everyone is different, with different needs and affinities, but unfortunately, we can’t cover every IDE
 or “way” to work with GWT. In this book we’ll use the tools that are at the time of this writing the best fit for use with
 GWT. If you’re new to GWT we strongly suggest that you follow our lead and use the tools we recommend. As you gain proficiency
 in GWT, you’ll find it’s much easier to use other tooling that we don’t cover in this book.

 For this book the “way” is to use the Eclipse IDE along with the Google Plugin for Eclipse, which provides many wizards as
 well as code completion for GWT-specific files. And best of all they’re both free.

 In addition to Eclipse and the mentioned plug-in you’ll need to install the Java JDK as well as the Development Mode Browser
 Plugin. In this section we’ll walk you through installing these tools, providing you with a good development environment for
 working with GWT.

 Table 1.2 is a summary of the tools you’ll install in this chapter.

 Table 1.2. Development tools for use with Eclipse and the Google Plugin for Eclipse

	
 Tool

 	
 Download site

	Java Development Kit (JDK)
 	Windows / Linux / Mac OS X / Solaris: www.oracle.com/technetwork/java/javase/downloads/index.html

	Eclipse IDE
 	
www.eclipse.org/downloads
 Recommended version: Eclipse IDE for Java EE Developers

	Google Plugin for Eclipse
 	http://code.google.com/eclipse/docs/download.html

	GWT SDK
 	
http://code.google.com/webtoolkit/download.html
 Can also be installed via the Google Plugin for Eclipse update site

	Development Mode Browser Plugin
 	
http://gwt.google.com/missing-plugin/MissingPlugin.html Allows you to run GWT in development mode with your browser

If for some reason you can’t or aren’t willing to use Eclipse and the mentioned plug-ins, your journey will be a little more
 difficult but not impossible. GWT provides a command-line tool for creating and compiling GWT projects. In addition, the project-creation
 tool generates an Ant build file that contains macros for compiling, testing, and packing your project. A modified summary
 of the tools you’ll need if you follow that path is shown in table 1.3.

 Table 1.3. Development tools for use with non-Eclipse environments

	
 Tool

 	
 Download site

	Java Development Kit (JDK)
 	Windows / Linux / Mac OS X / Solaris: www.oracle.com/technetwork/java/javase/downloads/index.html

	GWT SDK
 	http://code.google.com/webtoolkit/download.html

	Apache Ant
 	
http://ant.apache.org/bindownload.cgi
 Used for compiling and launching development mode when not supported by the IDE

	An IDE
 	Optional

	Development Mode Browser Plugin
 	
http://gwt.google.com/missing-plugin/MissingPlugin.html
 Allows you to run GWT in development mode with your browser

In addition to the core development tools that you’ll need to work with GWT, you might want to include other useful tools
 in your environment, some of which we make reference to throughout this book. Perhaps it’s best for you to install these after
 you have a working GWT environment, so we present them merely as a reference in table 1.4.

 Table 1.4. Optional development tools

	
 Tool

 	
 Download site

	GWT Designer
 	
http://code.google.com/webtoolkit/tools/download-gwtdesigner.html
 A visual design tool for building GWT applications

	Speed Tracer
 	
http://code.google.com/webtoolkit/download.html
 A diagnostic plug-in for Chrome

	Firebug
 	
http://getfirebug.com/
 A diagnostic plug-in for Firefox

	Firebug Lite
 	
http://getfirebug.com/firebuglite
 A diagnostic tool for non-Firefox browsers

	Gwt4nb
 	
https://github.com/gwt4nb/gwt4nb
 A NetBeans GWT plug-in

	Maven
 	
http://maven.apache.org/
 A build-management tool, often used in place of Ant (When using Maven with GWT it’s recommended to use the GWT Maven Plugin:
 http://mojo.codehaus.org/gwt-maven-plugin/.)

