

 [image: cover]

Rails 4 in Action: Revised Edition of Rails 3 in Action

 Ryan Bigg, Yehuda Katz, Steve Klabnik, and Rebecca Skinner

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Susan Conant
Technical editor: Steven Jenkins
Copyeditor: Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: Doug Warren
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617291098

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Rails 3 in Action

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Ruby on Rails, the framework

 Chapter 2. Testing saves your bacon

 Chapter 3. Developing a real Rails application

 Chapter 4. Oh, CRUD!

 Chapter 5. Nested resources

 Chapter 6. Authentication

 Chapter 7. Basic access control

 Chapter 8. Fine-grained access control

 Chapter 9. File uploading

 Chapter 10. Tracking state

 Chapter 11. Tagging

 Chapter 12. Sending email

 Chapter 13. Deployment

 Chapter 14. Designing an API

 Chapter 15. Rack-based applications

 Appendix A. Installation guide

 Appendix B. Why Rails?

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Rails 3 in Action

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Ruby on Rails, the framework

 1.1. Ruby on Rails overview

 1.1.1. Benefits

 1.1.2. Ruby gems

 1.1.3. Common terms

 1.1.4. Rails in the wild

 1.2. Developing your first application

 1.2.1. Installing Rails

 1.2.2. Generating an application

 1.2.3. Starting the application

 1.2.4. Scaffolding

 1.2.5. Migrations

 1.2.6. Viewing and creating purchases

 1.2.7. Validations

 1.2.8. Routing

 1.2.9. Updating

 1.2.10. Deleting

 1.3. Summary

 Chapter 2. Testing saves your bacon

 2.1. Using TDD and BDD to save your bacon

 2.2. Test-driven development basics

 2.2.1. Writing your first test

 2.2.2. Saving bacon

 2.3. Behavior-driven development basics

 2.3.1. Introducing RSpec

 2.3.2. Writing your first spec

 2.3.3. Running the spec

 2.3.4. Much more bacon

 2.3.5. Expiring bacon

 2.4. Summary

 Chapter 3. Developing a real Rails application

 3.1. First steps

 3.1.1. The application story

 3.1.2. Laying the foundations

 3.2. Version control

 3.2.1. Getting started with GitHub

 3.2.2. Configuring your Git client

 3.3. Application configuration

 3.3.1. The Gemfile and generators

 3.3.2. Database configuration

 3.4. Beginning your first feature

 3.4.1. Creating projects

 3.4.2. Defining a controller action

 3.4.3. RESTful routing

 3.4.4. Committing changes

 3.4.5. Setting a page title

 3.4.6. Validations

 3.5. Summary

 Chapter 4. Oh, CRUD!

 4.1. Viewing projects

 4.1.1. Introducing Factory Girl

 4.1.2. Adding a link to a project

 4.2. Editing projects

 4.2.1. The edit action

 4.2.2. The update action

 4.3. Deleting projects

 4.4. What happens when things can’t be found

 4.4.1. Visualizing the error

 4.4.2. Handling the ActiveRecord::RecordNotFound exception

 4.5. Styling the application

 4.5.1. Installing Bootstrap

 4.5.2. Improving the page’s header

 4.5.3. Improving the show view

 4.5.4. Semantic styling

 4.5.5. Using Simple Form

 4.5.6. Adding a navigation bar

 4.5.7. Responsive styling

 4.6. Summary

 Chapter 5. Nested resources

 5.1. Creating tickets

 5.1.1. Nested routing helpers

 5.1.2. Creating a tickets controller

 5.1.3. Demystifying the new action

 5.1.4. Defining a has_many association

 5.1.5. Creating tickets in a project

 5.1.6. Finding tickets scoped by project

 5.1.7. Ticket validations

 5.2. Viewing tickets

 5.2.1. Listing tickets

 5.2.2. Culling tickets

 5.3. Editing tickets

 5.3.1. The ticket-editing spec

 5.3.2. Adding the edit action

 5.3.3. Adding the update action

 5.4. Deleting tickets

 5.5. Summary

 Chapter 6. Authentication

 6.1. Using Devise

 6.2. Adding sign-up

 6.3. Adding sign-in and sign-out

 6.3.1. Adding sign-in

 6.3.2. Adding sign-out

 6.3.3. Styling the Devise views

 6.4. Linking tickets to users

 6.4.1. Fixing the failing four features

 6.5. Summary

 Chapter 7. Basic access control

 7.1. Turning users into admins

 7.1.1. Adding the admin field to the users table

 7.1.2. Creating the first admin user

 7.2. Controller namespacing

 7.2.1. Generating a namespaced controller

 7.2.2. Testing a namespaced controller

 7.2.3. Moving functionality into the admin namespace

 7.3. Hiding links

 7.3.1. Hiding the “New Project” link

 7.3.2. Hiding the delete link

 7.4. Namespace-based CRUD

 7.4.1. The index action

 7.4.2. The new action

 7.4.3. The create action

 7.4.4. Creating admin users

 7.4.5. Editing users

 7.4.6. The edit and update actions

 7.4.7. Archiving users

 7.4.8. Ensuring that you can’t archive yourself

 7.4.9. Preventing archived users from signing in

 7.5. Summary

 Chapter 8. Fine-grained access control

 8.1. Project-viewing permission

 8.1.1. Assigning Roles in specs

 8.1.2. Creating the Role model

 8.1.3. Setting up Pundit

 8.1.4. Testing the ProjectPolicy

 8.1.5. Fixing what you broke

 8.1.6. Handling authorization errors

 8.1.7. One more thing

 8.2. Project-updating permission

 8.2.1. Testing the ProjectPolicy again

 8.2.2. Applying the authorization

 8.2.3. Hiding the “Edit Project” link

 8.3. Ticket-viewing permission

 8.3.1. Refactoring policy specs

 8.3.2. Testing the TicketPolicy

 8.3.3. Refactoring policies

 8.4. Ticket-creation permission

 8.4.1. Testing the TicketPolicy ... again

 8.4.2. Applying the authorization

 8.5. Ticket-updating permission

 8.5.1. Testing the TicketPolicy ... turbocharged

 8.5.2. Implementing controller authorization

 8.5.3. Hiding the “Edit Ticket” link

 8.6. Ticket-destroying permission

 8.6.1. Testing the TicketPolicy ... for the final time

 8.6.2. Implementing controller authorization

 8.7. Ensuring authorization for all actions

 8.8. Assigning roles to users

 8.8.1. Planning the permission screen with a feature spec

 8.8.2. The roles screen

 8.8.3. Building a list of projects in a select box

 8.8.4. Processing the submitted role data

 8.8.5. Saving roles of new users

 8.9. Summary

 Chapter 9. File uploading

 9.1. Attaching a file

 9.1.1. A feature featuring files

 9.1.2. Enter, stage right: CarrierWave

 9.1.3. Using CarrierWave

 9.1.4. Persisting uploads when redisplaying a form

 9.2. Attaching many files

 9.2.1. Testing multiple-file upload

 9.2.2. Implementing multiple-file upload

 9.2.3. Using nested attributes

 9.3. Serving files through a controller

 9.3.1. Testing existing functionality

 9.3.2. Protecting attachments

 9.3.3. Showing your attachments

 9.3.4. Public attachments

 9.3.5. Privatizing attachments

 9.4. Using JavaScript

 9.4.1. JavaScript testing

 9.4.2. Cleaning the database

 9.4.3. Introducing jQuery

 9.4.4. Adding more files with JavaScript

 9.5. Responding to an asynchronous request

 9.5.1. Appending new content to the form

 9.5.2. Sending parameters for an asynchronous request

 9.6. Summary

 Chapter 10. Tracking state

 10.1. Leaving a comment

 10.1.1. The comment form

 10.1.2. The comments controller

 10.2. Changing a ticket’s state

 10.2.1. Creating the State model

 10.2.2. Selecting states

 10.2.3. Setting a default state for a comment

 10.2.4. Seeding your app with states

 10.3. Tracking changes

 10.3.1. Ch-ch-changes

 10.3.2. Another c-c-callback

 10.3.3. Displaying changes

 10.3.4. Styling states

 10.4. Managing states

 10.4.1. Adding additional states

 10.4.2. Defining a default state

 10.4.3. Applying the default state

 10.4.4. Setting a default state in seed states

 10.5. Locking down states

 10.5.1. Hiding a select box

 10.5.2. Defining the change_state permission

 10.5.3. Hacking a form

 10.5.4. Ignoring a parameter

 10.6. Summary

 Chapter 11. Tagging

 11.1. Creating tags

 11.1.1. The tag-creation feature

 11.1.2. Showing tags

 11.1.3. Defining the tags association

 11.1.4. The Tag model

 11.1.5. Displaying a ticket’s tags

 11.2. Adding more tags

 11.2.1. Adding tags through a comment

 11.3. Tag restriction

 11.3.1. Testing tag restriction

 11.3.2. Tags are allowed, for some

 11.4. Deleting a tag

 11.4.1. Testing tag deletion

 11.4.2. Adding a link to delete the tag

 11.4.3. Removing a tag from the page

 11.5. Finding tags

 11.5.1. Testing search

 11.5.2. Searching by tags

 11.5.3. Searching by state

 11.5.4. Search, but without the search

 11.6. Summary

 Chapter 12. Sending email

 12.1. Sending ticket notifications

 12.1.1. Automatically watching a ticket

 12.1.2. Using service classes

 12.1.3. Defining the watchers association

 12.1.4. Introducing Action Mailer

 12.1.5. An Action Mailer template

 12.1.6. Testing with mailer specs

 12.2. Subscribing to updates

 12.2.1. Testing comment subscription

 12.2.2. Automatically adding the commenter to the watchers list

 12.2.3. Unsubscribing from ticket notifications

 12.3. Summary

 Chapter 13. Deployment

 13.1. What is deployment?

 13.2. Simple deployment with Heroku

 13.2.1. Signing up

 13.2.2. Provisioning an app

 13.3. Twelve-factor apps

 13.3.1. Configuration

 13.3.2. Processes

 13.3.3. Combining Heroku and S3

 13.4. Deploying Ticketee

 13.4.1. Fixing deployment issues

 13.4.2. Fixing CarrierWave file uploads

 13.4.3. Deploying is hard

 13.5. Continuous deployment with Travis CI

 13.5.1. Configuring Travis

 13.5.2. Deployment hooks

 13.6. Sending emails

 13.7. Summary

 Chapter 14. Designing an API

 14.1. An overview of APIs

 14.1.1. A practical example

 14.2. Using ActiveModel::Serializers

 14.2.1. Getting your hands dirty

 14.3. API authentication and authorization

 14.3.1. The API namespace

 14.3.2. A small tangent on inflections

 14.3.3. Getting back to your API

 14.4. It’s not a party without ... HTTParty

 14.5. Handling errors

 14.5.1. Authenticating with a blank token

 14.5.2. Permission denied

 14.5.3. Validation errors

 14.6. A small refactoring

 14.7. Summary

 Chapter 15. Rack-based applications

 15.1. Building Rack applications

 15.1.1. A basic Rack application

 15.1.2. Let’s increase the heartbeat

 15.1.3. You’re not done yet

 15.2. Building bigger Rack applications

 15.2.1. You’re breaking up

 15.2.2. Running a combined Rack application

 15.3. Mounting a Rack application with Rails

 15.3.1. Mounting Heartbeat

 15.3.2. Introducing Sinatra

 15.3.3. The API, by Sinatra

 15.3.4. Basic error-checking

 15.4. Middleware

 15.4.1. Middleware in Rails

 15.4.2. Crafting middleware

 15.4.3. Using middleware

 15.5. Summary

 Appendix A. Installation guide

 Windows

 RubyInstaller

 DevKit

 Rails

 Mac OS X

 Homebrew

 ruby-install

 Chruby

 Rails

 Linux

 ruby-install

 Chruby

 Rails

 Appendix B. Why Rails?

