

 [image: cover]

 SQL Server MVP Deep Dives Vol. 2

 Kalen Delaney, Louis Davidson, Greg Low, Brad McGehee, Paul Nielsen, Paul Randal & Kimberly Tripp

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	Development editor: Cynthia Kane
 Copyeditor: Liz Welch, Linda Recktenwald
 Project editor: Barbara Mirecki
 Typesetter: Marija Tudor
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Dedication

 To all the children of Operation Smile

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 MVP authors and their chapters

 Preface

 Acknowledgments

 About Operation Smile

 About this book

 About the Editors

 About SQL Server MVPs

 1. Architecture

 Chapter 1. Where are my keys?

 Chapter 2. “Yes, we are all individuals” A look at uniqueness in the world of SQL

 Chapter 3. Architectural growth pains

 Chapter 4. Characteristics of a great relational database

 Chapter 5. Storage design considerations

 Chapter 6. Generalization: the key to a well-designed schema

 2. Database administration

 Chapter 7. Increasing availability through testing

 Chapter 8. Page restores

 Chapter 9. Capacity planning

 Chapter 10. Discovering your servers with PowerShell and SMO

 Chapter 11. Will the real Mr. Smith please stand up?

 Chapter 12. Build your own SQL Server 2008 performance dashboard

 Chapter 13. SQL Server cost recovery

 Chapter 14. Best practice compliance with Policy-Based Management

 Chapter 15. Using SQL Server Management Studio to the fullest

 Chapter 16. Multiserver management and Utility Explorer—best tools for the DBA

 Chapter 17. Top 10 SQL Server admin student misconceptions

 Chapter 18. High availability of SQL Server in the context of Service Level Agreements

 3. Database development

 Chapter 19. T-SQL: bad habits to kick

 Chapter 20. Death by UDF

 Chapter 21. Using regular expressions in SSMS

 Chapter 22. SQL Server Denali: what’s coming next in T-SQL

 Chapter 23. Creating your own data type

 Chapter 24. Extracting data with regular expressions

 Chapter 25. Relational division

 Chapter 26. SQL FILESTREAM: to BLOB or not to BLOB

 Chapter 27. Writing unit tests for Transact-SQL

 Chapter 28. Getting asynchronous with Service Broker

 Chapter 29. Effective use of HierarchyId

 Chapter 30. Let Service Broker help you scale your application

 4. Performance tuning and optimization

 Chapter 31. Hardware 201: selecting and sizing database server hardware

 Chapter 32. Parameter sniffing: your best friend... except when it isn’t

 Chapter 33. Investigating the plan cache

 Chapter 34. What are you waiting for? An introduction to waits and queues

 Chapter 35. You see sets, and I see loops

 Chapter 36. Performance-tuning the transaction log for OLTP workloads

 Chapter 37. Strategies for unraveling tangled code

 Chapter 38. Using PAL to analyze SQL Server performance

 Chapter 39. Tuning JDBC for SQL Server

 5. Business intelligence

 Chapter 40. Creating a formal Reporting Services report part library

 Chapter 41. Improving report layout and visualization

 Chapter 42. Developing sharable managed code expressions in SSRS

 Chapter 43. Designing reports with custom MDX queries

 Chapter 44. Building a scale-out Reporting Services farm

 Chapter 45. Creating SSRS reports from SSAS

 Chapter 46. Optimizing SSIS for dimensional data loads

 Chapter 47. SSIS configurations management

 Chapter 48. Exploring different types of enumerators in the SSIS Foreach Loop container

 Chapter 49. Late-arriving dimensions in SSIS

 Chapter 50. Why automate tasks with SSIS?

 Chapter 51. Extending SSIS using the Script component

 Chapter 52. ETL design checklist

 Chapter 53. Autogenerating SSAS cubes

 Chapter 54. Scripting SSAS databases – AMO and PowerShell, Better Together

 Chapter 55. Managing context in MDX

 Chapter 56. Using time intelligence functions in PowerPivot

 Chapter 57. Easy BI with Silverlight PivotViewer

 Chapter 58. Excel as a BI frontend tool

 Chapter 59. Real-time BI with StreamInsight

 Chapter 60. BI solution development design considerations

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 MVP authors and their chapters

 Preface

 Acknowledgments

 About Operation Smile

 About this book

 About the Editors

 About SQL Server MVPs

 1. Architecture

 Chapter 1. Where are my keys?

 Keys in the relational model

 The debate

 The arguments

 Pro artificial keys

 Pro natural keys

 Additional considerations

 Natural keys assist the optimizer

 Artificial keys are the de facto standard

 Modularity, portability, and foreseeing the future

 IDENTITY columns may result in value gaps and “run out” of values

 Recommendations

 Simplicity and aesthetics

 Summary

 About the author

 Chapter 2. “Yes, we are all individuals” A look at uniqueness in the world of SQL

 Introducing uniqueness

 Constrained to uniqueness

 Primary keys

 Unique constraints

 Unique indexes

 Unique constraint or unique index?

 Advantages of the unique index

 Advantages of the unique constraint

 Uniqueness in results

 The good and the bad of DISTINCT

 DISTINCT or GROUP BY

 Are they needed at all?

 Unnecessary grouping

 Being guided by “that” error

 Summary

 About the author

 Chapter 3. Architectural growth pains

 Manage your data types

 IDENTITY case in point

 Database design and scalability

 Naming conventions

 Inconsistent design

 Normalization

 Overnormalized

 Undernormalized

 Primary keys and foreign keys

 GUIDs as primary keys

 System-generated integers as primary keys

 Generating your own ID values

 Indexes

 Underindexing

 Overindexing

 Maintenance

 Fill factor

 Summary

 About the author

 Chapter 4. Characteristics of a great relational database

 Coherent

 Standards based

 Reasonable names and data types

 Cohesive

 Needs little documentation

 Normal

 Fundamentally sound

 Documented

 Secure

 Encapsulated

 Well performing

 Summary

 About the author

 Chapter 5. Storage design considerations

 Selecting the correct RAID type

 RAID 0

 RAID 1

 RAID 5

 RAID 6

 RAID 10

 RAID 50

 When to use RAID 5

 When to use RAID 6

 When to use RAID 10

 File placement

 Index files

 Transaction log files

 tempdb database

 Disk alignment

 Correcting disk alignment on Windows 2003 and earlier

 Correcting disk alignment in Windows 2008 and later

 Correcting after the partition has been created

 Aligning on the array

 Snapshots

 Snapshots with a VSS-enabled storage array

 Snapshots with a non-VSS-enabled storage array

 Snapshots as a backup process

 Using snapshots to present storage to downstream environments

 Clones

 Summary

 About the author

 Chapter 6. Generalization: the key to a well-designed schema

 A place for normalization

 Lessons from the UIX discipline

 Generalization defined

 Benefits of generalization

 Summary

 About the author

 2. Database administration

 Chapter 7. Increasing availability through testing

 Testing—it’s not just for application functionality

 The missing link

 Knowledge is power

 Test early, test often

 Automated versus manual testing

 What needs to be tested?

 First things first

 Remember the big picture, too

 Summary

 About the author

 Chapter 8. Page restores

 Restore granularities

 Requirements and limitations

 Recovery model and availability of log backups

 SQL Server Edition

 Page type of the damaged page

 Performing a page restore

 What’s coming?

 Summary

 About the author

 Chapter 9. Capacity planning

 What is capacity planning?

 Gathering current database disk space usage

 Performance metrics

 Summary

 About the author

 Chapter 10. Discovering your servers with PowerShell and SMO

 Using PowerShell and Excel

 Using SMO with PowerShell

 Collecting instance and machine information

 Collecting SQL Agent job information

 Collecting database information

 Summary

 About the author

 Chapter 11. Will the real Mr. Smith please stand up?

 Personally identifiable data

 Today’s superhero: the DBA

 Our superpowers

 Tools of the trade

 Summary

 About the author

 Chapter 12. Build your own SQL Server 2008 performance dashboard

 DMVs as the source of performance-related information

 Using SQLCLR to get the performance counter values

 Sample solution for performance monitoring

 Use Reporting Services for performance monitoring

 Some ideas to improve the solution

 Summary

 About the author

 Chapter 13. SQL Server cost recovery

 The context for SQL Server as a Service

 What’s SQL Server as a Service?

 An introduction to chargebacks

 Implementing a chargeback model

 Summary

 About the author

 Chapter 14. Best practice compliance with Policy-Based Management

 The context for contemporary database administration

 The importance of best practice compliance

 Central Management Servers

 Policy-Based Management

 Surface area configuration

 Sysadmin membership

 Policy-Based Management with Central Management Servers

 Summary

 About the author

 Chapter 15. Using SQL Server Management Studio to the fullest

 Querying many servers at once

 Creating and using a scripting solution with templates

 Scripting multiple objects and now data, too

 Summary

 About the author

 Chapter 16. Multiserver management and Utility Explorer—best tools for the DBA

 SQL Server 2008 R2 tools for the DBA

 Tools of the trade

 Managing multiple instances using Utility Control Point

 Multiserver management and administration

 Best practices

 Summary

 About the author

 Chapter 17. Top 10 SQL Server admin student misconceptions

 Simple recovery model

 Default collation

 Table-level backups

 Using replication for high availability

 Timing query performance

 Shrinking databases

 Auditing login access

 Tail-log backups

 Database defaults

 Difficulty

 Summary

 About the author

 Chapter 18. High availability of SQL Server in the context of Service Level Agreements

 High availability—a definition

 Types of unavailability

 Unavailability indicators

 High availability options in SQL Server

 Service Level Agreement

 Measurement indicators

 The structure of a Service Level Agreement

 Service Level Agreements: the context for high availability

 Summary

 Useful links

 About the author

 3. Database development

 Chapter 19. T-SQL: bad habits to kick

 SELECT *

 Declaring VARCHAR without length

 Not choosing the right data type

 Mishandling date range queries

 Making assumptions about ORDER BY

 Summary

 About the author

 Chapter 20. Death by UDF

 Poor estimates

 Row-by-row processing

 What can you do about it?

 Inline table valued function solution

 Set-based solution

 What about code reuse?

 One last example of how bad scalar UDFs can be

 Summary

 About the author

 Chapter 21. Using regular expressions in SSMS

 Eliminating blank lines

 Removing extra newline characters

 Collapsing multiple lines into a single line

 Using the beginning-of-line metacharacter

 Using the end-of-line metacharacter

 Summary

 About the author

 Chapter 22. SQL Server Denali: what’s coming next in T-SQL

 OFFSET and FETCH

 SQL Server 2005 and 2008 solution

 SQL Server Denali solution

 Comparing execution plan results

 SEQUENCE

 Tips for using SEQUENCE

 Restrictions

 EXECUTE...WITH RESULT SETS

 THROW

 Summary

 About the author

 Chapter 23. Creating your own data type

 Anatomy of a CLR user-defined type

 ...But do you need it at all?

 Representations and conversions

 How about NULL?

 Building the data type: the bare basics

 Starting the project

 Adding the fields for the native representation

 Editing the signature

 Converting between .NET and text

 Converting between .NET and serialized

 Handling NULLs

 Using the data type

 Summary

 About the author

 Chapter 24. Extracting data with regular expressions

 Understanding before coding

 Background

 An incredibly brief introduction to regular expressions, matches, and groups

 Regular expressions and SQL Server

 Regular expressions and the .NET Framework

 The solution

 The core

 The SQL CLR user-defined function

 The SSIS script component

 Homework

 Summary

 About the author

 Chapter 25. Relational division

 Why use relational division?