	Spring Roo
 	
www.springsource.org/roo
 A code-generation tool that includes support for GWT

	SpringSource Tool Suite
 	
www.springsource.com/products/sts
 An Eclipse-based IDE with built-in support for Spring and Roo

We hope a lot of these tools will look familiar, and if not, we recommend that you explore what they have to offer. So without
 delay, let’s run through the detailed installation of the recommended environment. We begin with the Java Development Kit.

 1.3.1. Installing the JDK

 The first thing you’ll need is the latest version of Java. We’ve made the assumption that our readers know the basics of Java,
 so it’s likely that you already have the JDK installed. For developing with GWT we suggest using the latest version of Java,
 although GWT is currently compatible as far back as Java 5. The JDK for Windows, Linux, and Mac OS X can be downloaded from
 www.oracle.com/technetwork/java/javase/downloads.

 If you already have Java installed, you should verify that you have the JDK installed. This differs from the Java Runtime
 Environment (JRE) in that it includes tools for compiling Java code. This isn’t strictly needed for compiling GWT applications
 because the GWT compiler will handle that, but it will be required if you plan on using Java on the server side of RPC calls,
 which we discuss in chapter 7.

 If you’re unsure what you have, open a command prompt and run the command javac -version. If you don’t find javac, then you don’t have the JDK installed, or it’s not on your path. If you do have javac, it will let you know what version you have with output that looks like the following:

 C:\>javac -version
javac 1.7.0_05

 If you have the JDK installed but it isn’t in your path, you may want to consider adding it. In particular, if you plan on
 using an IDE other than Eclipse, you’ll need to run command-line tools, and these tools will expect the java command in your path.

 Next, you’ll need to install Eclipse.

 1.3.2. Installing Eclipse

 Eclipse is an open source IDE with support for Java, PHP, C++, and many other languages. In addition it has a rich plug-in
 ecosystem, including a wide range of tools useful for web developers.

 You can download Eclipse from www.eclipse.org/downloads/. Several packages for Eclipse are available. Each comes with the core Eclipse workbench, along with a set of plug-ins that
 are typically appropriate for a specific kind of developer. You can use any of these, but we suggest installing the Eclipse
 IDE for Java EE Developers, which has a good assortment of tools for Java developers.

 Installing Eclipse couldn’t be easier: uncompress the distribution, and place the directory somewhere on your hard drive.
 There’s no installation, and if you’re running Eclipse on Windows it won’t alter your registry file. If you have problems
 downloading or uncompressing the distribution, consult the Eclipse installation guide for help, located at http://wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F.

 When it’s downloaded and uncompressed, you should run the Eclipse executable to verify that it’s working properly. On startup
 it will ask you the location of your workspace, as shown in figure 1.7. This is a directory where Eclipse will store configuration information and is usually where you’ll store your projects.
 Select a suitable empty directory when prompted. This will bring you to the Welcome screen.

 Figure 1.7. When you run Eclipse for the first time, it will ask you for the location to store your projects (left), also known as your
 workspace. After selecting a location you’ll see a Welcome screen that contains Eclipse documentation (center). Closing the
 Welcome tab will bring you to the editor (right).

 [image:]

 Once you’re at the Welcome screen, you may want to explore some of the documentation provided, or you can close the Welcome
 tab to go to the editor.

 When you’ve made your way to the editor, you can work on installing the Google Plugin for Eclipse.

 1.3.3. Installing the Google Plugin for Eclipse

 When you install plug-ins for Eclipse, you use the Install New Software tool. In Eclipse you’ll find this wizard under the
 Help menu. In this section we’ll walk you through how to use this tool.

 The first step is to find the location of the update site. An update site is a URL to a web server that’s providing the Eclipse
 plug-in. The Google Plugin for Eclipse has different update site URLs depending on which version of Eclipse you’re running.
 You’ll need to visit the Google Plugin for Eclipse website, located at http://code.google.com/eclipse/docs/download.html, to find the appropriate URL.