 Reason #1: The sense of community

 Reason #2: The speed and ease of development

 Reason #3: RubyGems

 Reason #4: The emphasis on testing

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for Rails 3 in Action

 Takes you on an excellent Rails 3 adventure!

 Anthony J. Topper, Penn State Harrisburg

 Conversational and current. A wellspring of information.

 Jason Rogers, Dell Inc.

 An essential roadmap for the newest features of Rails 3.

 Greg Vaughn, Improving Enterprises

 Essential, effective Rails techniques and habits for the modern Rubyist.

 Thomas Athanas, Athanas Empire, Inc.

 A holistic book for a holistic framework.

 Josh Cronemeyer, ThoughtWorks Studios

 The API chapter was an absolute lifesaver, and if I hadn’t read it I wouldn’t have been able to write my application that
 I have now deployed.

 Leo Cassarani

 I think I’ve learned more about Rails in the first five chapters than I did in all the other resources I’ve tried ... combined!

 J.K. Wood

 The writing in the book is natural and relaxed, and it takes us through the process of developing an application. In doing
 so, it references and shows us how to use specific non-base Rails gems that really help in achieving our goals.

 Mario Alberto Chávez Cárdenas

Preface

 I came to be an author on this book back in April 2010, and then spent about a year and a half writing it from scratch while
 working full-time. The first edition, Rails 3 in Action, was published in September of 2011. It’s now 2015 and the revised edition is finally here, this time focusing on Rails 4.2
 instead of Rails 3.1.

 During this time, many changes have come to pass in the Ruby and Rails community, with almost 40 new versions of Rails since
 3.1. The way we whitelist data attributes received from the outside world has moved from the models to the controllers. The
 popularity of Cucumber (a staple in the first edition) has faded, and it has been replaced by RSpec and Capybara. Validation
 syntax has morphed. The find_by_* finders have been deprecated. And so much more.

 By the time this book goes to print, Rails 5 will be due for release. Rails changes much faster than other frameworks, and
 with good reason—the community around it is actively evolving the best ways to write web applications. Other frameworks (or
 even languages, cough Java), evolve much more slowly. My thoughts about publishing this book, even though Rails 5 is coming soon, are these: It’s
 worthwhile to know Rails 4 and to have a good grasp of how applications are built. This book is a good indication of where
 the community is in terms of getting started with Rails at this particular point in time.

 Days (here and there) and nights (mostly) have gone into updating this book. Not one page has gone without review. It’s our
 utmost pleasure to bring you a book that is up to date after such a long wait. Never did I think it would take this long between
 publications, but that’s how things played out. “Good feels” is an apt expression to explain what it’s like to finally have
 this book done.

 So here’s the book you’ve all been waiting for. Use it well. Capture the knowledge within its pages. Know this: This book
 has been used by many people to jump-start their careers in Rails, and you could be next. Skimming through these pages won’t
 get you there, but reading it thoroughly and applying the lessons in it just might.

 Good luck.

 RYAN BIGG

Acknowledgments

 This book has been a long time coming, so I would like to say thanks to you, the reader, for waiting as long as you have for
 this revised edition.

 I’d like to thank Steve Klabnik for taking over as an author after I left the project. He got the book a long way toward being
 compatible with Rails 4, and without his efforts this would have taken even longer to do. Thanks to my other coauthor, Rebecca
 Skinner, for joining the project and helping tremendously with updating the book. Rebecca rewrote at least three chapters
 and has pored over the others for many hours to make this book as good as it can be.

 Along with Rebecca, special mention goes to Justin Lane and Ivan Polchenko, who put in an excellent effort on reviewing this
 book. They showed great dedication by providing feedback nearly every day on IRC or by email.

 We’d also like to thank the other reviewers who volunteered to help out with the book: Andrew Grimm, Andrew Hoffman, Andy
 Henson, Ben Woodall, Bredan Murtagh, Cory Simmons, Dana Jones, D. Deryl Downey, Eduardo Bautista, Jimmy Beaudoin, Harry Moreno,
 Paulo Toro, Sushruth Sivaramakrishnan, Johnneylee Jack Rollins, Tamara Temple, David Workman, and Yaw Boakye. These reviewers
 span the globe: America, Australia, India, the UK, and Ghana. To be able to collaborate with such a diverse group of people
 is fantastic.

 The creators of the tools that we use to publish books also deserve a mention: The wonderful people at GitHub, for providing
 a service that lets people worldwide collaborate with ease on projects such as these. Stuart Rackham, the creator of AsciiDoc,
 for proving that there’s a better way to write books than in Microsoft Word, XML, or Markdown. Dan Allen, for writing Asciidoctor,
 which we used to compile the HTML and PDF versions of the book that we shared with our reviewers.

 Thanks to everyone at Manning, from my development editor Susan Conant to technical editor Steven Jenkins to technical proofreader
 Doug Warren to everyone on the production team to the marketing folks—and to many more who worked behind the scenes.

 Also thanks to the following peer reviewers who read the manuscript at various stages of its development: Alex Perucchini,
 Michele Bursi, Damien White, Eddie Welker, Gavin Whyte, Greg Helton, Jared Hirsch, Justin Wiley, Lee Allen, Mike Gehard, Nathan
 Bean, Paul Hollyer, Robert O’Connor, Steve Robertson, William E. Wheeler, and William Ko. Your comments and insights made
 this a better book!

 Finally, I thank my wife, Sharon, for putting up with all the time that I’ve spent on this book, obsessing about this book, and so on. Thanks for being as wonderful as you are, my love.

 RYAN BIGG

 I can say with confidence that this book, much like Rails 3 in Action, would not exist without the hard, tireless work of Ryan Bigg. It was Ryan’s idea to focus both books around real-world testing
 from the ground up, and it makes them the best books for Rails practitioners that teach Rails the way professional Rails developers
 do it.

 Ever since Merb was merged with Rails, I have had the benefit of not insignificant support from friends and family, who helped
 keep me on course in the long process that eventually delivered Rails 3.0, and then went beyond. I want to especially call
 out Aaron Patterson, José Valim, Santiago Pastorino, and Xavier Noria, who stepped up and brought life back to a community
 that was starting to show signs of age. And Carl Lerche, who helped me keep focus on doing things right, even when it was
 tempting not to.

 Finally, I would be remiss if I didn’t thank my wife, Leah, who has been there for me through the amazing trajectory of my
 development career, through good times and bad. Without her, I would have given up long ago.

 YEHUDA KATZ

 I should know better than to give estimates.

 When I first started to work on this book, I thought updating it would take me three months. Oh, how foolish I was! In the
 end, I worked hard for about eighteen, I think. I don’t want to look back at that calendar!

 After this book chewed me up and spit me out, Ryan and Rebecca came on and took it over the finish line. I’m deeply indebted
 to them for helping pull me out of the quicksand.

 I’d like to thank everyone who gave me support during that time. My partners, friends, Twitter followers, those who gave me
 feedback and encouragement, and everyone who bought an advance copy, even though I kept repeating “It’s almost done, I swear.”
 Writing a book is a family affair, and I’m lucky enough to have a large, geographically distributed family.

 STEVE KLABNIK

 Wow, we’ve reached the end of this journey. This has been an amazing experience, from start to end.

 I would like to thank all of you, the readers, who have entrusted us with teaching them about this awesome, awesome framework.
 While it’s a little warty in parts, I truly believe it’s a masterpiece of a framework that’s easy to extend, easy to customize,
 and easy to write powerful web applications in. You won’t regret taking the time to learn the framework, and I sincerely hope
 you won’t regret spending the time to read this book.

 I’d like to thank Ryan Bigg for giving me the opportunity to contribute to this book. Initially I was only here to support
 him and do a bit of technical proofreading; he encouraged me to help out more, change the parts I didn’t like, make the book
 better, and he supported me throughout the entire process.

 Thanks also to everyone at Manning who worked with me during development, review, and production, especially Susan Conant,
 Katie Tennant, Kevin Sullivan, Janet Vail, and Mary Piergies.

 But most importantly, thanks to the man who encourages me to follow my dreams, and aim to accomplish things I never thought
 possible but always wanted to do. Thuc, this is for you.

 Well, it’s for the boys too. But mostly for you.

 REBECCA SKINNER

About this Book

 Ruby on Rails is a leading web application framework built on top of the fantastic Ruby programming language. Both the language
 and the framework place a strong emphasis on conforming to the principle of least surprise and getting out of the way of the
 developers using it.

 Ruby on Rails has been growing at a rapid pace, with large internet companies such as Yellow Pages and Groupon using it for
 their core functionality. The latest release of Rails, version 4.2, includes a set of changes that improves the already brilliant
 framework constructed over the past 11 years. The fantastic community around the framework has been growing at a similar pace.

 This book is designed to take you through developing a full-featured Rails application from step one, showing you exactly
 how professionals in the real world are developing applications right now.

Who should read this book

 This book is primarily for those who are looking to work with the Ruby on Rails framework and who have some prior experience
 with Ruby, although that’s not entirely necessary. The chapters become more advanced as you go along, and they provide a smooth
 learning curve to teach you how Rails applications are built.

 If you’re looking for a book that teaches you the same practices that are used in the real world, then this is the book you’re
 looking for.

What’s new in the revised edition

 Wow, 11 years of Rails. That’s a long time in software!

 There have been a lot changes in the Ruby and Rails community over this time. There have been almost 40 new versions of Rails
 since 3.1—when the last edition of this book was published—and a lot has changed in that time. The way we whitelist data attributes
 received from the outside world has moved from the models to the controllers (attr_accessible versus strong parameters). The popularity of Cucumber (a staple in the first edition) has faded, and it has been replaced
 by RSpec and Capybara. Validation syntax has morphed. The find_by_* finders have been deprecated. And so much more.

 You can find out what’s changed since the first edition by reading all the release notes from 3.2 (http://guides.rubyonrails.org/3_2_release_notes.html), 4.0 (http://guides.rubyonrails.org/4_0_release_notes.html), 4.1 (http://guides.rubyonrails.org/4_1_release_notes.html), and 4.2 (http://guides.rubyonrails.org/4_2_release_notes.html).