 Defining relational division

 Background

 Sample data for two simple cases

 Comparison charts

 Let’s go on with the real stuff

 Set-based solution to common relational division

 Does one query exist for all types of relational division?

 Summary

 About the author

 Chapter 26. SQL FILESTREAM: to BLOB or not to BLOB

 To FILESTREAM or not to FILESTREAM

 Configuring FILESTREAM in SQL Server

 Operating system configuration

 SQL Server configuration

 Database configuration

 Creating a table that uses FILESTREAM

 Things to consider

 How do I use FILESTREAM?

 Summary

 About the author

 Chapter 27. Writing unit tests for Transact-SQL

 Unit test basics

 Unit test for databases

 T-SQL unit test walkthrough

 Automating unit test execution

 Summary

 About the author

 Chapter 28. Getting asynchronous with Service Broker

 The Service Broker usage template

 Creating Service Broker objects

 Summary

 About the author

 Chapter 29. Effective use of HierarchyId

 Hierarchies in a database

 Introduction to the HierarchyId data type

 Using the HierarchyId data type

 Physical HierarchyId data organization

 Effective indexing

 Depth-first indexes

 Breadth-first indexes

 More information about HierarchyId

 Summary

 About the author

 Chapter 30. Let Service Broker help you scale your application

 Scalable solutions

 Service Broker objects

 Security

 Message types

 Contracts

 Queues

 Services

 Conversations

 Endpoints

 Routes

 Remote service binding

 ETL trigger demonstration

 Summary

 About the author

 4. Performance tuning and optimization

 Chapter 31. Hardware 201: selecting and sizing database server hardware

 Why database server hardware is important

 Scaling up or scaling out

 SQL Server and hardware selection

 Database server–specific hardware factors

 Intel vs. AMD processors

 Memory recommendations

 Traditional storage subsystems

 New developments in storage subsystems

 Benchmarking and sizing tools

 Summary

 About the author

 Chapter 32. Parameter sniffing: your best friend... except when it isn’t

 Understanding parameter sniffing

 Parameter sniffing gone wrong

 Dealing with bad parameter sniffing

 OPTIMIZE FOR

 WITH RECOMPILE

 Local variables

 Plan guides

 Turn off parameter sniffing

 Summary

 About the author

 Chapter 33. Investigating the plan cache

 Plan cache dynamic management objects

 sys.dm_exec_cached_plans

 sys.dm_exec_query_plan

 Investigating missing indexes

 Investigating index usage

 Investigating operations

 Investigating index scans

 Investigating parameters

 Plan cache considerations

 Summary

 About the author

 Chapter 34. What are you waiting for? An introduction to waits and queues

 Introduction to total response time

 What are wait stats?

 Why use wait stats?

 Wait type categories

 The execution model

 Viewing and reporting on wait statistics

 Calculating wait time: signal waits vs. resource waits

 Correlating performance data: putting it together

 General I/O issues

 Buffer I/O latch issues

 Blocking and locking

 CPU pressure

 Parallelism

 Memory pressure

 Summary

 About the author

 Chapter 35. You see sets, and I see loops

 What loops?

 The loop perspective

 Loops in a query execution plan

 Loops in complex queries

 User-defined scalar functions in implicit loops

 Merging multiple loops into one

 Parallelizing loops

 Linked server calls in a loop

 Squeezing the fat out of loops with a slim table

 Summary

 About the author

 Chapter 36. Performance-tuning the transaction log for OLTP workloads

 How can the transaction log be a bottleneck?

 Factors that contribute to transaction log bottlenecks

 Determining whether the transaction log is a bottleneck

 Strategies for dealing with transaction log I/O bottlenecks

 Start with standard performance-tuning techniques

 Take advantage of minimally logged operations if appropriate

 Select a fast I/O subsystem

 Align disk partitions

 Remove physical file fragmentation

 Preallocate transaction log file size

 Separating data and log files

 Managing virtual log files

 Perform transaction log backups often

 Schedule database maintenance during slow times

 Summary

 About this author

 Chapter 37. Strategies for unraveling tangled code

 Organize: make it readable

 Formatting

 Comments

 Break down: what does it do?

 SELECT columns

 Data

 Sketch

 Pseudocode

 Streamline: resolve obvious issues

 Too much data

 Functions

 Non-SARGable WHERE Clauses

 Streamline: optimize joins

 Streamline: similar subqueries and queries

 Streamline: dynamic SQL

 Summary

 About the author

 Chapter 38. Using PAL to analyze SQL Server performance

 Performance Analysis of Logs (PAL)

 Using PAL with SQL Server

 Capturing performance counter data

 Data collector sets using PAL template files

 Logman

 SQLDiag

 Performing PAL analysis

 Counter Log

 Threshold File

 Questions

 Output Options

 File Output

 Queue

 Execute

 The PAL report

 Summary

 About the author

 Chapter 39. Tuning JDBC for SQL Server

 JDBC performance tuning can be effective

 Recommendations for tuning jTDS configuration

 Unicode character issues

 API cursor issues

 ResultSet Type issue

 Prepared statement mechanism issue

 Controlling global configuration

 Summary

 About the author

 5. Business intelligence

 Chapter 40. Creating a formal Reporting Services report part library

 Report parts defined

 Deciding to create a report part library

 Selecting report parts

 Level 1

 Level 2

 Level 3

 Level 4

 Using a report part library

 Creating the initial report part

 Using report parts and change requests

 Existing report part changes and publication

 Summary

 About the author

 Chapter 41. Improving report layout and visualization

 Target-based rendering

 Control over pagination

 Joining across datasets

 Aggregates of aggregates

 Writing mode

 Domain scope

 Databars

 Sparklines

 Summary

 About the author

 Chapter 42. Developing sharable managed code expressions in SSRS

 Coding report expressions

 Adding a report element property expression

 Coding a report Code property expression

 Creating sharable managed code expressions

 Referencing DLLs from your report

 Summary

 About the author

 Chapter 43. Designing reports with custom MDX queries

 Using the Adventure Works sample data

 MDX query builder

 Building a report

 Adding a calculated member

 Handling parameters

 Passing parameters

 Parameterizing measures

 Summary

 About the author

 Chapter 44. Building a scale-out Reporting Services farm

 What is network load balancing?

 Preparing your network

 Create a DNS entry for the NLB cluster application

 Configure the server network cards

 Adding the network load balancing feature

 Creating the NLB cluster

 Adding hosts to the NLB cluster

 Installing Reporting Services on the NLB cluster

 Configuring the first Reporting Services instance

 Configuring the second Reporting Services instance

 Joining the second Reporting Services instance

 Configuring view state validation

 Configuring the hostname and UrlRoot

 Workarounds for the HTTP 401 error message

 Summary

 About the author

 Chapter 45. Creating SSRS reports from SSAS

 Creating the report project

 Adding a shared data source

 Creating shared datasets

 Creating the main dataset

 Creating the parameter list shared dataset

 The report

 Datasets

 The matrix

 Adding hierarchy drill-down capabilities

 Parameters

 Charts

 Summary

 About the author

 Chapter 46. Optimizing SSIS for dimensional data loads

 Optimization quick wins

 Type 0 dimensions

 Type 1 SCDs

 Type 2 SCDs

 Summary

 About the author

 Chapter 47. SSIS configurations management

 Building the demo database

 Starting in the middle

 Changing the connection

 Externalizing the connection

 Taking a step back

 Abstracting a bit

 Let’s take a peek

 Runtime overrides

 Summary

 About the author

 Chapter 48. Exploring different types of enumerators in the SSIS Foreach Loop container

 Make it dynamic

 Foreach Loop enumerators

 Summary

 About the authors

 Chapter 49. Late-arriving dimensions in SSIS

 A late-arriving dimension scenario

 Natural keys and surrogate keys

 The example data structure

 Working around late-arriving dimensions

 File it

 Ignore it

 Update the fact later

 Handling late-arriving dimension members in fact processing

 Processing the dimension update

 Summary

 About the author

 Chapter 50. Why automate tasks with SSIS?

 Automation by example

 SSIS key tasks and components

 Creating reusable and mobile SSIS packages

 Precedence and manipulating control flow

 Monitoring the results

 Summary

 About the author

 Chapter 51. Extending SSIS using the Script component

 The Swiss Army knife of SSIS

 Before we get started...a word of caution

 Sources, destinations, and transformations...oh my!

 Synchronous and asynchronous behavior

 Script component inputs and outputs

 Into the code

 Summary

 About the author

 Chapter 52. ETL design checklist

 Discovering data realities

 Extract phase

 Detecting changed data

 Data staging

 Transform phase

 Load phase

 Surrogate key generation

 Data update strategy

 ETL system instrumentation and management

 Alerting

 Recovery and restart ability

 Audit, balance, and control support

 Runtime event logging

 ETL metadata and reporting

 Summary

 About the author

 Chapter 53. Autogenerating SSAS cubes

 Background

 Sample usage scenarios

 Technology overview

 Developing InstantCube, a simple cube generator

 Creating the Visual Studio project

 Creating the relational database emitter

 Creating the Analysis Services emitter

 Creating the SSAS database

 Creating the data sources

 Creating the Data Source View

 Creating the dimensions

 Creating the cubes

 Summary

 References

 About the author

 Chapter 54. Scripting SSAS databases – AMO and PowerShell, Better Together

 Advantages of PowerShell

 Advantages of compiled code

 Automating processing

 Repetitive design changes

 Scripting databases

 Modules and snap-ins

 Summary

 About the author

 Chapter 55. Managing context in MDX

 Named sets

 Calculated members

 Scope assignments

 Summary

 About the author

 Chapter 56. Using time intelligence functions in PowerPivot

 Introducing Data Analysis Expressions

 DAX data types

 Sample database

 Time intelligence functions

 Golden rules

 Functions that return a single date

 Functions that return a table of dates

 Functions that evaluate expressions over a time period

 Samples

 Summary

 About the author

 Chapter 57. Easy BI with Silverlight PivotViewer

 Presenting Silverlight PivotViewer

 What makes up your pivot

 Cards (or images)

 Slicing and dicing options

 Filtering and sorting options

 The way to go

 Which seat should I take?

 The source

 Preparation

 Implementation

 Summary

 About the author

 Chapter 58. Excel as a BI frontend tool

 Key points to consider when choosing a BI frontend tool

 Why Excel?

 Assumptions

 Why use OLAP as a source?

 Dashboard implementation

 The business perspective

 The technology perspective

 Summary

 About the author

 Chapter 59. Real-time BI with StreamInsight

 What is StreamInsight?

 What are events and event streams?

 Event shapes

 Deployment

 Architecture

 How does querying streams differ from querying an RDBMS?

 Where is StreamInsight useful?