 The download page will list different update URLs for different versions of Eclipse. The easiest way to know which version
 of Eclipse you’re running is to look at the splash screen when you start Eclipse, which will display the version name.

 If you’re unable to determine the version from the splash screen, which could happen if you’re using a distribution of Eclipse
 from another vendor (for example, the SpringSource Tool Suite), you’ll need to find it in the Help menu. To find the version
 of Eclipse, or the version of any installed plug-in, you choose Help > About on the menu bar. On the About screen there will
 be several buttons, as shown in figure 1.8. You’ll want to click the button that has the tooltip “Eclipse.org.” Clicking this will bring up the versions of the individual features. The feature version you’re interested in is the Eclipse
 Platform.

 Figure 1.8. The About Eclipse dialog box (left) includes several icons representing the different organizations that provided the features
 and plug-ins you currently have installed. Clicking the icon for Eclipse.org will present the feature versions (right), including that of the Eclipse Platform.

 [image:]

 Once you’ve determined the version of Eclipse you’re running and the URL of the update site for your version, you can install
 the Google Plugin. In Eclipse click Help > Install New Software. This brings up the Install dialog, as shown in figure 1.9.

 Figure 1.9. The Eclipse Add Site dialog is used to add a new URL to Eclipse where plug-ins can be downloaded. The Add Site dialog is displayed
 by clicking the Add button in the Install dialog, which is shown in the background.

 [image:]

 In the Install dialog you can click the Add button, which will bring up the Add Site dialog. In this dialog you should supply
 “Google Eclipse Plugin” for the Name field and the update site URL for the Location field. Click OK when you’re finished.

 This should bring you back to the Install dialog, which will now provide a list of plug-ins that you can install, as shown
 in figure 1.10.

 Figure 1.10. Once you add the update site for the Google Plugin for Eclipse, it will present you with a list of software available for
 installation.

 [image:]

 You’ll want to select the options for the Google Plugin for Eclipse and the Google Web Toolkit SDK; then click Next. Follow
 the instructions provided to continue the process. Once you complete the process, it will ask you to restart Eclipse to finish
 the installation.

 At this point you’ve installed everything required to write GWT applications, but you have one tool left that you need in
 order to quickly test your application.

 1.3.4. Installing the Development Mode Browser Plugin

 The Development Mode Browser Plugin is a tool that allows your web browser to communicate with a development mode server running
 on your workstation. We’ll show you how to launch development mode in chapter 2—for this chapter we’ll only show you how to install the plug-in.

 To install the plug-in for a target browser, open the following URL in your browser: http://gwt.google.com/missing-plugin/MissingPlugin.html. This will look like figure 1.11.

 Figure 1.11. The dialog window for the Development Mode Browser Plugin allows you to install the plug-in for your browser.

 [image:]

 At the time of this writing, this plug-in is available for most modern browsers. If the plug-in isn’t available for a specific
 browser, you’ll be presented with a message indicating where you navigate to the plug-in installation URL.

 Before moving on we should point out that if you ever try to view your application as it’s running in development mode, you’ll
 be presented with this same installation dialog.

 At this point you’ve finished with the setup of your environment. You have Eclipse, the GWT SDK, the Google Plugin for Eclipse,
 and the Development Mode Browser Plug-in installed. Let’s recap everything we covered in this chapter and discuss where we
 go from here.

1.4. Summary

 In this chapter we provided an overview of what GWT has to offer, ranging from an optimizing compiler, to a rich widget set,
 to tools for dealing with popular data formats like JSON and XML, to communicating with the server and managing history.

 Tools are great, but the takeaway we want you to have from this chapter is that GWT is more than a tool for writing JavaScript
 applications in Java. GWT is a platform with which you can build extraordinary, complex applications that run in the browser
 without any proprietary plug-ins.

 But this isn’t anything new. The truth of the matter is that browsers have had support for Dynamic HTML and making remote
 calls for a decade, yet we see few large browser-based applications outside of those coming from Microsoft, Google, and Yahoo!.
 The reason is that writing large applications in JavaScript is difficult and complex. This is the primary reason for the adoption
 of GWT.