 Creating a revised edition of a Rails book is not just a matter of fixing up typos, images, and other things. It almost requires
 an entire rewrite of the whole thing. In fact, we rewrote chapters 6, 7, 8, and most of 9 for this book. Other chapters received less extensive touchups. Everything has been pored over and vetted by authors and
 volunteer reviewers.

 We have spent hundreds of hours updating this book, all just for you. We hope you like it.

Roadmap

 Chapter 1 introduces the Ruby on Rails framework and shows how you can develop the beginnings of an application.

 Chapter 2 shows off test-driven development and behavior-driven development, two core concepts that you’ll use throughout the remainder
 of this book and that can be applied instantly to any Ruby and Rails code you may write in the future. By testing the code
 you write, you can be assured that it’s always working.

 Chapters 3 and 4 discuss the application you’ll develop in this book (Ticketee—a project-management app for issue-tracking tickets) and delve
 into the core concepts of a Rails application. They also look at developing the first core features of the Ticketee application.

 Chapter 5 introduces nested resources, building on top of the features developed in the previous two chapters.

 Chapter 6 introduces authentication and uses the Devise gem to implement features such as requiring users to sign in to the application
 before they can perform certain tasks.

 Chapter 7 builds on the work in chapter 6 by adding new areas of the application that are accessible only to users with a certain flag set in the database. You’ll
 also use namespaces for the first time.

 Chapter 8 builds on the basic authorization created in chapter 7, fleshing it out into something neater and more fine-grained.

 In chapter 9 you’ll learn about file uploading using the CarrierWave gem. You’ll also learn about testing parts of your application that
 use JavaScript, and about CoffeeScript, a neater language that compiles down to JavaScript.

 Chapter 10 builds not one but two new features for the application, adding the ability to comment on a ticket as well as track the ticket’s
 lifecycle through varying states. You’ll also use the lessons you learned in chapter 8 about fine-grained access control.

 In chapter 11 you’ll add a feature that lets users assign tags to tickets so they can be easily grouped. You’ll also add a feature to allow
 users to search for tickets matching a certain state, tag, or both.

 Chapter 12 begins our foray into dealing with email in a Rails application. You’ll see how Rails makes it easy to send email using a
 part of its framework called ActionMailer.

 Chapter 13 involves deploying the application to Heroku, a well-established hosting provider that offers a free service. This chapter
 also introduces a CI service called Travis CI, which will run the tests for the application and deploy the application to
 Heroku if all the tests are passing.

 Chapter 14 covers designing parts of an API for Ticketee so that other applications can interact with the application that you’ve built.

 Chapter 15 shows how to use Rack-based applications to serve requests without having to use Rails at all, and also how to combine these
 applications within your Rails applications.

Code conventions and downloads

 Code conventions in the book follow the style of other Manning books in the In Action series. All code in listings and in text appears in a monospaced font like this to differentiate it from ordinary text. In some cases, the original source code has been reformatted to fit on the pages.
 In general, the original code was written with page-width limitations in mind, but sometimes you may find a slight formatting
 difference between the code in the book and that provided in the source download. In a few rare cases, where long lines could
 not be reformatted without changing their meaning, the book listings contain line-continuation markers that look like this
 å. Code annotations accompany many of the listings, highlighting important concepts. In many cases, numbered bullets link
 to explanations that follow in the text.

 Source code for all the working examples in this book is available for download from the publisher’s website at www.manning.com/rails-4-in-action.

Author Online

 The purchase of Rails 4 in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access and subscribe to the forum, point your browser to
 www.manning.com/rails-4-in-action, and click the Author Online link. This page provides information on how to get on the forum once you are registered, what
 kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of Rails 4 in Action is captioned “A Soldier.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compendium
 of regional and military dress customs published in France. Each illustration is finely drawn and colored by hand. The rich
 variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years
 ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was
 easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. Ruby on Rails, the framework

 This chapter covers

 	Introducing Ruby on Rails

 	Benefits of Rails

 	Developing an example Rails application

 Welcome aboard! It’s great to have you with us on this journey through the world of Ruby on Rails. Ruby on Rails is known
 as a powerful web framework that helps developers rapidly build modern web applications. In particular, it provides lots of
 niceties to help you in your quest to develop a full-featured, real-world application, and be happy doing it. Great developers
 are happy developers.

 If you’re wondering who uses Rails, there are plenty of companies that do: Twitter, Hulu, and Urban Dictionary, just to name
 a few. This chapter will teach you how to build a very small and simple application, right after we go through a brief description
 of what Ruby on Rails actually is. Within the first couple of chapters, you’ll have the solid foundations for an application, and you’ll build on those throughout
 the rest of the book.

1.1. Ruby on Rails overview

 Ruby on Rails is a framework built on the Ruby language—hence the name Ruby on Rails. The Ruby language was created back in 1993 by 松本行弘 (Yukihiro “Matz” Matsumoto) of Japan and was released to the general
 public in 1995. Since then, it has earned both a reputation and an enthusiastic following for its clean design, elegant syntax,
 and wide selection of tools available in the standard library and via a package management system called RubyGems. It also has a worldwide community and many active contributors continuously improving the language and the ecosystem around
 it. We’re not going to go into great depth about the Ruby language in this book though, because we’d rather talk about Ruby
 on Rails.

 	

 Ruby language

 For a full treatment of the Ruby language, we highly recommend The Well-Grounded Rubyist by David A. Black (Manning, 2014).

 	

 The foundation for Ruby on Rails was created during 2004 when David Heinemeier Hansson was developing an application called
 Basecamp. For his next project, the foundational code used for Basecamp was abstracted out into what we know today as Ruby
 on Rails, released under the MIT License (http://en.wikipedia.org/wiki/MIT_License).

 Since then, Ruby on Rails has quickly progressed to become one of the leading web development frameworks. This is in no small
 part due to the large community surrounding it, contributing everything from documentation to bug fixes to new features for
 the framework.

 This book is written for version 4.2 of the framework, which is the latest version of Rails. If you’ve used Rails 3.2, you’ll
 find that much feels the same, but Rails has learned some new tricks as well.

 	

 Rails version differences

 The upgrade guides and release notes provide a great overview of the new features, bug fixes, and other changes in each major
 and minor version of Rails. They can be found under “Release Notes” on the RailsGuides page: http://guides.rubyonrails.org/.

 	

 1.1.1. Benefits

 Ruby on Rails allows for the rapid development of applications by using a concept known as convention over configuration. A new Ruby on Rails application is created by running the application generator, which creates a standard directory structure
 and the files that act as a base for every Ruby on Rails application. These files and directories provide categorization for
 pieces of your code, such as the app/models directory for containing files that interact with the database and the app/assets
 directory for assets such as stylesheets, JavaScript files, and images. Because all of this is already there, you won’t be
 spending your time configuring the way your application is laid out. It’s done for you.

 How rapidly can you develop a Ruby on Rails application? Take the annual Rails Rumble event. This event brings together small
 teams of one to four developers around the world to develop Ruby on Rails[1] applications in a 48-hour period. Using Rails, these teams deliver amazing web applications in just two days.[2] Another great example of rapid development of a Rails application is the 20-minute blog screencast recorded by Yehuda Katz
 (http://vimeo.com/10732081). This screencast takes you from having nothing at all to having a basic blogging and commenting system.

 1

And now other Ruby-based web frameworks, such as Sinatra.

 2

To see an example of what’s come out of previous Rails Rumbles, take a look at the alumni archive: http://railsrumble.com/entries/winners.

 Once learned, Ruby on Rails affords you a level of productivity unheard of in other web frameworks, because every Ruby on
 Rails application starts out the same way. The similarity between the applications is so close that the paradigm shift between
 different Rails applications isn’t tremendous. If and when you jump between Rails applications, you don’t have to relearn
 how it all connects—it’s mostly the same. The Rails ecosystem may seem daunting at first, but Rails conventions allow even
 the new to seem familiar very quickly, smoothing the learning curve substantially.

 1.1.2. Ruby gems

 The core features of Rails are split up into many different libraries, such as Active Record, Active Support, Action Mailer, and Action Pack. These are called Ruby gems, or gems for short. These gems provide a wide range of methods and classes that help you develop your applications. They eliminate
 the need for you to perform boring, repetitive tasks—such as coding how your application hooks into your database—and let
 you get right down to writing valuable code for your business.

 	

 Gem versions

 The libraries that make up Rails share the same version number as Rails, which means that when you’re using Rails 4.2, you’re
 using the 4.2 version of the sub-gems. This is helpful to know when you upgrade Rails, because the version number of the installed
 gems should be the same as the version number of Rails.

 	

 Ever wished for a built-in way of writing automated tests for your web application? Ruby on Rails has you covered with MiniTest, which is part of Ruby’s standard library. It’s incredibly easy to write automated test code for your application, as you’ll
 see throughout this book. Testing your code saves your bacon in the long term, and that’s a fantastic thing. We’ll touch on
 MiniTest in the next chapter before moving on to RSpec, which is the testing framework preferred over MiniTest by the majority
 of the community, and is a little easier on the eyes, too.

 In addition to testing frameworks, the Ruby community has produced many high-quality gems for use in your day-to-day development
 with Ruby on Rails. Some of these libraries add functionality to Ruby on Rails; others provide ways to turn alternative markup
 languages such as Markdown (see the redcarpet gem at https://rubygems.org/gems/redcarpet) and Textile (see the RedCloth gem at https://rubygems.org/gems/RedCloth) into HTML. Usually, if you can think of it, there’s a gem out there that will help you do it.

 Noticing a common pattern yet? Probably. As you can see, Ruby on Rails (and the great community surrounding it) provides code
 that performs the trivial application tasks for you, from setting up the foundations of your application to handling the delivery
 of email. The time you save with all of these libraries is immense! And because the code is open source, you don’t have to
 go to a specific vendor to get support. Anyone who knows Ruby will help you if you’re stuck. Just ask.

 1.1.3. Common terms

 You’ll hear a few common Ruby on Rails terms quite often. This section explains what they mean and how they relate to a Rails
 application.

MVC

 The model-view-controller (MVC) paradigm isn’t unique to Ruby on Rails, but it provides much of the core foundation for a Ruby on Rails application.
 This paradigm is designed to keep the logically different parts of the application separate while providing a way for data
 to flow between them.

 In applications that don’t use MVC, the directory structure and how the different parts connect to each other are commonly
 left up to the original developer. Generally, this is a bad idea because different people have different opinions about where
 things should go. In Rails, a specific directory structure encourages developers to conform to the same layout, putting all
 the major parts of the application inside an app directory.

 This app directory has three main subdirectories: models, controllers, and views:

 	
Models contain the domain logic of your application. This logic dictates how the records in your database are retrieved, validated, or manipulated. In Rails
 applications, models define the code that interacts with the database’s tables to retrieve and set information in them. Domain
 logic also includes things such as validations or particular actions to be performed on the data.