 Time

 Querying the streams

 Summary

 About the author

 Chapter 60. BI solution development design considerations

 Architecture design

 Other aspects influencing architecture design

 Solution development

 Conceptual design

 ETL layer

 Dimensional modeling and cube design

 Reporting platform

 Dashboard development

 Summary

 About the author

 Index

 List of Figures

 List of Tables

 List of Listings

MVP authors and their chapters

	Johan Åhlén 53

 	Gogula Aryalingam 57

 	Glenn Berry 31

 	Aaron Bertrand 19

 	Kevin G. Boles 20

 	Robert Cain 45

 	Tim Chapman 38

 	Denny Cherry 5

 	Michael Coles 46

 	Rod Colledge 14

 	John Paul Cook 21

 	Louis Davidson 4

 	Rob Farley 2

 	Grant Fritchey 32

 	Darren Gosbell 54

 	Sergio Govoni 22

 	Allan Hirt 7

 	Satya Jayanty 16

 	Tibor Karaszi 17

 	Jungsun Kim 39

 	Tobiasz Koprowski 18

 	Hugo Kornelis 23

 	Ted Krueger 50

 	Matija Lah 24

 	Rodney Landrum 15

 	Greg Larsen 9

 	Peter Larsson 25

 	Andy Leonard 47

 	Ami Levin 1

 	Greg Low 41

 	John Magnabosco 11

 	Jennifer McCown 37

 	Brad McGehee 36

 	Siddharth Mehta 60

 	Ben Miller 26

 	Allan Mitchell 59

 	Tim Mitchell 51

 	Luciano Moreira 27

 	Jessica M. Moss 40

 	Paul Nielsen 6

 	Shahriar Nikkhah 48

 	Robert Pearl 34

 	Boyan Penev 55

 	Pedro Perfeito 58

 	Pawel Potasinski 12

 	Mladen Prajdić 28

 	Abolfazl Radgoudarzi 48

 	Denis Reznik 29

 	Rafael Salas 52

 	Edwin Sarmiento 44

 	Chris Shaw 3

 	Gail Shaw 8

 	Linchi Shea 35

 	Jason Strate 33

 	Paul Turley 43

 	William Vaughn 42

 	Peter Ward 13

 	Joe Webb 10

 	John Welch 49

 	Allen White 30

 	Thiago Zavaschi 56

Preface

 This is the second volume of a book that many people thought would never see the light of day. In early 2007, the editor of
 the first volume, Paul Nielsen, had an extraordinary idea. I’ll let him tell you about how this idea came into being, by including
 a section from the preface to Volume 1:

 Each year Microsoft invites all the MVPs from every technology and country to Redmond for an MVP Summit—all top secret—“don’t
 tweet what you see!” During the MVP Summit, each product team holds a series of presentations where they explain their technologies,
 share their vision, and listen to some honest feedback. At the 2007 MVP Summit in Seattle, Bill Gates presented his vision
 of the future of computing to the MVPs and then took questions for about an hour. I really enjoy these dialogues. I get the
 sense that if BillG wasn’t the founder of Microsoft, he’d make a great MVP. You can tell he likes us as fellow Geeks, and
 he’s rather candid in the MVP Q&A time. It’s one of my favorite parts of the MVP Summit.

 During the Q&A, the lines at the microphones are far too long to bother to join, so I daydream a few questions I’d ask BillG:

	As the world’s wealthiest Geek, what can you tell me about your PC?

 	Even with all your accomplishments, do you still find the most happiness and satisfaction with your family?

 	Do you play Age of Empires 2, and if so, want to join me in a game?

 	Kirk or Picard?

 	Can I buy you lunch?

And then I thought of a good, deep, Charlie Rose-type of question: “Centuries from now, would you rather be remembered as
 the guy who put a computer on every desk, or as the guy who ended malaria and fought the good fight against poverty?” As I
 try to guess what BillG might say, the answer is obvious. I’m glad that BillG’s intellect and resources are being directed
 at improving the human condition, and as an original Windows fan I’m proud of BillG. But the answer to my question is both—Windows
 has already done as much to fight poverty as will the Bill and Melinda Gates Foundation.

 Toward the end of the Q&A time, which was mostly taken up with technical questions, I was thrilled to hear one of the MVPs
 ask for his advice as a philanthropist. BillG said that we should all be involved in our communities and give of ourselves
 in creative ways: at the library, at schools, and with charities. “Do philanthropy where you are.” This idea of giving of
 ourselves is central to the MVP community.

 Paul then went on to describe how he decided he could make a difference “where he was” by writing about his passion, SQL Server,
 and using it to create a charity book to help children. He enticed me into the project, and after communicating with the rest
 of the SQL Server MVPs to determine if there was enough interest to make a project of this type viable, together we started
 approaching publishers.

 It didn’t take long to find that Manning Publications was extremely interested in producing this kind of project. Michael
 Stephens liked both the community aspect of the project and the charity goals. Manning also offered us a higher-than-usual
 author royalty, because we were giving it all to charity. We recruited four other prominent MVPs to help with the editing,
 and the project was underway.

 A project such as this had never been done before. We had 53 independent authors from all around the world trying to collaborate.
 Figuring out how to manage the technical editing and rewrites, and dealing with writers who were technically extraordinary
 but lacking in some writing skills, and deciding what to do with a chapter that came in at 40 pages when all the rest were
 10–15 pages, made the project much more time-consuming than we expected. Many of the MVPs who had written chapters early in
 the process despaired of ever seeing their work in print.

 But then it all seemed to come together, just in time for the 2009 PASS Conference, which is the largest conference in the
 world for SQL Server professionals. The book had been available for preorder, and by the time the conference started, the
 preorders alone had earned the chosen charity more than $10,000! Manning made an all-out effort to get 200 copies of the book
 available in print to sell at the conference. Almost three dozen of the MVP authors were speaking at the conference, and they
 told their audiences about this remarkable work we had done. On the Thursday of the conference, right after lunch, we launched
 Volume 1 in a special event in the vendor area and followed this with the most popular book-signing in PASS history. Most
 of the attending authors stood behind a long table, and eager readers flowed by in front of us, getting autographs from all
 the authors present. All 200 copies of the book were sold, which was another PASS record, and many people who wanted a copy
 weren’t able to get one and participate in the signing. Although my hand was numb from signing my name so many times, it was
 the most exciting event of my professional life. Volume 1 was so well received that there was immediate talk of another one.
 We all needed a rest, however, and we needed to give the community time to absorb the first terrific volume. But in late 2010,
 Paul and I decided it was time to start thinking about Volume 2.

 Paul and I switched roles: he stepped down from the overall editor role to become a section editor, and I became the overall
 editor. Kimberly Tripp, Paul Randal, and Greg Low stayed on as section editors for the new volume, and we brought in Louis
 Davidson and Brad McGehee as new section editors. Manning was more than happy to continue to support us with its publishing
 team.

 Like the first volume, this one is divided into five sections aligned with the five job roles dealing with SQL Server: database
 architecture and design, database development, database administration, performance tuning and optimization, and business
 intelligence. There was no rigid organization to the outline—MVPs were simply asked to submit abstracts for chapters that
 they wanted to write, and those abstracts were directed to the appropriate section editors. As in the first volume, the contents
 are driven by the MVPs’ individual passions, not by a comprehensive feature list. The section editors selected the best abstracts,
 but we committed to the idea that every MVP who wanted to contribute to the book could contribute. We had a much tighter deadline
 for this volume and also a much stricter page count limit, and we limited each author to a single chapter. But we didn’t restrict
 what the authors could write, and only insisted that it be never-published material in a topic area that wasn’t specifically
 addressed in Volume 1. So this volume is completely new material!

 To select the charity, we collected nominations from the participating MVPs with the restriction that the charity had to be
 a secular group that benefited children around the world. And we wanted to give to a smaller charity—we didn’t want our contribution
 to be added to a billion-dollar fund. The vote this time was overwhelming in favor of Operation Smile, which you can read
 about on page xli.

 I’d like to include another paragraph from the preface to the first volume, because there is no way I can say this better
 than Paul did:

 If you are reading this book, then you are “rich.” Considering your place in human history, you’re wealthier than most kings
 of centuries past—you are well educated, your grocery store shelves are full, you have a family doctor. For too many in the
 world, that is not the case. There are communities without clean water, children hurting from war, and AIDS orphans who have
 no family or place to sleep. When one ponders the immense need and poverty in the world, it’s easy to become overwhelmed with
 hopelessness. How can a single drop of ink change the color of an ocean? But we have no other option than to do what we can.
 My philosophy is that of Confucius: “It is better to light one small candle than to curse the darkness.” Even BillG can’t
 heal the world, but we can each make a difference.

 By buying this book, you’ve supported Operation Smile. We want to reiterate BillG’s suggestion that we can all find ways to
 do philanthropy where we are, and this book is one way to start doing that, both for the authors and for the readers.

 Welcome to SQL Server MVP Deep Dives, Volume 2—a collaborative work by 64 passionate SQL Server MVPs.

 KALEN DELANEY

Acknowledgments

 The first thank-you has to go to the 63 MVPs who wrote and edited this book, and to their families, and in some cases their
 employers, for supporting them in the effort.

 To my fellow editors, Louis Davidson, Greg Low, Brad McGehee, Paul Nielsen, Paul S. Randal, and Kimberly L. Tripp, who went
 above and beyond the call to make sure their sections contained quality content: thank you.

 To Marjan Bace, our publisher, thank you for helping us refine the original concept, supporting the project from the very
 first day of Volume 1, and partnering with us.

 To Michael Stephens, Cynthia Kane, Liz Welch, Linda Recktenwald, Mary Piergies, Barbara Mirecki, Candace Gillhoolley, Ozren
 Harlovic, Marija Tudor, and the rest of the team at Manning Publications—thanks for believing in this project and sticking
 with it to the end.

 A big thanks to Victor Isakov, Dave Dustin, Aaron Nelson, Denis Gobo, and Mike Walsh for contributing their time as technical
 editors. Your help was invaluable! And a huge showering of gratitude to Stacia Misner, Jen Stirrup, Rob Farley, and Robert
 Pearl who stepped up at the last minute to help us deal with an unexpected crunch!

 To the reviewers who read early versions of the manuscript and provided helpful feedback: Amos Bannister, Nikander Bruggeman,
 Margriet Bruggeman, Dave Corun, Sanchet Dighe, Richard Handloff, Peter Lee, Massimo Perga, Richard Siddaway, Ian Stirk, and
 Deepak Vohra.

 Many thanks to Ed Lehman and Ed Hickey, our SQL Server product team MVP Liaisons, for their support and the many good times.

 To our MVP leads through the years—Shawn Aebi, Paul Wehland, Stephen Dybing, Ben Miller, Alison Brooks, Suzanna Moran, Ryan
 Bolz, and others internationally—thank you for supporting our community efforts.

 To everyone in the Microsoft SQL Server product team, our enthusiastic thanks for developing a product worthy of our passion.

 A heartfelt thank-you to Operation Smile for all you do for the children.

 And finally, thank you, readers, for supporting our project and helping us support Operation Smile.

About Operation Smile

 Operation Smile, headquartered in Norfolk, Virginia, is an international children’s medical charity with programs and foundations
 in more than 60 countries, whose network of more than 5,000 medical volunteers from 76 countries is dedicated to helping improve
 the health and lives of children and young adults. Since its founding in 1982, Operation Smile has provided more than 2 million
 patient evaluations and has conducted over 200,000 free surgeries for children and young adults born with cleft lips, cleft
 palates, and other facial deformities. To lay the groundwork for long-term self-sufficiency in developing countries, Operation
 Smile donates medical equipment and trains local medical professionals in its partner countries so they are empowered to treat
 their own local communities. Visit www.operationsmile.org for more information.

 A letter from Operation Smile follows on the next page.

 [image:]

 August 15, 2011

 To Kalen, Kimberly, Paul, Paul, Greg, Louis, Brad, and all the other SQL Server MVPs who participated in producing this book:

 On behalf of Operation Smile, we want to thank all of you for selecting Operation Smile as the beneficiary for Volume 2 in
 the SQL Server Deep Dives series. We are indeed privileged and humbled knowing you have joined us in helping children around the world who just want
 a chance to smile and play like every other child.