 Developers who write desktop applications have for a long time had great tool support. They have had the ability to design
 layouts using a visual designer, support for working with databases, and structural tools like those that facilitate dependency
 injection. GWT might not provide all of this quite yet, but it’s a major step forward for the web developer.

 GWT is currently limited by the limits of JavaScript in the browser, and if you haven’t been watching, HTML5 is adding loads
 of new tools to facilitate richer JavaScript applications. Many browsers now support the new canvas tag for bitmap drawing,
 some support built-in databases, some support offline JavaScript application caching, and some even support dragging files
 right into the browser for file uploads. If you aren’t a Gmail user (or didn’t notice), you can now drag files into the browser
 in order to attach them to an email, as long as you’re using a browser that supports that functionality.

 At the time of this writing, GWT provides support for some of these new HTML5 features (offline storage, canvas, audio, video),
 and you can expect additional support to be added in the future. And that’s another feature of GWT: a dedicated development
 team that continually advances the product to match advances in the web. This makes GWT a good bet for the future. And given
 that GWT is also open source with the extremely liberal Apache 2 license, it’s an even better bet.

 We don’t mean to sound like cheerleaders, but GWT excites us as web developers and is why we wrote this book. RAH, RAH, GWT!

 Now that you have a good understanding of what GWT provides and a development environment that you can use to develop GWT
 applications, we can proceed to building GWT applications. In chapter 2 you’ll immediately put your development environment to work by creating a GWT application and walking through what a GWT
 project looks like.

Chapter 2. Building a GWT application: saying “Hello World!”

	

 This chapter covers

	Understanding GWT terminology

 	Using the Google Plugin for Eclipse

 	Running an application in development mode

 	Compiling an application for production

 	Exploring common debugging techniques

	

Following directly from chapter 1, we’ll now put the development tools and plug-ins you installed to use. In the next two chapters you’ll create and run the
 GWT application shown in the mock-up in figure 2.1.

 Figure 2.1. A mock-up of the application you’ll build in chapters 2 and 3. In this chapter you create the base application using GWT tools, and in chapter 3 you extend it to implement this mock-up.

 [image:]

 Figure 2.1 shows a fairly simple application with a logo, a tabbed panel with some content, a search button, and a slide-in feedback
 tab. Although simple, it’s typical of a common web application, and it will allow you to see the use of widgets, panels, events,
 styling, adding items to the browser page, and managing history (clicking the browser’s Back and Forward buttons) in action.
 Don’t worry if those terms mean nothing to you now; by the end of chapter 3 it will all be second nature.

 We’ll also show how a typical GWT application is developed in two steps:

 1. Use some tools to create a basic framework GWT application.

 2. Enhance the framework GWT application to become the application you want.

 This chapter covers step 1, and we’ll go through the process of creating a simple HelloWorld application using some of the wizards from the Google Plugin for Eclipse (GPE). The resulting application is the simplest
 GWT application that can be built that places some text on a web page. You’ll use this to explore the wizards, understand
 some GWT terminology, get familiar with application code layout and the files involved, and learn how to run and debug the
 application in Eclipse as well as compile it to JavaScript—the basics of GWT development.

OEBPS/01fig03.jpg

OEBPS/01fig04.jpg

OEBPS/01fig01_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/manning.jpg

OEBPS/logo.jpg

OEBPS/one.jpg

OEBPS/infin.jpg

OEBPS/01fig05.jpg

OEBPS/01fig06.jpg

OEBPS/01list01_alt.jpg

OEBPS/cover.jpg

OEBPS/01fig08_alt.jpg

OEBPS/01fig07_alt.jpg

OEBPS/01fig10.jpg

OEBPS/01fig09_alt.jpg

OEBPS/02fig01.jpg

OEBPS/01fig11.jpg