 	
Controllers interact with the models to gather information to send to the view. They’re the layer between the user and the database.
 They call methods on the model classes, which can return single objects representing rows in the database or collections (arrays)
 of these objects. Controllers then make these objects available to the view through instance variables. Controllers are also
 used for permission checking, such as ensuring that only users who have special permission to perform certain actions can
 perform those actions, and users without that permission can’t.

 	
Views display the information gathered by the controller, by referencing the instance variables set there, in a developer-friendly
 manner. In Ruby on Rails, this display is done by default with a templating language known as Embedded Ruby (ERB). ERB allows you to embed Ruby into any kind of file you wish. This template is then preprocessed on the server side
 into the output that’s shown to the user.

 The assets, helpers, and mailers directories aren’t part of the MVC paradigm, but they’re also important parts of Rails:

 	The assets directory is for the static assets of the application, such as JavaScript files, images, and Cascading Style Sheets (CSS),
 for making the application look pretty. We’ll look more closely at this in chapters 3 and 4.

 	The helpers directory is a place to put Ruby code (specifically, modules) that provide helper methods for just the views. These helper
 methods can help with complex formatting that would otherwise be messy in the view or is used in more than one place.

 	Finally, the mailers directory is a home for the classes of your application that deal with sending email. In previous versions of Rails, these
 classes were grouped with models, but they have since been given their own home. We’ll look at them in chapter 12.

REST

 MVC in Rails is aided by Representational State Transfer (REST; see http://en.wikipedia.org/wiki/Representational_state_transfer for more information). REST is the convention for routing in Rails. When something adheres to this convention, it’s said to be RESTful. Routing in Rails refers to how requests are routed within the application—how URLs map to the controller actions that should
 process them. You’ll benefit greatly by adhering to these conventions, because Rails provides a lot of functionality around
 RESTful routing, such as determining where a form can submit data.

 1.1.4. Rails in the wild

 One of the best-known sites that runs Ruby on Rails is GitHub. GitHub is a hosting service for Git repositories. The site
 was launched in February 2008 and is now the leading Git web-hosting site. GitHub’s massive growth was in part due to the
 Ruby on Rails community quickly adopting it as their de facto repository hosting site. Now GitHub is home to over a million
 repositories for just about every programming language on the planet. It’s not exclusive to programming languages, either;
 if it can go in a Git repository, it can go on GitHub. As a matter of fact, this book and its source code are kept on GitHub!

 You don’t have to build huge applications with Rails, either. There’s a Rails application that was built for the specific
 purpose of allowing people to review the previous edition of this book, and it was just over 2,000 lines of code. This application
 allowed reviewers during the writing of the book to view the book’s chapters and leave notes on each element, leading to a
 better book overall.

 Now that you know what other people have accomplished with Ruby on Rails, it’s time to dive into creating your own application.

1.2. Developing your first application

 We covered the theory behind Rails and showed how quickly and easily you can develop an application. Now it’s your turn to
 get an application going. This will be a simple application that can be used to track items that have been purchased: it will
 track the name and the price for each item.

 First you’ll learn how to install Rails and use the scaffold generator that comes with it.

 1.2.1. Installing Rails

 To get started, you must have these three things installed:

 	Ruby

 	RubyGems

 	Rails

 If you’re on a UNIX-based system (Linux or Mac), we recommend that you use ruby-install (http://github.com/postmodern/ruby-install) to install Ruby and RubyGems. For Windows, we recommend the RubyInstaller application (http://rubyinstaller.org). There’s a complete installation guide for Ruby and Rails on Mac OS X, Linux, and Windows in appendix A.

 Before proceeding, let’s check that you have everything. Type these commands, and check out the responses:

 $ ruby -v
ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-linux]
$ gem -v
2.4.6
$ rails -v
Rails 4.2.0

 If you see something that looks close to this, you’re good to go! You might see [x86_64-darwin14] instead of [x86_64-linux], or a slightly different patch (p number), but that’s okay. These particular values are the ones we’re using right now and we’ve tested everything in the book
 against them; as long as you have Ruby 2.1 or later, Rails 4.2 or later, and RubyGems 2.2 or later, everything should be fine.

 If you don’t get these answers, or you get some sort of error message, please be sure to complete this setup before you try
 to move on; you can’t just ignore errors with this process. Certain gems (and Rails itself) only support particular versions
 of Ruby, so if you don’t get this right, things won’t work.

 1.2.2. Generating an application

 Now that Rails is installed, to generate an application, you run the rails command and pass it the new argument and the name of the application you want to generate: things_i_bought. When you run this command, it creates a new directory called things_i_bought, which is where all your application’s code
 will go.

 	

 Don’t use reserved words for application naming

 You can call your application almost anything you wish, but it can’t be given a name that’s a reserved word in Ruby or Rails.
 For example, you wouldn’t call your application rails, because the application class would be called Rails, and that would clash with the Rails constant within the framework. Names like test are also forbidden.

 When you use an invalid application name, you’ll see an error like one of these:

 $ rails new rails
Invalid application name rails, constant Rails is already in use.
Please choose another application name.

$ rails new test
Invalid application name test. Please give a name which does not match
one of the reserved rails words.

 	

 The application you’ll generate will be able to record purchases you’ve made. You can generate it using this command:

 $ rails new things_i_bought

 The output from this command may seem a bit overwhelming at first, but rest assured, it’s for your own good. All the directories
 and files generated provide the building blocks for your application, and you’ll get to know each of them as we progress.
 For now, you’ll learn by doing, which is the best way. Let’s get rolling.

 1.2.3. Starting the application

 To get the server running, you must first change into the newly created application’s directory and then start the application
 server:

 $ cd things_i_bought
$ rails server

 The rails server command (or rails s, for short) starts a web server on your local address on port 3000 using a Ruby standard library web server known as WEBrick.
 It will say “starting in development on http://localhost:3000”, which indicates that the server will be available on port
 3000 on the loopback network interface of this machine. To connect to this server, go to http://localhost:3000 in your favorite
 browser. You’ll see the Welcome Aboard page, which is famous in Rails (see figure 1.1).

 Figure 1.1. Welcome aboard!

 [image:]

 On the right side of the Welcome Aboard page are four links to more documentation for Rails and Ruby. The first link takes
 you to the official Rails Guides page, which will give you great guidance that complements the information in this book. The
 second link takes you to the Rails API, where you can look up the documentation for classes and methods in Ruby. The final
 two links take you to documentation about Ruby itself.

 If you click the About Your Application’s Environment link, you’ll find your Ruby, RubyGems, Ruby on Rails, and Rack versions
 and other environmental data. One of the things to note here is that the output for Environment is “development.” Rails provides
 three environments for running your application: development, test, and production. How your application functions can depend on the environment in which it’s running. For example, in the development environment,
 classes aren’t cached, so if you make a change to a class when running an application in development mode, you don’t need
 to restart the server. The same change in the production environment would require a restart.

 1.2.4. Scaffolding

 To get started with this Rails application, you can generate a scaffold. Scaffolds in Rails provide a lot of basic functionality and are generally used as temporary structures for getting started,
 rather than for full-scale development. Generate a scaffold by running this command:

 $ rails generate scaffold purchase name:string cost:decimal

 When you used the rails command earlier, it generated an entire Rails application. You can use this command within an application to generate a specific
 part of the application by passing the generate argument to the rails command, followed by what it is you want to generate. You can also use rails g as a shortcut for rails generate.

 The scaffold command generates a model, a controller, views, and tests based on the name passed after scaffold in this command. These are the three important parts needed for your purchase tracking. The model provides a way to interact
 with a database; the controller interacts with the model to retrieve and format its information and defines different actions
 to be performed on this data; and the views are rendered by the controller and display the information collected within them.

 Everything after the name for the scaffold defines the fields for the database table and the attributes for the objects of this scaffold. Here you tell Rails that the table for your purchase scaffold will contain name and cost fields, which are a string and a decimal, respectively.[3] To create this table, the scaffold generator generates what’s known as a migration. Let’s look at what migrations are.

 3

Alternatively, you can store the amount in cents as an integer and then do the conversion back to a full dollar amount. For
 this example, we’re using decimal because it’s easier to not have to define the conversion. It’s worth noting that you shouldn’t
 use a float to store monetary amounts, because it can lead to incorrect rounding errors.

 1.2.5. Migrations

 Migrations are used in Rails as a form of version control for the database, providing a way to implement incremental changes
 to the database schema. They’re usually created along with a model or by running the migration generator. Each migration is
 timestamped right down to the second, which provides you (and anybody else developing the application with you) an accurate
 timeline of your database. When two developers are working on separate features of an application and both generate a new
 migration, this timestamp will stop them from clashing.

 Let’s open the only file in db/migrate now and see what it does. Its contents are shown in the following listing.

 Listing 1.1. db/migrate/[date]_create_purchases.rb

 class CreatePurchases < ActiveRecord::Migration
 def change
 create_table :purchases do |t|
 t.string :name
 t.decimal :cost

 t.timestamps null: false
 end
 end
end

 Migrations are Ruby classes that inherit from ActiveRecord::Migration. Inside the class, one method is defined: the change method.

 Inside the change method, you use database-agnostic commands to create a table. When this migration is run forward, it will create a table
 called purchases with a name column that’s a string, a cost column that’s a decimal, and two timestamp fields. These timestamp fields are called created_at and updated_at, and are automatically set to the current time when a record is created or updated, respectively. This feature is built into
 Active Record. If there are fields present with these names (or created_on and updated_on), they’ll be automatically updated when necessary.

 When the migration is reverted, Rails will know how to undo it because it’s a simple table creation. The opposite of creating
 a table is to drop that table from the database. If the migration was more complex than this, you’d need to split it into
 two methods—one called up and one called down—that would tell Rails what to do in both cases. Rails is usually smart enough to figure out what you want to do, but sometimes
 it’s not clear and you’ll need to be explicit. You’ll see examples of this in later chapters.

Running the migration

 To run the migration, type this command into the console:

 $ bundle exec rake db:migrate

 Because this is your first time running migrations in your Rails application, and because you’re using a SQLite3 database,
 Rails first creates the database in a new file at db/development.sqlite3 and then creates the purchases table inside that.
 When you run bundle exec rake db:migrate, it doesn’t just run the change method from the latest migration, but runs any migration that hasn’t yet been run, allowing you to run multiple migrations
 sequentially.

 Your application is, by default, already set up to talk to this new database, so you don’t need to change anything. If you
 ever wanted to roll back this migration, you’d use bundle exec rake db:rollback, which rolls back the latest migration by running the down method of the migration (or reverses the steps taken in the change method, if possible).

 	

 Rolling back multiple migrations

 If you want to roll back more than one migration, use the bundle exec rake db:rollback STEP=3 command, which rolls back the three most recent migrations.

 	

 Rails keeps track of the last migration that was run by storing it using this line in the db/schema.rb file:

 ActiveRecord::Schema.define(version: [timestamp]) do

 This version should match the prefix of the migration you just created, where [timestamp] in this example is an actual timestamp formatted like YYYYmmddHHMMSS. Rails uses this value to know what migration it’s up to. The remaining content of this file shows the combined state of
 all the migrations to this point. This file can be used to restore the last known state of your database if you run the bundle exec rake db:schema:load command.