 Approximately one in 500–700 children, or 200,000 globally, are born each year with a cleft lip or cleft palate deformity.
 These children face numerous challenges to their everyday survival and are often ostracized due to difficulty in speaking
 and eating.

 Because of our dedicated medical volunteers and generous financial supporters, we are able to continue our mission to heal
 children’s smiles and transform lives across the globe.

 Thanks again to everyone who contributed to this book and for making the decision to make a difference in the lives of children
 who may never know your name, but will never forget your kindness.

 [image:]

 Lisa Jardanhazy

 Vice President, Strategic Partnerships & Cause Marketing

About this book

 In this book, the world’s leading practitioners of SQL Server present a collection of articles on techniques and best practices
 for SQL Server development and administration based on their many years of combined experience. The 64 MVPs who contributed
 to the book each picked an area of special interest to them and shared their insights and practical know-how with you. The
 topics covered will appeal to a broad range of readers with varied levels of SQL Server experience, from beginner to advanced.

How the book is organized

 This book has 60 chapters divided into five parts that correspond to the 5 job roles involving SQL Server:

	
Part 1 Database architecture and design

 	
Part 2 Database development

 	
Part 3 Database administration

 	
Part 4 Performance tuning and optimization

 	
Part 5 Business intelligence

There is no rigid construction to the book, no list of SQL Server features or versions that needed to be covered. The contributors
 to the book submitted abstracts on their topics of expertise, and these were added to the appropriate sections. The section
 editors reviewed the abstracts and chose the ones that best fit into their grouping of chapters.

Source code

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. The source code for the examples in this book is available online from the publisher’s
 website at www.manning.com/SQLServerMVPDeepDivesVol2. The source code is organized by chapter, but please note that not all chapters have code listings in them.

Author Online

 The purchase of SQL Server MVP Deep Dives, Volume 2 includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/SQLServerMVPDeepDivesVol2.

 This page provides information about how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum. Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between
 individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation
 on the part of the authors, whose contributions to the book’s forum (as well as all authors’ contributions to the book itself)
 remain voluntary (and unpaid).

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Editors

 Kalen Delaney is the lead editor of SQL Server MVP Deep Dives, Volume 2. The bios and photographs of the section editors can be found at the end of the introductions to each part, as follows:

	
Part 1 Database architecture and design, edited by Louis Davidson

 	
Part 2 Database development, edited by Paul Randal and Kimberly Tripp

 	
Part 3 Database administration, edited by Paul Nielsen

 	
Part 4 Performance tuning and optimization, edited by Brad McGehee

 	
Part 5 Business intelligence, edited by Greg Low

[image:]

KALEN DELANEY

 Kalen Delaney has worked with SQL Server for nearly 24 years and has written about it for more than 20. In addition to writing
 deeply technical books such as Inside SQL Server and SQL Server 2008 Internals, she writes courseware and delivers advanced SQL Server training around the world. Find out more about Kalen’s writing and
 training on her website at www.SQLServerInternals.com

 Kalen has been invited by Microsoft to present special internal training on many occasions. She has spoken at Microsoft TechEd
 and presented at every PASS (Professional Association for SQL Server) Summit since the organization’s inception. She is delighted
 that her love for SQL Server can once again be put to such good use in the publication of this second volume of SQL Server MVP Deep Dives.

About SQL Server MVPs

 The Microsoft Most Valuable Professional (MVP) award is given in recognition of contributions to the community and can be
 renewed on a yearly basis. Only MVPs who have been actively contributing to the community during the previous year are renewed,
 so MVPs can’t rest on their laurels and expect to continue to be members of this generous, vibrant group of professionals.
 Contributions can take many forms, and those forms are constantly evolving. MVPs are the top influencers in many different
 kinds of communities. They all give their time to the community in one or more significant ways. They may be forum or newsgroup
 moderators, authors, bloggers, trainers, speakers, and user group or SQL PASS leaders, to name just a few.

 MVPs are also usually the most highly skilled individuals on Microsoft’s technology outside of Microsoft. In recognition of
 their place as the best aggregators of customer feedback and the broadest channel of communications out to customers, MVPs
 are given more access to product-development teams than any group of customers in order to maximize both inbound and outbound
 communications with the community. MVPs are awarded in many other technologies in addition to SQL Server, but it is the SQL
 Server MVPs who have put together the book you’re reading. Even within SQL Server, there are a wide variety of focus areas,
 and many SQL Server MVPs work across a number of SQL Server areas. Having a single broad category allows MVPs more access
 to the breadth of the product. In addition, if you browse through the table of contents for this volume, you’ll see that having
 a single broad category for SQL Server MVPs gives you a wide variety of SQL Server topics to read about.

 You can find out more about MVPs on Microsoft’s site at http://mvp.support.microsoft.com/. You can see the full list of SQL Server MVPs here: https://mvp.support.microsoft.com/communities/mvp.aspx?product=1&competency=SQL+Server.

Part 1. Architecture

 Edited by Louis Davidson

 Database design and architecture are subjects that can be quite polarizing. You’re either super excited by them, or they tend
 to make you bored to tears and ready to hurl cartoon birds at cartoon pigs. At the SQL PASS conference last year, a keynote
 was given by Dr. David DeWitte, a Technical Fellow in Microsoft’s Data and Storage Platform Division. For a great number of
 people, it was amazing stuff that made us sad when he finished talking. For quite a few more, it was painfully uninteresting,
 because, quoting a person I overheard, “I’m not going to use this.” As a speaker, I’ve given a number of sessions on normalization
 that get an average speaker score for usefulness that was just above 3 out of 5, because half of the people loved it and the
 other half wanted me to speak about something else entirely but were kind enough to give me a 2 instead of the dreaded 1.

 There in a nutshell loomed the $64,000 question. Is knowing about the architecture of SQL Server internals useful? Is understanding
 the proper way to do database design of any real value, even if you’re never going to directly design a query optimizer or
 even a database? Architectural understanding is like understanding why certain foods are good for you. A little understanding
 will help guide your eating habits, just like a bit of architectural knowledge will give you some insight into how to design
 and program to meet the needs of SQL Server’s architecture.

 One of the underlying goals of SQL is to be a completely declarative language where you tell the computer what you want to
 do and it does so almost magically. In reality, though, it’s not quite that simple unless you have very big hardware and very
 small needs. SQL Server doesn’t run like an Xbox game on a console, where all programs are built to work on one set of hardware
 parameters. It’s architected to run on lowly computers like my little laptop and on computers with more CPUs than you can
 count on your fingers and toes. Understanding the architecture of the SQL Server engine and how it works with the hardware
 will help you optimize your code and the servers where it operates. And understanding how the optimizer works will help you
 see why normalization and constraints are usually good for performance rather than bad.

 Architecture is a wide topic, so with six chapters we have an interesting range of subjects. We have two chapters that largely
 center on different aspects of keys and uniqueness, two that are general database architecture overviews, one on generalizing
 your designs, and even one that’s about physical storage architecture. A bit of a hodgepodge to be sure, but as you read the
 rest of this book, you’ll notice that the coding, reporting, and operational types of chapters are far more plentiful because,
 as a whole, MVPs aren’t theorists or deep internal architecture implementers but expert users of the technology with a solid
 knowledge of how the architecture affects them and a desire to share their knowledge with you.

 The focus on data architecture in the lion’s share of the sections shouldn’t surprise you. Database design is something that
 everyone has to do, and it’s quite difficult to do correctly, not so much due to the fact that the task is difficult from
 a technical or theoretical side (in fact it turns out to be easy to apply), but because it’s rare to start a completely new
 database with completely new code to access it. In this section you’ll get some guidance on how to implement a solid, working,
 and well-formed database prepared for today’s business as well as tomorrow’s.

About the editor

 [image:]

 Louis Davidson has been in the IT industry for 17 years as a corporate database developer and architect. He’s been a Microsoft
 MVP for 7 years and has written 4 books on database design. Currently, Louis serves as the Data Architect for the Christian
 Broadcasting Network, supporting offices in Virginia Beach, Virginia, and Nashville, Tennessee. Louis has a bachelor’s degree
 in computer science from the University of Tennessee at Chattanooga, with a minor in mathematics. For more information, please
 visit his website at http://drsql.org.

Chapter 1. Where are my keys?

 Ami Levin

 If you walk into a room full of DBAs or DB developers and you feel like having the same kind of fun as setting fire to a dry
 hayfield, just drop this question: “What’s a better design, using natural keys or artificial keys?” Satisfaction guaranteed.
 When I started to study database design, this was one of the first hot controversies I encountered. If you Google the phrase
 “natural vs. artificial keys,” you’ll come up with more than 150 million results, including endless debates, numerous articles,
 blog posts with passionate replies, long theoretical and practical arguments, and even the occasional profanity. In this chapter,
 I would like to take you on a tour, very much the same way I have traveled with this dispute, and I hope that together we
 can reach some useful insights into the essence of both positions. Who can tell? Perhaps things won’t look as stark afterward.

 The seeds of the dispute, curiously, were planted by the inventors of the relational model. The basis for all major databases
 today was first introduced by Edgar F. Codd of IBM in 1969 and later extended in collaboration with Chris Date and others.
 Although they were in accord on the main tenets of the model, the relational database forefathers held slightly different
 views on certain aspects of the model, and this early difference of opinions led to current-day repercussions, as you’ll see
 later. Date seemed to be a keen supporter of using artificial keys, but Codd had quite a few reservations on the matter.

 What caused this difference of opinion to grow into a controversy, and what has kept the battle alive for so long? Its growth
 to the rank of controversy stems from the fact that database design has a crucial impact on performance, modularity, consistency,
 and scalability. This makes the issue of correct database design ever so important. Moreover, once in production the basic
 design of a database is probably the hardest aspect to revise.

 I hope that when you approach your next design project, this chapter will prompt you to take the few extra hours, days, or
 weeks to consider your key selection with the seriousness that it truly deserves. If this chapter will help you save even
 one hour of work or one dollar of unnecessary expense in the future, it was worth all the work I’ve invested in it.

	

 The unforeseen consequences of database design flaws
 I’ve seen numerous cases where the DBAs and developers admit that there are serious flaws in the database design (“I inherited
 it this way”), but they’ll probably have to live with those flaws for many years to come. Their very valid reason is that
 the original design was created many years ago when the design characteristics, now recognized as flaws, had little or no
 negative impact. Since then, the natural evolution and expansion of the database have magnified the impact of those flaws.
 If the original designers had known the true extent of the resources that would be spent as a direct result of their design
 flaws, I’m sure they would have taken the time to think things over once more.

	

Keys in the relational model

 The importance of keys is apparent in seminal works, and in particular the works regarding data normalization. The concept
 of normalization was first introduced by Codd in his ground-breaking paper “A Relational Model of Data for Large Shared Data
 Banks.” This paper, which set the foundations for all relational databases as we know them today, is freely available on the
 internet, and I highly recommend it to anyone who deals with database design. A few years later, Codd and Date elaborated
 this concept into the normal forms as we know them today.

 It’s obvious from the normalization rules that keys are a fundamental entity that plays a critical role in the design of a
 relational database. The schema design is tested and validated for correctness based on the keys and how they relate to all
 the nonkey columns that make up your database tables. Choosing the correct model to represent the reality the database will
 serve is fully key dependent. How much thought have you given your keys until now?