 You now have a database set up with a purchases table in it. Let’s look at how you can add rows to it through your application.

 1.2.6. Viewing and creating purchases

 Ensure that your Rails server is still running, or start a new one by running rails s or rails server again. Start your browser now, and go to http://localhost:3000/ purchases. You’ll see the scaffolded screen for purchases,
 as shown in figure 1.2.

 Figure 1.2. Purchases

 [image:]

 No purchases are listed yet, so you can add a new purchase by clicking New Purchase.

 In figure 1.3, you’ll see two inputs for the fields you generated.

 Figure 1.3. A new purchase

 [image:]

 This page is the result of rendering the new action in the PurchasesController controller. What you see on the page comes from the view located at app/views/purchases/new.html.erb, and it looks like the
 following listing.

 Listing 1.2. app/views/purchases/new.html.erb

 <h1>New Purchase</h1>

<%= render 'form' %>

<%= link_to 'Back', purchases_path %>

 This is an ERB file, which allows you to mix HTML and Ruby code to generate dynamic pages. The <%= beginning of an ERB tag indicates that the result of the code inside the tag will be output to the page. If you want the
 code to be evaluated but not output, you use the <% tag, like this:

 <% some_variable = "foo" %>

 If you were to use <%= some_variable = "foo" %> here, the some_variable variable would be set and the value output to the screen. When you use <%, the Ruby code is evaluated but not output.

 The render method, when passed a string, as in this example, renders a partial. A partial is a separate template file that you can include in other templates to repeat similar code. We’ll take a closer
 look at these in chapter 4.

 The link_to method generates a link with the text of the first argument ("Back") and with an href attribute specified by the second argument (purchases_path), which is a routing helper that turns into the string /purchases. How this works will be explained a little later when we
 look at how Rails handles routing.

The first half of the form partial

 The form partial is at app/views/purchases/_form.html.erb, and the first half of it looks like the following listing.

 Listing 1.3. The first half of app/views/purchases/_form.html.erb

 <%= form_for(@purchase) do |f| %>
 <% if @purchase.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@purchase.errors.count, "error") %> prohibited
 [image:] this purchase from being saved:</h2>

 <% @purchase.errors.full_messages.each do |message| %>
 <%= message %>
 <% end %>

 </div>
 <% end %>
...

 This half is responsible for defining the form by using the form_for helper. The form_for method is passed one argument—an instance variable called @purchase—and with @purchase it generates a form. This variable comes from the new action of PurchasesController, which is shown next.

 Listing 1.4. The new action of PurchasesController

 def new
 @purchase = Purchase.new
end

 The first line in this action sets up a new @purchase variable by calling the new method on the Purchase model. This initializes a new instance of the Purchase class, but doesn’t create a new record in the database. The @purchase variable is then automatically passed through to the view by Rails.

 So far, all this functionality is provided by Rails. You’ve coded nothing yourself. With the scaffold generator, you get an awful lot for free.

 Going back to the app/views/purchases/_form.html.erb partial, the block for the form_for is defined between its do and the <% end %> at the end of the file. Inside this block, you check the @purchase object for any errors by using the @purchase .errors.any? method. These errors will come from the model if the object doesn’t pass the validation requirements set in the model. If
 any errors exist, they’re rendered by the content inside this if statement. Validation is a concept covered shortly.

The second half of the form partial

 The second half of this partial looks like the following listing.

 Listing 1.5. The second half of app/views/purchases/_form.html.erb

 ...
 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :cost %>

 <%= f.text_field :cost %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

 Here, the f object from the form_for block is used to define labels and fields for your form. At the end of this partial, the submit method provides a dynamic Submit button.

 Let’s fill in this form now and click the Submit button. You should see something similar to figure 1.4. This is the result of your posting: a successful creation of a Purchase. Let’s see how it got there.

 Figure 1.4. Your first purchase

 [image:]

 The Submit button posts the data from the form to the create action, which looks like this.

 Listing 1.6. The create action of PurchasesController

 def create
 @purchase = Purchase.new(purchase_params)

 respond_to do |format|
 if @purchase.save
 format.html { redirect_to @purchase, notice: 'Purchase was successfully created.' }
 format.json { render :show, status: :created, location: @purchase }
 else
 format.html { render :new }
 format.json { render json: @purchase.errors, status:
 [image:] :unprocessable_entity }
 end
 end
end

 Here, you use the same Purchase.new method you first saw in the new action. But this time you pass it an argument of purchase_params, which is actually another method. That method calls params (short for parameters), which is a method that returns the parameters sent from your form in a Hash-like object. We’ll talk more about why you need this little dance later (in chapter 3); this is a feature called strong parameters. When you pass this params hash into new, Rails sets the attributes (the Rails word for fields) to the values from the form.

 Inside respond_to is an if statement that calls @purchase.save. This method validates the record; and if it’s valid, the method saves the record to the database and returns true.

 If the return value is true, the action responds by redirecting to the new @purchase object using the redirect_to method, which takes either a path or an object that it turns into a path (as seen in listing 1.6). The redirect_to method inspects the @purchase object and determines that the path required is purchase_path because it’s an instance of the Purchase model. This path takes you to the show action for this controller. The :notice option passed to redirect_to sets up a flash message, which is a message that can be displayed on the next request. This is the green text at the top of figure 1.4.

 You’ve seen what happens when the purchase is valid, but what happens when it’s invalid? Well, it uses the render method to show the new template again. We should note here that this doesn’t call the new action again, it only renders the template.

 	

 Redirecting vs. rendering

 To call the new action again, you’d call redirect_to new_purchase_path, but that wouldn’t persist the state of the @purchase object to this new request without some seriously bad hackery. By rerendering the template, you can display information about
 the object if the object is invalid.

 	

 You can make the creation of the @purchase object fail by adding a validation. Let’s do that now.

 1.2.7. Validations

 You can add validations to your model to ensure that the data conforms to certain rules, or that data for a certain field
 must be present, or that a number you enter must be greater than a certain other number. You’ll write your first code for
 this application and implement both of these things now.

 Open your Purchase model, and change the entire file to what’s shown in the following listing.

 Listing 1.7. app/models/purchase.rb

 class Purchase < ActiveRecord::Base
 validates :name, presence: true
 validates :cost, numericality: { greater_than: 0 }
end

 You use the validates method to define a validation that does what it says on the box: validates that the field is present. The other validation
 option, :numericality, validates that the cost attribute is a number and then, with the :greater_than option, validates that it’s greater than 0.

 Let’s test these validations by going back to http://localhost:3000/purchases, clicking New Purchase, and clicking Create
 Purchase. You should see the errors shown in figure 1.5.

 Figure 1.5. Cost must be greater than 0

 [image:]

 Great! Here you’re told that name can’t be blank and that the value you entered for cost isn’t a number. Let’s see what happens if you enter foo for the Name field and -100 for the Cost field, and click Create Purchase. You should get a different error for the Cost field now, as shown in figure 1.6.

 Figure 1.6. A single purchase

 [image:]

 Good to see! Both of your validations are working. When you change Cost to 100 and click Create Purchase, the value should be considered valid by the validations and take you to the show action. Let’s look at what this particular action does now.

Showing off

 The show action displays the content, as shown in figure 1.7.

 Figure 1.7. A single purchase

 [image:]

 The number at the end of the URL, when we’re viewing the show action of a project, is the unique numerical ID for this purchase. But what does it mean? Let’s look at the view for this
 show action.

 Listing 1.8. app/views/purchases/show.html.erb

 <p id="notice"><%= notice %></p>

<p>
 Name:
 <%= @purchase.name %>
</p>

<p>
 Cost:
 <%= @purchase.cost %>
</p>

<%= link_to 'Edit', edit_purchase_path(@purchase) %> |
<%= link_to 'Back', purchases_path %>

 On the first line is the notice method, which displays the notice set on the redirect_to from the create action. After that, field values are displayed in p tags by calling them as methods on your @purchase object. This object is defined in the show action of PurchasesController, as shown in the following listing.

 Listing 1.9. The show action of PurchasesController

 def show
end

 Or is it? It turns out that it’s not actually defined here. A before_action is defined.

 Listing 1.10. The set_purchase before_action in PurchasesController

 class PurchasesController < ApplicationController

 before_action :set_purchase, only: [:show, :edit, :update, :destroy]

 ...

 # Use callbacks to share common setup or constraints between actions.
 def set_purchase
 @purchase = Purchase.find(params[:id])
 end

 ...
end

 This code will be executed before every action given: hence the name before_action. The find method of the Purchase class is used to find the record with the ID of params[:id] and instantiate a new Purchase object from it, with params[:id] being the number on the end of the URL.

 Going back to the view (listing 1.8, app/views/purchases/show.html.erb), at the end of this file is link_to, which generates a link using the first argument as the text value, and the second argument as the href for that URL. The second argument for link_to is a method: edit_purchase_path. This method is provided by a method call in config/routes.rb, which we’ll look at next.

 1.2.8. Routing

 The config/routes.rb file of every Rails application is where the application routes are defined in succinct Ruby syntax.
 The methods used in this file define the pathways from requests to controllers. If you look in your config/routes.rb file,
 ignoring the commented-out lines for now, you’ll see what’s shown in the following listing.

 Listing 1.11. config/routes.rb

 Rails.application.routes.draw do
 resources :purchases
end

 Inside the block for the draw method is the resources method. Collections of similar objects in Rails are referred to as resources. This method defines the routes and routing helpers (such as the edit_purchase_path method) to your purchases resources. Look at table 1.1 for a list of the helpers and their corresponding routes. You can see similar output in your terminal if you run the rake routes command inside your things_i_bought directory.

 Table 1.1. Routing helpers and their routes

 	
 Helper

 	
 Route

 	purchases_path
 	/purchases

 	new_purchase_path
 	/purchases/new

 	edit_purchase_path
 	/purchases/:id/edit

 	purchase_path
 	/purchases/:id

 In this table, :id can be substituted for the ID of a record. Each routing helper has an alternative version that will give
 you the full URL to the resource. Use the _url extension rather than _path, and you’ll get a fully qualified URL such as http://localhost:3000/purchases
 for purchases_url.

 Two of the routes in this table will act differently depending on how they’re requested.

 The first route, /purchases, takes you to the index action of PurchasesController if you do a GET request. GET requests are the standard type of requests for web browsers, and this is the first request you did to this application. If
 you send a POST request to this route, it will go to the create action of the controller. This is the case when you submit the form from the new view.

 The second route that will act differently is /purchases/:id. If you do a GET request to this route, it will take you to the show action. If you do a PATCH request, it will take you to the update action. Or you can do a DELETE request, which will take you to the destroy action.

 Let’s go to http://localhost:3000/purchases/new now and look at the source of the page. The beginning tag for your form should
 look like this.

 Listing 1.12. HTML source of app/views/purchases/new.html.erb

 <form accept-charset="UTF-8" action="/purchases"
 class="new_purchase" id="new_purchase" method="post">

 The two attributes to note here are action and method. The action attribute dictates the URL to where this form goes, and method tells the form what kind of HTTP request to make.

 How was this tag rendered in the first place? Well, as you saw before, the app/views/purchases/new.html.erb template uses
 the form partial from app/views/purchases/_form.html.erb, which contains this as the first line:

 <%= form_for(@purchase) do |f| %>

 This one simple line generates that form tag. When we look at the edit action shortly, you’ll see that the output of this tag is different, and you’ll learn why.

 The other route that responds differently is /purchases/:id, which acts in one of three ways. You already saw the first way:
 it’s the show action to which you’re redirected (via a GET request) after you create a purchase. The second of the three ways is when you update a record, which we’ll look at now.

 1.2.9. Updating

 Let’s change the cost of the foo purchase now. Perhaps it only cost 10. To change it, go back to http://localhost:3000/purchases
 and click the “Edit” link next to the foo record. You should see a page that looks similar to the new page, as shown in figure 1.8.

 Figure 1.8. Editing a purchase

 [image:]

 This page looks similar because it reuses the app/views/purchases/_form.html.erb partial that was also used in the template
 for the new action. Such is the power of partials in Rails: you can use the same code for two different requests to your application.

 The template for this action is shown in the following listing.

 Listing 1.13. app/views/purchases/edit.html.erb

 <h1>Editing Purchase</h1>

<%= render 'form' %>

<%= link_to 'Show', @purchase %> |
<%= link_to 'Back', purchases_path %>

 For this action, you’re working with a preexisting object rather than a new object, which you used in the new action. This preexisting object is found by the edit action in PurchasesController, as shown here.

 Listing 1.14. The edit action of PurchasesController

 def edit
end

 Oops: it’s not here! The code to find the @purchase object is identical to what you saw earlier in the show action: it’s set in before_action, which runs before the show, edit, update, and destroy actions.

 Back in the view for a moment, at the bottom of it you can see two uses of link_to. The first creates a “Show” link, linking to the @purchase object, which is set up in the edit action of your controller. Clicking this link would take you to purchase_path(@purchase) or /purchases/:id. Rails will figure out where the link needs to go according to the class of the object given. Using this
 syntax, it will attempt to call the purchase_path method because the object has a class of Purchase, and it will pass the object along to that call, generating the URL.

 	

 Note

 This syntax is exceptionally handy if you have an object and aren’t sure of its type but still want to generate a link for
 it. For example, if you had a different kind of object called Order, and it was used instead, it would use order_path rather than purchase_path.

 	

 The second use of link_to in this view generates a “Back” link, which uses the routing helper purchases_path. It can’t use an object here because it doesn’t make sense to. Calling purchases_path is the easy way to go back to the index action.

 Let’s try filling in this form—for example, by changing the cost from 100 to 10 and clicking Update Purchase. You’ll now see
 the show page but with a different message, as shown in figure 1.9.

 Figure 1.9. Viewing an updated purchase

 [image:]

 Clicking Update Purchase brought you back to the show page. How did that happen? Click the Back button on your browser, and view the source of this page, specifically the form tag and the tags directly underneath, shown in the following listing.

 Listing 1.15. Rendered HTML for app/views/purchases/edit.html.erb

 ...
<form accept-charset="UTF-8" action="/purchases/2" class="edit_purchase"

id="edit_purchase_2" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input name="_method" type="hidden" value="patch" />
...

 The action of this form points at /purchases/2, which is the route to the show action in PurchasesController. You should also note two other things. The method attribute of this form is a post, but there’s also the input tag underneath.

 The input tag passes through the _method parameter with the value set to patch. Rails catches this parameter and turns the request from a POST into a PATCH. This is the second (of three) ways /purchases/:id responds according to the method. By making a PATCH request to this route, you’re taken to the update action in PurchasesController. Let’s look at this next.

 Listing 1.16. The update action of PurchasesController

 def update
 respond_to do |format|
 if @purchase.update(purchase_params)
 format.html { redirect_to @purchase, notice: 'Purchase was successfully updated.' }
 format.json { render :show, status: :ok, location: @purchase }
 else
 format.html { render :edit }
 format.json { render json: @purchase.errors, status:
 [image:] :unprocessable_entity }
 end
 end
end

 Just as in the show and edit actions, the @purchase object is first fetched by the call to before_action :set_purchase. The parameters from the form are sent through in the same fashion as they were in the create action, coming through as purchase_params. Rather than instantiating a new object by using the new class method, you use update on the existing @purchase object. This does what it says: updates the attributes. What it doesn’t say, though, is that it validates the attributes
 and, if the attributes are valid, saves the record and returns true. If they aren’t valid, it returns false.

 	

 The PATCH method

 The PATCH HTTP method is implemented by Rails by affixing a _method parameter on the form with the value of PATCH, because the HTML specification doesn’t allow the PATCH method for form elements. It only allows GET and POST, as stated here: http://www.w3.org/TR/html401/interact/forms.html#adef-method.

 	

 When update returns true, you’re redirected back to the show action for this particular purchase by using redirect_to. If the update call returns false, you’re shown the edit action’s template again, just as back in the create action where you were shown the new template again. This works in the same fashion and displays errors if you enter something wrong.

 Let’s try editing a purchase, setting Name to blank, and then clicking Update Purchase. It should error exactly like the create method did, as shown in figure 1.10.

 Figure 1.10. Update fails!

 [image:]

 As you can see in this example, the validations you defined in your Purchase model take effect automatically for both the creation and updating of records.

 What would happen if, rather than updating a purchase, you wanted to delete it? That’s built into the scaffold, too.

 1.2.10. Deleting

 In Rails, delete is given a much more forceful name: destroy. This is another sensible name, because to destroy a record is to “put an end to the existence of.”[4] Once this record’s gone, it’s gone, baby, gone.

 4

As defined by the Mac OS X Dictionary application.

 You can destroy a record by going to http://localhost:3000/purchases and clicking the “Destroy” link shown in figure 1.11 and then clicking OK in the confirmation box that pops up.

 Figure 1.11. Destroy!

 [image:]

 When that record’s destroyed, you’re taken back to the Listing Purchases page. You’ll see that the record no longer exists.
 You should now have only one record, as shown in figure 1.12.

 Figure 1.12. Last record standing

 [image:]

 How does all this work? Let’s look at the index template in the following listing to understand, specifically the part that’s used to list the purchases.

 Listing 1.17. app/views/purchases/index.html.erb

 <% @purchases.each do |purchase| %>
 <tr>
 <td><%= purchase.name %></td>
 <td><%= purchase.cost %></td>
 <td><%= link_to 'Show', purchase %></td>
 <td><%= link_to 'Edit', edit_purchase_path(purchase) %></td>
 <td><%= link_to 'Destroy', purchase, method: :delete, data:

{ confirm: 'Are you sure?' } %></td>
 </tr>
<% end %>

 In this template, @purchases is a collection of all the objects from the Purchase model, and each is used to iterate over each, setting purchase as the variable used in this block.

 The methods name and cost are the same methods used in app/views/purchases/show.html.erb to display the values for the fields. After these, you see
 the three uses of link_to.

 The first link_to passes in the purchase object, which links to the show action of PurchasesController by using a route such as /purchases/:id, where :id is the ID for this purchase object.

 The second link_to links to the edit action using edit_purchase_path and passes the purchase object as the argument to this method. This routing helper determines that the path is /purchases/:id/edit.

 The third link_to links seemingly to the purchase object exactly like the first, but it doesn’t go there. The :method option on the end of this route specifies the method :delete, which is the third and final way the /purchases/:id route can be used. If you specify :delete as the method of this link_to, Rails interprets this request as a DELETE request and takes you to the destroy action in the PurchasesController. This action is shown in the following listing.

 Listing 1.18. The destroy action of PurchasesController

 def destroy
 @purchase.destroy
 respond_to do |format|
 format.html { redirect_to purchases_url, notice: 'Purchase was
 [image:] successfully destroyed.' }
 format.json { head :no_content }
 end
end

 This action destroys the record loaded by before_action :set_purchase by calling destroy on it, which permanently deletes the record. Then it uses redirect_to to take you to purchases_url, which is the route helper defined to take you to http://localhost:3000/purchases. Note that this action uses the purchases_url method rather than purchases_path, which generates a full URL back to the purchases listing.

 That wraps up our application run-through!

1.3. Summary

 In this chapter, you learned what Rails is and how to get an application started with it: the absolute bare, bare, bare essentials of a Rails application. But look how fast you got going! It took only a few simple commands and an entire two
 lines of your own code to create the bones of a Rails application. From this basic skeleton, you can keep adding bits and
 pieces to develop your application, and all the while you get things for free from Rails. You don’t have to code the logic
 of what happens when Rails receives a request or specify what query to execute on your database to insert a record—Rails does
 it for you.

 You also saw that some big-name players—such as Twitter and GitHub—use Ruby on Rails. This clearly answers the question “Is
 Rails ready?” Yes, it very much is. A wide range of companies have built successful websites on the Rails framework, and many
 more will do so in the future. Rails also has been around for a decade, and shows no signs of slowing down any time soon.

 Still wondering if Ruby on Rails is right for you? Ask around. You’ll hear a lot of people singing its praises. The Ruby on
 Rails community is passionate not only about Rails but also about community building. Events, conferences, user group meetings,
 and even camps are held around the world for Rails. Attend these, and discuss Ruby on Rails with the people who know about
 it. If you can’t attend these events, you can explore the IRC channel on Freenode #rubyonrails and the mailing list rubyonrails-talk on Google Groups, not to mention Stack Overflow and a multitude of other areas on the internet where you can find experienced
 people and discuss what they think of Rails. Don’t let this book be your only source of knowledge. There’s a whole world out
 there, and no book could cover it all!

 The best way to answer the question “What is Rails?” is to experience it for yourself. This book and your own exploration
 can eventually make you a Ruby on Rails expert.

 When you added validations to your application earlier, you manually tested that they were working. This may seem like a good
 idea for now, but when the application grows beyond a couple of pages, it becomes cumbersome to manually test it. Wouldn’t
 it be nice to have some automated way of testing your applications? Something to ensure that all the individual parts always
 work? Something to provide the peace of mind that you crave when you develop anything? You want to be sure that your application
 is continuously working with the least effort possible, right?

 Well, Ruby on Rails does that too. Several testing frameworks are available for Ruby and Ruby on Rails, and in chapter 2 we’ll look at the two major ones: MiniTest and RSpec.

Chapter 2. Testing saves your bacon

 This chapter covers

 	Introducing testing approaches

 	Test-driven development with MiniTest

 	Behavior-driven development with RSpec

 Chapter 1 presented an extremely basic layout of a Rails application and an example of using the scaffold generator. One question remains,
 though: how do you make your Rails applications maintainable?

 	

 About the scaffold generator

 We won’t use the scaffold generator for the rest of the book because people tend to use it as a crutch, and it generates extraneous
 code. There’s a thread on the rubyonrails-core mailing list where people have discussed the scaffold generator’s downsides:
 http://mng.bz/g33u.