	

 Databases are a mirror of reality
 I’d like to emphasize the fact that a relational model database is (surprise, surprise)... a model. That may sound obvious, but it does carry a lot of meaning and corresponding responsibility. Dictionary.com defines model as “a simplified represen-tation of a system or phenomenon, as in the sciences or economics, with any hypotheses required
 to describe the system or explain the phenomenon, often mathematically.” A database models, in relational form or some other
 form, some physical or logical universe, entity, or phenomenon (or a part of one of those). It’s designed to be a mirror,
 in relational language and terms, of its real characteristics and functions.

	

A key was originally defined by Codd as follows: “Normally, one domain [column] (or combination of domains) of a given relation
 [table] has values which uniquely identify each element [row] (n-tuple) of that relation. Such a domain is called a primary key.” Codd realized that there may
 be multiple columns within a table that may be candidates to identify the row. Therefore he offers, “Whenever a relation has
 two or more non-redundant primary keys, one of them is arbitrarily selected and called the primary key of that relation.”

 So the primary key is an arbitrary selection! Or is it? Although logically any of the candidate keys can be used to identify
 the row, a primary key must shoulder several other responsibilities besides unique identification. These include most often
 serving as the parent node in foreign key relationships, being used by default as the clustering key for the table’s physical
 index structure, and not allowing NULL values. In this chapter, I’ll use the following highly simplified definitions of the
 various types of keys:

	A simple key is a key that consists of a single column.

 	A composite key is a key that consists of more than one column.

 	A candidate key is a key (simple or composite) that could be used to uniquely identify the row.

 	A primary key is the key selected from among the candidate keys to serve as the authoritative row identifier.

 	An artificial (or surrogate) key is a key that doesn’t contain any information about the entity that the table represents—for example, a GUID.

 	A natural key is a key that consists of columns that contain information natural to the entity that the table represents. An example is
 the vehicle identification number (VIN) of a car.

The deeper theoretical aspects of key definitions and all the various subtypes of keys are useful in other discussions but
 don’t contribute to the purpose of this chapter. This chapter’s purpose is to present the practical aspects and ramifications
 of the choices you make for your keys when designing your database. Therefore, I’ll focus on what I’ve found to be the most
 common choices for key selection that SQL Server database designers face: should you use a column or a set of columns that
 are already a part of your row and contain information about the entity (broadly called the natural key), or should you add an IDENTITY or similar column (broadly called here the artificial key) to generate values that will identify the row and serve as the primary key?

The debate

 The overwhelming majority of database designs that I’ve encountered use artificial sequential enumerator keys such as IDENTITY for just about every table in the database. College classes about databases, books about database development, web articles,
 and most other materials include examples that use artificial keys almost exclusively. I believe that this practice is so
 widespread that new students, learning to become database developers, take it as a fact of life that this is how it should
 be done. Moreover, many database developers have come from a background of procedural programming, where the concept of object
 handles, pointers, and physical addresses fits perfectly with the notion of a “row handle,” which an artificial key seems to offer. Joe Celko, a well-known relational
 database expert and author, often claims that the origins of this practice are rooted all the way back in the 1950s when magnetic
 tapes were used to store sequential chunks of data and physical pointers were the only available means for the programming
 languages of those days to access the data. Celko is among the very few who wholeheartedly (some claim overly so) preaches
 for using natural keys. So who is right?

The arguments

 For this chapter, I’ve researched many books, articles, blogs, and forum posts. I’ve tried to narrow this topic down to the
 most commonly found arguments for each camp. Although it seems that the pro–artificial keys camp represents the vast majority
 of the relevant population, I’ll try to give similar weight to the arguments and at the same time serve as devil’s advocate
 for both camps. Without further ado, let’s looks at the claims of the supporters of each type of key.

Pro artificial keys

 Let’s begin with the claims of the pro–artificial keys camp.

Artificial key values never change

 The reason key value permanence is so meaningful is that it’s hard to propagate changes in key values throughout all referencing
 tables without disrupting the database. Although cascading referential constraints can be used in most cases to handle this
 task, it can incur significant data modification overhead. It’s a potential cost that never needs to be estimated when using
 an artificial identifier whose value never needs to change, regardless of what other property values change.

 Yet how frequently does a key property of an entity change in the real world? A true natural key such as a human retina scan
 will never change. A well-established industry standard identifier such as an ISBN might change. The 9-digit SBN code was
 established in 1966, to be replaced in 1970 by the ISO 10-digit ISBN, and 27 years later changed again to its current 13-digit
 format. Databases that used ISBNs as primary keys needed to accommodate these changes. Databases that didn’t implement cascading
 referential constraints might have required significant work to accommodate these changes and could have experienced potential
 disruptions to the database.

 I’d like to add that the claim that an artificial key will never change should be qualified. When two or more databases need
 to be merged, some of the artificial key values will probably need to change to avoid logically duplicate rows.

Artificial keys are short and simple

 Natural keys can be long. Sometimes, the natural key will consist of quite a few columns. Even if the top parent table has
 a relatively simple one-column natural key, each child table will require adding its own attributes to the key. The deeper
 you dive in this hierarchy, the longer and more complex the natural key will become. Because primary keys must be indexed
 in SQL Server to enable efficient enforcement of uniqueness, you might hit the 900-byte maximum index key size limit, which will prevent you from using the natural key altogether.

 Using multicolumn keys for joins results in long and complex join conditions, requiring long queries and potentially more
 complex plans that may lead to performance degradation. These multicolumn join conditions are used for enforcing foreign keys
 as well. This in turn may lead to degraded performance in data modifications.

 Artificial keys, on the other hand—especially the most common integer type IDENTITY columns—are short and simple. If you use them for every table, they will remain short and simple regardless of the hierarchy
 level. They’re meaningless, so they can be whatever form and size you want them to be.

Artificial keys can improve performance

 There are several aspects to this claim. First is the fact that the SQL optimizer has an easier time estimating join-predicate
 selectivity when it only needs to deal with simpler joins based on a single column, resulting in more efficient execution
 plans. Second, the clustering effect of using an ever-increasing primary key such as IDENTITY, which by default is also used as the clustered index key, will ensure that the rows are inserted sequentially into the last
 page of the index. The result is better cache use as the most recent page will remain in cache for reuse when the next insert
 arrives. This may reduce I/O costs for sequential inserts.

	

 Artificial keys and index sizes
 Another claim I hear often is that using short keys will result in smaller indexes and hence better overall performance. This
 would be true only if the artificial key was the only unique key required on a table. However, the natural key attributes
 are also unique, and this means additional unique constraints (and their corresponding indexes) must be maintained for data-consistency
 enforcement. So in many cases, the presence of an artificial key may result in larger index requirements.

	

In some Cases, an Artificial key is the only Option

 When I ask database designers for an example of tables that have no natural keys, the most frequent reply I receive is that
 of an event log table. A Profiler trace is an excellent example of an event log. Even if you consider all the properties of
 a trace event, they might not be enough to uniquely identify it.

 But one could also claim that a simple event log is a flat, nonrelational bulk storage structure to begin with. If these log
 events are the main business entity that your database deals with, you should probably design it quite differently, splitting
 this flat structure into a truly normalized relational form.

 While we can certainly find some great examples of real-world objects that are best identified by an artificial key, it would
 seem that they would be in the minority. After all, a well-designed relational model that truly mirrors the reality it serves
 must have a natural way of uniquely identifying each individual entity. If not, it means that these entities can’t be distinguished
 in the real world. Celko once claimed that not having a natural key is a violation of Aristotle’s law of identity: “To be
 is to be something in particular.”

Using Artificial keys Reduces Fragmentation of Clustered Indexes

 The clustered index of an ever-increasing value that never changes will never get fragmented by INSERTs or UPDATEs (except UPDATEs that increase row size), thus reducing the need for index maintenance. A clustered index requires an exclusive, table-level
 lock in order to be rebuilt. Consequently, during a clustered index rebuild, table data is unavailable to the application
 except for transactions that are using the read-uncommitted isolation level. Therefore, using IDENTITY keys as clustered primary keys can reduce potential downtime.

 DELETEs are quite a different story and hide a very risky aspect. Because the primary key value is ever increasing, the space left
 by a row that was deleted will never be reclaimed until the index is rebuilt or until the page is empty. This is not the case
 when using natural keys, which tend to have more or less even distribution patterns. Even if you choose to use artificial
 clustered keys, you’ll need to deal with the fragmentation effect of the natural keys anyway. As previously mentioned, their
 unique (nonclustered by default) indexes will be required to enforce data consistency and will suffer from the same fragmentation.
 It’s true that rebuilding a nonclustered index is cheaper in terms of locking and potential downtime. This brings me to the
 question of whether or not it’s a good idea to have the clustered index of the table on the primary key. Because in my opinion
 this issue deserves a full chapter by itself, I won’t address it here.

Artificial keys have meaning by virtue of being used

 Once generated and communicated back into the real world, artificial keys can move from a starting position of meaningless to a position of meaningful by virtue of being used and hence become semi-natural. For example, it’s easier for the warehouse manager to communicate
 specific products to employees using a short integer number than to use a barcode or a combination of five different properties
 that constitute the natural key. These arbitrary numbers eventually make sense to this cloistered group of people, regardless
 of whether they have any meaning to the people in the warehouse next door. And on their lunch breaks, they canrelax with no
 confusion at all over a nice hot cup of 593482.

Pro natural keys

 Next I’ll address the claims of the pro–natural keys camp.

Natural keys have Business Meaning

 Natural keys, as their name suggests, are natural to the entity that the table represents. These are attributes that must
 be stored anyway and have a real role to play for the database application. Adding additional (meaningless) data in the form
 of an artificial key is redundant and inflates the database. Moreover, because the value of the artificial key isn’t visible or even known to the application’s end users, they will never query for it. For example, no user would ever
 ask, “Which customers live in the country that happens to be represented in this particular database by the number 5?” They
 would query the database with a question like, “Show me all Canadian customers.”

 Codd said something very interesting about using artificial (surrogate) keys: “Database users may cause the system to generate
 or delete a surrogate, but they have no control over its value, nor is its value ever displayed to them.”

Queries on Tables Using Natural keys Require Fewer Joins

 Naturally, when your keys contain the data you’re after, the need for joins is drastically reduced. For example, a query on
 an [Order Details] row that already has the natural [Product] identifier in it may be enough for some queries and eliminate the need to join the [Products] table, as would be required when an artificial [ProductID] is used, because it holds no information about the product. The product key may be the product name, the manufacturer’s proprietary
 product number, barcode, and so on. When the most natural identifier is used—meaning the one that the particular business
 requires most often—the number of required joins will be reduced to a minimum.

 Having fewer joins makes your queries more elegant, shorter, simpler, and in most cases, better performing. Here’s an example
 of a simple query from AdventureWorks, Microsoft’s sample database that was designed using artificial keys exclusively:

 SELECT SOH.SalesOrderID, C.AccountNumber, ST.Name AS Territory
FROM Sales.SalesOrderHeader AS SOH
 INNER JOIN Sales.Customer AS C
 ON C.CustomerID = SOH.CustomerID
 INNER JOIN Sales.SalesTerritory AS ST
 ON ST.TerritoryID = SOH.TerritoryID

 Note that two joins are necessary to access the desired information. Let’s see how this same query would eliminate joins if
 no artificial keys were used. Assuming that the columns in the select list are the natural keys for these entities, and assuming
 that the designer used them as the primary keys, the same query would’ve been written as

 SELECT SalesOrderID, CustomerAccountNumber, Territory
FROM Sales.SalesOrderHeader

Natural keys maintain data consistency

 This extremely important aspect of using natural keys has several levels to it. The most obvious one is the fact that uniqueness
 must be enforced on the table by relying on the unique properties that identify the entities rather than on a meaningless
 IDENTITY column. For example, consider a [Countries] table that has only an IDENTITY primary key named [CountryID]. For such a table, nothing prevents you from inserting multiple rows for the same country, each using a different ID. When
 an artificial key is used, an additional unique constraint must be placed on the country’s name to keep data consistent. Unfortunately, it’s often not the case, and more unfortunately,
 this situation often leads to data inconsistencies.

	

 Data consistency concerns
 It’s true that even with a unique constraint in place on the natural key, improperly designed applications can still allow
 duplication by way of spelling variations (for example “USA,” “U.S.A.”). I’ve taken active part in purifying the data of several
 such databases. This relates to another bad practice of database design: failing to enforce standardized sets of values for
 global entities such as countries. In my database designs, you’ll often find a [Countries] table that consists of a single primary key column, [Country]. Only the application administrator has the required privileges to change it. Simple foreign keys reference it from all tables
 that require a [Country] attribute. The countries list is populated using standardized names, and when “Ceylon” changes its name to “Sri Lanka,” it’s
 easily dealt with using cascading referential integrity constraints.

	

Natural keys Eliminate lock Contentions due to Physical Clustering

 This issue is the counter aspect of the ever-increasing insert performance improvement mentioned in the pro–artificial keys
 section. Although benchmarks have proven that using an ever-increasing clustering key may improve performance for sequential
 inserts, the issue becomes more complex when at the same time the table data is also queried by SELECT statements. Remember that these selects aren’t necessarily user initiated but may be initiated by the database engine enforcing
 foreign keys when referencing tables’ data is modified. When the same physical data pages are being modified and selected
 at the same time, serious locking contentions may occur. Natural keys, which usually have a naturally random distribution,
 suffer much less from this issue.

	

 Solving clustered page locking contentions
 I’ve encountered several cases in the past where the database designers were called on to solve this issue, and they simply
 redesigned the keys to use randomly distributed GUIDs instead of IDENTITY to eliminate this locking contention. Of course, this strategy also eliminated the benefits of insert performance page caching
 and reduced fragmentation, in some cases introducing an even more severe performance problem due to the high levels of fragmentation
 and page splits. Interestingly enough, I didn’t witness a single case where the designers even considered the solution of
 using a natural key. When I mentioned the option, usually a few eyebrows were raised in response to my “weird” ideas.

	

Additional considerations

 The following points are less frequently mentioned in the natural versus artificial key debate. Nevertheless, I do believe
 they’re no less important than the commonly mentioned ones.

Natural keys assist the optimizer

 I discovered this issue while preparing a demonstration for a class back in 2006. I was surprised that I never saw it mentioned
 elsewhere as I have found it to be a serious issue that designers need to be aware of. SQL Server maintains statistical histograms
 of data distribution to optimize execution plans. The query optimizer uses this information to select the best plan, based
 on the actual parameter values used in the query. Here’s a simple query that lists all US customers from a table that uses
 a natural country key, its name:

 SELECT *
FROM Customers
WHERE Country = 'USA'

 For this query, the optimizer will “sniff” the predicate literal value USA and consult the statistics on the [Country] column. It will decide, based on the estimated number of US customers, whether it’s best to scan the [Customers] table (the most efficient approach when the number of US customers is high) or to use a noncovering, nonclustered index with
 a key lookup (the most efficient approach when this number is low).

 An important point: the optimizer can only take advantage of statistics if it can sniff the value of the predicate. In the
 previous query, the natural key of the country—its name—was used and therefore the optimizer was able to use the statistics
 to make the best choice.

 But what would happen if the designer of the database chose to use an artificial key for countries? In that case, the query
 would need to be written as follows:

 SELECT Customers.*
FROM Customers INNER JOIN Countries
 ON Customers.CountryId = Countries.CountryID
WHERE Countries.CountryName = 'USA'

 Now the optimizer is in trouble. At optimization time, it doesn’t know what [CountryID] value is used for USA and therefore can’t use the distribution statistics to estimate how many US customers are there. Crippled in its ability
 to sniff the value, it now can only make a best effort guess based on the average selectivity of the column—a less precise
 piece of information. As a result, the execution plan it selects won’t be as certain.

	

 The optimizer’s execution plan options when it can’t consult statistics
 Extending the previous example, if the optimizer uses the average selectivity of the column instead of sniffing the actual
 value, here are the possible outcomes.

 In case you have only US and Canadian customers, it will see a low average selectivity (exactly 2), indicating that the number
 of customers with a country value of USA is probably high, and will likely perform a table scan. This might prove to be a good choice if you have a lot of US customers,
 and a worse choice if you happen to have only a few.

 The penalty becomes much more expensive in the more common scenario of uneven distribution. In this scenario, you have customers
 from all over the world, but (being a US-based company) a large portion of them are from the US. For example, you may have
 100,000 customers from 100 different countries, but 30,000 of them are from the US. The overall selectivity of the [CountryID] column is pretty high—on average, you have 1,000 customers from each country. This would lead the optimizer to perform an
 index seek, because it expects just 1,000 key lookups. But this would prove to be a poor decision for this particular country,
 because 30 times more lookups are required. The penalty becomes much worse when the pages are accessed in a nonsequential
 order, potentially causing excessive I/O and when subsequent operations (in more complex queries) rely on this far-off estimation
 to make additional plan choices.

	

One way of working around this issue is to split the query into two queries. First, query for the [CountryID] of USA, and then use this value in a second query to retrieve the relevant customers. Issuing two queries instead of one will also
 carry a price tag, but this seems to me an unnecessary and awkward way to solve a problem that could have been avoided in
 the first place by using the natural key.

Artificial keys are the de facto standard

 As I mentioned earlier, the use of artificial keys is extremely widespread and is considered by the vast majority of designers
 to be the only option for primary keys. This fact has led third-party software products, mainly object-relational mapping
 (ORM) data access layer products, not to even consider the alternatives. Older versions of common ORMs such as Hibernate generated
 an artificial key for each entity created through it and only allowed the use of existing single column keys. Only EJB 3.0
 allowed the use of composite keys. Even modern ORM frameworks such as LINQ, although allowing composite keys, impose serious
 barriers to their usage. For example, LINQ won’t cache rows that have composite keys. I found that one out the hard way...

 Although it makes perfect sense for a generic ORM not to try to guess what your natural keys are when you use it to generate
 the schema, it doesn’t make sense that ORMs should pay relatively less attention to supporting natural and composite keys.
 Doing so seriously limits the schema design options of those few people who have use for natural and composite keys, and who
 like the advantages of designing with such third-party products.

Modularity, portability, and foreseeing the future

 Although when you initially design your database you tend to look at it as an individual entity, your single beloved baby,
 you should consider how parts of this baby could change over time, requiring you to readdress its care in the unseen future. Businesses change and therefore the databases
 that support them will change as well. The design patterns used will determine how easy it will be to accommodate these changes
 in the future, although it won’t necessarily be you who needs to deal with it. Adding additional functionality support to
 the database usually means adding new tables and new references to existing ones. I don’t think there’s a rule of thumb stating
 whether it will be easier to accommodate all possible changes with either natural or artificial keys, but it definitely will
 be easier to accommodate with whatever pattern you’ve chosen to begin with. You might, for example, conclude that natural
 keys are your best friend in a particular design today, but the future will bring additional multiple levels of hierarchy
 that will make keys huge. On the other hand, you might use an artificial key for a particular table because it seems to be
 of minor importance and contains only a handful of rows, only to find later that it has become a major entity and you have
 to deal with the implications of your initial decision.

IDENTITY columns may result in value gaps and “run out” of values

 Remember that IDENTITY doesn’t guarantee sequential monotonically spaced values. When an IDENTITY value is assigned to a transaction performing an INSERT, that value is lost if the transaction rolls back and a value gap is created in the table. If regulations require no-gap,
 sequential values (such as tax invoices), IDENTITY is not your friend.

 Also remember that the data type you choose for your artificial primary key will determine the maximal number of rows the
 table can accommodate. Using an INT data type and starting the numbering from 0, with an increment of 1, means that the table can hold approximately 2 billion
 rows. It may seem to you today that this is a far-fetched, imaginary limit, but keep in mind that this is what the designers
 of TCP/IP thought when they decided to use a 32-bit address space. I’ve witnessed cases where this limit was reached. In most
 cases it came as a surprise when transactions started to fail in production. Trust me on this; you really don’t want to find
 yourself in that position...

Recommendations

 Before you finalize the design you’re working on now, or whenever you’re called upon to design a relational model, stop for
 a minute, review this chapter, and ask yourself these questions for each table design you are about to submit:

	
Is there a natural key that I can use as primary key? If the answer is “no,” make sure it’s not due to a specification or design flaw. Reevaluate your design. If you think it’s
 good, don’t be shy: talk to the person who wrote the specifications. Ask if it was their intention to include entities that
 can’t be distinguished from each other.

 	
If there are a few natural candidates, is one of them familiar and simple? When more than one natural candidate key exists, identify the one that’s most familiar to the users, simple to use, and small
 enough to allow a unique index.

 	
Is the key stable? How often will this property change? How complex will it be to accommodate these changes? Will cascading referential constraints
 be enough to deal with changes, or will you need to disrupt the database somewhat when they change?

 	
How will it be used logically? Will most queries require just this property, and might using it save you a lot of joins? Is it the parent of a deep hierarchy,
 and might it get to be long and complex down the line?

 	
How will it affect the physical usage considerations for this table? Will this table require ultrafast sequential insert performance, or should it accommodate concurrent inserts and deletes?
 What are the maintenance windows available for this table? How much fragmentation do you expect it to get over time?

You probably won’t be able to fully answer all these questions for every table, but it’s not about the answers—it’s about
 the questions!

Simplicity and aesthetics

 I’ve designed quite a few databases during my 15-year career with SQL Server. Although initially I used nothing but artificial
 keys, once I started experimenting with natural keys I discovered a hidden beauty in the relational model that was unrevealed
 to me before. Using natural keys makes the schema look like a true reflection of the reality it represents. The queries become
 shorter, simpler, and much more similar to the plain human language that stands behind them. Eventually, every SQL query is
 a result of a human requiring some information from the database. When the schema is nothing but natural data, everything
 seems to fall in place elegantly. Moreover, I’ve found that using natural keys forced me to improve my design in many other
 aspects as well. The importance of a high level of normalization becomes much more evident with natural keys. Table hierarchies
 that seem to vanish in importance when using artificial keys, suddenly become crystal clear. At first, using natural keys
 seemed weird, but after the revelation of their beauty, I could no longer go back to the old way of blindly defaulting to
 artificial keys.

Summary

 A few years ago, I had a passionate debate with several fellow MVPs on the issue of natural keys. I recall that of a dozen
 or so participants, only one was even partly open-minded about using natural keys. That’s exactly why I have biased this chapter
 in favor of “the road less traveled.” I don’t need to convince anyone to use IDENTITY for keys; 99 percent of people do it anyway. On the other hand, I don’t want to convince anyone to do the opposite. I just
 want to make you stop for a brief moment and think again before blindly adding an IDENTITY column to every table and using it as the primary key. If I managed to achieve this goal with the words of this chapter,
 my mission is accomplished (for now).