 	

 The answer is that you write automated tests for the application as you develop it, and you write these all the time. By writing
 automated tests for your application, you can quickly ensure that your application is working as intended. If you don’t write
 tests, your alternative is to check the entire application manually every time you make a change, which is time consuming
 and error prone. Automated testing saves you a ton of time in the long run and leads to fewer bugs. Humans make mistakes;
 programs (if coded correctly) don’t. We’ll do it correctly from step one.[1]

 1

Unlike certain other books.

 In the Ruby world, a huge emphasis is placed on testing, specifically on test-driven development (TDD) and behavior-driven development (BDD). This chapter covers two testing tools—MiniTest and RSpec—in a basic fashion so you can quickly learn their formats.

 By learning good testing techniques now, you’ll have a solid way to make sure nothing is broken when you start to write your
 first real Rails application. If you don’t write tests, there’ll be no automatic way of telling what might be going wrong
 in your code.

 A cryptic yet true answer to the question “Why should I test?” is “Because you’re human.” Humans—the large majority of this
 book’s audience—make mistakes. It’s one of our favorite ways to learn. Because humans make mistakes, having a tool to inform
 us when we make one is helpful, isn’t it? Automated testing provides a quick safety net to inform developers when they make
 mistakes. And by they, of course, we mean you. We want you to make as few mistakes as possible. We want you to save your bacon!

2.1. Using TDD and BDD to save your bacon

 In addition to catching errors, TDD and BDD give you time to think through your decisions before you write any code. By first
 writing a test for the implementation, you are (or, at least, you should be) thinking through the implementation: the code
 you’ll write after the test and how you’ll make the test pass. If you find the test difficult to write, then perhaps the implementation could
 be improved. Unfortunately, there’s no clear way to quantify the difficulty of writing a test and working through it, other
 than to consult with other people who are familiar with the process.

 Once the test is implemented, you should go about writing some code that your test can pass. If you find yourself working
 backward—rewriting your test to fit a buggy implementation—it’s generally best to rethink the test and scrap the implementation.
 Test first, code later.

 TDD is a methodology consisting of writing a failing test case first (usually using a testing tool such as MiniTest), then
 writing the code to make the test pass, and finally refactoring the code to make it neater and tidier. This process is commonly
 called red-green-refactor. The reasons for developing code this way are twofold. First, it makes you consider how the code should be running before
 it’s used by anybody. Second, it gives you an automated test you can run as often as you like to ensure that your code is
 still working as you intended. This book uses the MiniTest tool for TDD.

 BDD is a methodology based on TDD. You write an automated test to check the interaction between the different parts of the
 codebase rather than to test that each part works independently. Two tools used for BDD when building Rails applications are
 RSpec and Cucumber. This book relies heavily on RSpec and forgoes Cucumber.

 	

 Cucumber vs. other tools

 Cucumber was used in earlier editions of this book, but the community has drifted away from using it, as there are other tools
 (like Capybara, mentioned later) that provide a very similar way to test, but in a much neater, pure-Ruby syntax.

 	

 Let’s begin by looking at TDD and MiniTest.

2.2. Test-driven development basics

 Automated testing is much, much easier than manual testing. Have you ever gone through a website and manually filled in a
 form with specific values to make sure it conforms to your expectations? Wouldn’t it be faster and easier to have the computer
 do this work? Yes, it would, and that’s the beauty of automated testing: you won’t spend your time manually testing your code,
 because you’ll have written test code to do that for you.

 On the off chance that you break something, the tests are there to tell you the what, when, how, and why of the breakage.
 Although tests can never be 100% guaranteed, your chances of getting this information without first having written tests are
 0%. Nothing is worse than finding out through an early morning phone call from an angry customer that something is broken.
 Tests help prevent such scenarios by giving you and your client peace of mind. If the tests aren’t broken, chances are high
 (although not guaranteed) that the implementation isn’t either.

 Sooner or later, it’s likely that something in your application will break when a user attempts to perform an action you didn’t
 consider in your tests. With a base of tests, you can easily duplicate the scenario in which the user encountered the breakage,
 generate your own failed test, and use this information to fix the bug. This commonly used practice is called regression testing.

 It’s valuable to have a solid base of tests in the application so you can spend time developing new features properly, rather than fixing the old ones you didn’t do quite right. An application without tests is most likely broken in one way
 or another.

 2.2.1. Writing your first test

 The first testing library for Ruby was Test::Unit, which was written by Nathaniel Talbott back in 2000 and is now part of
 the Ruby standard library. The documentation for this library gives a fantastic overview of its purpose, as summarized by
 the man himself:

 The general idea behind unit testing is that you write a test method that makes certain assertions about your code, working
 against a test fixture. A bunch of these test methods are bundled up into a test suite and can be run any time the developer
 wants. The results of a run are gathered in a test result and displayed to the user through some UI.

 Nathaniel Talbott

 The UI Talbott references could be a terminal, a web page, or even a light.[2]

 2

Such as the one GitHub has made: http://github.com/blog/653-our-new-build-status-indicator.

 In Rails 4, Test::Unit has been superseded by MiniTest, which is a library of a similar style but with a more modern heritage.
 MiniTest is also part of the Ruby standard library.

 A common practice you’ll hopefully have experienced by now in the Ruby world is to let the libraries do a lot of the hard
 work for you. Sure, you could write a file yourself that loads one of your other files and runs a method and makes sure it works, but why do that when MiniTest already provides that functionality for such little cost? Never reinvent the wheel when somebody’s done
 it for you.

 Now you’ll write a test, and you’ll write the code for it later. Welcome to TDD.

Trying out MiniTest

 To try out MiniTest, first create a new directory called chapter_2, and in that directory make a file called example_test.rb.
 It’s good practice to suffix your filenames with _test so it’s obvious from the filename that it’s a test file. In this file, you’ll define the most basic test possible, as shown
 in the following listing.

 Listing 2.1. chapter_2/example_test.rb

 require "minitest/autorun"

class ExampleTest < Minitest::Test
 def test_truth
 assert true
 end
end

 To make this a MiniTest test, you begin by requiring minitest/autorun, which is part of Ruby’s standard library. This provides
 the Minitest::Test class inherited from on the next line. Inheriting from this class provides the functionality to run any method defined in
 this class whose name begins with test.

 To run this file, you run ruby example_test.rb in the terminal, from inside the chapter_2 directory. When this code completes, you’ll see some output, the most relevant
 being the last three lines:

 .

Finished in 0.001245s, 803.2129 runs/s, 803.2129 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

 The first line is a singular period. This is MiniTest’s way of indicating that it ran a test and the test passed. If the test
 had failed, it would show up as an F; if it had errored, an E. The second and third lines provide statistics on what happened—specifically that there was one test and one assertion, and
 that nothing failed, there were no errors, and nothing was skipped. Great success!

 The assert method in your test makes an assertion that the argument passed to it evaluates to true. This test passes given anything that’s not nil or false. When this method fails, it fails the test and raises an exception. Go ahead and try putting 1 there instead of true. It still works:

 Finished tests in 0.001071s, 933.7068 tests/s, 933.7068 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

 In the following listing, you remove the test_ from the beginning of your method and define it as a truth method.

 Listing 2.2. chapter_2/example_test.rb, alternate truth test

 def truth
 assert true
end

 When you run the test again with ruby example_test.rb, MiniTest tells you there were no tests specified:

 0 runs, 0 assertions, 0 failures, 0 errors, 0 skips

 See, no tests! Remember to always prefix MiniTest methods with test!

 2.2.2. Saving bacon

 Let’s make this a little more complex by creating a bacon_test.rb file in the same folder and writing the test shown next.

 Listing 2.3. chapter_2/bacon_test.rb

 require "minitest/autorun"

class BaconTest < Minitest::Test
 def test_saved
 assert Bacon.saved?
 end
end

 Of course, you want to ensure that your bacon (both the metaphorical and the crispy kinds) is always saved, and this is how
 you do it. If you now run the code to run this file, ruby bacon_test.rb, you’ll get an error:

 1) Error:
BaconTest#test_saved:
NameError: uninitialized constant BaconTest::Bacon
 bacon_test.rb:5:in `test_saved'

 Your test is looking for a constant called Bacon when you call Bacon.saved?, and it can’t find it because you haven’t yet defined the constant.

 For this test, the constant you want to define is a Bacon class, and you can define this class before or after the test. Note that in Ruby you usually must define constants and variables
 before you use them, but in MiniTest tests, the code is only run when MiniTest finishes evaluating it, which means you can
 define the Bacon class after the test. In the next listing, you follow the more conventional method of defining the class above the test.

 Listing 2.4. chapter_2/bacon_test.rb, now with Bacon class

 require "minitest/autorun"

class Bacon
end

class BaconTest < Minitest::Test
 def test_saved
 assert Bacon.saved?
 end
end

 Upon rerunning the test, you get a different error:

 1) Error:
BaconTest#test_saved:
NoMethodError: undefined method `saved?' for Bacon:Class
 bacon_test.rb:8:in `test_saved'

 Progress! It recognizes there’s now a Bacon class. But there’s no saved? method for this class, so you must define one.

 Listing 2.5. Bacon class in chapter_2/bacon_test.rb

 class Bacon
 def self.saved?
 true
 end
end

 One more run of ruby bacon_test.rb, and you can see that the test is now passing:

 .

Finished tests in 0.000596s, 1677.8523 tests/s, 1677.8523 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

 Your bacon is indeed saved! Now any time you want to check whether it’s saved, you can run this file. If somebody else comes
 along and changes that true value to a false, the test will fail:

 F

Finished in 0.001037s, 964.3825 runs/s, 964.3825 assertions/s.

 1) Failure:
BaconTest#test_saved [bacon_test.rb:11]:
Failed assertion, no message given.

 MiniTest reports “Failed assertion, no message given” when an assertion fails. You should probably make that error message
 clearer! To do so, you can specify an additional argument to the assert method in your test, like this:

 def test_saved
 assert Bacon.saved?, "Our bacon was not saved :("
end

 Now when you run the test, you get a clearer error message:

 1) Failure:
BaconTest#test_saved [bacon_test.rb:11]:
Our bacon was not saved :(

 And that, our friend, is the basics of TDD using MiniTest. Although we won’t use this method in the book, it’s handy to know
 about, because it establishes the basis for TDD in Ruby, in case you wish to use it in the future. MiniTest is also the default
 testing framework for Rails, so you may see it around in your travels.

 From this point on, we’ll focus on pure RSpec, which you’ll use to develop your next Rails application.

2.3. Behavior-driven development basics

 BDD is similar to TDD, but the tests for BDD are written in an easier-to-understand language so that developers and clients
 alike can clearly understand what’s being tested. The tool you’ll use for all BDD examples in this book is RSpec.

 RSpec tests are written in a Ruby domain-specific language (DSL), like this:

 RSpec.describe Bacon do
 it "is edible" do
 expect(Bacon).to be_edible
 end
end

 The benefits of writing tests like this are that clients can understand precisely what the test is testing and then use these
 steps in acceptance testing; a developer can read what the feature should do and then implement it; and finally, the test
 can be run as an automated test. With tests written in a DSL, you have the three important elements of your business (the
 clients, the developers, and the code) all operating in the same language.