	

 A final word of advice
 Become familiar and practice with designing simple databases using only natural keys. Doing so will help you to quickly evaluate
 these guidelines for the more complex tasks of your job. Even if you decide never to use a single natural key for your databases,
 at least you’ll know you made an intelligent choice—your choice—and you’ll know you aren’t just blindly following the masses.

	

About the author

 [image:]

 Ami Levin, CTO and co-founder of DBSophic, has been a Microsoft SQL Server MVP since 2006, and has over 20 years of experience
 in the IT industry. For the past 14 years Ami has been consulting, teaching, and speaking on SQL Server worldwide. Ami leads
 the Israeli SQL Server user group, moderates the local Microsoft support forum, and is a regular speaker at SQL Server conferences
 worldwide. His latest articles can be found at www.dbsophic.com.

Chapter 2. “Yes, we are all individuals” A look at uniqueness in the world of SQL

 Rob Farley

 This chapter looks at the idea of uniqueness, in both database design and query design. I explain the ways in which uniqueness
 can be enforced and compare the features of each. I then examine the idea of uniqueness within datasets, and challenge some
 basic methods that people use to create GROUP BY clauses. I hope you gain a new appreciation for uniqueness so that you can echo the Monty Python team in shouting “Yes, we
 are all individuals!”

	

Note

 For all my examples, I’ll use the AdventureWorks sample database, running on a SQL Server 2005 instance, connecting with SQL
 Server 2008 R2 Management Studio. I prefer the way that the later versions of SSMS display execution plans, but want to demonstrate
 functionality that applies in earlier versions as well as the newer ones. You can download AdventureWorks by searching for
 it at codeplex.com.

	

Introducing uniqueness

 Uniqueness is often taken for granted—we learned about it in our earliest days of database development. But I plan to show
 you that uniqueness is something that shouldn’t be taken lightly at all. It’s a powerful feature that you should consider
 carefully—not only when designing databases, but also when writing queries.

Constrained to uniqueness

 With unconstrained data, anything goes. This isn’t the way you like it—right from the word “Go,” you define your tables as
 having a list of columns and constrain those columns to use particular types. You freely implement columns that are automatically
 populated with the next number in a list, or that use default constraints to provide an initial value. You even use computed columns for those times when you want a column to be forced into a particular
 value. As much as the idea of constraining your systems sounds restricting, it’s a design feature on which we all thrive.

 Without uniqueness, you might not be able to tell the difference between two rows. Even though you might want to record the
 same data twice, you’d still like to be able to tell the difference between two rows, so having a way of making sure each
 row is uniquely identifiable is an incredibly useful feature—one that you often take for granted.

 You have a few choices for constraining your tables to unique values.

Primary keys

 Probably the most common cry of database architects is that every table must have a primary key—that is, a column (or collection of columns) whose values uniquely identify each row (and that don’t allow NULL values).
 Many argue that without a primary key, that thing you’ve created isn’t actually a table, despite what SQL Server calls it.
 I’m not going to try to argue one way or the other—I think everyone agrees that having primary keys on tables is a good idea.

 In SQL Server Management Studio’s Object Explorer pane, you see primary keys reflected using a gold key icon in the list of
 Columns, and listed again in the Keys section of the table properties (see figure 1).

 Figure 1. Gold key icons are used to indicate primary keys.

 [image:]

 By default, the primary key columns of a table are used as the keys of a unique clustered index on the table. You can see
 one listed in figure 1, called PK_Vendor_VendorID. If I try to drop this index, using the command DROP INDEX Purchasing.Vendor.PK_Vendor_VendorID;, I get an error, as shown here:

 Msg 3723, Level 16, State 4, Line 3
An explicit DROP INDEX is not allowed on index 'Purchasing.Vendor.
PK_Vendor_VendorID'. It is being used for PRIMARY KEY constraint enforcement.

 A primary key doesn’t need to be enforced by the clustered index; it can be done with a nonclustered index instead. Attempting
 to remove a nonclustered index that enforces a primary key causes the same error to occur.

 In your databases, you use the values stored in tables’ primary key columns to identify the items represented in the table.
 In this example, the vendor is represented by their VendorID, and you’d refer to them as Vendors 1, 2, and 3, despite calling
 them by Name or Account Number in the nontechnical world.

Unique constraints

 Another option for enforcing uniqueness is to use a unique constraint. This isn’t designed to replace the primary key, but
 rather to provide an alternative to the primary key. This kind of constraint is often used for natural keys—a column (or set
 of columns) that you recognize as uniquely identifying each row in the real world but that hasn’t been used as the primary
 key for practical or technical reasons (such as its ability to allow a NULL value—a unique constraint can have a single NULL
 value, whereas a primary key can’t—or its size, particularly if they’re referenced in many other tables). A set of columns
 that could potentially be used as a primary key is known as a candidate key.

 Good examples of these can be found in the names of things. You can usually identify things by their names. Despite there
 being many Rob Farleys in the world, in many contexts my name is unique. On Twitter I’m @rob_farley, a handle that (hopefully
 quite obviously) no one else has. My profile also identifies me as user 14146019. In AdventureWorks, if I constrain the names
 of Product subcategories using a unique constraint, this is represented by a blue key icon in Object Explorer, as you can
 see in figure 2.

 Figure 2. Blue key icons are used to indicate unique constraints.

 [image:]

 Notice that the unique constraint is enforced by a unique index. The experience of attempting to drop this index is different
 from that of trying to drop one used by a primary key. This time the DROP command is successful, but the unique constraint is also dropped. Similarly, if the unique constraint is dropped, the unique
 index is also (and perhaps predictably) dropped.

Unique indexes

 You’ve already seen that unique indexes are created to maintain both primary keys and unique constraints. But what if a unique
 index is created without an accompanying constraint? Is the effect the same, or is something lost?

 Even without a primary key or unique constraint, a unique index will provide the same functionality as far as the ability
 to restrict the data. No entry in the Keys section of Object Explorer is seen, but a unique index can be seen in the Indexes
 section, as expected.

Unique constraint or unique index?

 Having suggested that uniqueness can be maintained by either a unique constraint or a unique index, let’s consider the differences
 between them, and I’ll point out a couple of misconceptions about them, as well.

Advantages of the unique index

 A unique index is created in the same way that any index is created, with the exception that it involves the word UNIQUE:

 CREATE UNIQUE INDEX uix_Product_Name ON Production.Product(Name);

 A number of additional options are available that are specific to indexes, as well as many that are also available when creating
 a unique constraint. The most common example I can think of is FILLFACTOR, but there are a couple of other options that aren’t available to unique constraints—ones that I consider important and a
 significant factor in the decision about whether to use a unique constraint or a unique index:

	Included columns

 	Filters

I’m sure all readers of this chapter will appreciate the significance of included columns as a performance-tuning tool. If
 an index INCLUDEs additional columns, then a copy of that data is stored at the leaf level of the index, potentially avoiding the need for
 an expensive lookup to find that data in the underlying table storage (clustered index or heap). Any time an index is used,
 whether it be a scan or a seek, there’s a benefit to be seen from included columns. Included columns do add to the size of
 the index, and this data must be kept up-to-date whenever data in an included column is altered. But these downsides are often
 considered minor in comparison to the benefits of avoiding lookups.

 Filtered indexes, new in SQL 2008, provide another significant tool in the performance tuner’s utility belt. When I think
 of indexes, I often consider the analogy of the phonebook, and consider the Yellow Pages to be like a filtered index, listing
 phone numbers ordered by business type, but with a filter such as WHERE IsBusiness = 'Y' (or more strictly WHERE HasPaidToAdvertiseInTheYellowPages = 'Y'). We all use the Yellow Pages and realize its significance in helping us find the information we need, so I expect I don’t
 need to describe the benefits of filtered indexes.

 In the context of uniqueness, a filtered index presents an interesting situation. It means you can constrain your data so
 that Products that are colored Red must have different names from each other, but there can be duplicate names among other
 colors. A filtered index doesn’t constrain all your data—just the data that satisfies the filter. Although this scenario is
 useful, you end up with a unique index that’s only applicable to certain parts of the data.

Advantages of the unique constraint

 In my experience, the benefits of using unique constraints are more about people than technology. Unique constraints are a
 logical feature used in database design, whereas indexes (of any kind) are a physical feature often seen primarily as a performance
 tool. Performance-tuning consultants may recommend that indexes be created, but database architects may recommend that constraints
 be created. I play both roles and find myself seeing things somewhere in between.

 It’s completely correct to have the database architect (designer, if you prefer) indicate when a field should be constrained
 to uniqueness. They’re the ones who need to understand the business and the impact of such a decision. The performance-tuning
 expert should seek to understand the business, but ultimately is more concerned about the execution plans that are being created
 by queries and deciding whether a carefully constructed index would help. I’d like to suggest that the database architect
 consider the queries that will be needed and take a more active part in designing the indexes to be used, and that the performance-tuning
 expert consider the significance of unique constraints and appreciate the part that uniqueness (and all aspects of database
 design) have on performance.

Uniqueness in results

 It’s one thing to be able to constrain a table so that it’s only populated with unique data, but to have unique data in a
 result set is a slightly different matter. The keyword DISTINCT is one of the first that you learn when beginning T-SQL, but it’s also the first one to earn the stigma of “keyword to be
 avoided where possible.”

The good and the bad of DISTINCT

 DISTINCT has obvious uses. If there are duplicates in a dataset, then slipping the keyword DISTINCT in after SELECT will manage to de-duplicate the result set data. This is the good. But as most database professionals know, simply using
 DISTINCT in a SELECT query to filter out duplicates from the entire dataset can often hide bigger problems. A better way of removing duplicate rows from a result set is to ask why they’re there in the first place. Duplicates are often
 present because of mistakes (by query writers) in join predicates, or for a variety of other reasons. DISTINCT should never be used to “fix” a query, but only when you know ahead of time it’ll be required, such as when you’re querying
 to find the list of different Product colors sold:

 SELECT DISTINCT p.Color
FROM Production.Product AS p
WHERE EXISTS (SELECT *
 FROM Sales.SalesOrderDetail AS s
 WHERE s.ProductID = p.ProductID);

DISTINCT or GROUP BY

 As anyone who’s ever written a query like this knows, the next question that the client asks is “How many are there of each
 color?” At this point, you rewrite the query to use GROUP BY instead, which allows aggregate functions to be applied over the rows that share the same color:

 SELECT p.Color, COUNT(*) AS NumProducts
FROM Production.Product AS p
WHERE EXISTS (SELECT *
 FROM Sales.SalesOrderDetail AS s
 WHERE s.ProductID = p.ProductID)
GROUP BY p.Color;

 The functionality provided here is similar to using the DISTINCT keyword, with the difference being slightly beyond the accessibility of aggregates. The most significant difference between
 the two is regarding the treatment of nonaggregate functions and subqueries. Figure 3 shows two queries (and their plans) that might seem similar in functionality but that are subtly and significantly different.

 Figure 3. Comparing DISTINCT and GROUP BY

 [image:]

 Notice the order of operations and widths of arrows. Using DISTINCT, the de-duplication happens on the dataset including the computed data. It applies the concatenation on every row before
 looking for duplicates. With GROUP BY, the query optimizer does a little more work, realizing that the computation can be applied on the distinct values. In this scenario, it uses slightly
 less effort in comparing the values for making them unique, and then only needs to apply the computation 10 times, rather
 than more than 500 times.

 I can’t think of a single situation where DISTINCT is a better option than GROUP BY, except for readability and conciseness. The fact that GROUP BY requires that things be listed in the GROUP BY to allow their use in the SELECT clause—thereby forcing query writers to type more—encourages the lazy use of DISTINCT and frequently queries that perform more poorly. More on that soon.

Are they needed at all?

 I ran a simple query, selecting the different colors in the Production.Product table, and I accomplished this using a sort
 (Distinct Sort) operator. If I add an extra column (the Name column), though, you see that the sort disappears, as shown in
 figure 4.

 Figure 4. The sort operation disappears with an extra column.

 [image:]

 Of course, there’s trickery going on here. I’m adding a column that’s already known to be unique. Because the query optimizer
 knows that the Name column is already unique, it realizes that the combination of Name and Color must also be unique. Applying
 an operation couldn’t make it anymore unique—there aren’t degrees of uniqueness. Notice that the unique index isn’t even being
 used here, but if you remove it temporarily, the impact is significant, as shown in figure 5.

 Figure 5. The Sort operation reappears when the uniqueness isn’t already known.

 [image:]

 Removing the constraint doesn’t suddenly cause the data to be nonunique; it’s simply that the query optimizer doesn’t know
 it for certain. This is one of those scenarios that I described in Chapter 40 of the first SQL Server MVP Deep Dives book, titled “When is an unused index not an unused index?” If you don’t have that book, I recommend you go and buy it immediately—it’s
 an excellent resource, and none of the authors make a cent from it. Just like with this book, all the proceeds go to charity.

Unnecessary grouping

 The same effect as in figures 4 and 5 can be seen using the GROUP BY clause as well as DISTINCT, but you have more options available to you. Consider a GROUP BY clause in which you’re grouping by the product name and color. Perhaps you’re counting how much of a product has been sold.
 A query and plan can be seen in figure 6.

 Figure 6. Counting the number of products sold by product name and color, using a unique constraint

 [image:]

 In this situation, you see that the aggregation is performed using only data from the table of order details. The product
 details are added to the mix later. You’re grouping by the product itself, displaying the name and color. Because the product
 name is unique, there’s no difference whether you group by the name or any other unique feature of the product.

 If the product name weren’t unique, you’d be in a situation similar to counting the population of towns by their name. You
 might not want the population of Boston to be listed as more than 4 million if you’re thinking of Boston in Lincolnshire,
 UK (population approximately 60,000). Differentiating by name simply doesn’t always cut it. Let’s remove the unique constraint
 and look at the query again (see figure 7). The cost of this plan is significantly more, as you’d expect.

 Figure 7. Counting the number of products sold by product name and color, without using a unique constraint

 [image:]

Being guided by “that” error

 At this point, I want to break you of a common practice. When people write a GROUP BY clause, their behavior is driven by wanting to avoid that error we all know so well:

 Msg 8120, Level 16, State 1, Line 1
Column 'Production.Product.Name' is invalid in the select list because
it is not contained in either an aggregate function or the GROUP BY clause.

 This is the error that occurs when the GROUP BY clause is ignored. When GROUP BY p.Name is included, the error complains about the Color column. Soon, all the required fields are added and the error disappears,
 leaving you with a valid query that probably works but that might not be ideal. Naturally, query writers don’t go through
 this process every time, knowing how the construct works, but still the vast majority of query writers create their GROUP BY clause using only the nonaggregated fields from their SELECT clause.

 But if you ignore the SELECT clause (and the HAVING clause and ORDER BY clause, which can also produce that error) and acknowledge that you want to group by the product itself, rather than just
 its name and color, then you can introduce a unique set of columns to the GROUP BY clause and see the old plan return. This unique set of columns would be the product’s primary key. Grouping by the product’s
 primary key means that every other column from p in the GROUP BY clause can be completely ignored—you can’t make it any more unique (see figure 8). The extra columns are now only present in the GROUP BY clause to satisfy that error, giving you a far more ideal query. (Please don’t use this as an excuse to remove other unique
 constraints and indexes—they’re still important for data consistency.)

 Figure 8. Counting the number of products sold, grouping by the primary key

 [image:]

 This change would mean that two products with the same name and color would appear with a corresponding row each. But in many
 situations, this would make sense. It could be fine to list both Bostons with their corresponding populations, rather than
 combining them into a single row (even if only to highlight the need for further distinguishing information).

Summary

 Uniqueness can be applied to data in a number of ways, to tables using primary keys, unique constraints and unique indexes,
 and to datasets using DISTINCT and GROUP BY. However it’s done, it’s important to consider the impact on data and the advantages to having data constrained like this.
 You should also consider the idea of grouping by the primary key on a table, even if that field doesn’t appear in the HAVING, SELECT, or ORDER BY clauses.

About the author

 [image:]

 Rob Farley is the owner and principal consultant of LobsterPot Solutions Pty Ltd., an Australian-based company specializing
 in SQL Server and business intelligence and the first Australian company to be a Gold Competency Partner in the Microsoft
 Partner Network. He’s a Microsoft Certified Trainer and a regular conference presenter both around Australia and overseas.
 He heads up the Adelaide SQL Server User Group and has received the Microsoft MVP Award for SQL Server every year since 2006.
 Rob is a past branch executive committee member of the Australian Computer Society, and he’s recently been appointed to the
 PASS Board of Directors. He’s a dedicated husband and father, the author of two chapters in the first volume of SQL Server MVP Deep Dives, and is proud to be able to contribute again to this volume.

Chapter 3. Architectural growth pains

 Chris Shaw

 When I was 19 years old, I took a big step onto what United States Marines know as the yellow footprints. The yellow footprints
 are symbolic of the steps a recruit needs to take to become a Marine. The first and longest-lasting impression is how this
 marks the starting point of your Marine Corps career. To the drill instructors looking at recruits standing on the yellow
 footprints, it symbolizes the beginning of molding young men and women into Marines. During this molding process, recruits
 are exposed to a number of experiences that are designed to teach them all the skills needed to reach the end goal. Some of
 these experiences are going to hurt; some of these experiences may appear redundant, such as learning to brush your teeth.
 But all of these experiences are specifically put in place because someone understands that each of these young people will
 need to know these skills in order to become a successful Marine.

 As part of the process, a recruit must pass specific tests, including a three-mile run as well as a certain number of sit-ups
 and pull-ups. In addition to my sports participation the year before, I made sure I could run the required distance before
 leaving for boot camp. Without being proactive in my conditioning beforehand, my Marine training would have been that much
 more difficult and painful. As time passed and my body grew stronger, the pain of working out hard started to subside.

 Today when I look back on some of my personal growing pains, I recall graduating from boot camp, as well as the accomplishment
 I felt during the precise moment I was called a Marine for the first time. I also recall my discussion with one of the drill
 instructors as he reminded me that all the pain we pushed through and all the training we’d endured was designed for us to
 become better Marines. This training ensured we’d have a better chance of surviving events that could happen in the future.

 When I work on databases today, I apply the same principles I gained from my Marine training. I look at the future aspects
 of the database requirements. I reflect back on other database designs with similar requirements that either worked well or
 didn’t work as well. I then apply the lessons learned from those experiences.

 Just as with my Marine training, in which decisions made early in my training impacted the outcome, long-term performance
 and ease of use is affected by architectural decisions made early in the database design process—decisions such as what data
 types, keys, and indexes to use, in addition to how records will be uniquely identified. What makes your databases any different?
 Databases need change, technology changes, and most of all, changes related to your understanding of how SQL Server works
 affect your database. Likewise, in the many SQL Server career paths, many decisions made early in a career change as time
 goes on. This chapter illustrates the decisions that are made when databases are first architected and how these initial decisions
 can have a lasting impact.

Manage your data types

 Identity values are easy to use. Often new designers are eager to use identities after they’ve learned how each table should
 have a primary key, allowing each record to be uniquely identified. There are many places where using an identity as a table’s
 primary key works well. In some situations using an identity may require special attention. One issue I see often is using
 the identity value and forecasting the next value without validating the identity value. Events that occur on the table could
 impact the identity value, causing gaps in the numbering or even starting the numbering again from the original seed.

 I’ve witnessed two different occasions when the data type selected for an identity didn’t allow enough values to be inserted,
 causing data loss in the tables. In some cases identities are used without a complete understanding of their behavior—for
 example, when data is truncated from a table rather than deleted from a table. Consider these two statements, which remove
 data from the UserTable:

 CREATE TABLE UserTable
(
 UniqueId INT IDENTITY(1,1) NOT NULL,
 Data VARCHAR(30) NOT NULL,
);

 Statement 1:

 Delete from UserTable;

 Statement 2:

 Truncate Table UserTable;

 The delete statement won’t reseed an identity value in the table, but a truncate table will. If the UserTable in this example
 had tables that referenced it without foreign keys, the data integrity would be lost.

IDENTITY case in point

 In 2010, a company whose business is public safety ran into an issue on a table where they stored mass amounts of collected
 data. The company monitored locations of individuals by taking readings from a device that the individuals wear. Readings were taken repeatedly, tracking items such
 as whether the wearer had interfered with the device, where the wearer was located, and whether the device was operating correctly.
 The specifics on the table structure and exactly what data was stored were never released. But we could gather pieces of information
 based on press releases that show the design included an identity column. We could also discern that multiple rows were being
 inserted into this table for each individual that wore the aforementioned device. The information tends to point to a table
 design that looks like this:

 Create Table CollectedData(
CollectedDataID int IDENTITY not null PRIMARY KEY,
--collected data columns
)

 After reviewing the requirements, you can see there’s an issue with the table’s design. The limit for the numbers of rows
 that can be inserted in the table is 2,147,483,647. This restriction creates a table that has an upper limit and additional
 data will trigger an arithmetic overflow error. The same remains true with the use of tiny int as well; I recommend that you go one size larger than you think you’ll need, unless storage is the primary concern.

Database design and scalability

 Let’s return to our example. When the table reached the upper limit on the number of records that could be inserted, the database
 started to refuse information coming from the monitoring devices. (This meant that individuals who should be monitored were
 no longer being monitored.) The solution was to grow the size of the data allowed. The data type of the identity column was
 changed from an integer to a big integer by increasing the number of records that could be stored to 9,223,372,036,854,775,807.
 In addition, development time was devoted to making sure all the applications that reported, processed, or inserted this data
 also had to be prepared for the new data type.

 The complete outage lasted close to 12 hours. During these 12 hours the data collection stopped, revenue stopped, and well...the
 safety of everyone involved was in jeopardy. When you start to look at database designs and the architecture, always validate
 that the database is scalable and meets current requirements. The issue with the design occurred with the choice of data types
 and not with the use of the identities.

Naming conventions

 When you create stored procedures, views, and triggers, the code is going to refer back to a table or another object a large
 percentage of the time. Code can be completed much quicker and have a much better flow if all the referenced objects are named
 using the same consistent pattern. I’ve found that when I suggest a naming convention, many times it comes under attack because
 different people have different preferences. For example, rather than spaces in my object names, I prefer an underscore (_).
 To my eye, it’s very clean and easy to read, and at the same time keeps my object names as one continuous, space-free string. In any case, benefits to using a naming convention include the promotion of code reuse, simplified
 troubleshooting, and enhanced object search.