 	

 Acceptance testing

 Acceptance testing is a process whereby people follow a set of instructions to ensure that a feature is performing as intended.

 	

 RSpec is an extension of the methods already provided by MiniTest. You can even use MiniTest methods in RSpec tests if you
 wish. But we’ll use the simpler, easier-to-understand syntax that RSpec provides.

 2.3.1. Introducing RSpec

 RSpec is a BDD tool written by Steven R. Baker and now maintained by Myron Marston and Andy Lindeman as a cleaner alternative
 to MiniTest. With RSpec, you write code known as specs that contain examples, which are synonymous with the tests you know from MiniTest. In this example, you’ll define the Bacon constant and then define the edible? method on it.

 Let’s jump right in and install RSpec. The latest version of the gem (at writing) is 3.2.0, and you can install it by running
 gem install rspec -v 3.2.0. You should see something like the following output:

 Fetching: diff-lcs-1.2.5.gem (100%)
Successfully installed diff-lcs-1.2.5
Fetching: rspec-support-3.2.2.gem (100%)
Successfully installed rspec-support-3.2.2
Fetching: rspec-mocks-3.2.1.gem (100%)
Successfully installed rspec-mocks-3.2.1
Fetching: rspec-expectations-3.2.0.gem (100%)
Successfully installed rspec-expectations-3.2.0
Fetching: rspec-core-3.2.2.gem (100%)
Successfully installed rspec-core-3.2.2
Fetching: rspec-3.2.0.gem (100%)
Successfully installed rspec-3.2.0
6 gems installed

 You can see that the final line says the rspec gem is installed, with the version number specified after the name.

 2.3.2. Writing your first spec

 When the gem is installed, you can create a new directory called bacon for your tests anywhere you like; in that directory, create another directory called spec. If you’re running a UNIX-based operating system such as Linux or Mac OS X, you can run the command mkdir -p bacon/spec to create these two directories. This code will generate a bacon directory, if it doesn’t already exist, and then generate
 a spec directory inside it.

 In the spec directory, create a file called bacon_spec.rb. This is the file you’ll use to test your currently nonexistent
 Bacon class. Put the code from the following listing in spec/bacon_spec.rb.

 Listing 2.6. bacon/spec/bacon_spec.rb

 RSpec.describe Bacon do
 it "is edible" do
 expect(Bacon.edible?).to be(true)
 end
end

 You use RSpec.describe to describe the behavior of the (currently undefined) Bacon class and write an example for it, declaring that Bacon is edible. The describe block contains tests (examples) that describe the behavior of bacon. In this example, whenever you call edible? on Bacon, the result should be true. expect and to serve a purpose similar to that of assert, which is to assert that the object passed to expect matches the arguments passed to to. If the outcome isn’t what you say it should be, then RSpec raises an error and goes no further with that spec.

There’s more than one way to write a spec

 An alternative way to write the spec would be like in the following listing.

 Listing 2.7. An alternate way to check if Bacon is edible

 RSpec.describe Bacon do
 it "is edible" do
 expect(Bacon).to be_edible
 end
end

 RSpec will internally translate the be_edible method call into edible?, and call that on Bacon. If the overall result of the Bacon.edible? statement is truthy (anything other than nil or false), then the spec will pass. But for now, we’ll stick with the first version—it’s a little
 less magical, and it’s easier to see what’s going on.

 2.3.3. Running the spec

 To run the spec, you run rspec spec in a terminal inside your bacon directory. You specify the spec directory as the main argument to the rspec executable so RSpec will run all the tests in that directory. This code can also take files as its arguments if you want
 to run tests only from those files.

 When you run this spec, you’ll get an uninitialized constant Bacon (NameError) error, because you haven’t yet defined your Bacon constant. To define it, create another directory in your Bacon project folder called lib, and in this directory, create a file called bacon.rb. This is the file where you define the Bacon constant, a class.

 Listing 2.8. bacon/lib/bacon.rb

 class Bacon
end

 You can now require this file in spec/bacon_spec.rb by placing the following line at the top of the file:

 require "bacon"

 When you run your spec again, because you told it to load bacon, RSpec will have added the lib directory to Ruby’s load path on the same level as the spec directory, so it will find lib/bacon.rb
 for your require. By requiring the lib/bacon.rb file, you ensure that the Bacon constant is defined. The next time you run the spec, you’ll get an undefined method for your new constant:

 1) Bacon is edible
 Failure/Error: expect(Bacon.new.edible?).to be(true)
 NoMethodError:
 undefined method `edible?' for #<Bacon:0x007f2530184988>
 # ./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

 This means you need to define the edible? method on your Bacon class. Reopen lib/bacon.rb, and add this method definition to the class:

 def self.edible?
 true
end

 Now the entire file looks like the following listing.

 Listing 2.9. bacon/lib/bacon.rb

 class Bacon
 def self.edible?
 true
 end
end

 By defining the method as self.edible?, you define it for the class. If you didn’t prefix the method with self., it would define the method for an instance of the class rather than for the class itself.

 Running rspec spec now outputs a period, which indicates the test has passed. That’s the first test—done.

 2.3.4. Much more bacon

 For the next test, you want to create many instances of the Bacon class and have the edible? method defined on them. To do this, open lib/bacon.rb and change the edible? class method to an instance method by removing the self. from before the method, as shown next.

 Listing 2.10. bacon/lib/bacon.rb

 class Bacon
 def edible?
 true
 end
end

 When you run rspec spec again, you’ll get the familiar error:

 1) Bacon is edible
 Failure/Error: expect(Bacon.edible?).to be(true)
 NoMethodError:
 undefined method `edible?' for Bacon:Class
 # ./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

 Oops! You broke a test! You should be changing the spec to suit your new ideas before changing the code! Let’s reverse the
 changes made in lib/bacon.rb.

 Listing 2.11. bacon/lib/bacon.rb

 class Bacon
 def self.edible?
 true
 end
end

 When you run rspec spec again, it passes. Now let’s change the spec first.

 Listing 2.12. bacon/spec/bacon_spec.rb

 RSpec.describe Bacon do
 it "is edible" do
 expect(Bacon.new.edible?).to be(true)
 end
end

 In this code, you instantiate a new object of the class rather than use the Bacon class. When you run rspec spec, it breaks once again:

 NoMethodError:
 undefined method `edible?' for #<Bacon:0x101deff38>

 If you remove the self. from the edible? method, your test will now pass:

 .

Finished in 0.00167 seconds
1 example, 0 failures

 2.3.5. Expiring bacon

 You can go about breaking your test once more by adding functionality: an expired! method, which will make your bacon inedible. This method sets an instance variable on the Bacon object called @expired to true, and you can use it in your edible? method to check the bacon’s status.

 First you must test that this expired! method will do what you think it should do. Create another example in spec/bacon_spec.rb so that the whole file looks like
 the following listing.

 Listing 2.13. bacon/spec/bacon_spec.rb

 require "bacon"

RSpec.describe Bacon do
 it "is edible" do
 expect(Bacon.new.edible?).to be(true)
 end

 it "can expire" do
 bacon = Bacon.new
 bacon.expired!
 expect(bacon).to_not be_edible
 end
end

 This uses the second format of the assertion—RSpec again translates be_edible to edible? and calls bacon.edible?. But this time it’s expected to return something falsey (either nil or false), due to the negative to_not (instead of to).

 If you run rspec again, your first spec still passes, but your second one fails because you have yet to define your expired! method. Let’s do that now in lib/bacon.rb.

 Listing 2.14. bacon/lib/bacon.rb

 class Bacon
 def edible?
 true
 end

 def expired!
 self.expired = true
 end
end

 By running rspec spec again, you get an undefined method error:

 1) Bacon can expire
 Failure/Error: bacon.expired!
 NoMethodError:
 undefined method `expired=' for #<Bacon:0x007ff116460c58>
 # ./lib/bacon.rb:7:in `expired!'

 This method is called by this line in the previous listing:

 self.expired = true

 To define this method, you can use the attr_accessor method provided by Ruby, as shown in listing 2.15; the attr prefix of the method means attribute. If you pass a Symbol (or collection of symbols) to this method, it defines methods for setting (expired=) and retrieving the attribute’s expired values, referred to as a setter and a getter, respectively. It also defines an instance variable called @expired on every object of this class to store the value that was specified by the expired= method calls.

 	

 The self. method prefix

 In Ruby you can call methods without the self. prefix. In this case, though, when calling the expired= method, you need to specify the prefix or the interpreter will think that you’re defining a local variable called expired, rather than calling the method. For setter methods, you should always use the prefix.

 	

 Listing 2.15. attr_accessor

OEBPS/arrow.jpg

OEBPS/01fig04.jpg
‘Purchase was successfully created.
Name: Shoes
Cost: 90.0

Edit | Back

OEBPS/01fig02.jpg
Listing Purchases

Name Cost

New Purchase

OEBPS/01fig03.jpg
New Purchase

Name
Cost

Greate Purchase

Back

OEBPS/common01.jpg

OEBPS/01fig01_alt.jpg
Welcome aboard

You're riding Ruby on Rails!
About your application’s environment

Getting started
Here's how to get rolling

Use rails generate to create your models
and controllers

To see all avalable options, run it without parameters.

Set up a root route to replace this page

Youre seeing this page because you're running in
development mode and you haven' set a oot route yet.

Routes are set up in config/routes. b,

Configure your database

If you're not using SQLite (the defaut, edit
config/database.ymi with your username and password.

Browse the
documentation

Ralls Guides
Ralls API
Ruby core

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/01fig05.jpg
New Purchase

2 errors prohibited this purchase from being save

= Name can't be blank
= Cost is not a number

Create Purchase

Back

OEBPS/01fig07.jpg
Purchase was successfully created.

Name: foo

Cost: 100.0

Edit | Back

OEBPS/01fig06.jpg
New Purchase

1 error prohibited this purchase from being saved:

= Cost must be greater than 0

Name
foo

OEBPS/cover.jpg
dl
INACT

Ryan Bigg
Yehuda Katz
S labnik

Skinner

OEBPS/01fig09.jpg
Purchase was successfully updated.

Name: Foo

Cost: 10.0

Edit | Back

OEBPS/01fig08.jpg
Editing Purchase

Name
foo

Cost
1000

Update Purchase

Show | Back

OEBPS/01fig11.jpg
Listing Purchases

Name Cost

Shoes 90.0 Show Edit Destroy
foo 100.0 Show Edit Destroy ~——

New Purchase

OEBPS/01fig10.jpg
Editing Purchase

1 error prohibited this purchase from being saved:

= Name can't be blank

Cost
1000

Update Purchase

Show | Back

OEBPS/01fig12.jpg
Purchase was successfully destroyed.

Listing Purchases

Name Cost
Shoes 90.0 Show Edit Destroy.

New Purchase

